extern void abort(void);
extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
void reach_error() { __assert_fail("0", "drivers--isdn--mISDN--mISDN_core.ko_030.aa11d95.68_1.cil_true-unreach-call.i", 3, "reach_error"); }

/* Generated by CIL v. 1.5.1 */
/* print_CIL_Input is false */

typedef signed char __s8;
typedef unsigned char __u8;
typedef short __s16;
typedef unsigned short __u16;
typedef int __s32;
typedef unsigned int __u32;
typedef long long __s64;
typedef unsigned long long __u64;
typedef signed char s8;
typedef unsigned char u8;
typedef unsigned short u16;
typedef int s32;
typedef unsigned int u32;
typedef long long s64;
typedef unsigned long long u64;
typedef unsigned short umode_t;
typedef u64 dma_addr_t;
typedef unsigned int __kernel_mode_t;
typedef unsigned long __kernel_nlink_t;
typedef long __kernel_off_t;
typedef int __kernel_pid_t;
typedef unsigned int __kernel_uid_t;
typedef unsigned int __kernel_gid_t;
typedef unsigned long __kernel_size_t;
typedef long __kernel_ssize_t;
typedef long __kernel_time_t;
typedef long __kernel_clock_t;
typedef int __kernel_timer_t;
typedef int __kernel_clockid_t;
typedef long long __kernel_loff_t;
typedef __kernel_uid_t __kernel_uid32_t;
typedef __kernel_gid_t __kernel_gid32_t;
typedef __u32 __kernel_dev_t;
typedef __kernel_dev_t dev_t;
typedef __kernel_mode_t mode_t;
typedef __kernel_nlink_t nlink_t;
typedef __kernel_off_t off_t;
typedef __kernel_pid_t pid_t;
typedef __kernel_clockid_t clockid_t;
typedef __kernel_uid32_t uid_t;
typedef __kernel_gid32_t gid_t;
typedef __kernel_loff_t loff_t;
typedef __kernel_size_t size_t;
typedef __kernel_ssize_t ssize_t;
typedef __kernel_time_t time_t;
typedef unsigned char u_char;
typedef unsigned int u_int;
typedef unsigned long u_long;
typedef __s32 int32_t;
typedef __u32 uint32_t;
typedef unsigned long sector_t;
typedef unsigned long blkcnt_t;
typedef __u16 __be16;
typedef __u32 __be32;
typedef __u32 __wsum;
typedef unsigned int gfp_t;
typedef unsigned int fmode_t;
struct __anonstruct_atomic_t_7 {
   int volatile   counter ;
};
typedef struct __anonstruct_atomic_t_7 atomic_t;
struct __anonstruct_atomic64_t_8 {
   long volatile   counter ;
};
typedef struct __anonstruct_atomic64_t_8 atomic64_t;
struct task_struct;
struct mm_struct;
struct pt_regs {
   unsigned long r15 ;
   unsigned long r14 ;
   unsigned long r13 ;
   unsigned long r12 ;
   unsigned long bp ;
   unsigned long bx ;
   unsigned long r11 ;
   unsigned long r10 ;
   unsigned long r9 ;
   unsigned long r8 ;
   unsigned long ax ;
   unsigned long cx ;
   unsigned long dx ;
   unsigned long si ;
   unsigned long di ;
   unsigned long orig_ax ;
   unsigned long ip ;
   unsigned long cs ;
   unsigned long flags ;
   unsigned long sp ;
   unsigned long ss ;
};
typedef void (*ctor_fn_t)(void);
struct kernel_vm86_regs {
   struct pt_regs pt ;
   unsigned short es ;
   unsigned short __esh ;
   unsigned short ds ;
   unsigned short __dsh ;
   unsigned short fs ;
   unsigned short __fsh ;
   unsigned short gs ;
   unsigned short __gsh ;
};
union __anonunion____missing_field_name_9 {
   struct pt_regs *regs ;
   struct kernel_vm86_regs *vm86 ;
};
struct math_emu_info {
   long ___orig_eip ;
   union __anonunion____missing_field_name_9 __annonCompField4 ;
};
typedef __builtin_va_list __gnuc_va_list;
typedef __gnuc_va_list va_list;
struct module;
struct bug_entry {
   int bug_addr_disp ;
   int file_disp ;
   unsigned short line ;
   unsigned short flags ;
};
struct completion;
struct pid;
typedef unsigned long pgdval_t;
typedef unsigned long pgprotval_t;
struct pgprot {
   pgprotval_t pgprot ;
};
typedef struct pgprot pgprot_t;
struct __anonstruct_pgd_t_13 {
   pgdval_t pgd ;
};
typedef struct __anonstruct_pgd_t_13 pgd_t;
struct page;
struct file;
struct seq_file;
struct __anonstruct____missing_field_name_18 {
   unsigned int a ;
   unsigned int b ;
};
struct __anonstruct____missing_field_name_19 {
   u16 limit0 ;
   u16 base0 ;
   unsigned int base1 : 8 ;
   unsigned int type : 4 ;
   unsigned int s : 1 ;
   unsigned int dpl : 2 ;
   unsigned int p : 1 ;
   unsigned int limit : 4 ;
   unsigned int avl : 1 ;
   unsigned int l : 1 ;
   unsigned int d : 1 ;
   unsigned int g : 1 ;
   unsigned int base2 : 8 ;
};
union __anonunion____missing_field_name_17 {
   struct __anonstruct____missing_field_name_18 __annonCompField6 ;
   struct __anonstruct____missing_field_name_19 __annonCompField7 ;
};
struct desc_struct {
   union __anonunion____missing_field_name_17 __annonCompField8 ;
} __attribute__((__packed__)) ;
struct cpumask {
   unsigned long bits[((4096UL + 8UL * sizeof(long )) - 1UL) / (8UL * sizeof(long ))] ;
};
typedef struct cpumask cpumask_t;
struct thread_struct;
struct raw_spinlock;
struct exec_domain;
struct map_segment;
struct exec_domain {
   char const   *name ;
   void (*handler)(int  , struct pt_regs * ) ;
   unsigned char pers_low ;
   unsigned char pers_high ;
   unsigned long *signal_map ;
   unsigned long *signal_invmap ;
   struct map_segment *err_map ;
   struct map_segment *socktype_map ;
   struct map_segment *sockopt_map ;
   struct map_segment *af_map ;
   struct module *module ;
   struct exec_domain *next ;
};
struct seq_operations;
struct i387_fsave_struct {
   u32 cwd ;
   u32 swd ;
   u32 twd ;
   u32 fip ;
   u32 fcs ;
   u32 foo ;
   u32 fos ;
   u32 st_space[20] ;
   u32 status ;
};
struct __anonstruct____missing_field_name_27 {
   u64 rip ;
   u64 rdp ;
};
struct __anonstruct____missing_field_name_28 {
   u32 fip ;
   u32 fcs ;
   u32 foo ;
   u32 fos ;
};
union __anonunion____missing_field_name_26 {
   struct __anonstruct____missing_field_name_27 __annonCompField11 ;
   struct __anonstruct____missing_field_name_28 __annonCompField12 ;
};
union __anonunion____missing_field_name_29 {
   u32 padding1[12] ;
   u32 sw_reserved[12] ;
};
struct i387_fxsave_struct {
   u16 cwd ;
   u16 swd ;
   u16 twd ;
   u16 fop ;
   union __anonunion____missing_field_name_26 __annonCompField13 ;
   u32 mxcsr ;
   u32 mxcsr_mask ;
   u32 st_space[32] ;
   u32 xmm_space[64] ;
   u32 padding[12] ;
   union __anonunion____missing_field_name_29 __annonCompField14 ;
} __attribute__((__aligned__(16))) ;
struct i387_soft_struct {
   u32 cwd ;
   u32 swd ;
   u32 twd ;
   u32 fip ;
   u32 fcs ;
   u32 foo ;
   u32 fos ;
   u32 st_space[20] ;
   u8 ftop ;
   u8 changed ;
   u8 lookahead ;
   u8 no_update ;
   u8 rm ;
   u8 alimit ;
   struct math_emu_info *info ;
   u32 entry_eip ;
};
struct ymmh_struct {
   u32 ymmh_space[64] ;
};
struct xsave_hdr_struct {
   u64 xstate_bv ;
   u64 reserved1[2] ;
   u64 reserved2[5] ;
} __attribute__((__packed__)) ;
struct xsave_struct {
   struct i387_fxsave_struct i387 ;
   struct xsave_hdr_struct xsave_hdr ;
   struct ymmh_struct ymmh ;
} __attribute__((__packed__, __aligned__(64))) ;
union thread_xstate {
   struct i387_fsave_struct fsave ;
   struct i387_fxsave_struct fxsave ;
   struct i387_soft_struct soft ;
   struct xsave_struct xsave ;
};
struct kmem_cache;
struct ds_context;
struct thread_struct {
   struct desc_struct tls_array[3] ;
   unsigned long sp0 ;
   unsigned long sp ;
   unsigned long usersp ;
   unsigned short es ;
   unsigned short ds ;
   unsigned short fsindex ;
   unsigned short gsindex ;
   unsigned long fs ;
   unsigned long gs ;
   unsigned long debugreg0 ;
   unsigned long debugreg1 ;
   unsigned long debugreg2 ;
   unsigned long debugreg3 ;
   unsigned long debugreg6 ;
   unsigned long debugreg7 ;
   unsigned long cr2 ;
   unsigned long trap_no ;
   unsigned long error_code ;
   union thread_xstate *xstate ;
   unsigned long *io_bitmap_ptr ;
   unsigned long iopl ;
   unsigned int io_bitmap_max ;
   unsigned long debugctlmsr ;
   struct ds_context *ds_ctx ;
};
struct __anonstruct_mm_segment_t_31 {
   unsigned long seg ;
};
typedef struct __anonstruct_mm_segment_t_31 mm_segment_t;
struct list_head {
   struct list_head *next ;
   struct list_head *prev ;
};
struct hlist_node;
struct hlist_head {
   struct hlist_node *first ;
};
struct hlist_node {
   struct hlist_node *next ;
   struct hlist_node **pprev ;
};
struct timespec;
struct compat_timespec;
struct __anonstruct____missing_field_name_33 {
   unsigned long arg0 ;
   unsigned long arg1 ;
   unsigned long arg2 ;
   unsigned long arg3 ;
};
struct __anonstruct_futex_34 {
   u32 *uaddr ;
   u32 val ;
   u32 flags ;
   u32 bitset ;
   u64 time ;
   u32 *uaddr2 ;
};
struct __anonstruct_nanosleep_35 {
   clockid_t index ;
   struct timespec *rmtp ;
   struct compat_timespec *compat_rmtp ;
   u64 expires ;
};
struct pollfd;
struct __anonstruct_poll_36 {
   struct pollfd *ufds ;
   int nfds ;
   int has_timeout ;
   unsigned long tv_sec ;
   unsigned long tv_nsec ;
};
union __anonunion____missing_field_name_32 {
   struct __anonstruct____missing_field_name_33 __annonCompField16 ;
   struct __anonstruct_futex_34 futex ;
   struct __anonstruct_nanosleep_35 nanosleep ;
   struct __anonstruct_poll_36 poll ;
};
struct restart_block {
   long (*fn)(struct restart_block * ) ;
   union __anonunion____missing_field_name_32 __annonCompField17 ;
};
typedef atomic64_t atomic_long_t;
struct thread_info {
   struct task_struct *task ;
   struct exec_domain *exec_domain ;
   __u32 flags ;
   __u32 status ;
   __u32 cpu ;
   int preempt_count ;
   mm_segment_t addr_limit ;
   struct restart_block restart_block ;
   void *sysenter_return ;
   int uaccess_err ;
};
struct raw_spinlock {
   unsigned int slock ;
};
typedef struct raw_spinlock raw_spinlock_t;
struct __anonstruct_raw_rwlock_t_37 {
   unsigned int lock ;
};
typedef struct __anonstruct_raw_rwlock_t_37 raw_rwlock_t;
struct lockdep_map;
struct stack_trace {
   unsigned int nr_entries ;
   unsigned int max_entries ;
   unsigned long *entries ;
   int skip ;
};
struct lockdep_subclass_key {
   char __one_byte ;
} __attribute__((__packed__)) ;
struct lock_class_key {
   struct lockdep_subclass_key subkeys[8UL] ;
};
struct lock_class {
   struct list_head hash_entry ;
   struct list_head lock_entry ;
   struct lockdep_subclass_key *key ;
   unsigned int subclass ;
   unsigned int dep_gen_id ;
   unsigned long usage_mask ;
   struct stack_trace usage_traces[1 + 3 * 4] ;
   struct list_head locks_after ;
   struct list_head locks_before ;
   unsigned int version ;
   unsigned long ops ;
   char const   *name ;
   int name_version ;
   unsigned long contention_point[4] ;
   unsigned long contending_point[4] ;
};
struct lockdep_map {
   struct lock_class_key *key ;
   struct lock_class *class_cache ;
   char const   *name ;
   int cpu ;
   unsigned long ip ;
};
struct held_lock {
   u64 prev_chain_key ;
   unsigned long acquire_ip ;
   struct lockdep_map *instance ;
   struct lockdep_map *nest_lock ;
   u64 waittime_stamp ;
   u64 holdtime_stamp ;
   unsigned int class_idx : 13 ;
   unsigned int irq_context : 2 ;
   unsigned int trylock : 1 ;
   unsigned int read : 2 ;
   unsigned int check : 2 ;
   unsigned int hardirqs_off : 1 ;
};
struct __anonstruct_spinlock_t_38 {
   raw_spinlock_t raw_lock ;
   unsigned int magic ;
   unsigned int owner_cpu ;
   void *owner ;
   struct lockdep_map dep_map ;
};
typedef struct __anonstruct_spinlock_t_38 spinlock_t;
struct __anonstruct_rwlock_t_39 {
   raw_rwlock_t raw_lock ;
   unsigned int magic ;
   unsigned int owner_cpu ;
   void *owner ;
   struct lockdep_map dep_map ;
};
typedef struct __anonstruct_rwlock_t_39 rwlock_t;
struct __anonstruct_seqlock_t_40 {
   unsigned int sequence ;
   spinlock_t lock ;
};
typedef struct __anonstruct_seqlock_t_40 seqlock_t;
struct timespec {
   __kernel_time_t tv_sec ;
   long tv_nsec ;
};
struct kstat {
   u64 ino ;
   dev_t dev ;
   umode_t mode ;
   unsigned int nlink ;
   uid_t uid ;
   gid_t gid ;
   dev_t rdev ;
   loff_t size ;
   struct timespec atime ;
   struct timespec mtime ;
   struct timespec ctime ;
   unsigned long blksize ;
   unsigned long long blocks ;
};
struct __wait_queue;
typedef struct __wait_queue wait_queue_t;
struct __wait_queue {
   unsigned int flags ;
   void *private ;
   int (*func)(wait_queue_t *wait , unsigned int mode , int sync , void *key ) ;
   struct list_head task_list ;
};
struct __wait_queue_head {
   spinlock_t lock ;
   struct list_head task_list ;
};
typedef struct __wait_queue_head wait_queue_head_t;
struct __anonstruct_nodemask_t_41 {
   unsigned long bits[(((unsigned long )(1 << 9) + 8UL * sizeof(long )) - 1UL) / (8UL * sizeof(long ))] ;
};
typedef struct __anonstruct_nodemask_t_41 nodemask_t;
struct mutex {
   atomic_t count ;
   spinlock_t wait_lock ;
   struct list_head wait_list ;
   struct thread_info *owner ;
   char const   *name ;
   void *magic ;
   struct lockdep_map dep_map ;
};
struct mutex_waiter {
   struct list_head list ;
   struct task_struct *task ;
   void *magic ;
};
struct rw_semaphore;
struct rw_semaphore {
   __s32 activity ;
   spinlock_t wait_lock ;
   struct list_head wait_list ;
   struct lockdep_map dep_map ;
};
struct ctl_table;
struct device;
struct pm_message {
   int event ;
};
typedef struct pm_message pm_message_t;
struct dev_pm_ops {
   int (*prepare)(struct device *dev ) ;
   void (*complete)(struct device *dev ) ;
   int (*suspend)(struct device *dev ) ;
   int (*resume)(struct device *dev ) ;
   int (*freeze)(struct device *dev ) ;
   int (*thaw)(struct device *dev ) ;
   int (*poweroff)(struct device *dev ) ;
   int (*restore)(struct device *dev ) ;
   int (*suspend_noirq)(struct device *dev ) ;
   int (*resume_noirq)(struct device *dev ) ;
   int (*freeze_noirq)(struct device *dev ) ;
   int (*thaw_noirq)(struct device *dev ) ;
   int (*poweroff_noirq)(struct device *dev ) ;
   int (*restore_noirq)(struct device *dev ) ;
};
enum dpm_state {
    DPM_INVALID = 0,
    DPM_ON = 1,
    DPM_PREPARING = 2,
    DPM_RESUMING = 3,
    DPM_SUSPENDING = 4,
    DPM_OFF = 5,
    DPM_OFF_IRQ = 6
} ;
struct dev_pm_info {
   pm_message_t power_state ;
   unsigned int can_wakeup : 1 ;
   unsigned int should_wakeup : 1 ;
   enum dpm_state status ;
   struct list_head entry ;
};
struct __anonstruct_mm_context_t_89 {
   void *ldt ;
   int size ;
   struct mutex lock ;
   void *vdso ;
};
typedef struct __anonstruct_mm_context_t_89 mm_context_t;
struct vm_area_struct;
struct key;
struct linux_binprm;
typedef __u64 Elf64_Addr;
typedef __u16 Elf64_Half;
typedef __u32 Elf64_Word;
typedef __u64 Elf64_Xword;
struct elf64_sym {
   Elf64_Word st_name ;
   unsigned char st_info ;
   unsigned char st_other ;
   Elf64_Half st_shndx ;
   Elf64_Addr st_value ;
   Elf64_Xword st_size ;
};
typedef struct elf64_sym Elf64_Sym;
struct kobject;
struct attribute {
   char const   *name ;
   struct module *owner ;
   mode_t mode ;
};
struct attribute_group {
   char const   *name ;
   mode_t (*is_visible)(struct kobject * , struct attribute * , int  ) ;
   struct attribute **attrs ;
};
struct sysfs_ops {
   ssize_t (*show)(struct kobject * , struct attribute * , char * ) ;
   ssize_t (*store)(struct kobject * , struct attribute * , char const   * , size_t  ) ;
};
struct sysfs_dirent;
struct kref {
   atomic_t refcount ;
};
struct kset;
struct kobj_type;
struct kobject {
   char const   *name ;
   struct list_head entry ;
   struct kobject *parent ;
   struct kset *kset ;
   struct kobj_type *ktype ;
   struct sysfs_dirent *sd ;
   struct kref kref ;
   unsigned int state_initialized : 1 ;
   unsigned int state_in_sysfs : 1 ;
   unsigned int state_add_uevent_sent : 1 ;
   unsigned int state_remove_uevent_sent : 1 ;
   unsigned int uevent_suppress : 1 ;
};
struct kobj_type {
   void (*release)(struct kobject *kobj ) ;
   struct sysfs_ops *sysfs_ops ;
   struct attribute **default_attrs ;
};
struct kobj_uevent_env {
   char *envp[32] ;
   int envp_idx ;
   char buf[2048] ;
   int buflen ;
};
struct kset_uevent_ops {
   int (*filter)(struct kset *kset , struct kobject *kobj ) ;
   char const   *(*name)(struct kset *kset , struct kobject *kobj ) ;
   int (*uevent)(struct kset *kset , struct kobject *kobj , struct kobj_uevent_env *env ) ;
};
struct kset {
   struct list_head list ;
   spinlock_t list_lock ;
   struct kobject kobj ;
   struct kset_uevent_ops *uevent_ops ;
};
struct kernel_param;
struct kparam_string;
struct kparam_array;
union __anonunion____missing_field_name_99 {
   void *arg ;
   struct kparam_string  const  *str ;
   struct kparam_array  const  *arr ;
};
struct kernel_param {
   char const   *name ;
   u16 perm ;
   u16 flags ;
   int (*set)(char const   *val , struct kernel_param *kp ) ;
   int (*get)(char *buffer , struct kernel_param *kp ) ;
   union __anonunion____missing_field_name_99 __annonCompField18 ;
};
struct kparam_string {
   unsigned int maxlen ;
   char *string ;
};
struct kparam_array {
   unsigned int max ;
   unsigned int *num ;
   int (*set)(char const   *val , struct kernel_param *kp ) ;
   int (*get)(char *buffer , struct kernel_param *kp ) ;
   unsigned int elemsize ;
   void *elem ;
};
struct marker;
typedef void marker_probe_func(void *probe_private , void *call_private , char const   *fmt ,
                               va_list *args );
struct marker_probe_closure {
   marker_probe_func *func ;
   void *probe_private ;
};
struct marker {
   char const   *name ;
   char const   *format ;
   char state ;
   char ptype ;
   void (*call)(struct marker  const  *mdata , void *call_private  , ...) ;
   struct marker_probe_closure single ;
   struct marker_probe_closure *multi ;
   char const   *tp_name ;
   void *tp_cb ;
} __attribute__((__aligned__(8))) ;
struct completion {
   unsigned int done ;
   wait_queue_head_t wait ;
};
struct rcu_head {
   struct rcu_head *next ;
   void (*func)(struct rcu_head *head ) ;
};
struct tracepoint;
struct tracepoint {
   char const   *name ;
   int state ;
   void **funcs ;
} __attribute__((__aligned__(32))) ;
union ktime {
   s64 tv64 ;
};
typedef union ktime ktime_t;
struct tvec_base;
struct timer_list {
   struct list_head entry ;
   unsigned long expires ;
   void (*function)(unsigned long  ) ;
   unsigned long data ;
   struct tvec_base *base ;
   void *start_site ;
   char start_comm[16] ;
   int start_pid ;
   struct lockdep_map lockdep_map ;
};
struct hrtimer;
enum hrtimer_restart;
struct work_struct;
struct work_struct {
   atomic_long_t data ;
   struct list_head entry ;
   void (*func)(struct work_struct *work ) ;
   struct lockdep_map lockdep_map ;
};
struct delayed_work {
   struct work_struct work ;
   struct timer_list timer ;
};
enum stat_item {
    ALLOC_FASTPATH = 0,
    ALLOC_SLOWPATH = 1,
    FREE_FASTPATH = 2,
    FREE_SLOWPATH = 3,
    FREE_FROZEN = 4,
    FREE_ADD_PARTIAL = 5,
    FREE_REMOVE_PARTIAL = 6,
    ALLOC_FROM_PARTIAL = 7,
    ALLOC_SLAB = 8,
    ALLOC_REFILL = 9,
    FREE_SLAB = 10,
    CPUSLAB_FLUSH = 11,
    DEACTIVATE_FULL = 12,
    DEACTIVATE_EMPTY = 13,
    DEACTIVATE_TO_HEAD = 14,
    DEACTIVATE_TO_TAIL = 15,
    DEACTIVATE_REMOTE_FREES = 16,
    ORDER_FALLBACK = 17,
    NR_SLUB_STAT_ITEMS = 18
} ;
struct kmem_cache_cpu {
   void **freelist ;
   struct page *page ;
   int node ;
   unsigned int offset ;
   unsigned int objsize ;
   unsigned int stat[NR_SLUB_STAT_ITEMS] ;
};
struct kmem_cache_node {
   spinlock_t list_lock ;
   unsigned long nr_partial ;
   struct list_head partial ;
   atomic_long_t nr_slabs ;
   atomic_long_t total_objects ;
   struct list_head full ;
};
struct kmem_cache_order_objects {
   unsigned long x ;
};
struct kmem_cache {
   unsigned long flags ;
   int size ;
   int objsize ;
   int offset ;
   struct kmem_cache_order_objects oo ;
   struct kmem_cache_node local_node ;
   struct kmem_cache_order_objects max ;
   struct kmem_cache_order_objects min ;
   gfp_t allocflags ;
   int refcount ;
   void (*ctor)(void * ) ;
   int inuse ;
   int align ;
   unsigned long min_partial ;
   char const   *name ;
   struct list_head list ;
   struct kobject kobj ;
   int remote_node_defrag_ratio ;
   struct kmem_cache_node *node[1 << 9] ;
   struct kmem_cache_cpu *cpu_slab[4096] ;
};
struct mod_arch_specific {

};
struct kernel_symbol {
   unsigned long value ;
   char const   *name ;
};
struct module_attribute {
   struct attribute attr ;
   ssize_t (*show)(struct module_attribute * , struct module * , char * ) ;
   ssize_t (*store)(struct module_attribute * , struct module * , char const   * ,
                    size_t count ) ;
   void (*setup)(struct module * , char const   * ) ;
   int (*test)(struct module * ) ;
   void (*free)(struct module * ) ;
};
struct module_param_attrs;
struct module_kobject {
   struct kobject kobj ;
   struct module *mod ;
   struct kobject *drivers_dir ;
   struct module_param_attrs *mp ;
};
struct exception_table_entry;
enum module_state {
    MODULE_STATE_LIVE = 0,
    MODULE_STATE_COMING = 1,
    MODULE_STATE_GOING = 2
} ;
struct module_sect_attrs;
struct module_notes_attrs;
struct ftrace_event_call;
struct module {
   enum module_state state ;
   struct list_head list ;
   char name[64UL - sizeof(unsigned long )] ;
   struct module_kobject mkobj ;
   struct module_attribute *modinfo_attrs ;
   char const   *version ;
   char const   *srcversion ;
   struct kobject *holders_dir ;
   struct kernel_symbol  const  *syms ;
   unsigned long const   *crcs ;
   unsigned int num_syms ;
   struct kernel_param *kp ;
   unsigned int num_kp ;
   unsigned int num_gpl_syms ;
   struct kernel_symbol  const  *gpl_syms ;
   unsigned long const   *gpl_crcs ;
   struct kernel_symbol  const  *unused_syms ;
   unsigned long const   *unused_crcs ;
   unsigned int num_unused_syms ;
   unsigned int num_unused_gpl_syms ;
   struct kernel_symbol  const  *unused_gpl_syms ;
   unsigned long const   *unused_gpl_crcs ;
   struct kernel_symbol  const  *gpl_future_syms ;
   unsigned long const   *gpl_future_crcs ;
   unsigned int num_gpl_future_syms ;
   unsigned int num_exentries ;
   struct exception_table_entry *extable ;
   int (*init)(void) ;
   void *module_init ;
   void *module_core ;
   unsigned int init_size ;
   unsigned int core_size ;
   unsigned int init_text_size ;
   unsigned int core_text_size ;
   struct mod_arch_specific arch ;
   unsigned int taints ;
   unsigned int num_bugs ;
   struct list_head bug_list ;
   struct bug_entry *bug_table ;
   Elf64_Sym *symtab ;
   unsigned int num_symtab ;
   char *strtab ;
   struct module_sect_attrs *sect_attrs ;
   struct module_notes_attrs *notes_attrs ;
   void *percpu ;
   char *args ;
   struct marker *markers ;
   unsigned int num_markers ;
   struct tracepoint *tracepoints ;
   unsigned int num_tracepoints ;
   char const   **trace_bprintk_fmt_start ;
   unsigned int num_trace_bprintk_fmt ;
   struct ftrace_event_call *trace_events ;
   unsigned int num_trace_events ;
   unsigned long *ftrace_callsites ;
   unsigned int num_ftrace_callsites ;
   struct list_head modules_which_use_me ;
   struct task_struct *waiter ;
   void (*exit)(void) ;
   char *refptr ;
   ctor_fn_t *ctors ;
   unsigned int num_ctors ;
};
struct device_driver;
struct sockaddr;
struct iovec {
   void *iov_base ;
   __kernel_size_t iov_len ;
};
typedef unsigned short sa_family_t;
struct sockaddr {
   sa_family_t sa_family ;
   char sa_data[14] ;
};
struct msghdr {
   void *msg_name ;
   int msg_namelen ;
   struct iovec *msg_iov ;
   __kernel_size_t msg_iovlen ;
   void *msg_control ;
   __kernel_size_t msg_controllen ;
   unsigned int msg_flags ;
};
struct ucred {
   __u32 pid ;
   __u32 uid ;
   __u32 gid ;
};
struct sockaddr_mISDN {
   sa_family_t family ;
   unsigned char dev ;
   unsigned char channel ;
   unsigned char sapi ;
   unsigned char tei ;
};
struct prio_tree_node;
struct raw_prio_tree_node {
   struct prio_tree_node *left ;
   struct prio_tree_node *right ;
   struct prio_tree_node *parent ;
};
struct prio_tree_node {
   struct prio_tree_node *left ;
   struct prio_tree_node *right ;
   struct prio_tree_node *parent ;
   unsigned long start ;
   unsigned long last ;
};
struct prio_tree_root {
   struct prio_tree_node *prio_tree_node ;
   unsigned short index_bits ;
   unsigned short raw ;
};
struct rb_node {
   unsigned long rb_parent_color ;
   struct rb_node *rb_right ;
   struct rb_node *rb_left ;
} __attribute__((__aligned__(sizeof(long )))) ;
struct rb_root {
   struct rb_node *rb_node ;
};
struct address_space;
typedef atomic_long_t mm_counter_t;
struct __anonstruct____missing_field_name_103 {
   u16 inuse ;
   u16 objects ;
};
union __anonunion____missing_field_name_102 {
   atomic_t _mapcount ;
   struct __anonstruct____missing_field_name_103 __annonCompField19 ;
};
struct __anonstruct____missing_field_name_105 {
   unsigned long private ;
   struct address_space *mapping ;
};
union __anonunion____missing_field_name_104 {
   struct __anonstruct____missing_field_name_105 __annonCompField21 ;
   spinlock_t ptl ;
   struct kmem_cache *slab ;
   struct page *first_page ;
};
union __anonunion____missing_field_name_106 {
   unsigned long index ;
   void *freelist ;
};
struct page {
   unsigned long flags ;
   atomic_t _count ;
   union __anonunion____missing_field_name_102 __annonCompField20 ;
   union __anonunion____missing_field_name_104 __annonCompField22 ;
   union __anonunion____missing_field_name_106 __annonCompField23 ;
   struct list_head lru ;
};
struct __anonstruct_vm_set_108 {
   struct list_head list ;
   void *parent ;
   struct vm_area_struct *head ;
};
union __anonunion_shared_107 {
   struct __anonstruct_vm_set_108 vm_set ;
   struct raw_prio_tree_node prio_tree_node ;
};
struct anon_vma;
struct vm_operations_struct;
struct mempolicy;
struct vm_area_struct {
   struct mm_struct *vm_mm ;
   unsigned long vm_start ;
   unsigned long vm_end ;
   struct vm_area_struct *vm_next ;
   pgprot_t vm_page_prot ;
   unsigned long vm_flags ;
   struct rb_node vm_rb ;
   union __anonunion_shared_107 shared ;
   struct list_head anon_vma_node ;
   struct anon_vma *anon_vma ;
   struct vm_operations_struct *vm_ops ;
   unsigned long vm_pgoff ;
   struct file *vm_file ;
   void *vm_private_data ;
   unsigned long vm_truncate_count ;
   struct mempolicy *vm_policy ;
};
struct core_thread {
   struct task_struct *task ;
   struct core_thread *next ;
};
struct core_state {
   atomic_t nr_threads ;
   struct core_thread dumper ;
   struct completion startup ;
};
struct mmu_notifier_mm;
struct mm_struct {
   struct vm_area_struct *mmap ;
   struct rb_root mm_rb ;
   struct vm_area_struct *mmap_cache ;
   unsigned long (*get_unmapped_area)(struct file *filp , unsigned long addr , unsigned long len ,
                                      unsigned long pgoff , unsigned long flags ) ;
   void (*unmap_area)(struct mm_struct *mm , unsigned long addr ) ;
   unsigned long mmap_base ;
   unsigned long task_size ;
   unsigned long cached_hole_size ;
   unsigned long free_area_cache ;
   pgd_t *pgd ;
   atomic_t mm_users ;
   atomic_t mm_count ;
   int map_count ;
   struct rw_semaphore mmap_sem ;
   spinlock_t page_table_lock ;
   struct list_head mmlist ;
   mm_counter_t _file_rss ;
   mm_counter_t _anon_rss ;
   unsigned long hiwater_rss ;
   unsigned long hiwater_vm ;
   unsigned long total_vm ;
   unsigned long locked_vm ;
   unsigned long shared_vm ;
   unsigned long exec_vm ;
   unsigned long stack_vm ;
   unsigned long reserved_vm ;
   unsigned long def_flags ;
   unsigned long nr_ptes ;
   unsigned long start_code ;
   unsigned long end_code ;
   unsigned long start_data ;
   unsigned long end_data ;
   unsigned long start_brk ;
   unsigned long brk ;
   unsigned long start_stack ;
   unsigned long arg_start ;
   unsigned long arg_end ;
   unsigned long env_start ;
   unsigned long env_end ;
   unsigned long saved_auxv[2 * ((2 + 19) + 1)] ;
   s8 oom_adj ;
   cpumask_t cpu_vm_mask ;
   mm_context_t context ;
   unsigned int faultstamp ;
   unsigned int token_priority ;
   unsigned int last_interval ;
   unsigned long flags ;
   struct core_state *core_state ;
   spinlock_t ioctx_lock ;
   struct hlist_head ioctx_list ;
   struct task_struct *owner ;
   struct file *exe_file ;
   unsigned long num_exe_file_vmas ;
   struct mmu_notifier_mm *mmu_notifier_mm ;
};
enum __anonenum_socket_state_109 {
    SS_FREE = 0,
    SS_UNCONNECTED = 1,
    SS_CONNECTING = 2,
    SS_CONNECTED = 3,
    SS_DISCONNECTING = 4
} ;
typedef enum __anonenum_socket_state_109 socket_state;
struct poll_table_struct;
struct pipe_inode_info;
struct inode;
struct net;
struct fasync_struct;
struct sock;
struct proto_ops;
struct socket {
   socket_state state ;
   short type ;
   unsigned long flags ;
   struct fasync_struct *fasync_list ;
   wait_queue_head_t wait ;
   struct file *file ;
   struct sock *sk ;
   struct proto_ops  const  *ops ;
};
struct kiocb;
struct proto_ops {
   int family ;
   struct module *owner ;
   int (*release)(struct socket *sock ) ;
   int (*bind)(struct socket *sock , struct sockaddr *myaddr , int sockaddr_len ) ;
   int (*connect)(struct socket *sock , struct sockaddr *vaddr , int sockaddr_len ,
                  int flags ) ;
   int (*socketpair)(struct socket *sock1 , struct socket *sock2 ) ;
   int (*accept)(struct socket *sock , struct socket *newsock , int flags ) ;
   int (*getname)(struct socket *sock , struct sockaddr *addr , int *sockaddr_len ,
                  int peer ) ;
   unsigned int (*poll)(struct file *file , struct socket *sock , struct poll_table_struct *wait ) ;
   int (*ioctl)(struct socket *sock , unsigned int cmd , unsigned long arg ) ;
   int (*compat_ioctl)(struct socket *sock , unsigned int cmd , unsigned long arg ) ;
   int (*listen)(struct socket *sock , int len ) ;
   int (*shutdown)(struct socket *sock , int flags ) ;
   int (*setsockopt)(struct socket *sock , int level , int optname , char *optval ,
                     int optlen ) ;
   int (*getsockopt)(struct socket *sock , int level , int optname , char *optval ,
                     int *optlen ) ;
   int (*compat_setsockopt)(struct socket *sock , int level , int optname , char *optval ,
                            int optlen ) ;
   int (*compat_getsockopt)(struct socket *sock , int level , int optname , char *optval ,
                            int *optlen ) ;
   int (*sendmsg)(struct kiocb *iocb , struct socket *sock , struct msghdr *m , size_t total_len ) ;
   int (*recvmsg)(struct kiocb *iocb , struct socket *sock , struct msghdr *m , size_t total_len ,
                  int flags ) ;
   int (*mmap)(struct file *file , struct socket *sock , struct vm_area_struct *vma ) ;
   ssize_t (*sendpage)(struct socket *sock , struct page *page , int offset , size_t size ,
                       int flags ) ;
   ssize_t (*splice_read)(struct socket *sock , loff_t *ppos , struct pipe_inode_info *pipe ,
                          size_t len , unsigned int flags ) ;
};
struct nsproxy;
struct ctl_table_root;
struct ctl_table_set {
   struct list_head list ;
   struct ctl_table_set *parent ;
   int (*is_seen)(struct ctl_table_set * ) ;
};
struct ctl_table_header;
typedef int ctl_handler(struct ctl_table *table , void *oldval , size_t *oldlenp ,
                        void *newval , size_t newlen );
typedef int proc_handler(struct ctl_table *ctl , int write , struct file *filp , void *buffer ,
                         size_t *lenp , loff_t *ppos );
struct ctl_table {
   int ctl_name ;
   char const   *procname ;
   void *data ;
   int maxlen ;
   mode_t mode ;
   struct ctl_table *child ;
   struct ctl_table *parent ;
   proc_handler *proc_handler ;
   ctl_handler *strategy ;
   void *extra1 ;
   void *extra2 ;
};
struct ctl_table_root {
   struct list_head root_list ;
   struct ctl_table_set default_set ;
   struct ctl_table_set *(*lookup)(struct ctl_table_root *root , struct nsproxy *namespaces ) ;
   int (*permissions)(struct ctl_table_root *root , struct nsproxy *namespaces , struct ctl_table *table ) ;
};
struct ctl_table_header {
   struct ctl_table *ctl_table ;
   struct list_head ctl_entry ;
   int used ;
   int count ;
   struct completion *unregistering ;
   struct ctl_table *ctl_table_arg ;
   struct ctl_table_root *root ;
   struct ctl_table_set *set ;
   struct ctl_table *attached_by ;
   struct ctl_table *attached_to ;
   struct ctl_table_header *parent ;
};
struct exception_table_entry {
   unsigned long insn ;
   unsigned long fixup ;
};
struct sk_buff;
struct klist_node;
struct klist_node {
   void *n_klist ;
   struct list_head n_node ;
   struct kref n_ref ;
};
struct semaphore {
   spinlock_t lock ;
   unsigned int count ;
   struct list_head wait_list ;
};
struct dma_map_ops;
struct dev_archdata {
   void *acpi_handle ;
   struct dma_map_ops *dma_ops ;
   void *iommu ;
};
struct device_private;
struct driver_private;
struct class;
struct class_private;
struct bus_type;
struct bus_type_private;
struct bus_attribute {
   struct attribute attr ;
   ssize_t (*show)(struct bus_type *bus , char *buf ) ;
   ssize_t (*store)(struct bus_type *bus , char const   *buf , size_t count ) ;
};
struct device_attribute;
struct driver_attribute;
struct bus_type {
   char const   *name ;
   struct bus_attribute *bus_attrs ;
   struct device_attribute *dev_attrs ;
   struct driver_attribute *drv_attrs ;
   int (*match)(struct device *dev , struct device_driver *drv ) ;
   int (*uevent)(struct device *dev , struct kobj_uevent_env *env ) ;
   int (*probe)(struct device *dev ) ;
   int (*remove)(struct device *dev ) ;
   void (*shutdown)(struct device *dev ) ;
   int (*suspend)(struct device *dev , pm_message_t state ) ;
   int (*resume)(struct device *dev ) ;
   struct dev_pm_ops *pm ;
   struct bus_type_private *p ;
};
struct device_driver {
   char const   *name ;
   struct bus_type *bus ;
   struct module *owner ;
   char const   *mod_name ;
   int (*probe)(struct device *dev ) ;
   int (*remove)(struct device *dev ) ;
   void (*shutdown)(struct device *dev ) ;
   int (*suspend)(struct device *dev , pm_message_t state ) ;
   int (*resume)(struct device *dev ) ;
   struct attribute_group **groups ;
   struct dev_pm_ops *pm ;
   struct driver_private *p ;
};
struct driver_attribute {
   struct attribute attr ;
   ssize_t (*show)(struct device_driver *driver , char *buf ) ;
   ssize_t (*store)(struct device_driver *driver , char const   *buf , size_t count ) ;
};
struct class_attribute;
struct class {
   char const   *name ;
   struct module *owner ;
   struct class_attribute *class_attrs ;
   struct device_attribute *dev_attrs ;
   struct kobject *dev_kobj ;
   int (*dev_uevent)(struct device *dev , struct kobj_uevent_env *env ) ;
   char *(*nodename)(struct device *dev ) ;
   void (*class_release)(struct class *class ) ;
   void (*dev_release)(struct device *dev ) ;
   int (*suspend)(struct device *dev , pm_message_t state ) ;
   int (*resume)(struct device *dev ) ;
   struct dev_pm_ops *pm ;
   struct class_private *p ;
};
struct device_type;
struct class_attribute {
   struct attribute attr ;
   ssize_t (*show)(struct class *class , char *buf ) ;
   ssize_t (*store)(struct class *class , char const   *buf , size_t count ) ;
};
struct device_type {
   char const   *name ;
   struct attribute_group **groups ;
   int (*uevent)(struct device *dev , struct kobj_uevent_env *env ) ;
   char *(*nodename)(struct device *dev ) ;
   void (*release)(struct device *dev ) ;
   struct dev_pm_ops *pm ;
};
struct device_attribute {
   struct attribute attr ;
   ssize_t (*show)(struct device *dev , struct device_attribute *attr , char *buf ) ;
   ssize_t (*store)(struct device *dev , struct device_attribute *attr , char const   *buf ,
                    size_t count ) ;
};
struct device_dma_parameters {
   unsigned int max_segment_size ;
   unsigned long segment_boundary_mask ;
};
struct dma_coherent_mem;
struct device {
   struct device *parent ;
   struct device_private *p ;
   struct kobject kobj ;
   char const   *init_name ;
   struct device_type *type ;
   struct semaphore sem ;
   struct bus_type *bus ;
   struct device_driver *driver ;
   void *driver_data ;
   void *platform_data ;
   struct dev_pm_info power ;
   int numa_node ;
   u64 *dma_mask ;
   u64 coherent_dma_mask ;
   struct device_dma_parameters *dma_parms ;
   struct list_head dma_pools ;
   struct dma_coherent_mem *dma_mem ;
   struct dev_archdata archdata ;
   dev_t devt ;
   spinlock_t devres_lock ;
   struct list_head devres_head ;
   struct klist_node knode_class ;
   struct class *class ;
   struct attribute_group **groups ;
   void (*release)(struct device *dev ) ;
};
enum dma_attr {
    DMA_ATTR_WRITE_BARRIER = 0,
    DMA_ATTR_WEAK_ORDERING = 1,
    DMA_ATTR_MAX = 2
} ;
struct dma_attrs {
   unsigned long flags[(((unsigned long )DMA_ATTR_MAX + 8UL * sizeof(long )) - 1UL) / (8UL * sizeof(long ))] ;
};
struct scatterlist {
   unsigned long sg_magic ;
   unsigned long page_link ;
   unsigned int offset ;
   unsigned int length ;
   dma_addr_t dma_address ;
   unsigned int dma_length ;
};
struct file_ra_state;
struct user_struct;
struct writeback_control;
struct rlimit;
struct vm_fault {
   unsigned int flags ;
   unsigned long pgoff ;
   void *virtual_address ;
   struct page *page ;
};
struct vm_operations_struct {
   void (*open)(struct vm_area_struct *area ) ;
   void (*close)(struct vm_area_struct *area ) ;
   int (*fault)(struct vm_area_struct *vma , struct vm_fault *vmf ) ;
   int (*page_mkwrite)(struct vm_area_struct *vma , struct vm_fault *vmf ) ;
   int (*access)(struct vm_area_struct *vma , unsigned long addr , void *buf , int len ,
                 int write ) ;
   int (*set_policy)(struct vm_area_struct *vma , struct mempolicy *new ) ;
   struct mempolicy *(*get_policy)(struct vm_area_struct *vma , unsigned long addr ) ;
   int (*migrate)(struct vm_area_struct *vma , nodemask_t const   *from , nodemask_t const   *to ,
                  unsigned long flags ) ;
};
enum dma_data_direction {
    DMA_BIDIRECTIONAL = 0,
    DMA_TO_DEVICE = 1,
    DMA_FROM_DEVICE = 2,
    DMA_NONE = 3
} ;
struct dma_map_ops {
   void *(*alloc_coherent)(struct device *dev , size_t size , dma_addr_t *dma_handle ,
                           gfp_t gfp ) ;
   void (*free_coherent)(struct device *dev , size_t size , void *vaddr , dma_addr_t dma_handle ) ;
   dma_addr_t (*map_page)(struct device *dev , struct page *page , unsigned long offset ,
                          size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) ;
   void (*unmap_page)(struct device *dev , dma_addr_t dma_handle , size_t size , enum dma_data_direction dir ,
                      struct dma_attrs *attrs ) ;
   int (*map_sg)(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir ,
                 struct dma_attrs *attrs ) ;
   void (*unmap_sg)(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir ,
                    struct dma_attrs *attrs ) ;
   void (*sync_single_for_cpu)(struct device *dev , dma_addr_t dma_handle , size_t size ,
                               enum dma_data_direction dir ) ;
   void (*sync_single_for_device)(struct device *dev , dma_addr_t dma_handle , size_t size ,
                                  enum dma_data_direction dir ) ;
   void (*sync_single_range_for_cpu)(struct device *dev , dma_addr_t dma_handle ,
                                     unsigned long offset , size_t size , enum dma_data_direction dir ) ;
   void (*sync_single_range_for_device)(struct device *dev , dma_addr_t dma_handle ,
                                        unsigned long offset , size_t size , enum dma_data_direction dir ) ;
   void (*sync_sg_for_cpu)(struct device *dev , struct scatterlist *sg , int nents ,
                           enum dma_data_direction dir ) ;
   void (*sync_sg_for_device)(struct device *dev , struct scatterlist *sg , int nents ,
                              enum dma_data_direction dir ) ;
   int (*mapping_error)(struct device *dev , dma_addr_t dma_addr ) ;
   int (*dma_supported)(struct device *dev , u64 mask ) ;
   int is_phys ;
};
typedef s32 dma_cookie_t;
struct hrtimer_clock_base;
struct hrtimer_cpu_base;
enum hrtimer_restart {
    HRTIMER_NORESTART = 0,
    HRTIMER_RESTART = 1
} ;
struct hrtimer {
   struct rb_node node ;
   ktime_t _expires ;
   ktime_t _softexpires ;
   enum hrtimer_restart (*function)(struct hrtimer * ) ;
   struct hrtimer_clock_base *base ;
   unsigned long state ;
   struct list_head cb_entry ;
   int start_pid ;
   void *start_site ;
   char start_comm[16] ;
};
struct hrtimer_clock_base {
   struct hrtimer_cpu_base *cpu_base ;
   clockid_t index ;
   struct rb_root active ;
   struct rb_node *first ;
   ktime_t resolution ;
   ktime_t (*get_time)(void) ;
   ktime_t softirq_time ;
   ktime_t offset ;
};
struct hrtimer_cpu_base {
   spinlock_t lock ;
   struct hrtimer_clock_base clock_base[2] ;
   ktime_t expires_next ;
   int hres_active ;
   unsigned long nr_events ;
};
struct net_device;
struct nf_conntrack {
   atomic_t use ;
};
struct nf_bridge_info {
   atomic_t use ;
   struct net_device *physindev ;
   struct net_device *physoutdev ;
   unsigned int mask ;
   unsigned long data[32UL / sizeof(unsigned long )] ;
};
struct sk_buff_head {
   struct sk_buff *next ;
   struct sk_buff *prev ;
   __u32 qlen ;
   spinlock_t lock ;
};
typedef unsigned int sk_buff_data_t;
struct sec_path;
struct __anonstruct____missing_field_name_170 {
   __u16 csum_start ;
   __u16 csum_offset ;
};
union __anonunion____missing_field_name_169 {
   __wsum csum ;
   struct __anonstruct____missing_field_name_170 __annonCompField25 ;
};
struct sk_buff {
   struct sk_buff *next ;
   struct sk_buff *prev ;
   struct sock *sk ;
   ktime_t tstamp ;
   struct net_device *dev ;
   unsigned long _skb_dst ;
   struct sec_path *sp ;
   char cb[48] ;
   unsigned int len ;
   unsigned int data_len ;
   __u16 mac_len ;
   __u16 hdr_len ;
   union __anonunion____missing_field_name_169 __annonCompField26 ;
   __u32 priority ;
   int flags1_begin[0] ;
   __u8 local_df : 1 ;
   __u8 cloned : 1 ;
   __u8 ip_summed : 2 ;
   __u8 nohdr : 1 ;
   __u8 nfctinfo : 3 ;
   __u8 pkt_type : 3 ;
   __u8 fclone : 2 ;
   __u8 ipvs_property : 1 ;
   __u8 peeked : 1 ;
   __u8 nf_trace : 1 ;
   int flags1_end[0] ;
   __be16 protocol ;
   void (*destructor)(struct sk_buff *skb ) ;
   struct nf_conntrack *nfct ;
   struct sk_buff *nfct_reasm ;
   struct nf_bridge_info *nf_bridge ;
   int iif ;
   __u16 queue_mapping ;
   __u16 tc_index ;
   __u16 tc_verd ;
   int flags2_begin[0] ;
   __u8 ndisc_nodetype : 2 ;
   int flags2_end[0] ;
   dma_cookie_t dma_cookie ;
   __u32 secmark ;
   __u32 mark ;
   __u16 vlan_tci ;
   sk_buff_data_t transport_header ;
   sk_buff_data_t network_header ;
   sk_buff_data_t mac_header ;
   sk_buff_data_t tail ;
   sk_buff_data_t end ;
   unsigned char *head ;
   unsigned char *data ;
   unsigned int truesize ;
   atomic_t users ;
};
struct dst_entry;
struct rtable;
struct hlist_nulls_node;
struct hlist_nulls_head {
   struct hlist_nulls_node *first ;
};
struct hlist_nulls_node {
   struct hlist_nulls_node *next ;
   struct hlist_nulls_node **pprev ;
};
struct __anonstruct_sync_serial_settings_171 {
   unsigned int clock_rate ;
   unsigned int clock_type ;
   unsigned short loopback ;
};
typedef struct __anonstruct_sync_serial_settings_171 sync_serial_settings;
struct __anonstruct_te1_settings_172 {
   unsigned int clock_rate ;
   unsigned int clock_type ;
   unsigned short loopback ;
   unsigned int slot_map ;
};
typedef struct __anonstruct_te1_settings_172 te1_settings;
struct __anonstruct_raw_hdlc_proto_173 {
   unsigned short encoding ;
   unsigned short parity ;
};
typedef struct __anonstruct_raw_hdlc_proto_173 raw_hdlc_proto;
struct __anonstruct_fr_proto_174 {
   unsigned int t391 ;
   unsigned int t392 ;
   unsigned int n391 ;
   unsigned int n392 ;
   unsigned int n393 ;
   unsigned short lmi ;
   unsigned short dce ;
};
typedef struct __anonstruct_fr_proto_174 fr_proto;
struct __anonstruct_fr_proto_pvc_175 {
   unsigned int dlci ;
};
typedef struct __anonstruct_fr_proto_pvc_175 fr_proto_pvc;
struct __anonstruct_fr_proto_pvc_info_176 {
   unsigned int dlci ;
   char master[16] ;
};
typedef struct __anonstruct_fr_proto_pvc_info_176 fr_proto_pvc_info;
struct __anonstruct_cisco_proto_177 {
   unsigned int interval ;
   unsigned int timeout ;
};
typedef struct __anonstruct_cisco_proto_177 cisco_proto;
struct ifmap {
   unsigned long mem_start ;
   unsigned long mem_end ;
   unsigned short base_addr ;
   unsigned char irq ;
   unsigned char dma ;
   unsigned char port ;
};
union __anonunion_ifs_ifsu_180 {
   raw_hdlc_proto *raw_hdlc ;
   cisco_proto *cisco ;
   fr_proto *fr ;
   fr_proto_pvc *fr_pvc ;
   fr_proto_pvc_info *fr_pvc_info ;
   sync_serial_settings *sync ;
   te1_settings *te1 ;
};
struct if_settings {
   unsigned int type ;
   unsigned int size ;
   union __anonunion_ifs_ifsu_180 ifs_ifsu ;
};
union __anonunion_ifr_ifrn_181 {
   char ifrn_name[16] ;
};
union __anonunion_ifr_ifru_182 {
   struct sockaddr ifru_addr ;
   struct sockaddr ifru_dstaddr ;
   struct sockaddr ifru_broadaddr ;
   struct sockaddr ifru_netmask ;
   struct sockaddr ifru_hwaddr ;
   short ifru_flags ;
   int ifru_ivalue ;
   int ifru_mtu ;
   struct ifmap ifru_map ;
   char ifru_slave[16] ;
   char ifru_newname[16] ;
   void *ifru_data ;
   struct if_settings ifru_settings ;
};
struct ifreq {
   union __anonunion_ifr_ifrn_181 ifr_ifrn ;
   union __anonunion_ifr_ifru_182 ifr_ifru ;
};
struct ethtool_cmd {
   __u32 cmd ;
   __u32 supported ;
   __u32 advertising ;
   __u16 speed ;
   __u8 duplex ;
   __u8 port ;
   __u8 phy_address ;
   __u8 transceiver ;
   __u8 autoneg ;
   __u8 mdio_support ;
   __u32 maxtxpkt ;
   __u32 maxrxpkt ;
   __u16 speed_hi ;
   __u8 eth_tp_mdix ;
   __u8 reserved2 ;
   __u32 lp_advertising ;
   __u32 reserved[2] ;
};
struct ethtool_drvinfo {
   __u32 cmd ;
   char driver[32] ;
   char version[32] ;
   char fw_version[32] ;
   char bus_info[32] ;
   char reserved1[32] ;
   char reserved2[12] ;
   __u32 n_priv_flags ;
   __u32 n_stats ;
   __u32 testinfo_len ;
   __u32 eedump_len ;
   __u32 regdump_len ;
};
struct ethtool_wolinfo {
   __u32 cmd ;
   __u32 supported ;
   __u32 wolopts ;
   __u8 sopass[6] ;
};
struct ethtool_regs {
   __u32 cmd ;
   __u32 version ;
   __u32 len ;
   __u8 data[0] ;
};
struct ethtool_eeprom {
   __u32 cmd ;
   __u32 magic ;
   __u32 offset ;
   __u32 len ;
   __u8 data[0] ;
};
struct ethtool_coalesce {
   __u32 cmd ;
   __u32 rx_coalesce_usecs ;
   __u32 rx_max_coalesced_frames ;
   __u32 rx_coalesce_usecs_irq ;
   __u32 rx_max_coalesced_frames_irq ;
   __u32 tx_coalesce_usecs ;
   __u32 tx_max_coalesced_frames ;
   __u32 tx_coalesce_usecs_irq ;
   __u32 tx_max_coalesced_frames_irq ;
   __u32 stats_block_coalesce_usecs ;
   __u32 use_adaptive_rx_coalesce ;
   __u32 use_adaptive_tx_coalesce ;
   __u32 pkt_rate_low ;
   __u32 rx_coalesce_usecs_low ;
   __u32 rx_max_coalesced_frames_low ;
   __u32 tx_coalesce_usecs_low ;
   __u32 tx_max_coalesced_frames_low ;
   __u32 pkt_rate_high ;
   __u32 rx_coalesce_usecs_high ;
   __u32 rx_max_coalesced_frames_high ;
   __u32 tx_coalesce_usecs_high ;
   __u32 tx_max_coalesced_frames_high ;
   __u32 rate_sample_interval ;
};
struct ethtool_ringparam {
   __u32 cmd ;
   __u32 rx_max_pending ;
   __u32 rx_mini_max_pending ;
   __u32 rx_jumbo_max_pending ;
   __u32 tx_max_pending ;
   __u32 rx_pending ;
   __u32 rx_mini_pending ;
   __u32 rx_jumbo_pending ;
   __u32 tx_pending ;
};
struct ethtool_pauseparam {
   __u32 cmd ;
   __u32 autoneg ;
   __u32 rx_pause ;
   __u32 tx_pause ;
};
struct ethtool_test {
   __u32 cmd ;
   __u32 flags ;
   __u32 reserved ;
   __u32 len ;
   __u64 data[0] ;
};
struct ethtool_stats {
   __u32 cmd ;
   __u32 n_stats ;
   __u64 data[0] ;
};
struct ethtool_tcpip4_spec {
   __be32 ip4src ;
   __be32 ip4dst ;
   __be16 psrc ;
   __be16 pdst ;
   __u8 tos ;
};
struct ethtool_ah_espip4_spec {
   __be32 ip4src ;
   __be32 ip4dst ;
   __be32 spi ;
   __u8 tos ;
};
struct ethtool_rawip4_spec {
   __be32 ip4src ;
   __be32 ip4dst ;
   __u8 hdata[64] ;
};
struct ethtool_ether_spec {
   __be16 ether_type ;
   __u8 frame_size ;
   __u8 eframe[16] ;
};
struct ethtool_usrip4_spec {
   __be32 ip4src ;
   __be32 ip4dst ;
   __be32 l4_4_bytes ;
   __u8 tos ;
   __u8 ip_ver ;
   __u8 proto ;
};
union __anonunion_h_u_184 {
   struct ethtool_tcpip4_spec tcp_ip4_spec ;
   struct ethtool_tcpip4_spec udp_ip4_spec ;
   struct ethtool_tcpip4_spec sctp_ip4_spec ;
   struct ethtool_ah_espip4_spec ah_ip4_spec ;
   struct ethtool_ah_espip4_spec esp_ip4_spec ;
   struct ethtool_rawip4_spec raw_ip4_spec ;
   struct ethtool_ether_spec ether_spec ;
   struct ethtool_usrip4_spec usr_ip4_spec ;
   __u8 hdata[64] ;
};
struct ethtool_rx_flow_spec {
   __u32 flow_type ;
   union __anonunion_h_u_184 h_u ;
   union __anonunion_h_u_184 m_u ;
   __u64 ring_cookie ;
   __u32 location ;
};
struct ethtool_rxnfc {
   __u32 cmd ;
   __u32 flow_type ;
   __u64 data ;
   struct ethtool_rx_flow_spec fs ;
   __u32 rule_cnt ;
   __u32 rule_locs[0] ;
};
struct ethtool_ops {
   int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ;
   int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ;
   void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ;
   int (*get_regs_len)(struct net_device * ) ;
   void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ;
   void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ;
   int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ;
   u32 (*get_msglevel)(struct net_device * ) ;
   void (*set_msglevel)(struct net_device * , u32  ) ;
   int (*nway_reset)(struct net_device * ) ;
   u32 (*get_link)(struct net_device * ) ;
   int (*get_eeprom_len)(struct net_device * ) ;
   int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ;
   int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ;
   int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ;
   int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ;
   void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ;
   int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ;
   void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ;
   int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ;
   u32 (*get_rx_csum)(struct net_device * ) ;
   int (*set_rx_csum)(struct net_device * , u32  ) ;
   u32 (*get_tx_csum)(struct net_device * ) ;
   int (*set_tx_csum)(struct net_device * , u32  ) ;
   u32 (*get_sg)(struct net_device * ) ;
   int (*set_sg)(struct net_device * , u32  ) ;
   u32 (*get_tso)(struct net_device * ) ;
   int (*set_tso)(struct net_device * , u32  ) ;
   void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ;
   void (*get_strings)(struct net_device * , u32 stringset , u8 * ) ;
   int (*phys_id)(struct net_device * , u32  ) ;
   void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ;
   int (*begin)(struct net_device * ) ;
   void (*complete)(struct net_device * ) ;
   u32 (*get_ufo)(struct net_device * ) ;
   int (*set_ufo)(struct net_device * , u32  ) ;
   u32 (*get_flags)(struct net_device * ) ;
   int (*set_flags)(struct net_device * , u32  ) ;
   u32 (*get_priv_flags)(struct net_device * ) ;
   int (*set_priv_flags)(struct net_device * , u32  ) ;
   int (*get_sset_count)(struct net_device * , int  ) ;
   int (*self_test_count)(struct net_device * ) ;
   int (*get_stats_count)(struct net_device * ) ;
   int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , void * ) ;
   int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ;
};
struct prot_inuse;
struct netns_core {
   struct ctl_table_header *sysctl_hdr ;
   int sysctl_somaxconn ;
   struct prot_inuse *inuse ;
};
enum __anonenum_185 {
    IPSTATS_MIB_NUM = 0,
    IPSTATS_MIB_INPKTS = 1,
    IPSTATS_MIB_INHDRERRORS = 2,
    IPSTATS_MIB_INTOOBIGERRORS = 3,
    IPSTATS_MIB_INNOROUTES = 4,
    IPSTATS_MIB_INADDRERRORS = 5,
    IPSTATS_MIB_INUNKNOWNPROTOS = 6,
    IPSTATS_MIB_INTRUNCATEDPKTS = 7,
    IPSTATS_MIB_INDISCARDS = 8,
    IPSTATS_MIB_INDELIVERS = 9,
    IPSTATS_MIB_OUTFORWDATAGRAMS = 10,
    IPSTATS_MIB_OUTPKTS = 11,
    IPSTATS_MIB_OUTDISCARDS = 12,
    IPSTATS_MIB_OUTNOROUTES = 13,
    IPSTATS_MIB_REASMTIMEOUT = 14,
    IPSTATS_MIB_REASMREQDS = 15,
    IPSTATS_MIB_REASMOKS = 16,
    IPSTATS_MIB_REASMFAILS = 17,
    IPSTATS_MIB_FRAGOKS = 18,
    IPSTATS_MIB_FRAGFAILS = 19,
    IPSTATS_MIB_FRAGCREATES = 20,
    IPSTATS_MIB_INMCASTPKTS = 21,
    IPSTATS_MIB_OUTMCASTPKTS = 22,
    IPSTATS_MIB_INBCASTPKTS = 23,
    IPSTATS_MIB_OUTBCASTPKTS = 24,
    IPSTATS_MIB_INOCTETS = 25,
    IPSTATS_MIB_OUTOCTETS = 26,
    IPSTATS_MIB_INMCASTOCTETS = 27,
    IPSTATS_MIB_OUTMCASTOCTETS = 28,
    IPSTATS_MIB_INBCASTOCTETS = 29,
    IPSTATS_MIB_OUTBCASTOCTETS = 30,
    __IPSTATS_MIB_MAX = 31
} ;
enum __anonenum_186 {
    ICMP_MIB_NUM = 0,
    ICMP_MIB_INMSGS = 1,
    ICMP_MIB_INERRORS = 2,
    ICMP_MIB_INDESTUNREACHS = 3,
    ICMP_MIB_INTIMEEXCDS = 4,
    ICMP_MIB_INPARMPROBS = 5,
    ICMP_MIB_INSRCQUENCHS = 6,
    ICMP_MIB_INREDIRECTS = 7,
    ICMP_MIB_INECHOS = 8,
    ICMP_MIB_INECHOREPS = 9,
    ICMP_MIB_INTIMESTAMPS = 10,
    ICMP_MIB_INTIMESTAMPREPS = 11,
    ICMP_MIB_INADDRMASKS = 12,
    ICMP_MIB_INADDRMASKREPS = 13,
    ICMP_MIB_OUTMSGS = 14,
    ICMP_MIB_OUTERRORS = 15,
    ICMP_MIB_OUTDESTUNREACHS = 16,
    ICMP_MIB_OUTTIMEEXCDS = 17,
    ICMP_MIB_OUTPARMPROBS = 18,
    ICMP_MIB_OUTSRCQUENCHS = 19,
    ICMP_MIB_OUTREDIRECTS = 20,
    ICMP_MIB_OUTECHOS = 21,
    ICMP_MIB_OUTECHOREPS = 22,
    ICMP_MIB_OUTTIMESTAMPS = 23,
    ICMP_MIB_OUTTIMESTAMPREPS = 24,
    ICMP_MIB_OUTADDRMASKS = 25,
    ICMP_MIB_OUTADDRMASKREPS = 26,
    __ICMP_MIB_MAX = 27
} ;
enum __anonenum_187 {
    ICMP6_MIB_NUM = 0,
    ICMP6_MIB_INMSGS = 1,
    ICMP6_MIB_INERRORS = 2,
    ICMP6_MIB_OUTMSGS = 3,
    __ICMP6_MIB_MAX = 4
} ;
enum __anonenum_188 {
    TCP_MIB_NUM = 0,
    TCP_MIB_RTOALGORITHM = 1,
    TCP_MIB_RTOMIN = 2,
    TCP_MIB_RTOMAX = 3,
    TCP_MIB_MAXCONN = 4,
    TCP_MIB_ACTIVEOPENS = 5,
    TCP_MIB_PASSIVEOPENS = 6,
    TCP_MIB_ATTEMPTFAILS = 7,
    TCP_MIB_ESTABRESETS = 8,
    TCP_MIB_CURRESTAB = 9,
    TCP_MIB_INSEGS = 10,
    TCP_MIB_OUTSEGS = 11,
    TCP_MIB_RETRANSSEGS = 12,
    TCP_MIB_INERRS = 13,
    TCP_MIB_OUTRSTS = 14,
    __TCP_MIB_MAX = 15
} ;
enum __anonenum_189 {
    UDP_MIB_NUM = 0,
    UDP_MIB_INDATAGRAMS = 1,
    UDP_MIB_NOPORTS = 2,
    UDP_MIB_INERRORS = 3,
    UDP_MIB_OUTDATAGRAMS = 4,
    UDP_MIB_RCVBUFERRORS = 5,
    UDP_MIB_SNDBUFERRORS = 6,
    __UDP_MIB_MAX = 7
} ;
enum __anonenum_190 {
    LINUX_MIB_NUM = 0,
    LINUX_MIB_SYNCOOKIESSENT = 1,
    LINUX_MIB_SYNCOOKIESRECV = 2,
    LINUX_MIB_SYNCOOKIESFAILED = 3,
    LINUX_MIB_EMBRYONICRSTS = 4,
    LINUX_MIB_PRUNECALLED = 5,
    LINUX_MIB_RCVPRUNED = 6,
    LINUX_MIB_OFOPRUNED = 7,
    LINUX_MIB_OUTOFWINDOWICMPS = 8,
    LINUX_MIB_LOCKDROPPEDICMPS = 9,
    LINUX_MIB_ARPFILTER = 10,
    LINUX_MIB_TIMEWAITED = 11,
    LINUX_MIB_TIMEWAITRECYCLED = 12,
    LINUX_MIB_TIMEWAITKILLED = 13,
    LINUX_MIB_PAWSPASSIVEREJECTED = 14,
    LINUX_MIB_PAWSACTIVEREJECTED = 15,
    LINUX_MIB_PAWSESTABREJECTED = 16,
    LINUX_MIB_DELAYEDACKS = 17,
    LINUX_MIB_DELAYEDACKLOCKED = 18,
    LINUX_MIB_DELAYEDACKLOST = 19,
    LINUX_MIB_LISTENOVERFLOWS = 20,
    LINUX_MIB_LISTENDROPS = 21,
    LINUX_MIB_TCPPREQUEUED = 22,
    LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG = 23,
    LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE = 24,
    LINUX_MIB_TCPPREQUEUEDROPPED = 25,
    LINUX_MIB_TCPHPHITS = 26,
    LINUX_MIB_TCPHPHITSTOUSER = 27,
    LINUX_MIB_TCPPUREACKS = 28,
    LINUX_MIB_TCPHPACKS = 29,
    LINUX_MIB_TCPRENORECOVERY = 30,
    LINUX_MIB_TCPSACKRECOVERY = 31,
    LINUX_MIB_TCPSACKRENEGING = 32,
    LINUX_MIB_TCPFACKREORDER = 33,
    LINUX_MIB_TCPSACKREORDER = 34,
    LINUX_MIB_TCPRENOREORDER = 35,
    LINUX_MIB_TCPTSREORDER = 36,
    LINUX_MIB_TCPFULLUNDO = 37,
    LINUX_MIB_TCPPARTIALUNDO = 38,
    LINUX_MIB_TCPDSACKUNDO = 39,
    LINUX_MIB_TCPLOSSUNDO = 40,
    LINUX_MIB_TCPLOSS = 41,
    LINUX_MIB_TCPLOSTRETRANSMIT = 42,
    LINUX_MIB_TCPRENOFAILURES = 43,
    LINUX_MIB_TCPSACKFAILURES = 44,
    LINUX_MIB_TCPLOSSFAILURES = 45,
    LINUX_MIB_TCPFASTRETRANS = 46,
    LINUX_MIB_TCPFORWARDRETRANS = 47,
    LINUX_MIB_TCPSLOWSTARTRETRANS = 48,
    LINUX_MIB_TCPTIMEOUTS = 49,
    LINUX_MIB_TCPRENORECOVERYFAIL = 50,
    LINUX_MIB_TCPSACKRECOVERYFAIL = 51,
    LINUX_MIB_TCPSCHEDULERFAILED = 52,
    LINUX_MIB_TCPRCVCOLLAPSED = 53,
    LINUX_MIB_TCPDSACKOLDSENT = 54,
    LINUX_MIB_TCPDSACKOFOSENT = 55,
    LINUX_MIB_TCPDSACKRECV = 56,
    LINUX_MIB_TCPDSACKOFORECV = 57,
    LINUX_MIB_TCPABORTONSYN = 58,
    LINUX_MIB_TCPABORTONDATA = 59,
    LINUX_MIB_TCPABORTONCLOSE = 60,
    LINUX_MIB_TCPABORTONMEMORY = 61,
    LINUX_MIB_TCPABORTONTIMEOUT = 62,
    LINUX_MIB_TCPABORTONLINGER = 63,
    LINUX_MIB_TCPABORTFAILED = 64,
    LINUX_MIB_TCPMEMORYPRESSURES = 65,
    LINUX_MIB_TCPSACKDISCARD = 66,
    LINUX_MIB_TCPDSACKIGNOREDOLD = 67,
    LINUX_MIB_TCPDSACKIGNOREDNOUNDO = 68,
    LINUX_MIB_TCPSPURIOUSRTOS = 69,
    LINUX_MIB_TCPMD5NOTFOUND = 70,
    LINUX_MIB_TCPMD5UNEXPECTED = 71,
    LINUX_MIB_SACKSHIFTED = 72,
    LINUX_MIB_SACKMERGED = 73,
    LINUX_MIB_SACKSHIFTFALLBACK = 74,
    __LINUX_MIB_MAX = 75
} ;
enum __anonenum_191 {
    LINUX_MIB_XFRMNUM = 0,
    LINUX_MIB_XFRMINERROR = 1,
    LINUX_MIB_XFRMINBUFFERERROR = 2,
    LINUX_MIB_XFRMINHDRERROR = 3,
    LINUX_MIB_XFRMINNOSTATES = 4,
    LINUX_MIB_XFRMINSTATEPROTOERROR = 5,
    LINUX_MIB_XFRMINSTATEMODEERROR = 6,
    LINUX_MIB_XFRMINSTATESEQERROR = 7,
    LINUX_MIB_XFRMINSTATEEXPIRED = 8,
    LINUX_MIB_XFRMINSTATEMISMATCH = 9,
    LINUX_MIB_XFRMINSTATEINVALID = 10,
    LINUX_MIB_XFRMINTMPLMISMATCH = 11,
    LINUX_MIB_XFRMINNOPOLS = 12,
    LINUX_MIB_XFRMINPOLBLOCK = 13,
    LINUX_MIB_XFRMINPOLERROR = 14,
    LINUX_MIB_XFRMOUTERROR = 15,
    LINUX_MIB_XFRMOUTBUNDLEGENERROR = 16,
    LINUX_MIB_XFRMOUTBUNDLECHECKERROR = 17,
    LINUX_MIB_XFRMOUTNOSTATES = 18,
    LINUX_MIB_XFRMOUTSTATEPROTOERROR = 19,
    LINUX_MIB_XFRMOUTSTATEMODEERROR = 20,
    LINUX_MIB_XFRMOUTSTATESEQERROR = 21,
    LINUX_MIB_XFRMOUTSTATEEXPIRED = 22,
    LINUX_MIB_XFRMOUTPOLBLOCK = 23,
    LINUX_MIB_XFRMOUTPOLDEAD = 24,
    LINUX_MIB_XFRMOUTPOLERROR = 25,
    __LINUX_MIB_XFRMMAX = 26
} ;
struct ipstats_mib {
   unsigned long mibs[__IPSTATS_MIB_MAX] ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct icmp_mib {
   unsigned long mibs[__ICMP_MIB_MAX + 1] ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct icmpmsg_mib {
   unsigned long mibs[512] ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct icmpv6_mib {
   unsigned long mibs[__ICMP6_MIB_MAX] ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct icmpv6msg_mib {
   unsigned long mibs[512] ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct tcp_mib {
   unsigned long mibs[__TCP_MIB_MAX] ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct udp_mib {
   unsigned long mibs[__UDP_MIB_MAX] ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct linux_mib {
   unsigned long mibs[__LINUX_MIB_MAX] ;
};
struct linux_xfrm_mib {
   unsigned long mibs[__LINUX_MIB_XFRMMAX] ;
};
struct proc_dir_entry;
struct netns_mib {
   struct tcp_mib *tcp_statistics[2] ;
   struct ipstats_mib *ip_statistics[2] ;
   struct linux_mib *net_statistics[2] ;
   struct udp_mib *udp_statistics[2] ;
   struct udp_mib *udplite_statistics[2] ;
   struct icmp_mib *icmp_statistics[2] ;
   struct icmpmsg_mib *icmpmsg_statistics[2] ;
   struct proc_dir_entry *proc_net_devsnmp6 ;
   struct udp_mib *udp_stats_in6[2] ;
   struct udp_mib *udplite_stats_in6[2] ;
   struct ipstats_mib *ipv6_statistics[2] ;
   struct icmpv6_mib *icmpv6_statistics[2] ;
   struct icmpv6msg_mib *icmpv6msg_statistics[2] ;
   struct linux_xfrm_mib *xfrm_statistics[2] ;
};
struct netns_unix {
   int sysctl_max_dgram_qlen ;
   struct ctl_table_header *ctl ;
};
struct netns_packet {
   rwlock_t sklist_lock ;
   struct hlist_head sklist ;
};
struct netns_frags {
   int nqueues ;
   atomic_t mem ;
   struct list_head lru_list ;
   int timeout ;
   int high_thresh ;
   int low_thresh ;
};
struct ipv4_devconf;
struct fib_rules_ops;
struct xt_table;
struct mfc_cache;
struct vif_device;
struct netns_ipv4 {
   struct ctl_table_header *forw_hdr ;
   struct ctl_table_header *frags_hdr ;
   struct ctl_table_header *ipv4_hdr ;
   struct ctl_table_header *route_hdr ;
   struct ipv4_devconf *devconf_all ;
   struct ipv4_devconf *devconf_dflt ;
   struct fib_rules_ops *rules_ops ;
   struct hlist_head *fib_table_hash ;
   struct sock *fibnl ;
   struct sock **icmp_sk ;
   struct sock *tcp_sock ;
   struct netns_frags frags ;
   struct xt_table *iptable_filter ;
   struct xt_table *iptable_mangle ;
   struct xt_table *iptable_raw ;
   struct xt_table *arptable_filter ;
   struct xt_table *iptable_security ;
   struct xt_table *nat_table ;
   struct hlist_head *nat_bysource ;
   int nat_vmalloced ;
   int sysctl_icmp_echo_ignore_all ;
   int sysctl_icmp_echo_ignore_broadcasts ;
   int sysctl_icmp_ignore_bogus_error_responses ;
   int sysctl_icmp_ratelimit ;
   int sysctl_icmp_ratemask ;
   int sysctl_icmp_errors_use_inbound_ifaddr ;
   int sysctl_rt_cache_rebuild_count ;
   int current_rt_cache_rebuild_count ;
   struct timer_list rt_secret_timer ;
   atomic_t rt_genid ;
   struct sock *mroute_sk ;
   struct mfc_cache **mfc_cache_array ;
   struct vif_device *vif_table ;
   int maxvif ;
   atomic_t cache_resolve_queue_len ;
   int mroute_do_assert ;
   int mroute_do_pim ;
   int mroute_reg_vif_num ;
};
struct netns_sysctl_ipv6 {
   struct ctl_table_header *table ;
   struct ctl_table_header *frags_hdr ;
   int bindv6only ;
   int flush_delay ;
   int ip6_rt_max_size ;
   int ip6_rt_gc_min_interval ;
   int ip6_rt_gc_timeout ;
   int ip6_rt_gc_interval ;
   int ip6_rt_gc_elasticity ;
   int ip6_rt_mtu_expires ;
   int ip6_rt_min_advmss ;
   int icmpv6_time ;
};
struct ipv6_devconf;
struct rt6_info;
struct rt6_statistics;
struct fib6_table;
struct dst_ops;
struct mfc6_cache;
struct mif_device;
struct netns_ipv6 {
   struct netns_sysctl_ipv6 sysctl ;
   struct ipv6_devconf *devconf_all ;
   struct ipv6_devconf *devconf_dflt ;
   struct netns_frags frags ;
   struct xt_table *ip6table_filter ;
   struct xt_table *ip6table_mangle ;
   struct xt_table *ip6table_raw ;
   struct xt_table *ip6table_security ;
   struct rt6_info *ip6_null_entry ;
   struct rt6_statistics *rt6_stats ;
   struct timer_list ip6_fib_timer ;
   struct hlist_head *fib_table_hash ;
   struct fib6_table *fib6_main_tbl ;
   struct dst_ops *ip6_dst_ops ;
   unsigned int ip6_rt_gc_expire ;
   unsigned long ip6_rt_last_gc ;
   struct rt6_info *ip6_prohibit_entry ;
   struct rt6_info *ip6_blk_hole_entry ;
   struct fib6_table *fib6_local_tbl ;
   struct fib_rules_ops *fib6_rules_ops ;
   struct sock **icmp_sk ;
   struct sock *ndisc_sk ;
   struct sock *tcp_sk ;
   struct sock *igmp_sk ;
   struct sock *mroute6_sk ;
   struct mfc6_cache **mfc6_cache_array ;
   struct mif_device *vif6_table ;
   int maxvif ;
   atomic_t cache_resolve_queue_len ;
   int mroute_do_assert ;
   int mroute_do_pim ;
   int mroute_reg_vif_num ;
};
struct netns_dccp {
   struct sock *v4_ctl_sk ;
   struct sock *v6_ctl_sk ;
};
enum __anonenum_194 {
    NFPROTO_UNSPEC = 0,
    NFPROTO_IPV4 = 2,
    NFPROTO_ARP = 3,
    NFPROTO_BRIDGE = 7,
    NFPROTO_IPV6 = 10,
    NFPROTO_DECNET = 12,
    NFPROTO_NUMPROTO = 13
} ;
struct nameidata;
struct path;
struct vfsmount;
struct qstr {
   unsigned int hash ;
   unsigned int len ;
   unsigned char const   *name ;
};
union __anonunion_d_u_204 {
   struct list_head d_child ;
   struct rcu_head d_rcu ;
};
struct dentry_operations;
struct super_block;
struct dentry {
   atomic_t d_count ;
   unsigned int d_flags ;
   spinlock_t d_lock ;
   int d_mounted ;
   struct inode *d_inode ;
   struct hlist_node d_hash ;
   struct dentry *d_parent ;
   struct qstr d_name ;
   struct list_head d_lru ;
   union __anonunion_d_u_204 d_u ;
   struct list_head d_subdirs ;
   struct list_head d_alias ;
   unsigned long d_time ;
   struct dentry_operations  const  *d_op ;
   struct super_block *d_sb ;
   void *d_fsdata ;
   unsigned char d_iname[32] ;
};
struct dentry_operations {
   int (*d_revalidate)(struct dentry * , struct nameidata * ) ;
   int (*d_hash)(struct dentry * , struct qstr * ) ;
   int (*d_compare)(struct dentry * , struct qstr * , struct qstr * ) ;
   int (*d_delete)(struct dentry * ) ;
   void (*d_release)(struct dentry * ) ;
   void (*d_iput)(struct dentry * , struct inode * ) ;
   char *(*d_dname)(struct dentry * , char * , int  ) ;
};
struct path {
   struct vfsmount *mnt ;
   struct dentry *dentry ;
};
struct radix_tree_node;
struct radix_tree_root {
   unsigned int height ;
   gfp_t gfp_mask ;
   struct radix_tree_node *rnode ;
};
enum pid_type {
    PIDTYPE_PID = 0,
    PIDTYPE_PGID = 1,
    PIDTYPE_SID = 2,
    PIDTYPE_MAX = 3
} ;
struct pid_namespace;
struct upid {
   int nr ;
   struct pid_namespace *ns ;
   struct hlist_node pid_chain ;
};
struct pid {
   atomic_t count ;
   unsigned int level ;
   struct hlist_head tasks[PIDTYPE_MAX] ;
   struct rcu_head rcu ;
   struct upid numbers[1] ;
};
struct pid_link {
   struct hlist_node node ;
   struct pid *pid ;
};
struct kernel_cap_struct {
   __u32 cap[2] ;
};
typedef struct kernel_cap_struct kernel_cap_t;
struct fiemap_extent {
   __u64 fe_logical ;
   __u64 fe_physical ;
   __u64 fe_length ;
   __u64 fe_reserved64[2] ;
   __u32 fe_flags ;
   __u32 fe_reserved[3] ;
};
struct export_operations;
struct kstatfs;
struct cred;
struct iattr {
   unsigned int ia_valid ;
   umode_t ia_mode ;
   uid_t ia_uid ;
   gid_t ia_gid ;
   loff_t ia_size ;
   struct timespec ia_atime ;
   struct timespec ia_mtime ;
   struct timespec ia_ctime ;
   struct file *ia_file ;
};
struct if_dqblk {
   __u64 dqb_bhardlimit ;
   __u64 dqb_bsoftlimit ;
   __u64 dqb_curspace ;
   __u64 dqb_ihardlimit ;
   __u64 dqb_isoftlimit ;
   __u64 dqb_curinodes ;
   __u64 dqb_btime ;
   __u64 dqb_itime ;
   __u32 dqb_valid ;
};
struct if_dqinfo {
   __u64 dqi_bgrace ;
   __u64 dqi_igrace ;
   __u32 dqi_flags ;
   __u32 dqi_valid ;
};
struct fs_disk_quota {
   __s8 d_version ;
   __s8 d_flags ;
   __u16 d_fieldmask ;
   __u32 d_id ;
   __u64 d_blk_hardlimit ;
   __u64 d_blk_softlimit ;
   __u64 d_ino_hardlimit ;
   __u64 d_ino_softlimit ;
   __u64 d_bcount ;
   __u64 d_icount ;
   __s32 d_itimer ;
   __s32 d_btimer ;
   __u16 d_iwarns ;
   __u16 d_bwarns ;
   __s32 d_padding2 ;
   __u64 d_rtb_hardlimit ;
   __u64 d_rtb_softlimit ;
   __u64 d_rtbcount ;
   __s32 d_rtbtimer ;
   __u16 d_rtbwarns ;
   __s16 d_padding3 ;
   char d_padding4[8] ;
};
struct fs_qfilestat {
   __u64 qfs_ino ;
   __u64 qfs_nblks ;
   __u32 qfs_nextents ;
};
typedef struct fs_qfilestat fs_qfilestat_t;
struct fs_quota_stat {
   __s8 qs_version ;
   __u16 qs_flags ;
   __s8 qs_pad ;
   fs_qfilestat_t qs_uquota ;
   fs_qfilestat_t qs_gquota ;
   __u32 qs_incoredqs ;
   __s32 qs_btimelimit ;
   __s32 qs_itimelimit ;
   __s32 qs_rtbtimelimit ;
   __u16 qs_bwarnlimit ;
   __u16 qs_iwarnlimit ;
};
struct dquot;
typedef __kernel_uid32_t qid_t;
typedef long long qsize_t;
struct mem_dqblk {
   qsize_t dqb_bhardlimit ;
   qsize_t dqb_bsoftlimit ;
   qsize_t dqb_curspace ;
   qsize_t dqb_rsvspace ;
   qsize_t dqb_ihardlimit ;
   qsize_t dqb_isoftlimit ;
   qsize_t dqb_curinodes ;
   time_t dqb_btime ;
   time_t dqb_itime ;
};
struct quota_format_type;
struct mem_dqinfo {
   struct quota_format_type *dqi_format ;
   int dqi_fmt_id ;
   struct list_head dqi_dirty_list ;
   unsigned long dqi_flags ;
   unsigned int dqi_bgrace ;
   unsigned int dqi_igrace ;
   qsize_t dqi_maxblimit ;
   qsize_t dqi_maxilimit ;
   void *dqi_priv ;
};
struct dquot {
   struct hlist_node dq_hash ;
   struct list_head dq_inuse ;
   struct list_head dq_free ;
   struct list_head dq_dirty ;
   struct mutex dq_lock ;
   atomic_t dq_count ;
   wait_queue_head_t dq_wait_unused ;
   struct super_block *dq_sb ;
   unsigned int dq_id ;
   loff_t dq_off ;
   unsigned long dq_flags ;
   short dq_type ;
   struct mem_dqblk dq_dqb ;
};
struct quota_format_ops {
   int (*check_quota_file)(struct super_block *sb , int type ) ;
   int (*read_file_info)(struct super_block *sb , int type ) ;
   int (*write_file_info)(struct super_block *sb , int type ) ;
   int (*free_file_info)(struct super_block *sb , int type ) ;
   int (*read_dqblk)(struct dquot *dquot ) ;
   int (*commit_dqblk)(struct dquot *dquot ) ;
   int (*release_dqblk)(struct dquot *dquot ) ;
};
struct dquot_operations {
   int (*initialize)(struct inode * , int  ) ;
   int (*drop)(struct inode * ) ;
   int (*alloc_space)(struct inode * , qsize_t  , int  ) ;
   int (*alloc_inode)(struct inode  const  * , qsize_t  ) ;
   int (*free_space)(struct inode * , qsize_t  ) ;
   int (*free_inode)(struct inode  const  * , qsize_t  ) ;
   int (*transfer)(struct inode * , struct iattr * ) ;
   int (*write_dquot)(struct dquot * ) ;
   struct dquot *(*alloc_dquot)(struct super_block * , int  ) ;
   void (*destroy_dquot)(struct dquot * ) ;
   int (*acquire_dquot)(struct dquot * ) ;
   int (*release_dquot)(struct dquot * ) ;
   int (*mark_dirty)(struct dquot * ) ;
   int (*write_info)(struct super_block * , int  ) ;
   int (*reserve_space)(struct inode * , qsize_t  , int  ) ;
   int (*claim_space)(struct inode * , qsize_t  ) ;
   void (*release_rsv)(struct inode * , qsize_t  ) ;
   qsize_t (*get_reserved_space)(struct inode * ) ;
};
struct quotactl_ops {
   int (*quota_on)(struct super_block * , int  , int  , char * , int  ) ;
   int (*quota_off)(struct super_block * , int  , int  ) ;
   int (*quota_sync)(struct super_block * , int  ) ;
   int (*get_info)(struct super_block * , int  , struct if_dqinfo * ) ;
   int (*set_info)(struct super_block * , int  , struct if_dqinfo * ) ;
   int (*get_dqblk)(struct super_block * , int  , qid_t  , struct if_dqblk * ) ;
   int (*set_dqblk)(struct super_block * , int  , qid_t  , struct if_dqblk * ) ;
   int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ;
   int (*set_xstate)(struct super_block * , unsigned int  , int  ) ;
   int (*get_xquota)(struct super_block * , int  , qid_t  , struct fs_disk_quota * ) ;
   int (*set_xquota)(struct super_block * , int  , qid_t  , struct fs_disk_quota * ) ;
};
struct quota_format_type {
   int qf_fmt_id ;
   struct quota_format_ops *qf_ops ;
   struct module *qf_owner ;
   struct quota_format_type *qf_next ;
};
struct quota_info {
   unsigned int flags ;
   struct mutex dqio_mutex ;
   struct mutex dqonoff_mutex ;
   struct rw_semaphore dqptr_sem ;
   struct inode *files[2] ;
   struct mem_dqinfo info[2] ;
   struct quota_format_ops *ops[2] ;
};
union __anonunion_arg_211 {
   char *buf ;
   void *data ;
};
struct __anonstruct_read_descriptor_t_210 {
   size_t written ;
   size_t count ;
   union __anonunion_arg_211 arg ;
   int error ;
};
typedef struct __anonstruct_read_descriptor_t_210 read_descriptor_t;
struct address_space_operations {
   int (*writepage)(struct page *page , struct writeback_control *wbc ) ;
   int (*readpage)(struct file * , struct page * ) ;
   void (*sync_page)(struct page * ) ;
   int (*writepages)(struct address_space * , struct writeback_control * ) ;
   int (*set_page_dirty)(struct page *page ) ;
   int (*readpages)(struct file *filp , struct address_space *mapping , struct list_head *pages ,
                    unsigned int nr_pages ) ;
   int (*write_begin)(struct file * , struct address_space *mapping , loff_t pos ,
                      unsigned int len , unsigned int flags , struct page **pagep ,
                      void **fsdata ) ;
   int (*write_end)(struct file * , struct address_space *mapping , loff_t pos , unsigned int len ,
                    unsigned int copied , struct page *page , void *fsdata ) ;
   sector_t (*bmap)(struct address_space * , sector_t  ) ;
   void (*invalidatepage)(struct page * , unsigned long  ) ;
   int (*releasepage)(struct page * , gfp_t  ) ;
   ssize_t (*direct_IO)(int  , struct kiocb * , struct iovec  const  *iov , loff_t offset ,
                        unsigned long nr_segs ) ;
   int (*get_xip_mem)(struct address_space * , unsigned long  , int  , void ** , unsigned long * ) ;
   int (*migratepage)(struct address_space * , struct page * , struct page * ) ;
   int (*launder_page)(struct page * ) ;
   int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long  ) ;
};
struct backing_dev_info;
struct address_space {
   struct inode *host ;
   struct radix_tree_root page_tree ;
   spinlock_t tree_lock ;
   unsigned int i_mmap_writable ;
   struct prio_tree_root i_mmap ;
   struct list_head i_mmap_nonlinear ;
   spinlock_t i_mmap_lock ;
   unsigned int truncate_count ;
   unsigned long nrpages ;
   unsigned long writeback_index ;
   struct address_space_operations  const  *a_ops ;
   unsigned long flags ;
   struct backing_dev_info *backing_dev_info ;
   spinlock_t private_lock ;
   struct list_head private_list ;
   struct address_space *assoc_mapping ;
} __attribute__((__aligned__(sizeof(long )))) ;
struct hd_struct;
struct gendisk;
struct block_device {
   dev_t bd_dev ;
   struct inode *bd_inode ;
   struct super_block *bd_super ;
   int bd_openers ;
   struct mutex bd_mutex ;
   struct semaphore bd_mount_sem ;
   struct list_head bd_inodes ;
   void *bd_holder ;
   int bd_holders ;
   struct list_head bd_holder_list ;
   struct block_device *bd_contains ;
   unsigned int bd_block_size ;
   struct hd_struct *bd_part ;
   unsigned int bd_part_count ;
   int bd_invalidated ;
   struct gendisk *bd_disk ;
   struct list_head bd_list ;
   struct backing_dev_info *bd_inode_backing_dev_info ;
   unsigned long bd_private ;
   int bd_fsfreeze_count ;
   struct mutex bd_fsfreeze_mutex ;
};
struct posix_acl;
struct inode_operations;
struct file_operations;
struct file_lock;
struct cdev;
union __anonunion____missing_field_name_212 {
   struct pipe_inode_info *i_pipe ;
   struct block_device *i_bdev ;
   struct cdev *i_cdev ;
};
struct inode {
   struct hlist_node i_hash ;
   struct list_head i_list ;
   struct list_head i_sb_list ;
   struct list_head i_dentry ;
   unsigned long i_ino ;
   atomic_t i_count ;
   unsigned int i_nlink ;
   uid_t i_uid ;
   gid_t i_gid ;
   dev_t i_rdev ;
   u64 i_version ;
   loff_t i_size ;
   struct timespec i_atime ;
   struct timespec i_mtime ;
   struct timespec i_ctime ;
   blkcnt_t i_blocks ;
   unsigned int i_blkbits ;
   unsigned short i_bytes ;
   umode_t i_mode ;
   spinlock_t i_lock ;
   struct mutex i_mutex ;
   struct rw_semaphore i_alloc_sem ;
   struct inode_operations  const  *i_op ;
   struct file_operations  const  *i_fop ;
   struct super_block *i_sb ;
   struct file_lock *i_flock ;
   struct address_space *i_mapping ;
   struct address_space i_data ;
   struct dquot *i_dquot[2] ;
   struct list_head i_devices ;
   union __anonunion____missing_field_name_212 __annonCompField27 ;
   __u32 i_generation ;
   __u32 i_fsnotify_mask ;
   struct hlist_head i_fsnotify_mark_entries ;
   struct list_head inotify_watches ;
   struct mutex inotify_mutex ;
   unsigned long i_state ;
   unsigned long dirtied_when ;
   unsigned int i_flags ;
   atomic_t i_writecount ;
   void *i_security ;
   struct posix_acl *i_acl ;
   struct posix_acl *i_default_acl ;
   void *i_private ;
};
struct fown_struct {
   rwlock_t lock ;
   struct pid *pid ;
   enum pid_type pid_type ;
   uid_t uid ;
   uid_t euid ;
   int signum ;
};
struct file_ra_state {
   unsigned long start ;
   unsigned int size ;
   unsigned int async_size ;
   unsigned int ra_pages ;
   unsigned int mmap_miss ;
   loff_t prev_pos ;
};
union __anonunion_f_u_213 {
   struct list_head fu_list ;
   struct rcu_head fu_rcuhead ;
};
struct file {
   union __anonunion_f_u_213 f_u ;
   struct path f_path ;
   struct file_operations  const  *f_op ;
   spinlock_t f_lock ;
   atomic_long_t f_count ;
   unsigned int f_flags ;
   fmode_t f_mode ;
   loff_t f_pos ;
   struct fown_struct f_owner ;
   struct cred  const  *f_cred ;
   struct file_ra_state f_ra ;
   u64 f_version ;
   void *f_security ;
   void *private_data ;
   struct list_head f_ep_links ;
   struct address_space *f_mapping ;
   unsigned long f_mnt_write_state ;
};
struct files_struct;
typedef struct files_struct *fl_owner_t;
struct file_lock_operations {
   void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ;
   void (*fl_release_private)(struct file_lock * ) ;
};
struct lock_manager_operations {
   int (*fl_compare_owner)(struct file_lock * , struct file_lock * ) ;
   void (*fl_notify)(struct file_lock * ) ;
   int (*fl_grant)(struct file_lock * , struct file_lock * , int  ) ;
   void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ;
   void (*fl_release_private)(struct file_lock * ) ;
   void (*fl_break)(struct file_lock * ) ;
   int (*fl_mylease)(struct file_lock * , struct file_lock * ) ;
   int (*fl_change)(struct file_lock ** , int  ) ;
};
struct nlm_lockowner;
struct nfs_lock_info {
   u32 state ;
   struct nlm_lockowner *owner ;
   struct list_head list ;
};
struct nfs4_lock_state;
struct nfs4_lock_info {
   struct nfs4_lock_state *owner ;
};
struct __anonstruct_afs_215 {
   struct list_head link ;
   int state ;
};
union __anonunion_fl_u_214 {
   struct nfs_lock_info nfs_fl ;
   struct nfs4_lock_info nfs4_fl ;
   struct __anonstruct_afs_215 afs ;
};
struct file_lock {
   struct file_lock *fl_next ;
   struct list_head fl_link ;
   struct list_head fl_block ;
   fl_owner_t fl_owner ;
   unsigned char fl_flags ;
   unsigned char fl_type ;
   unsigned int fl_pid ;
   struct pid *fl_nspid ;
   wait_queue_head_t fl_wait ;
   struct file *fl_file ;
   loff_t fl_start ;
   loff_t fl_end ;
   struct fasync_struct *fl_fasync ;
   unsigned long fl_break_time ;
   struct file_lock_operations *fl_ops ;
   struct lock_manager_operations *fl_lmops ;
   union __anonunion_fl_u_214 fl_u ;
};
struct fasync_struct {
   int magic ;
   int fa_fd ;
   struct fasync_struct *fa_next ;
   struct file *fa_file ;
};
struct file_system_type;
struct super_operations;
struct xattr_handler;
struct mtd_info;
struct super_block {
   struct list_head s_list ;
   dev_t s_dev ;
   unsigned long s_blocksize ;
   unsigned char s_blocksize_bits ;
   unsigned char s_dirt ;
   unsigned long long s_maxbytes ;
   struct file_system_type *s_type ;
   struct super_operations  const  *s_op ;
   struct dquot_operations *dq_op ;
   struct quotactl_ops *s_qcop ;
   struct export_operations  const  *s_export_op ;
   unsigned long s_flags ;
   unsigned long s_magic ;
   struct dentry *s_root ;
   struct rw_semaphore s_umount ;
   struct mutex s_lock ;
   int s_count ;
   int s_need_sync ;
   atomic_t s_active ;
   void *s_security ;
   struct xattr_handler **s_xattr ;
   struct list_head s_inodes ;
   struct list_head s_dirty ;
   struct list_head s_io ;
   struct list_head s_more_io ;
   struct hlist_head s_anon ;
   struct list_head s_files ;
   struct list_head s_dentry_lru ;
   int s_nr_dentry_unused ;
   struct block_device *s_bdev ;
   struct mtd_info *s_mtd ;
   struct list_head s_instances ;
   struct quota_info s_dquot ;
   int s_frozen ;
   wait_queue_head_t s_wait_unfrozen ;
   char s_id[32] ;
   void *s_fs_info ;
   fmode_t s_mode ;
   struct mutex s_vfs_rename_mutex ;
   u32 s_time_gran ;
   char *s_subtype ;
   char *s_options ;
};
struct fiemap_extent_info {
   unsigned int fi_flags ;
   unsigned int fi_extents_mapped ;
   unsigned int fi_extents_max ;
   struct fiemap_extent *fi_extents_start ;
};
struct file_operations {
   struct module *owner ;
   loff_t (*llseek)(struct file * , loff_t  , int  ) ;
   ssize_t (*read)(struct file * , char * , size_t  , loff_t * ) ;
   ssize_t (*write)(struct file * , char const   * , size_t  , loff_t * ) ;
   ssize_t (*aio_read)(struct kiocb * , struct iovec  const  * , unsigned long  ,
                       loff_t  ) ;
   ssize_t (*aio_write)(struct kiocb * , struct iovec  const  * , unsigned long  ,
                        loff_t  ) ;
   int (*readdir)(struct file * , void * , int (*)(void * , char const   * , int  ,
                                                   loff_t  , u64  , unsigned int  ) ) ;
   unsigned int (*poll)(struct file * , struct poll_table_struct * ) ;
   int (*ioctl)(struct inode * , struct file * , unsigned int  , unsigned long  ) ;
   long (*unlocked_ioctl)(struct file * , unsigned int  , unsigned long  ) ;
   long (*compat_ioctl)(struct file * , unsigned int  , unsigned long  ) ;
   int (*mmap)(struct file * , struct vm_area_struct * ) ;
   int (*open)(struct inode * , struct file * ) ;
   int (*flush)(struct file * , fl_owner_t id ) ;
   int (*release)(struct inode * , struct file * ) ;
   int (*fsync)(struct file * , struct dentry * , int datasync ) ;
   int (*aio_fsync)(struct kiocb * , int datasync ) ;
   int (*fasync)(int  , struct file * , int  ) ;
   int (*lock)(struct file * , int  , struct file_lock * ) ;
   ssize_t (*sendpage)(struct file * , struct page * , int  , size_t  , loff_t * ,
                       int  ) ;
   unsigned long (*get_unmapped_area)(struct file * , unsigned long  , unsigned long  ,
                                      unsigned long  , unsigned long  ) ;
   int (*check_flags)(int  ) ;
   int (*flock)(struct file * , int  , struct file_lock * ) ;
   ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t  ,
                           unsigned int  ) ;
   ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t  ,
                          unsigned int  ) ;
   int (*setlease)(struct file * , long  , struct file_lock ** ) ;
};
struct inode_operations {
   int (*create)(struct inode * , struct dentry * , int  , struct nameidata * ) ;
   struct dentry *(*lookup)(struct inode * , struct dentry * , struct nameidata * ) ;
   int (*link)(struct dentry * , struct inode * , struct dentry * ) ;
   int (*unlink)(struct inode * , struct dentry * ) ;
   int (*symlink)(struct inode * , struct dentry * , char const   * ) ;
   int (*mkdir)(struct inode * , struct dentry * , int  ) ;
   int (*rmdir)(struct inode * , struct dentry * ) ;
   int (*mknod)(struct inode * , struct dentry * , int  , dev_t  ) ;
   int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ;
   int (*readlink)(struct dentry * , char * , int  ) ;
   void *(*follow_link)(struct dentry * , struct nameidata * ) ;
   void (*put_link)(struct dentry * , struct nameidata * , void * ) ;
   void (*truncate)(struct inode * ) ;
   int (*permission)(struct inode * , int  ) ;
   int (*setattr)(struct dentry * , struct iattr * ) ;
   int (*getattr)(struct vfsmount *mnt , struct dentry * , struct kstat * ) ;
   int (*setxattr)(struct dentry * , char const   * , void const   * , size_t  , int  ) ;
   ssize_t (*getxattr)(struct dentry * , char const   * , void * , size_t  ) ;
   ssize_t (*listxattr)(struct dentry * , char * , size_t  ) ;
   int (*removexattr)(struct dentry * , char const   * ) ;
   void (*truncate_range)(struct inode * , loff_t  , loff_t  ) ;
   long (*fallocate)(struct inode *inode , int mode , loff_t offset , loff_t len ) ;
   int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 start , u64 len ) ;
};
struct super_operations {
   struct inode *(*alloc_inode)(struct super_block *sb ) ;
   void (*destroy_inode)(struct inode * ) ;
   void (*dirty_inode)(struct inode * ) ;
   int (*write_inode)(struct inode * , int  ) ;
   void (*drop_inode)(struct inode * ) ;
   void (*delete_inode)(struct inode * ) ;
   void (*put_super)(struct super_block * ) ;
   void (*write_super)(struct super_block * ) ;
   int (*sync_fs)(struct super_block *sb , int wait ) ;
   int (*freeze_fs)(struct super_block * ) ;
   int (*unfreeze_fs)(struct super_block * ) ;
   int (*statfs)(struct dentry * , struct kstatfs * ) ;
   int (*remount_fs)(struct super_block * , int * , char * ) ;
   void (*clear_inode)(struct inode * ) ;
   void (*umount_begin)(struct super_block * ) ;
   int (*show_options)(struct seq_file * , struct vfsmount * ) ;
   int (*show_stats)(struct seq_file * , struct vfsmount * ) ;
   ssize_t (*quota_read)(struct super_block * , int  , char * , size_t  , loff_t  ) ;
   ssize_t (*quota_write)(struct super_block * , int  , char const   * , size_t  ,
                          loff_t  ) ;
   int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t  ) ;
};
struct file_system_type {
   char const   *name ;
   int fs_flags ;
   int (*get_sb)(struct file_system_type * , int  , char const   * , void * , struct vfsmount * ) ;
   void (*kill_sb)(struct super_block * ) ;
   struct module *owner ;
   struct file_system_type *next ;
   struct list_head fs_supers ;
   struct lock_class_key s_lock_key ;
   struct lock_class_key s_umount_key ;
   struct lock_class_key i_lock_key ;
   struct lock_class_key i_mutex_key ;
   struct lock_class_key i_mutex_dir_key ;
   struct lock_class_key i_alloc_sem_key ;
};
struct bio;
typedef int read_proc_t(char *page , char **start , off_t off , int count , int *eof ,
                        void *data );
typedef int write_proc_t(struct file *file , char const   *buffer , unsigned long count ,
                         void *data );
struct proc_dir_entry {
   unsigned int low_ino ;
   unsigned short namelen ;
   char const   *name ;
   mode_t mode ;
   nlink_t nlink ;
   uid_t uid ;
   gid_t gid ;
   loff_t size ;
   struct inode_operations  const  *proc_iops ;
   struct file_operations  const  *proc_fops ;
   struct proc_dir_entry *next ;
   struct proc_dir_entry *parent ;
   struct proc_dir_entry *subdir ;
   void *data ;
   read_proc_t *read_proc ;
   write_proc_t *write_proc ;
   atomic_t count ;
   int pde_users ;
   spinlock_t pde_unload_lock ;
   struct completion *pde_unload_completion ;
   struct list_head pde_openers ;
};
struct ebt_table;
struct netns_xt {
   struct list_head tables[NFPROTO_NUMPROTO] ;
   struct ebt_table *broute_table ;
   struct ebt_table *frame_filter ;
   struct ebt_table *frame_nat ;
};
struct ip_conntrack_stat;
struct netns_ct {
   atomic_t count ;
   unsigned int expect_count ;
   struct hlist_nulls_head *hash ;
   struct hlist_head *expect_hash ;
   struct hlist_nulls_head unconfirmed ;
   struct hlist_nulls_head dying ;
   struct ip_conntrack_stat *stat ;
   int sysctl_events ;
   unsigned int sysctl_events_retry_timeout ;
   int sysctl_acct ;
   int sysctl_checksum ;
   unsigned int sysctl_log_invalid ;
   struct ctl_table_header *sysctl_header ;
   struct ctl_table_header *acct_sysctl_header ;
   struct ctl_table_header *event_sysctl_header ;
   int hash_vmalloc ;
   int expect_vmalloc ;
};
enum __anonenum_221 {
    XFRM_POLICY_IN = 0,
    XFRM_POLICY_OUT = 1,
    XFRM_POLICY_FWD = 2,
    XFRM_POLICY_MASK = 3,
    XFRM_POLICY_MAX = 3
} ;
struct xfrm_policy_hash {
   struct hlist_head *table ;
   unsigned int hmask ;
};
struct netns_xfrm {
   struct list_head state_all ;
   struct hlist_head *state_bydst ;
   struct hlist_head *state_bysrc ;
   struct hlist_head *state_byspi ;
   unsigned int state_hmask ;
   unsigned int state_num ;
   struct work_struct state_hash_work ;
   struct hlist_head state_gc_list ;
   struct work_struct state_gc_work ;
   wait_queue_head_t km_waitq ;
   struct list_head policy_all ;
   struct hlist_head *policy_byidx ;
   unsigned int policy_idx_hmask ;
   struct hlist_head policy_inexact[XFRM_POLICY_MAX * 2] ;
   struct xfrm_policy_hash policy_bydst[XFRM_POLICY_MAX * 2] ;
   unsigned int policy_count[XFRM_POLICY_MAX * 2] ;
   struct work_struct policy_hash_work ;
   struct sock *nlsk ;
   u32 sysctl_aevent_etime ;
   u32 sysctl_aevent_rseqth ;
   int sysctl_larval_drop ;
   u32 sysctl_acq_expires ;
   struct ctl_table_header *sysctl_hdr ;
};
struct net_generic;
struct net {
   atomic_t count ;
   struct list_head list ;
   struct work_struct work ;
   struct proc_dir_entry *proc_net ;
   struct proc_dir_entry *proc_net_stat ;
   struct ctl_table_set sysctls ;
   struct net_device *loopback_dev ;
   struct list_head dev_base_head ;
   struct hlist_head *dev_name_head ;
   struct hlist_head *dev_index_head ;
   struct list_head rules_ops ;
   spinlock_t rules_mod_lock ;
   struct sock *rtnl ;
   struct sock *genl_sock ;
   struct netns_core core ;
   struct netns_mib mib ;
   struct netns_packet packet ;
   struct netns_unix unx ;
   struct netns_ipv4 ipv4 ;
   struct netns_ipv6 ipv6 ;
   struct netns_dccp dccp ;
   struct netns_xt xt ;
   struct netns_ct ct ;
   struct netns_xfrm xfrm ;
   struct sk_buff_head wext_nlevents ;
   struct net_generic *gen ;
};
struct seq_file {
   char *buf ;
   size_t size ;
   size_t from ;
   size_t count ;
   loff_t index ;
   loff_t read_pos ;
   u64 version ;
   struct mutex lock ;
   struct seq_operations  const  *op ;
   void *private ;
};
struct seq_operations {
   void *(*start)(struct seq_file *m , loff_t *pos ) ;
   void (*stop)(struct seq_file *m , void *v ) ;
   void *(*next)(struct seq_file *m , void *v , loff_t *pos ) ;
   int (*show)(struct seq_file *m , void *v ) ;
};
struct dcbnl_rtnl_ops {
   u8 (*getstate)(struct net_device * ) ;
   u8 (*setstate)(struct net_device * , u8  ) ;
   void (*getpermhwaddr)(struct net_device * , u8 * ) ;
   void (*setpgtccfgtx)(struct net_device * , int  , u8  , u8  , u8  , u8  ) ;
   void (*setpgbwgcfgtx)(struct net_device * , int  , u8  ) ;
   void (*setpgtccfgrx)(struct net_device * , int  , u8  , u8  , u8  , u8  ) ;
   void (*setpgbwgcfgrx)(struct net_device * , int  , u8  ) ;
   void (*getpgtccfgtx)(struct net_device * , int  , u8 * , u8 * , u8 * , u8 * ) ;
   void (*getpgbwgcfgtx)(struct net_device * , int  , u8 * ) ;
   void (*getpgtccfgrx)(struct net_device * , int  , u8 * , u8 * , u8 * , u8 * ) ;
   void (*getpgbwgcfgrx)(struct net_device * , int  , u8 * ) ;
   void (*setpfccfg)(struct net_device * , int  , u8  ) ;
   void (*getpfccfg)(struct net_device * , int  , u8 * ) ;
   u8 (*setall)(struct net_device * ) ;
   u8 (*getcap)(struct net_device * , int  , u8 * ) ;
   u8 (*getnumtcs)(struct net_device * , int  , u8 * ) ;
   u8 (*setnumtcs)(struct net_device * , int  , u8  ) ;
   u8 (*getpfcstate)(struct net_device * ) ;
   void (*setpfcstate)(struct net_device * , u8  ) ;
   void (*getbcncfg)(struct net_device * , int  , u32 * ) ;
   void (*setbcncfg)(struct net_device * , int  , u32  ) ;
   void (*getbcnrp)(struct net_device * , int  , u8 * ) ;
   void (*setbcnrp)(struct net_device * , int  , u8  ) ;
};
struct vlan_group;
struct netpoll_info;
struct wireless_dev;
struct net_device_stats {
   unsigned long rx_packets ;
   unsigned long tx_packets ;
   unsigned long rx_bytes ;
   unsigned long tx_bytes ;
   unsigned long rx_errors ;
   unsigned long tx_errors ;
   unsigned long rx_dropped ;
   unsigned long tx_dropped ;
   unsigned long multicast ;
   unsigned long collisions ;
   unsigned long rx_length_errors ;
   unsigned long rx_over_errors ;
   unsigned long rx_crc_errors ;
   unsigned long rx_frame_errors ;
   unsigned long rx_fifo_errors ;
   unsigned long rx_missed_errors ;
   unsigned long tx_aborted_errors ;
   unsigned long tx_carrier_errors ;
   unsigned long tx_fifo_errors ;
   unsigned long tx_heartbeat_errors ;
   unsigned long tx_window_errors ;
   unsigned long rx_compressed ;
   unsigned long tx_compressed ;
};
struct neighbour;
struct neigh_parms;
struct dev_addr_list {
   struct dev_addr_list *next ;
   u8 da_addr[32] ;
   u8 da_addrlen ;
   u8 da_synced ;
   int da_users ;
   int da_gusers ;
};
struct netdev_hw_addr_list {
   struct list_head list ;
   int count ;
};
struct hh_cache {
   struct hh_cache *hh_next ;
   atomic_t hh_refcnt ;
   __be16 hh_type  __attribute__((__aligned__((1) <<  (6) ))) ;
   u16 hh_len ;
   int (*hh_output)(struct sk_buff *skb ) ;
   seqlock_t hh_lock ;
   unsigned long hh_data[(unsigned long )((96 + (16 - 1)) & ~ (16 - 1)) / sizeof(long )] ;
};
struct header_ops {
   int (*create)(struct sk_buff *skb , struct net_device *dev , unsigned short type ,
                 void const   *daddr , void const   *saddr , unsigned int len ) ;
   int (*parse)(struct sk_buff  const  *skb , unsigned char *haddr ) ;
   int (*rebuild)(struct sk_buff *skb ) ;
   int (*cache)(struct neighbour  const  *neigh , struct hh_cache *hh ) ;
   void (*cache_update)(struct hh_cache *hh , struct net_device  const  *dev , unsigned char const   *haddr ) ;
};
struct Qdisc;
struct netdev_queue {
   struct net_device *dev ;
   struct Qdisc *qdisc ;
   unsigned long state ;
   struct Qdisc *qdisc_sleeping ;
   spinlock_t _xmit_lock  __attribute__((__aligned__((1) <<  (6) ))) ;
   int xmit_lock_owner ;
   unsigned long trans_start ;
   unsigned long tx_bytes ;
   unsigned long tx_packets ;
   unsigned long tx_dropped ;
} __attribute__((__aligned__((1) <<  (6) ))) ;
struct net_device_ops {
   int (*ndo_init)(struct net_device *dev ) ;
   void (*ndo_uninit)(struct net_device *dev ) ;
   int (*ndo_open)(struct net_device *dev ) ;
   int (*ndo_stop)(struct net_device *dev ) ;
   int (*ndo_start_xmit)(struct sk_buff *skb , struct net_device *dev ) ;
   u16 (*ndo_select_queue)(struct net_device *dev , struct sk_buff *skb ) ;
   void (*ndo_change_rx_flags)(struct net_device *dev , int flags ) ;
   void (*ndo_set_rx_mode)(struct net_device *dev ) ;
   void (*ndo_set_multicast_list)(struct net_device *dev ) ;
   int (*ndo_set_mac_address)(struct net_device *dev , void *addr ) ;
   int (*ndo_validate_addr)(struct net_device *dev ) ;
   int (*ndo_do_ioctl)(struct net_device *dev , struct ifreq *ifr , int cmd ) ;
   int (*ndo_set_config)(struct net_device *dev , struct ifmap *map ) ;
   int (*ndo_change_mtu)(struct net_device *dev , int new_mtu ) ;
   int (*ndo_neigh_setup)(struct net_device *dev , struct neigh_parms * ) ;
   void (*ndo_tx_timeout)(struct net_device *dev ) ;
   struct net_device_stats *(*ndo_get_stats)(struct net_device *dev ) ;
   void (*ndo_vlan_rx_register)(struct net_device *dev , struct vlan_group *grp ) ;
   void (*ndo_vlan_rx_add_vid)(struct net_device *dev , unsigned short vid ) ;
   void (*ndo_vlan_rx_kill_vid)(struct net_device *dev , unsigned short vid ) ;
   void (*ndo_poll_controller)(struct net_device *dev ) ;
   int (*ndo_fcoe_ddp_setup)(struct net_device *dev , u16 xid , struct scatterlist *sgl ,
                             unsigned int sgc ) ;
   int (*ndo_fcoe_ddp_done)(struct net_device *dev , u16 xid ) ;
};
struct iw_handler_def;
struct iw_public_data;
enum __anonenum_reg_state_227 {
    NETREG_UNINITIALIZED = 0,
    NETREG_REGISTERED = 1,
    NETREG_UNREGISTERING = 2,
    NETREG_UNREGISTERED = 3,
    NETREG_RELEASED = 4,
    NETREG_DUMMY = 5
} ;
struct net_bridge_port;
struct macvlan_port;
struct garp_port;
struct rtnl_link_ops;
struct net_device {
   char name[16] ;
   struct hlist_node name_hlist ;
   char *ifalias ;
   unsigned long mem_end ;
   unsigned long mem_start ;
   unsigned long base_addr ;
   unsigned int irq ;
   unsigned char if_port ;
   unsigned char dma ;
   unsigned long state ;
   struct list_head dev_list ;
   struct list_head napi_list ;
   unsigned long features ;
   int ifindex ;
   int iflink ;
   struct net_device_stats stats ;
   struct iw_handler_def  const  *wireless_handlers ;
   struct iw_public_data *wireless_data ;
   struct net_device_ops  const  *netdev_ops ;
   struct ethtool_ops  const  *ethtool_ops ;
   struct header_ops  const  *header_ops ;
   unsigned int flags ;
   unsigned short gflags ;
   unsigned short priv_flags ;
   unsigned short padded ;
   unsigned char operstate ;
   unsigned char link_mode ;
   unsigned int mtu ;
   unsigned short type ;
   unsigned short hard_header_len ;
   unsigned short needed_headroom ;
   unsigned short needed_tailroom ;
   struct net_device *master ;
   unsigned char perm_addr[32] ;
   unsigned char addr_len ;
   unsigned short dev_id ;
   struct netdev_hw_addr_list uc ;
   int uc_promisc ;
   spinlock_t addr_list_lock ;
   struct dev_addr_list *mc_list ;
   int mc_count ;
   unsigned int promiscuity ;
   unsigned int allmulti ;
   void *dsa_ptr ;
   void *atalk_ptr ;
   void *ip_ptr ;
   void *dn_ptr ;
   void *ip6_ptr ;
   void *ec_ptr ;
   void *ax25_ptr ;
   struct wireless_dev *ieee80211_ptr ;
   unsigned long last_rx ;
   unsigned char *dev_addr ;
   struct netdev_hw_addr_list dev_addrs ;
   unsigned char broadcast[32] ;
   struct netdev_queue rx_queue ;
   struct netdev_queue *_tx  __attribute__((__aligned__((1) <<  (6) ))) ;
   unsigned int num_tx_queues ;
   unsigned int real_num_tx_queues ;
   unsigned long tx_queue_len ;
   spinlock_t tx_global_lock ;
   unsigned long trans_start ;
   int watchdog_timeo ;
   struct timer_list watchdog_timer ;
   atomic_t refcnt  __attribute__((__aligned__((1) <<  (6) ))) ;
   struct list_head todo_list ;
   struct hlist_node index_hlist ;
   struct net_device *link_watch_next ;
   enum __anonenum_reg_state_227 reg_state ;
   void (*destructor)(struct net_device *dev ) ;
   struct netpoll_info *npinfo ;
   struct net *nd_net ;
   void *ml_priv ;
   struct net_bridge_port *br_port ;
   struct macvlan_port *macvlan_port ;
   struct garp_port *garp_port ;
   struct device dev ;
   struct attribute_group *sysfs_groups[3] ;
   struct rtnl_link_ops  const  *rtnl_link_ops ;
   unsigned long vlan_features ;
   unsigned int gso_max_size ;
   struct dcbnl_rtnl_ops *dcbnl_ops ;
   unsigned int fcoe_ddp_xid ;
};
enum irqreturn {
    IRQ_NONE = 0,
    IRQ_HANDLED = 1,
    IRQ_WAKE_THREAD = 2
} ;
typedef enum irqreturn irqreturn_t;
struct irqaction;
typedef unsigned long cputime_t;
struct sem_undo_list;
struct sem_undo_list {
   atomic_t refcnt ;
   spinlock_t lock ;
   struct list_head list_proc ;
};
struct sysv_sem {
   struct sem_undo_list *undo_list ;
};
struct siginfo;
struct __anonstruct_sigset_t_229 {
   unsigned long sig[64 / 64] ;
};
typedef struct __anonstruct_sigset_t_229 sigset_t;
typedef void __signalfn_t(int  );
typedef __signalfn_t *__sighandler_t;
typedef void __restorefn_t(void);
typedef __restorefn_t *__sigrestore_t;
struct sigaction {
   __sighandler_t sa_handler ;
   unsigned long sa_flags ;
   __sigrestore_t sa_restorer ;
   sigset_t sa_mask ;
};
struct k_sigaction {
   struct sigaction sa ;
};
union sigval {
   int sival_int ;
   void *sival_ptr ;
};
typedef union sigval sigval_t;
struct __anonstruct__kill_231 {
   __kernel_pid_t _pid ;
   __kernel_uid32_t _uid ;
};
struct __anonstruct__timer_232 {
   __kernel_timer_t _tid ;
   int _overrun ;
   char _pad[sizeof(__kernel_uid32_t ) - sizeof(int )] ;
   sigval_t _sigval ;
   int _sys_private ;
};
struct __anonstruct__rt_233 {
   __kernel_pid_t _pid ;
   __kernel_uid32_t _uid ;
   sigval_t _sigval ;
};
struct __anonstruct__sigchld_234 {
   __kernel_pid_t _pid ;
   __kernel_uid32_t _uid ;
   int _status ;
   __kernel_clock_t _utime ;
   __kernel_clock_t _stime ;
};
struct __anonstruct__sigfault_235 {
   void *_addr ;
};
struct __anonstruct__sigpoll_236 {
   long _band ;
   int _fd ;
};
union __anonunion__sifields_230 {
   int _pad[(128UL - 4UL * sizeof(int )) / sizeof(int )] ;
   struct __anonstruct__kill_231 _kill ;
   struct __anonstruct__timer_232 _timer ;
   struct __anonstruct__rt_233 _rt ;
   struct __anonstruct__sigchld_234 _sigchld ;
   struct __anonstruct__sigfault_235 _sigfault ;
   struct __anonstruct__sigpoll_236 _sigpoll ;
};
struct siginfo {
   int si_signo ;
   int si_errno ;
   int si_code ;
   union __anonunion__sifields_230 _sifields ;
};
typedef struct siginfo siginfo_t;
struct sigpending {
   struct list_head list ;
   sigset_t signal ;
};
struct percpu_counter {
   spinlock_t lock ;
   s64 count ;
   struct list_head list ;
   s32 *counters ;
};
struct prop_local_single {
   unsigned long events ;
   unsigned long period ;
   int shift ;
   spinlock_t lock ;
};
struct __anonstruct_seccomp_t_239 {
   int mode ;
};
typedef struct __anonstruct_seccomp_t_239 seccomp_t;
struct plist_head {
   struct list_head prio_list ;
   struct list_head node_list ;
   spinlock_t *lock ;
};
struct plist_node {
   int prio ;
   struct plist_head plist ;
};
struct rt_mutex_waiter;
struct rlimit {
   unsigned long rlim_cur ;
   unsigned long rlim_max ;
};
struct task_io_accounting {
   u64 rchar ;
   u64 wchar ;
   u64 syscr ;
   u64 syscw ;
   u64 read_bytes ;
   u64 write_bytes ;
   u64 cancelled_write_bytes ;
};
struct latency_record {
   unsigned long backtrace[12] ;
   unsigned int count ;
   unsigned long time ;
   unsigned long max ;
};
typedef int32_t key_serial_t;
typedef uint32_t key_perm_t;
struct signal_struct;
struct key_type;
struct keyring_list;
struct key_user;
union __anonunion_type_data_240 {
   struct list_head link ;
   unsigned long x[2] ;
   void *p[2] ;
};
union __anonunion_payload_241 {
   unsigned long value ;
   void *data ;
   struct keyring_list *subscriptions ;
};
struct key {
   atomic_t usage ;
   key_serial_t serial ;
   struct rb_node serial_node ;
   struct key_type *type ;
   struct rw_semaphore sem ;
   struct key_user *user ;
   void *security ;
   time_t expiry ;
   uid_t uid ;
   gid_t gid ;
   key_perm_t perm ;
   unsigned short quotalen ;
   unsigned short datalen ;
   unsigned long flags ;
   char *description ;
   union __anonunion_type_data_240 type_data ;
   union __anonunion_payload_241 payload ;
};
struct group_info {
   atomic_t usage ;
   int ngroups ;
   int nblocks ;
   gid_t small_block[32] ;
   gid_t *blocks[0] ;
};
struct thread_group_cred {
   atomic_t usage ;
   pid_t tgid ;
   spinlock_t lock ;
   struct key *session_keyring ;
   struct key *process_keyring ;
   struct rcu_head rcu ;
};
struct cred {
   atomic_t usage ;
   uid_t uid ;
   gid_t gid ;
   uid_t suid ;
   gid_t sgid ;
   uid_t euid ;
   gid_t egid ;
   uid_t fsuid ;
   gid_t fsgid ;
   unsigned int securebits ;
   kernel_cap_t cap_inheritable ;
   kernel_cap_t cap_permitted ;
   kernel_cap_t cap_effective ;
   kernel_cap_t cap_bset ;
   unsigned char jit_keyring ;
   struct key *thread_keyring ;
   struct key *request_key_auth ;
   struct thread_group_cred *tgcred ;
   void *security ;
   struct user_struct *user ;
   struct group_info *group_info ;
   struct rcu_head rcu ;
};
struct futex_pi_state;
struct robust_list_head;
struct fs_struct;
struct bts_context;
struct perf_counter_context;
struct cfs_rq;
struct task_group;
struct user_namespace;
struct io_event {
   __u64 data ;
   __u64 obj ;
   __s64 res ;
   __s64 res2 ;
};
struct kioctx;
union __anonunion_ki_obj_243 {
   void *user ;
   struct task_struct *tsk ;
};
struct eventfd_ctx;
struct kiocb {
   struct list_head ki_run_list ;
   unsigned long ki_flags ;
   int ki_users ;
   unsigned int ki_key ;
   struct file *ki_filp ;
   struct kioctx *ki_ctx ;
   int (*ki_cancel)(struct kiocb * , struct io_event * ) ;
   ssize_t (*ki_retry)(struct kiocb * ) ;
   void (*ki_dtor)(struct kiocb * ) ;
   union __anonunion_ki_obj_243 ki_obj ;
   __u64 ki_user_data ;
   wait_queue_t ki_wait ;
   loff_t ki_pos ;
   void *private ;
   unsigned short ki_opcode ;
   size_t ki_nbytes ;
   char *ki_buf ;
   size_t ki_left ;
   struct iovec ki_inline_vec ;
   struct iovec *ki_iovec ;
   unsigned long ki_nr_segs ;
   unsigned long ki_cur_seg ;
   struct list_head ki_list ;
   struct eventfd_ctx *ki_eventfd ;
};
struct aio_ring_info {
   unsigned long mmap_base ;
   unsigned long mmap_size ;
   struct page **ring_pages ;
   spinlock_t ring_lock ;
   long nr_pages ;
   unsigned int nr ;
   unsigned int tail ;
   struct page *internal_pages[8] ;
};
struct kioctx {
   atomic_t users ;
   int dead ;
   struct mm_struct *mm ;
   unsigned long user_id ;
   struct hlist_node list ;
   wait_queue_head_t wait ;
   spinlock_t ctx_lock ;
   int reqs_active ;
   struct list_head active_reqs ;
   struct list_head run_list ;
   unsigned int max_reqs ;
   struct aio_ring_info ring_info ;
   struct delayed_work wq ;
   struct rcu_head rcu_head ;
};
struct sighand_struct {
   atomic_t count ;
   struct k_sigaction action[64] ;
   spinlock_t siglock ;
   wait_queue_head_t signalfd_wqh ;
};
struct pacct_struct {
   int ac_flag ;
   long ac_exitcode ;
   unsigned long ac_mem ;
   cputime_t ac_utime ;
   cputime_t ac_stime ;
   unsigned long ac_minflt ;
   unsigned long ac_majflt ;
};
struct task_cputime {
   cputime_t utime ;
   cputime_t stime ;
   unsigned long long sum_exec_runtime ;
};
struct thread_group_cputimer {
   struct task_cputime cputime ;
   int running ;
   spinlock_t lock ;
};
struct tty_struct;
struct taskstats;
struct tty_audit_buf;
struct signal_struct {
   atomic_t count ;
   atomic_t live ;
   wait_queue_head_t wait_chldexit ;
   struct task_struct *curr_target ;
   struct sigpending shared_pending ;
   int group_exit_code ;
   int notify_count ;
   struct task_struct *group_exit_task ;
   int group_stop_count ;
   unsigned int flags ;
   struct list_head posix_timers ;
   struct hrtimer real_timer ;
   struct pid *leader_pid ;
   ktime_t it_real_incr ;
   cputime_t it_prof_expires ;
   cputime_t it_virt_expires ;
   cputime_t it_prof_incr ;
   cputime_t it_virt_incr ;
   struct thread_group_cputimer cputimer ;
   struct task_cputime cputime_expires ;
   struct list_head cpu_timers[3] ;
   struct pid *tty_old_pgrp ;
   int leader ;
   struct tty_struct *tty ;
   cputime_t utime ;
   cputime_t stime ;
   cputime_t cutime ;
   cputime_t cstime ;
   cputime_t gtime ;
   cputime_t cgtime ;
   unsigned long nvcsw ;
   unsigned long nivcsw ;
   unsigned long cnvcsw ;
   unsigned long cnivcsw ;
   unsigned long min_flt ;
   unsigned long maj_flt ;
   unsigned long cmin_flt ;
   unsigned long cmaj_flt ;
   unsigned long inblock ;
   unsigned long oublock ;
   unsigned long cinblock ;
   unsigned long coublock ;
   struct task_io_accounting ioac ;
   unsigned long long sum_sched_runtime ;
   struct rlimit rlim[16] ;
   struct pacct_struct pacct ;
   struct taskstats *stats ;
   unsigned int audit_tty ;
   struct tty_audit_buf *tty_audit_buf ;
};
struct user_struct {
   atomic_t __count ;
   atomic_t processes ;
   atomic_t files ;
   atomic_t sigpending ;
   atomic_t inotify_watches ;
   atomic_t inotify_devs ;
   atomic_t epoll_watches ;
   unsigned long mq_bytes ;
   unsigned long locked_shm ;
   struct key *uid_keyring ;
   struct key *session_keyring ;
   struct hlist_node uidhash_node ;
   uid_t uid ;
   struct user_namespace *user_ns ;
   struct task_group *tg ;
   struct kobject kobj ;
   struct delayed_work work ;
   atomic_long_t locked_vm ;
};
struct reclaim_state;
struct sched_info {
   unsigned long pcount ;
   unsigned long long run_delay ;
   unsigned long long last_arrival ;
   unsigned long long last_queued ;
   unsigned int bkl_count ;
};
struct task_delay_info {
   spinlock_t lock ;
   unsigned int flags ;
   struct timespec blkio_start ;
   struct timespec blkio_end ;
   u64 blkio_delay ;
   u64 swapin_delay ;
   u32 blkio_count ;
   u32 swapin_count ;
   struct timespec freepages_start ;
   struct timespec freepages_end ;
   u64 freepages_delay ;
   u32 freepages_count ;
};
enum cpu_idle_type {
    CPU_IDLE = 0,
    CPU_NOT_IDLE = 1,
    CPU_NEWLY_IDLE = 2,
    CPU_MAX_IDLE_TYPES = 3
} ;
struct sched_group {
   struct sched_group *next ;
   unsigned int __cpu_power ;
   u32 reciprocal_cpu_power ;
   unsigned long cpumask[0] ;
};
enum sched_domain_level {
    SD_LV_NONE = 0,
    SD_LV_SIBLING = 1,
    SD_LV_MC = 2,
    SD_LV_CPU = 3,
    SD_LV_NODE = 4,
    SD_LV_ALLNODES = 5,
    SD_LV_MAX = 6
} ;
struct sched_domain {
   struct sched_domain *parent ;
   struct sched_domain *child ;
   struct sched_group *groups ;
   unsigned long min_interval ;
   unsigned long max_interval ;
   unsigned int busy_factor ;
   unsigned int imbalance_pct ;
   unsigned int cache_nice_tries ;
   unsigned int busy_idx ;
   unsigned int idle_idx ;
   unsigned int newidle_idx ;
   unsigned int wake_idx ;
   unsigned int forkexec_idx ;
   int flags ;
   enum sched_domain_level level ;
   unsigned long last_balance ;
   unsigned int balance_interval ;
   unsigned int nr_balance_failed ;
   u64 last_update ;
   unsigned int lb_count[CPU_MAX_IDLE_TYPES] ;
   unsigned int lb_failed[CPU_MAX_IDLE_TYPES] ;
   unsigned int lb_balanced[CPU_MAX_IDLE_TYPES] ;
   unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES] ;
   unsigned int lb_gained[CPU_MAX_IDLE_TYPES] ;
   unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES] ;
   unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES] ;
   unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES] ;
   unsigned int alb_count ;
   unsigned int alb_failed ;
   unsigned int alb_pushed ;
   unsigned int sbe_count ;
   unsigned int sbe_balanced ;
   unsigned int sbe_pushed ;
   unsigned int sbf_count ;
   unsigned int sbf_balanced ;
   unsigned int sbf_pushed ;
   unsigned int ttwu_wake_remote ;
   unsigned int ttwu_move_affine ;
   unsigned int ttwu_move_balance ;
   char *name ;
   unsigned long span[0] ;
};
struct io_context;
struct audit_context;
struct rq;
struct sched_class {
   struct sched_class  const  *next ;
   void (*enqueue_task)(struct rq *rq , struct task_struct *p , int wakeup ) ;
   void (*dequeue_task)(struct rq *rq , struct task_struct *p , int sleep ) ;
   void (*yield_task)(struct rq *rq ) ;
   void (*check_preempt_curr)(struct rq *rq , struct task_struct *p , int sync ) ;
   struct task_struct *(*pick_next_task)(struct rq *rq ) ;
   void (*put_prev_task)(struct rq *rq , struct task_struct *p ) ;
   int (*select_task_rq)(struct task_struct *p , int sync ) ;
   unsigned long (*load_balance)(struct rq *this_rq , int this_cpu , struct rq *busiest ,
                                 unsigned long max_load_move , struct sched_domain *sd ,
                                 enum cpu_idle_type idle , int *all_pinned , int *this_best_prio ) ;
   int (*move_one_task)(struct rq *this_rq , int this_cpu , struct rq *busiest , struct sched_domain *sd ,
                        enum cpu_idle_type idle ) ;
   void (*pre_schedule)(struct rq *this_rq , struct task_struct *task ) ;
   int (*needs_post_schedule)(struct rq *this_rq ) ;
   void (*post_schedule)(struct rq *this_rq ) ;
   void (*task_wake_up)(struct rq *this_rq , struct task_struct *task ) ;
   void (*set_cpus_allowed)(struct task_struct *p , struct cpumask  const  *newmask ) ;
   void (*rq_online)(struct rq *rq ) ;
   void (*rq_offline)(struct rq *rq ) ;
   void (*set_curr_task)(struct rq *rq ) ;
   void (*task_tick)(struct rq *rq , struct task_struct *p , int queued ) ;
   void (*task_new)(struct rq *rq , struct task_struct *p ) ;
   void (*switched_from)(struct rq *this_rq , struct task_struct *task , int running ) ;
   void (*switched_to)(struct rq *this_rq , struct task_struct *task , int running ) ;
   void (*prio_changed)(struct rq *this_rq , struct task_struct *task , int oldprio ,
                        int running ) ;
   void (*moved_group)(struct task_struct *p ) ;
};
struct load_weight {
   unsigned long weight ;
   unsigned long inv_weight ;
};
struct sched_entity {
   struct load_weight load ;
   struct rb_node run_node ;
   struct list_head group_node ;
   unsigned int on_rq ;
   u64 exec_start ;
   u64 sum_exec_runtime ;
   u64 vruntime ;
   u64 prev_sum_exec_runtime ;
   u64 last_wakeup ;
   u64 avg_overlap ;
   u64 nr_migrations ;
   u64 start_runtime ;
   u64 avg_wakeup ;
   u64 wait_start ;
   u64 wait_max ;
   u64 wait_count ;
   u64 wait_sum ;
   u64 sleep_start ;
   u64 sleep_max ;
   s64 sum_sleep_runtime ;
   u64 block_start ;
   u64 block_max ;
   u64 exec_max ;
   u64 slice_max ;
   u64 nr_migrations_cold ;
   u64 nr_failed_migrations_affine ;
   u64 nr_failed_migrations_running ;
   u64 nr_failed_migrations_hot ;
   u64 nr_forced_migrations ;
   u64 nr_forced2_migrations ;
   u64 nr_wakeups ;
   u64 nr_wakeups_sync ;
   u64 nr_wakeups_migrate ;
   u64 nr_wakeups_local ;
   u64 nr_wakeups_remote ;
   u64 nr_wakeups_affine ;
   u64 nr_wakeups_affine_attempts ;
   u64 nr_wakeups_passive ;
   u64 nr_wakeups_idle ;
   struct sched_entity *parent ;
   struct cfs_rq *cfs_rq ;
   struct cfs_rq *my_q ;
};
struct rt_rq;
struct sched_rt_entity {
   struct list_head run_list ;
   unsigned long timeout ;
   unsigned int time_slice ;
   int nr_cpus_allowed ;
   struct sched_rt_entity *back ;
   struct sched_rt_entity *parent ;
   struct rt_rq *rt_rq ;
   struct rt_rq *my_q ;
};
struct linux_binfmt;
struct css_set;
struct compat_robust_list_head;
struct ftrace_ret_stack;
struct task_struct {
   long volatile   state ;
   void *stack ;
   atomic_t usage ;
   unsigned int flags ;
   unsigned int ptrace ;
   int lock_depth ;
   int prio ;
   int static_prio ;
   int normal_prio ;
   unsigned int rt_priority ;
   struct sched_class  const  *sched_class ;
   struct sched_entity se ;
   struct sched_rt_entity rt ;
   struct hlist_head preempt_notifiers ;
   unsigned char fpu_counter ;
   unsigned int btrace_seq ;
   unsigned int policy ;
   cpumask_t cpus_allowed ;
   struct sched_info sched_info ;
   struct list_head tasks ;
   struct plist_node pushable_tasks ;
   struct mm_struct *mm ;
   struct mm_struct *active_mm ;
   struct linux_binfmt *binfmt ;
   int exit_state ;
   int exit_code ;
   int exit_signal ;
   int pdeath_signal ;
   unsigned int personality ;
   unsigned int did_exec : 1 ;
   unsigned int in_execve : 1 ;
   pid_t pid ;
   pid_t tgid ;
   unsigned long stack_canary ;
   struct task_struct *real_parent ;
   struct task_struct *parent ;
   struct list_head children ;
   struct list_head sibling ;
   struct task_struct *group_leader ;
   struct list_head ptraced ;
   struct list_head ptrace_entry ;
   struct bts_context *bts ;
   struct pid_link pids[PIDTYPE_MAX] ;
   struct list_head thread_group ;
   struct completion *vfork_done ;
   int *set_child_tid ;
   int *clear_child_tid ;
   cputime_t utime ;
   cputime_t stime ;
   cputime_t utimescaled ;
   cputime_t stimescaled ;
   cputime_t gtime ;
   cputime_t prev_utime ;
   cputime_t prev_stime ;
   unsigned long nvcsw ;
   unsigned long nivcsw ;
   struct timespec start_time ;
   struct timespec real_start_time ;
   unsigned long min_flt ;
   unsigned long maj_flt ;
   struct task_cputime cputime_expires ;
   struct list_head cpu_timers[3] ;
   struct cred  const  *real_cred ;
   struct cred  const  *cred ;
   struct mutex cred_guard_mutex ;
   char comm[16] ;
   int link_count ;
   int total_link_count ;
   struct sysv_sem sysvsem ;
   unsigned long last_switch_count ;
   struct thread_struct thread ;
   struct fs_struct *fs ;
   struct files_struct *files ;
   struct nsproxy *nsproxy ;
   struct signal_struct *signal ;
   struct sighand_struct *sighand ;
   sigset_t blocked ;
   sigset_t real_blocked ;
   sigset_t saved_sigmask ;
   struct sigpending pending ;
   unsigned long sas_ss_sp ;
   size_t sas_ss_size ;
   int (*notifier)(void *priv ) ;
   void *notifier_data ;
   sigset_t *notifier_mask ;
   struct audit_context *audit_context ;
   uid_t loginuid ;
   unsigned int sessionid ;
   seccomp_t seccomp ;
   u32 parent_exec_id ;
   u32 self_exec_id ;
   spinlock_t alloc_lock ;
   struct irqaction *irqaction ;
   spinlock_t pi_lock ;
   struct plist_head pi_waiters ;
   struct rt_mutex_waiter *pi_blocked_on ;
   struct mutex_waiter *blocked_on ;
   unsigned int irq_events ;
   int hardirqs_enabled ;
   unsigned long hardirq_enable_ip ;
   unsigned int hardirq_enable_event ;
   unsigned long hardirq_disable_ip ;
   unsigned int hardirq_disable_event ;
   int softirqs_enabled ;
   unsigned long softirq_disable_ip ;
   unsigned int softirq_disable_event ;
   unsigned long softirq_enable_ip ;
   unsigned int softirq_enable_event ;
   int hardirq_context ;
   int softirq_context ;
   u64 curr_chain_key ;
   int lockdep_depth ;
   unsigned int lockdep_recursion ;
   struct held_lock held_locks[48UL] ;
   gfp_t lockdep_reclaim_gfp ;
   void *journal_info ;
   struct bio *bio_list ;
   struct bio **bio_tail ;
   struct reclaim_state *reclaim_state ;
   struct backing_dev_info *backing_dev_info ;
   struct io_context *io_context ;
   unsigned long ptrace_message ;
   siginfo_t *last_siginfo ;
   struct task_io_accounting ioac ;
   u64 acct_rss_mem1 ;
   u64 acct_vm_mem1 ;
   cputime_t acct_timexpd ;
   nodemask_t mems_allowed ;
   int cpuset_mem_spread_rotor ;
   struct css_set *cgroups ;
   struct list_head cg_list ;
   struct robust_list_head *robust_list ;
   struct compat_robust_list_head *compat_robust_list ;
   struct list_head pi_state_list ;
   struct futex_pi_state *pi_state_cache ;
   struct perf_counter_context *perf_counter_ctxp ;
   struct mutex perf_counter_mutex ;
   struct list_head perf_counter_list ;
   struct mempolicy *mempolicy ;
   short il_next ;
   atomic_t fs_excl ;
   struct rcu_head rcu ;
   struct pipe_inode_info *splice_pipe ;
   struct task_delay_info *delays ;
   int make_it_fail ;
   struct prop_local_single dirties ;
   int latency_record_count ;
   struct latency_record latency_record[32] ;
   unsigned long timer_slack_ns ;
   unsigned long default_timer_slack_ns ;
   struct list_head *scm_work_list ;
   int curr_ret_stack ;
   struct ftrace_ret_stack *ret_stack ;
   unsigned long long ftrace_timestamp ;
   atomic_t trace_overrun ;
   atomic_t tracing_graph_pause ;
   unsigned long trace ;
   unsigned long trace_recursion ;
};
struct irqaction {
   irqreturn_t (*handler)(int  , void * ) ;
   unsigned long flags ;
   cpumask_t mask ;
   char const   *name ;
   void *dev_id ;
   struct irqaction *next ;
   int irq ;
   struct proc_dir_entry *dir ;
   irqreturn_t (*thread_fn)(int  , void * ) ;
   struct task_struct *thread ;
   unsigned long thread_flags ;
};
struct linux_binprm {
   char buf[128] ;
   struct vm_area_struct *vma ;
   struct mm_struct *mm ;
   unsigned long p ;
   unsigned int cred_prepared : 1 ;
   unsigned int cap_effective : 1 ;
   unsigned int recursion_depth ;
   struct file *file ;
   struct cred *cred ;
   int unsafe ;
   unsigned int per_clear ;
   int argc ;
   int envc ;
   char *filename ;
   char *interp ;
   unsigned int interp_flags ;
   unsigned int interp_data ;
   unsigned long loader ;
   unsigned long exec ;
};
struct linux_binfmt {
   struct list_head lh ;
   struct module *module ;
   int (*load_binary)(struct linux_binprm * , struct pt_regs *regs ) ;
   int (*load_shlib)(struct file * ) ;
   int (*core_dump)(long signr , struct pt_regs *regs , struct file *file , unsigned long limit ) ;
   unsigned long min_coredump ;
   int hasvdso ;
};
struct xfrm_policy;
struct xfrm_state;
struct sock_filter {
   __u16 code ;
   __u8 jt ;
   __u8 jf ;
   __u32 k ;
};
struct sk_filter {
   atomic_t refcnt ;
   unsigned int len ;
   struct rcu_head rcu ;
   struct sock_filter insns[0] ;
};
struct pollfd {
   int fd ;
   short events ;
   short revents ;
};
struct poll_table_struct {
   void (*qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ;
   unsigned long key ;
};
struct nlattr {
   __u16 nla_len ;
   __u16 nla_type ;
};
enum __anonenum_261 {
    RTAX_UNSPEC = 0,
    RTAX_LOCK = 1,
    RTAX_MTU = 2,
    RTAX_WINDOW = 3,
    RTAX_RTT = 4,
    RTAX_RTTVAR = 5,
    RTAX_SSTHRESH = 6,
    RTAX_CWND = 7,
    RTAX_ADVMSS = 8,
    RTAX_REORDERING = 9,
    RTAX_HOPLIMIT = 10,
    RTAX_INITCWND = 11,
    RTAX_FEATURES = 12,
    RTAX_RTO_MIN = 13,
    __RTAX_MAX = 14
} ;
struct nla_policy {
   u16 type ;
   u16 len ;
};
struct rtnl_link_ops {
   struct list_head list ;
   char const   *kind ;
   size_t priv_size ;
   void (*setup)(struct net_device *dev ) ;
   int maxtype ;
   struct nla_policy  const  *policy ;
   int (*validate)(struct nlattr **tb , struct nlattr **data ) ;
   int (*newlink)(struct net_device *dev , struct nlattr **tb , struct nlattr **data ) ;
   int (*changelink)(struct net_device *dev , struct nlattr **tb , struct nlattr **data ) ;
   void (*dellink)(struct net_device *dev ) ;
   size_t (*get_size)(struct net_device  const  *dev ) ;
   int (*fill_info)(struct sk_buff *skb , struct net_device  const  *dev ) ;
   size_t (*get_xstats_size)(struct net_device  const  *dev ) ;
   int (*fill_xstats)(struct sk_buff *skb , struct net_device  const  *dev ) ;
};
struct neigh_table;
struct neigh_parms {
   struct net *net ;
   struct net_device *dev ;
   struct neigh_parms *next ;
   int (*neigh_setup)(struct neighbour * ) ;
   void (*neigh_cleanup)(struct neighbour * ) ;
   struct neigh_table *tbl ;
   void *sysctl_table ;
   int dead ;
   atomic_t refcnt ;
   struct rcu_head rcu_head ;
   int base_reachable_time ;
   int retrans_time ;
   int gc_staletime ;
   int reachable_time ;
   int delay_probe_time ;
   int queue_len ;
   int ucast_probes ;
   int app_probes ;
   int mcast_probes ;
   int anycast_delay ;
   int proxy_delay ;
   int proxy_qlen ;
   int locktime ;
};
struct neigh_statistics {
   unsigned long allocs ;
   unsigned long destroys ;
   unsigned long hash_grows ;
   unsigned long res_failed ;
   unsigned long lookups ;
   unsigned long hits ;
   unsigned long rcv_probes_mcast ;
   unsigned long rcv_probes_ucast ;
   unsigned long periodic_gc_runs ;
   unsigned long forced_gc_runs ;
   unsigned long unres_discards ;
};
struct neigh_ops;
struct neighbour {
   struct neighbour *next ;
   struct neigh_table *tbl ;
   struct neigh_parms *parms ;
   struct net_device *dev ;
   unsigned long used ;
   unsigned long confirmed ;
   unsigned long updated ;
   __u8 flags ;
   __u8 nud_state ;
   __u8 type ;
   __u8 dead ;
   atomic_t probes ;
   rwlock_t lock ;
   unsigned char ha[(32 + ((int )sizeof(unsigned long ) - 1)) & ~ ((int )sizeof(unsigned long ) - 1)] ;
   struct hh_cache *hh ;
   atomic_t refcnt ;
   int (*output)(struct sk_buff *skb ) ;
   struct sk_buff_head arp_queue ;
   struct timer_list timer ;
   struct neigh_ops *ops ;
   u8 primary_key[0] ;
};
struct neigh_ops {
   int family ;
   void (*solicit)(struct neighbour * , struct sk_buff * ) ;
   void (*error_report)(struct neighbour * , struct sk_buff * ) ;
   int (*output)(struct sk_buff * ) ;
   int (*connected_output)(struct sk_buff * ) ;
   int (*hh_output)(struct sk_buff * ) ;
   int (*queue_xmit)(struct sk_buff * ) ;
};
struct pneigh_entry {
   struct pneigh_entry *next ;
   struct net *net ;
   struct net_device *dev ;
   u8 flags ;
   u8 key[0] ;
};
struct neigh_table {
   struct neigh_table *next ;
   int family ;
   int entry_size ;
   int key_len ;
   __u32 (*hash)(void const   *pkey , struct net_device  const  * ) ;
   int (*constructor)(struct neighbour * ) ;
   int (*pconstructor)(struct pneigh_entry * ) ;
   void (*pdestructor)(struct pneigh_entry * ) ;
   void (*proxy_redo)(struct sk_buff *skb ) ;
   char *id ;
   struct neigh_parms parms ;
   int gc_interval ;
   int gc_thresh1 ;
   int gc_thresh2 ;
   int gc_thresh3 ;
   unsigned long last_flush ;
   struct delayed_work gc_work ;
   struct timer_list proxy_timer ;
   struct sk_buff_head proxy_queue ;
   atomic_t entries ;
   rwlock_t lock ;
   unsigned long last_rand ;
   struct kmem_cache *kmem_cachep ;
   struct neigh_statistics *stats ;
   struct neighbour **hash_buckets ;
   unsigned int hash_mask ;
   __u32 hash_rnd ;
   struct pneigh_entry **phash_buckets ;
};
struct dn_route;
union __anonunion____missing_field_name_269 {
   struct dst_entry *next ;
   struct rtable *rt_next ;
   struct rt6_info *rt6_next ;
   struct dn_route *dn_next ;
};
struct dst_entry {
   struct rcu_head rcu_head ;
   struct dst_entry *child ;
   struct net_device *dev ;
   short error ;
   short obsolete ;
   int flags ;
   unsigned long expires ;
   unsigned short header_len ;
   unsigned short trailer_len ;
   unsigned int rate_tokens ;
   unsigned long rate_last ;
   struct dst_entry *path ;
   struct neighbour *neighbour ;
   struct hh_cache *hh ;
   struct xfrm_state *xfrm ;
   int (*input)(struct sk_buff * ) ;
   int (*output)(struct sk_buff * ) ;
   struct dst_ops *ops ;
   u32 metrics[__RTAX_MAX - 1] ;
   __u32 tclassid ;
   long __pad_to_align_refcnt[2] ;
   atomic_t __refcnt ;
   int __use ;
   unsigned long lastuse ;
   union __anonunion____missing_field_name_269 __annonCompField28 ;
};
struct dst_ops {
   unsigned short family ;
   __be16 protocol ;
   unsigned int gc_thresh ;
   int (*gc)(struct dst_ops *ops ) ;
   struct dst_entry *(*check)(struct dst_entry * , __u32 cookie ) ;
   void (*destroy)(struct dst_entry * ) ;
   void (*ifdown)(struct dst_entry * , struct net_device *dev , int how ) ;
   struct dst_entry *(*negative_advice)(struct dst_entry * ) ;
   void (*link_failure)(struct sk_buff * ) ;
   void (*update_pmtu)(struct dst_entry *dst , u32 mtu ) ;
   int (*local_out)(struct sk_buff *skb ) ;
   atomic_t entries ;
   struct kmem_cache *kmem_cachep ;
   struct net *dst_net ;
};
struct __anonstruct_socket_lock_t_271 {
   spinlock_t slock ;
   int owned ;
   wait_queue_head_t wq ;
   struct lockdep_map dep_map ;
};
typedef struct __anonstruct_socket_lock_t_271 socket_lock_t;
struct proto;
union __anonunion____missing_field_name_272 {
   struct hlist_node skc_node ;
   struct hlist_nulls_node skc_nulls_node ;
};
struct sock_common {
   union __anonunion____missing_field_name_272 __annonCompField29 ;
   atomic_t skc_refcnt ;
   unsigned int skc_hash ;
   unsigned short skc_family ;
   unsigned char volatile   skc_state ;
   unsigned char skc_reuse ;
   int skc_bound_dev_if ;
   struct hlist_node skc_bind_node ;
   struct proto *skc_prot ;
   struct net *skc_net ;
};
struct __anonstruct_sk_backlog_273 {
   struct sk_buff *head ;
   struct sk_buff *tail ;
};
struct sock {
   struct sock_common __sk_common ;
   int flags_begin[0] ;
   unsigned char sk_shutdown : 2 ;
   unsigned char sk_no_check : 2 ;
   unsigned char sk_userlocks : 4 ;
   int flags_end[0] ;
   unsigned char sk_protocol ;
   unsigned short sk_type ;
   int sk_rcvbuf ;
   socket_lock_t sk_lock ;
   struct __anonstruct_sk_backlog_273 sk_backlog ;
   wait_queue_head_t *sk_sleep ;
   struct dst_entry *sk_dst_cache ;
   struct xfrm_policy *sk_policy[2] ;
   rwlock_t sk_dst_lock ;
   atomic_t sk_rmem_alloc ;
   atomic_t sk_wmem_alloc ;
   atomic_t sk_omem_alloc ;
   int sk_sndbuf ;
   struct sk_buff_head sk_receive_queue ;
   struct sk_buff_head sk_write_queue ;
   struct sk_buff_head sk_async_wait_queue ;
   int sk_wmem_queued ;
   int sk_forward_alloc ;
   gfp_t sk_allocation ;
   int sk_route_caps ;
   int sk_gso_type ;
   unsigned int sk_gso_max_size ;
   int sk_rcvlowat ;
   unsigned long sk_flags ;
   unsigned long sk_lingertime ;
   struct sk_buff_head sk_error_queue ;
   struct proto *sk_prot_creator ;
   rwlock_t sk_callback_lock ;
   int sk_err ;
   int sk_err_soft ;
   atomic_t sk_drops ;
   unsigned short sk_ack_backlog ;
   unsigned short sk_max_ack_backlog ;
   __u32 sk_priority ;
   struct ucred sk_peercred ;
   long sk_rcvtimeo ;
   long sk_sndtimeo ;
   struct sk_filter *sk_filter ;
   void *sk_protinfo ;
   struct timer_list sk_timer ;
   ktime_t sk_stamp ;
   struct socket *sk_socket ;
   void *sk_user_data ;
   struct page *sk_sndmsg_page ;
   struct sk_buff *sk_send_head ;
   __u32 sk_sndmsg_off ;
   int sk_write_pending ;
   void *sk_security ;
   __u32 sk_mark ;
   void (*sk_state_change)(struct sock *sk ) ;
   void (*sk_data_ready)(struct sock *sk , int bytes ) ;
   void (*sk_write_space)(struct sock *sk ) ;
   void (*sk_error_report)(struct sock *sk ) ;
   int (*sk_backlog_rcv)(struct sock *sk , struct sk_buff *skb ) ;
   void (*sk_destruct)(struct sock *sk ) ;
};
struct request_sock_ops;
struct timewait_sock_ops;
struct inet_hashinfo;
struct raw_hashinfo;
struct udp_table;
union __anonunion_h_274 {
   struct inet_hashinfo *hashinfo ;
   struct udp_table *udp_table ;
   struct raw_hashinfo *raw_hash ;
};
struct proto {
   void (*close)(struct sock *sk , long timeout ) ;
   int (*connect)(struct sock *sk , struct sockaddr *uaddr , int addr_len ) ;
   int (*disconnect)(struct sock *sk , int flags ) ;
   struct sock *(*accept)(struct sock *sk , int flags , int *err ) ;
   int (*ioctl)(struct sock *sk , int cmd , unsigned long arg ) ;
   int (*init)(struct sock *sk ) ;
   void (*destroy)(struct sock *sk ) ;
   void (*shutdown)(struct sock *sk , int how ) ;
   int (*setsockopt)(struct sock *sk , int level , int optname , char *optval , int optlen ) ;
   int (*getsockopt)(struct sock *sk , int level , int optname , char *optval , int *option ) ;
   int (*compat_setsockopt)(struct sock *sk , int level , int optname , char *optval ,
                            int optlen ) ;
   int (*compat_getsockopt)(struct sock *sk , int level , int optname , char *optval ,
                            int *option ) ;
   int (*sendmsg)(struct kiocb *iocb , struct sock *sk , struct msghdr *msg , size_t len ) ;
   int (*recvmsg)(struct kiocb *iocb , struct sock *sk , struct msghdr *msg , size_t len ,
                  int noblock , int flags , int *addr_len ) ;
   int (*sendpage)(struct sock *sk , struct page *page , int offset , size_t size ,
                   int flags ) ;
   int (*bind)(struct sock *sk , struct sockaddr *uaddr , int addr_len ) ;
   int (*backlog_rcv)(struct sock *sk , struct sk_buff *skb ) ;
   void (*hash)(struct sock *sk ) ;
   void (*unhash)(struct sock *sk ) ;
   int (*get_port)(struct sock *sk , unsigned short snum ) ;
   unsigned int inuse_idx ;
   void (*enter_memory_pressure)(struct sock *sk ) ;
   atomic_t *memory_allocated ;
   struct percpu_counter *sockets_allocated ;
   int *memory_pressure ;
   int *sysctl_mem ;
   int *sysctl_wmem ;
   int *sysctl_rmem ;
   int max_header ;
   struct kmem_cache *slab ;
   unsigned int obj_size ;
   int slab_flags ;
   struct percpu_counter *orphan_count ;
   struct request_sock_ops *rsk_prot ;
   struct timewait_sock_ops *twsk_prot ;
   union __anonunion_h_274 h ;
   struct module *owner ;
   char name[32] ;
   struct list_head node ;
};
struct mISDNchannel;
struct mISDNdevice;
struct mISDNstack;
struct channel_req {
   u_int protocol ;
   struct sockaddr_mISDN adr ;
   struct mISDNchannel *ch ;
};
typedef int ctrl_func_t(struct mISDNchannel * , u_int  , void * );
typedef int send_func_t(struct mISDNchannel * , struct sk_buff * );
typedef int create_func_t(struct channel_req * );
struct Bprotocol {
   struct list_head list ;
   char *name ;
   u_int Bprotocols ;
   create_func_t *create ;
};
struct mISDNchannel {
   struct list_head list ;
   u_int protocol ;
   u_int nr ;
   u_long opt ;
   u_int addr ;
   struct mISDNstack *st ;
   struct mISDNchannel *peer ;
   send_func_t *send ;
   send_func_t *recv ;
   ctrl_func_t *ctrl ;
};
struct mISDN_sock_list {
   struct hlist_head head ;
   rwlock_t lock ;
};
struct mISDNdevice {
   struct mISDNchannel D ;
   u_int id ;
   u_int Dprotocols ;
   u_int Bprotocols ;
   u_int nrbchan ;
   u_char channelmap[(127 + 1) >> 3] ;
   struct list_head bchannels ;
   struct mISDNchannel *teimgr ;
   struct device dev ;
};
struct mISDNstack {
   u_long status ;
   struct mISDNdevice *dev ;
   struct task_struct *thread ;
   struct completion *notify ;
   wait_queue_head_t workq ;
   struct sk_buff_head msgq ;
   struct list_head layer2 ;
   struct mISDNchannel *layer1 ;
   struct mISDNchannel own ;
   struct mutex lmutex ;
   struct mISDN_sock_list l1sock ;
};
struct FsmInst;
typedef void (*FSMFNPTR)(struct FsmInst * , int  , void * );
struct Fsm {
   FSMFNPTR *jumpmatrix ;
   int state_count ;
   int event_count ;
   char **strEvent ;
   char **strState ;
};
struct FsmInst {
   struct Fsm *fsm ;
   int state ;
   int debug ;
   void *userdata ;
   int userint ;
   void (*printdebug)(struct FsmInst * , char *  , ...) ;
};
struct FsmNode {
   int state ;
   int event ;
   void (*routine)(struct FsmInst * , int  , void * ) ;
};
struct FsmTimer {
   struct FsmInst *fi ;
   struct timer_list tl ;
   int event ;
   void *arg ;
};
typedef long __kernel_suseconds_t;
struct mISDNhead {
   unsigned int prim ;
   unsigned int id ;
} __attribute__((__packed__)) ;
struct mISDNversion {
   unsigned char major ;
   unsigned char minor ;
   unsigned short release ;
};
struct mISDN_devinfo {
   u_int id ;
   u_int Dprotocols ;
   u_int Bprotocols ;
   u_int protocol ;
   u_char channelmap[(127 + 1) >> 3] ;
   u_int nrbchan ;
   char name[20] ;
};
struct mISDN_devrename {
   u_int id ;
   char name[20] ;
};
struct mISDN_ctrl_req {
   int op ;
   int channel ;
   int p1 ;
   int p2 ;
};
struct timeval {
   __kernel_time_t tv_sec ;
   __kernel_suseconds_t tv_usec ;
};
enum sock_type {
    SOCK_STREAM = 1,
    SOCK_DGRAM = 2,
    SOCK_RAW = 3,
    SOCK_RDM = 4,
    SOCK_SEQPACKET = 5,
    SOCK_DCCP = 6,
    SOCK_PACKET = 10
} ;
struct net_proto_family {
   int family ;
   int (*create)(struct net *net , struct socket *sock , int protocol ) ;
   struct module *owner ;
};
enum hrtimer_restart;
enum __anonenum_185___0 {
    IPSTATS_MIB_NUM___0 = 0,
    IPSTATS_MIB_INPKTS___0 = 1,
    IPSTATS_MIB_INHDRERRORS___0 = 2,
    IPSTATS_MIB_INTOOBIGERRORS___0 = 3,
    IPSTATS_MIB_INNOROUTES___0 = 4,
    IPSTATS_MIB_INADDRERRORS___0 = 5,
    IPSTATS_MIB_INUNKNOWNPROTOS___0 = 6,
    IPSTATS_MIB_INTRUNCATEDPKTS___0 = 7,
    IPSTATS_MIB_INDISCARDS___0 = 8,
    IPSTATS_MIB_INDELIVERS___0 = 9,
    IPSTATS_MIB_OUTFORWDATAGRAMS___0 = 10,
    IPSTATS_MIB_OUTPKTS___0 = 11,
    IPSTATS_MIB_OUTDISCARDS___0 = 12,
    IPSTATS_MIB_OUTNOROUTES___0 = 13,
    IPSTATS_MIB_REASMTIMEOUT___0 = 14,
    IPSTATS_MIB_REASMREQDS___0 = 15,
    IPSTATS_MIB_REASMOKS___0 = 16,
    IPSTATS_MIB_REASMFAILS___0 = 17,
    IPSTATS_MIB_FRAGOKS___0 = 18,
    IPSTATS_MIB_FRAGFAILS___0 = 19,
    IPSTATS_MIB_FRAGCREATES___0 = 20,
    IPSTATS_MIB_INMCASTPKTS___0 = 21,
    IPSTATS_MIB_OUTMCASTPKTS___0 = 22,
    IPSTATS_MIB_INBCASTPKTS___0 = 23,
    IPSTATS_MIB_OUTBCASTPKTS___0 = 24,
    IPSTATS_MIB_INOCTETS___0 = 25,
    IPSTATS_MIB_OUTOCTETS___0 = 26,
    IPSTATS_MIB_INMCASTOCTETS___0 = 27,
    IPSTATS_MIB_OUTMCASTOCTETS___0 = 28,
    IPSTATS_MIB_INBCASTOCTETS___0 = 29,
    IPSTATS_MIB_OUTBCASTOCTETS___0 = 30,
    __IPSTATS_MIB_MAX___0 = 31
} ;
enum __anonenum_186___0 {
    ICMP_MIB_NUM___0 = 0,
    ICMP_MIB_INMSGS___0 = 1,
    ICMP_MIB_INERRORS___0 = 2,
    ICMP_MIB_INDESTUNREACHS___0 = 3,
    ICMP_MIB_INTIMEEXCDS___0 = 4,
    ICMP_MIB_INPARMPROBS___0 = 5,
    ICMP_MIB_INSRCQUENCHS___0 = 6,
    ICMP_MIB_INREDIRECTS___0 = 7,
    ICMP_MIB_INECHOS___0 = 8,
    ICMP_MIB_INECHOREPS___0 = 9,
    ICMP_MIB_INTIMESTAMPS___0 = 10,
    ICMP_MIB_INTIMESTAMPREPS___0 = 11,
    ICMP_MIB_INADDRMASKS___0 = 12,
    ICMP_MIB_INADDRMASKREPS___0 = 13,
    ICMP_MIB_OUTMSGS___0 = 14,
    ICMP_MIB_OUTERRORS___0 = 15,
    ICMP_MIB_OUTDESTUNREACHS___0 = 16,
    ICMP_MIB_OUTTIMEEXCDS___0 = 17,
    ICMP_MIB_OUTPARMPROBS___0 = 18,
    ICMP_MIB_OUTSRCQUENCHS___0 = 19,
    ICMP_MIB_OUTREDIRECTS___0 = 20,
    ICMP_MIB_OUTECHOS___0 = 21,
    ICMP_MIB_OUTECHOREPS___0 = 22,
    ICMP_MIB_OUTTIMESTAMPS___0 = 23,
    ICMP_MIB_OUTTIMESTAMPREPS___0 = 24,
    ICMP_MIB_OUTADDRMASKS___0 = 25,
    ICMP_MIB_OUTADDRMASKREPS___0 = 26,
    __ICMP_MIB_MAX___0 = 27
} ;
enum __anonenum_187___0 {
    ICMP6_MIB_NUM___0 = 0,
    ICMP6_MIB_INMSGS___0 = 1,
    ICMP6_MIB_INERRORS___0 = 2,
    ICMP6_MIB_OUTMSGS___0 = 3,
    __ICMP6_MIB_MAX___0 = 4
} ;
enum __anonenum_188___0 {
    TCP_MIB_NUM___0 = 0,
    TCP_MIB_RTOALGORITHM___0 = 1,
    TCP_MIB_RTOMIN___0 = 2,
    TCP_MIB_RTOMAX___0 = 3,
    TCP_MIB_MAXCONN___0 = 4,
    TCP_MIB_ACTIVEOPENS___0 = 5,
    TCP_MIB_PASSIVEOPENS___0 = 6,
    TCP_MIB_ATTEMPTFAILS___0 = 7,
    TCP_MIB_ESTABRESETS___0 = 8,
    TCP_MIB_CURRESTAB___0 = 9,
    TCP_MIB_INSEGS___0 = 10,
    TCP_MIB_OUTSEGS___0 = 11,
    TCP_MIB_RETRANSSEGS___0 = 12,
    TCP_MIB_INERRS___0 = 13,
    TCP_MIB_OUTRSTS___0 = 14,
    __TCP_MIB_MAX___0 = 15
} ;
enum __anonenum_189___0 {
    UDP_MIB_NUM___0 = 0,
    UDP_MIB_INDATAGRAMS___0 = 1,
    UDP_MIB_NOPORTS___0 = 2,
    UDP_MIB_INERRORS___0 = 3,
    UDP_MIB_OUTDATAGRAMS___0 = 4,
    UDP_MIB_RCVBUFERRORS___0 = 5,
    UDP_MIB_SNDBUFERRORS___0 = 6,
    __UDP_MIB_MAX___0 = 7
} ;
enum __anonenum_190___0 {
    LINUX_MIB_NUM___0 = 0,
    LINUX_MIB_SYNCOOKIESSENT___0 = 1,
    LINUX_MIB_SYNCOOKIESRECV___0 = 2,
    LINUX_MIB_SYNCOOKIESFAILED___0 = 3,
    LINUX_MIB_EMBRYONICRSTS___0 = 4,
    LINUX_MIB_PRUNECALLED___0 = 5,
    LINUX_MIB_RCVPRUNED___0 = 6,
    LINUX_MIB_OFOPRUNED___0 = 7,
    LINUX_MIB_OUTOFWINDOWICMPS___0 = 8,
    LINUX_MIB_LOCKDROPPEDICMPS___0 = 9,
    LINUX_MIB_ARPFILTER___0 = 10,
    LINUX_MIB_TIMEWAITED___0 = 11,
    LINUX_MIB_TIMEWAITRECYCLED___0 = 12,
    LINUX_MIB_TIMEWAITKILLED___0 = 13,
    LINUX_MIB_PAWSPASSIVEREJECTED___0 = 14,
    LINUX_MIB_PAWSACTIVEREJECTED___0 = 15,
    LINUX_MIB_PAWSESTABREJECTED___0 = 16,
    LINUX_MIB_DELAYEDACKS___0 = 17,
    LINUX_MIB_DELAYEDACKLOCKED___0 = 18,
    LINUX_MIB_DELAYEDACKLOST___0 = 19,
    LINUX_MIB_LISTENOVERFLOWS___0 = 20,
    LINUX_MIB_LISTENDROPS___0 = 21,
    LINUX_MIB_TCPPREQUEUED___0 = 22,
    LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___0 = 23,
    LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___0 = 24,
    LINUX_MIB_TCPPREQUEUEDROPPED___0 = 25,
    LINUX_MIB_TCPHPHITS___0 = 26,
    LINUX_MIB_TCPHPHITSTOUSER___0 = 27,
    LINUX_MIB_TCPPUREACKS___0 = 28,
    LINUX_MIB_TCPHPACKS___0 = 29,
    LINUX_MIB_TCPRENORECOVERY___0 = 30,
    LINUX_MIB_TCPSACKRECOVERY___0 = 31,
    LINUX_MIB_TCPSACKRENEGING___0 = 32,
    LINUX_MIB_TCPFACKREORDER___0 = 33,
    LINUX_MIB_TCPSACKREORDER___0 = 34,
    LINUX_MIB_TCPRENOREORDER___0 = 35,
    LINUX_MIB_TCPTSREORDER___0 = 36,
    LINUX_MIB_TCPFULLUNDO___0 = 37,
    LINUX_MIB_TCPPARTIALUNDO___0 = 38,
    LINUX_MIB_TCPDSACKUNDO___0 = 39,
    LINUX_MIB_TCPLOSSUNDO___0 = 40,
    LINUX_MIB_TCPLOSS___0 = 41,
    LINUX_MIB_TCPLOSTRETRANSMIT___0 = 42,
    LINUX_MIB_TCPRENOFAILURES___0 = 43,
    LINUX_MIB_TCPSACKFAILURES___0 = 44,
    LINUX_MIB_TCPLOSSFAILURES___0 = 45,
    LINUX_MIB_TCPFASTRETRANS___0 = 46,
    LINUX_MIB_TCPFORWARDRETRANS___0 = 47,
    LINUX_MIB_TCPSLOWSTARTRETRANS___0 = 48,
    LINUX_MIB_TCPTIMEOUTS___0 = 49,
    LINUX_MIB_TCPRENORECOVERYFAIL___0 = 50,
    LINUX_MIB_TCPSACKRECOVERYFAIL___0 = 51,
    LINUX_MIB_TCPSCHEDULERFAILED___0 = 52,
    LINUX_MIB_TCPRCVCOLLAPSED___0 = 53,
    LINUX_MIB_TCPDSACKOLDSENT___0 = 54,
    LINUX_MIB_TCPDSACKOFOSENT___0 = 55,
    LINUX_MIB_TCPDSACKRECV___0 = 56,
    LINUX_MIB_TCPDSACKOFORECV___0 = 57,
    LINUX_MIB_TCPABORTONSYN___0 = 58,
    LINUX_MIB_TCPABORTONDATA___0 = 59,
    LINUX_MIB_TCPABORTONCLOSE___0 = 60,
    LINUX_MIB_TCPABORTONMEMORY___0 = 61,
    LINUX_MIB_TCPABORTONTIMEOUT___0 = 62,
    LINUX_MIB_TCPABORTONLINGER___0 = 63,
    LINUX_MIB_TCPABORTFAILED___0 = 64,
    LINUX_MIB_TCPMEMORYPRESSURES___0 = 65,
    LINUX_MIB_TCPSACKDISCARD___0 = 66,
    LINUX_MIB_TCPDSACKIGNOREDOLD___0 = 67,
    LINUX_MIB_TCPDSACKIGNOREDNOUNDO___0 = 68,
    LINUX_MIB_TCPSPURIOUSRTOS___0 = 69,
    LINUX_MIB_TCPMD5NOTFOUND___0 = 70,
    LINUX_MIB_TCPMD5UNEXPECTED___0 = 71,
    LINUX_MIB_SACKSHIFTED___0 = 72,
    LINUX_MIB_SACKMERGED___0 = 73,
    LINUX_MIB_SACKSHIFTFALLBACK___0 = 74,
    __LINUX_MIB_MAX___0 = 75
} ;
enum __anonenum_191___0 {
    LINUX_MIB_XFRMNUM___0 = 0,
    LINUX_MIB_XFRMINERROR___0 = 1,
    LINUX_MIB_XFRMINBUFFERERROR___0 = 2,
    LINUX_MIB_XFRMINHDRERROR___0 = 3,
    LINUX_MIB_XFRMINNOSTATES___0 = 4,
    LINUX_MIB_XFRMINSTATEPROTOERROR___0 = 5,
    LINUX_MIB_XFRMINSTATEMODEERROR___0 = 6,
    LINUX_MIB_XFRMINSTATESEQERROR___0 = 7,
    LINUX_MIB_XFRMINSTATEEXPIRED___0 = 8,
    LINUX_MIB_XFRMINSTATEMISMATCH___0 = 9,
    LINUX_MIB_XFRMINSTATEINVALID___0 = 10,
    LINUX_MIB_XFRMINTMPLMISMATCH___0 = 11,
    LINUX_MIB_XFRMINNOPOLS___0 = 12,
    LINUX_MIB_XFRMINPOLBLOCK___0 = 13,
    LINUX_MIB_XFRMINPOLERROR___0 = 14,
    LINUX_MIB_XFRMOUTERROR___0 = 15,
    LINUX_MIB_XFRMOUTBUNDLEGENERROR___0 = 16,
    LINUX_MIB_XFRMOUTBUNDLECHECKERROR___0 = 17,
    LINUX_MIB_XFRMOUTNOSTATES___0 = 18,
    LINUX_MIB_XFRMOUTSTATEPROTOERROR___0 = 19,
    LINUX_MIB_XFRMOUTSTATEMODEERROR___0 = 20,
    LINUX_MIB_XFRMOUTSTATESEQERROR___0 = 21,
    LINUX_MIB_XFRMOUTSTATEEXPIRED___0 = 22,
    LINUX_MIB_XFRMOUTPOLBLOCK___0 = 23,
    LINUX_MIB_XFRMOUTPOLDEAD___0 = 24,
    LINUX_MIB_XFRMOUTPOLERROR___0 = 25,
    __LINUX_MIB_XFRMMAX___0 = 26
} ;
enum __anonenum_194___0 {
    NFPROTO_UNSPEC___0 = 0,
    NFPROTO_IPV4___0 = 2,
    NFPROTO_ARP___0 = 3,
    NFPROTO_BRIDGE___0 = 7,
    NFPROTO_IPV6___0 = 10,
    NFPROTO_DECNET___0 = 12,
    NFPROTO_NUMPROTO___0 = 13
} ;
enum __anonenum_221___0 {
    XFRM_POLICY_IN___0 = 0,
    XFRM_POLICY_OUT___0 = 1,
    XFRM_POLICY_FWD___0 = 2,
    XFRM_POLICY_MASK___0 = 3,
    XFRM_POLICY_MAX___0 = 3
} ;
enum __anonenum_261___0 {
    RTAX_UNSPEC___0 = 0,
    RTAX_LOCK___0 = 1,
    RTAX_MTU___0 = 2,
    RTAX_WINDOW___0 = 3,
    RTAX_RTT___0 = 4,
    RTAX_RTTVAR___0 = 5,
    RTAX_SSTHRESH___0 = 6,
    RTAX_CWND___0 = 7,
    RTAX_ADVMSS___0 = 8,
    RTAX_REORDERING___0 = 9,
    RTAX_HOPLIMIT___0 = 10,
    RTAX_INITCWND___0 = 11,
    RTAX_FEATURES___0 = 12,
    RTAX_RTO_MIN___0 = 13,
    __RTAX_MAX___0 = 14
} ;
enum sock_flags {
    SOCK_DEAD = 0,
    SOCK_DONE = 1,
    SOCK_URGINLINE = 2,
    SOCK_KEEPOPEN = 3,
    SOCK_LINGER = 4,
    SOCK_DESTROY = 5,
    SOCK_BROADCAST = 6,
    SOCK_TIMESTAMP = 7,
    SOCK_ZAPPED = 8,
    SOCK_USE_WRITE_QUEUE = 9,
    SOCK_DBG = 10,
    SOCK_RCVTSTAMP = 11,
    SOCK_RCVTSTAMPNS = 12,
    SOCK_LOCALROUTE = 13,
    SOCK_QUEUE_SHRUNK = 14,
    SOCK_TIMESTAMPING_TX_HARDWARE = 15,
    SOCK_TIMESTAMPING_TX_SOFTWARE = 16,
    SOCK_TIMESTAMPING_RX_HARDWARE = 17,
    SOCK_TIMESTAMPING_RX_SOFTWARE = 18,
    SOCK_TIMESTAMPING_SOFTWARE = 19,
    SOCK_TIMESTAMPING_RAW_HARDWARE = 20,
    SOCK_TIMESTAMPING_SYS_HARDWARE = 21
} ;
struct mISDN_sock {
   struct sock sk ;
   struct mISDNchannel ch ;
   u_int cmask ;
   struct mISDNdevice *dev ;
};
enum hrtimer_restart;
struct mISDNclock;
typedef int clockctl_func_t(void * , int  );
struct mISDNclock {
   struct list_head list ;
   char name[64] ;
   int pri ;
   clockctl_func_t *ctl ;
   void *priv ;
};
enum hrtimer_restart;
enum __anonenum_185___1 {
    IPSTATS_MIB_NUM___1 = 0,
    IPSTATS_MIB_INPKTS___1 = 1,
    IPSTATS_MIB_INHDRERRORS___1 = 2,
    IPSTATS_MIB_INTOOBIGERRORS___1 = 3,
    IPSTATS_MIB_INNOROUTES___1 = 4,
    IPSTATS_MIB_INADDRERRORS___1 = 5,
    IPSTATS_MIB_INUNKNOWNPROTOS___1 = 6,
    IPSTATS_MIB_INTRUNCATEDPKTS___1 = 7,
    IPSTATS_MIB_INDISCARDS___1 = 8,
    IPSTATS_MIB_INDELIVERS___1 = 9,
    IPSTATS_MIB_OUTFORWDATAGRAMS___1 = 10,
    IPSTATS_MIB_OUTPKTS___1 = 11,
    IPSTATS_MIB_OUTDISCARDS___1 = 12,
    IPSTATS_MIB_OUTNOROUTES___1 = 13,
    IPSTATS_MIB_REASMTIMEOUT___1 = 14,
    IPSTATS_MIB_REASMREQDS___1 = 15,
    IPSTATS_MIB_REASMOKS___1 = 16,
    IPSTATS_MIB_REASMFAILS___1 = 17,
    IPSTATS_MIB_FRAGOKS___1 = 18,
    IPSTATS_MIB_FRAGFAILS___1 = 19,
    IPSTATS_MIB_FRAGCREATES___1 = 20,
    IPSTATS_MIB_INMCASTPKTS___1 = 21,
    IPSTATS_MIB_OUTMCASTPKTS___1 = 22,
    IPSTATS_MIB_INBCASTPKTS___1 = 23,
    IPSTATS_MIB_OUTBCASTPKTS___1 = 24,
    IPSTATS_MIB_INOCTETS___1 = 25,
    IPSTATS_MIB_OUTOCTETS___1 = 26,
    IPSTATS_MIB_INMCASTOCTETS___1 = 27,
    IPSTATS_MIB_OUTMCASTOCTETS___1 = 28,
    IPSTATS_MIB_INBCASTOCTETS___1 = 29,
    IPSTATS_MIB_OUTBCASTOCTETS___1 = 30,
    __IPSTATS_MIB_MAX___1 = 31
} ;
enum __anonenum_186___1 {
    ICMP_MIB_NUM___1 = 0,
    ICMP_MIB_INMSGS___1 = 1,
    ICMP_MIB_INERRORS___1 = 2,
    ICMP_MIB_INDESTUNREACHS___1 = 3,
    ICMP_MIB_INTIMEEXCDS___1 = 4,
    ICMP_MIB_INPARMPROBS___1 = 5,
    ICMP_MIB_INSRCQUENCHS___1 = 6,
    ICMP_MIB_INREDIRECTS___1 = 7,
    ICMP_MIB_INECHOS___1 = 8,
    ICMP_MIB_INECHOREPS___1 = 9,
    ICMP_MIB_INTIMESTAMPS___1 = 10,
    ICMP_MIB_INTIMESTAMPREPS___1 = 11,
    ICMP_MIB_INADDRMASKS___1 = 12,
    ICMP_MIB_INADDRMASKREPS___1 = 13,
    ICMP_MIB_OUTMSGS___1 = 14,
    ICMP_MIB_OUTERRORS___1 = 15,
    ICMP_MIB_OUTDESTUNREACHS___1 = 16,
    ICMP_MIB_OUTTIMEEXCDS___1 = 17,
    ICMP_MIB_OUTPARMPROBS___1 = 18,
    ICMP_MIB_OUTSRCQUENCHS___1 = 19,
    ICMP_MIB_OUTREDIRECTS___1 = 20,
    ICMP_MIB_OUTECHOS___1 = 21,
    ICMP_MIB_OUTECHOREPS___1 = 22,
    ICMP_MIB_OUTTIMESTAMPS___1 = 23,
    ICMP_MIB_OUTTIMESTAMPREPS___1 = 24,
    ICMP_MIB_OUTADDRMASKS___1 = 25,
    ICMP_MIB_OUTADDRMASKREPS___1 = 26,
    __ICMP_MIB_MAX___1 = 27
} ;
enum __anonenum_187___1 {
    ICMP6_MIB_NUM___1 = 0,
    ICMP6_MIB_INMSGS___1 = 1,
    ICMP6_MIB_INERRORS___1 = 2,
    ICMP6_MIB_OUTMSGS___1 = 3,
    __ICMP6_MIB_MAX___1 = 4
} ;
enum __anonenum_188___1 {
    TCP_MIB_NUM___1 = 0,
    TCP_MIB_RTOALGORITHM___1 = 1,
    TCP_MIB_RTOMIN___1 = 2,
    TCP_MIB_RTOMAX___1 = 3,
    TCP_MIB_MAXCONN___1 = 4,
    TCP_MIB_ACTIVEOPENS___1 = 5,
    TCP_MIB_PASSIVEOPENS___1 = 6,
    TCP_MIB_ATTEMPTFAILS___1 = 7,
    TCP_MIB_ESTABRESETS___1 = 8,
    TCP_MIB_CURRESTAB___1 = 9,
    TCP_MIB_INSEGS___1 = 10,
    TCP_MIB_OUTSEGS___1 = 11,
    TCP_MIB_RETRANSSEGS___1 = 12,
    TCP_MIB_INERRS___1 = 13,
    TCP_MIB_OUTRSTS___1 = 14,
    __TCP_MIB_MAX___1 = 15
} ;
enum __anonenum_189___1 {
    UDP_MIB_NUM___1 = 0,
    UDP_MIB_INDATAGRAMS___1 = 1,
    UDP_MIB_NOPORTS___1 = 2,
    UDP_MIB_INERRORS___1 = 3,
    UDP_MIB_OUTDATAGRAMS___1 = 4,
    UDP_MIB_RCVBUFERRORS___1 = 5,
    UDP_MIB_SNDBUFERRORS___1 = 6,
    __UDP_MIB_MAX___1 = 7
} ;
enum __anonenum_190___1 {
    LINUX_MIB_NUM___1 = 0,
    LINUX_MIB_SYNCOOKIESSENT___1 = 1,
    LINUX_MIB_SYNCOOKIESRECV___1 = 2,
    LINUX_MIB_SYNCOOKIESFAILED___1 = 3,
    LINUX_MIB_EMBRYONICRSTS___1 = 4,
    LINUX_MIB_PRUNECALLED___1 = 5,
    LINUX_MIB_RCVPRUNED___1 = 6,
    LINUX_MIB_OFOPRUNED___1 = 7,
    LINUX_MIB_OUTOFWINDOWICMPS___1 = 8,
    LINUX_MIB_LOCKDROPPEDICMPS___1 = 9,
    LINUX_MIB_ARPFILTER___1 = 10,
    LINUX_MIB_TIMEWAITED___1 = 11,
    LINUX_MIB_TIMEWAITRECYCLED___1 = 12,
    LINUX_MIB_TIMEWAITKILLED___1 = 13,
    LINUX_MIB_PAWSPASSIVEREJECTED___1 = 14,
    LINUX_MIB_PAWSACTIVEREJECTED___1 = 15,
    LINUX_MIB_PAWSESTABREJECTED___1 = 16,
    LINUX_MIB_DELAYEDACKS___1 = 17,
    LINUX_MIB_DELAYEDACKLOCKED___1 = 18,
    LINUX_MIB_DELAYEDACKLOST___1 = 19,
    LINUX_MIB_LISTENOVERFLOWS___1 = 20,
    LINUX_MIB_LISTENDROPS___1 = 21,
    LINUX_MIB_TCPPREQUEUED___1 = 22,
    LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___1 = 23,
    LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___1 = 24,
    LINUX_MIB_TCPPREQUEUEDROPPED___1 = 25,
    LINUX_MIB_TCPHPHITS___1 = 26,
    LINUX_MIB_TCPHPHITSTOUSER___1 = 27,
    LINUX_MIB_TCPPUREACKS___1 = 28,
    LINUX_MIB_TCPHPACKS___1 = 29,
    LINUX_MIB_TCPRENORECOVERY___1 = 30,
    LINUX_MIB_TCPSACKRECOVERY___1 = 31,
    LINUX_MIB_TCPSACKRENEGING___1 = 32,
    LINUX_MIB_TCPFACKREORDER___1 = 33,
    LINUX_MIB_TCPSACKREORDER___1 = 34,
    LINUX_MIB_TCPRENOREORDER___1 = 35,
    LINUX_MIB_TCPTSREORDER___1 = 36,
    LINUX_MIB_TCPFULLUNDO___1 = 37,
    LINUX_MIB_TCPPARTIALUNDO___1 = 38,
    LINUX_MIB_TCPDSACKUNDO___1 = 39,
    LINUX_MIB_TCPLOSSUNDO___1 = 40,
    LINUX_MIB_TCPLOSS___1 = 41,
    LINUX_MIB_TCPLOSTRETRANSMIT___1 = 42,
    LINUX_MIB_TCPRENOFAILURES___1 = 43,
    LINUX_MIB_TCPSACKFAILURES___1 = 44,
    LINUX_MIB_TCPLOSSFAILURES___1 = 45,
    LINUX_MIB_TCPFASTRETRANS___1 = 46,
    LINUX_MIB_TCPFORWARDRETRANS___1 = 47,
    LINUX_MIB_TCPSLOWSTARTRETRANS___1 = 48,
    LINUX_MIB_TCPTIMEOUTS___1 = 49,
    LINUX_MIB_TCPRENORECOVERYFAIL___1 = 50,
    LINUX_MIB_TCPSACKRECOVERYFAIL___1 = 51,
    LINUX_MIB_TCPSCHEDULERFAILED___1 = 52,
    LINUX_MIB_TCPRCVCOLLAPSED___1 = 53,
    LINUX_MIB_TCPDSACKOLDSENT___1 = 54,
    LINUX_MIB_TCPDSACKOFOSENT___1 = 55,
    LINUX_MIB_TCPDSACKRECV___1 = 56,
    LINUX_MIB_TCPDSACKOFORECV___1 = 57,
    LINUX_MIB_TCPABORTONSYN___1 = 58,
    LINUX_MIB_TCPABORTONDATA___1 = 59,
    LINUX_MIB_TCPABORTONCLOSE___1 = 60,
    LINUX_MIB_TCPABORTONMEMORY___1 = 61,
    LINUX_MIB_TCPABORTONTIMEOUT___1 = 62,
    LINUX_MIB_TCPABORTONLINGER___1 = 63,
    LINUX_MIB_TCPABORTFAILED___1 = 64,
    LINUX_MIB_TCPMEMORYPRESSURES___1 = 65,
    LINUX_MIB_TCPSACKDISCARD___1 = 66,
    LINUX_MIB_TCPDSACKIGNOREDOLD___1 = 67,
    LINUX_MIB_TCPDSACKIGNOREDNOUNDO___1 = 68,
    LINUX_MIB_TCPSPURIOUSRTOS___1 = 69,
    LINUX_MIB_TCPMD5NOTFOUND___1 = 70,
    LINUX_MIB_TCPMD5UNEXPECTED___1 = 71,
    LINUX_MIB_SACKSHIFTED___1 = 72,
    LINUX_MIB_SACKMERGED___1 = 73,
    LINUX_MIB_SACKSHIFTFALLBACK___1 = 74,
    __LINUX_MIB_MAX___1 = 75
} ;
enum __anonenum_191___1 {
    LINUX_MIB_XFRMNUM___1 = 0,
    LINUX_MIB_XFRMINERROR___1 = 1,
    LINUX_MIB_XFRMINBUFFERERROR___1 = 2,
    LINUX_MIB_XFRMINHDRERROR___1 = 3,
    LINUX_MIB_XFRMINNOSTATES___1 = 4,
    LINUX_MIB_XFRMINSTATEPROTOERROR___1 = 5,
    LINUX_MIB_XFRMINSTATEMODEERROR___1 = 6,
    LINUX_MIB_XFRMINSTATESEQERROR___1 = 7,
    LINUX_MIB_XFRMINSTATEEXPIRED___1 = 8,
    LINUX_MIB_XFRMINSTATEMISMATCH___1 = 9,
    LINUX_MIB_XFRMINSTATEINVALID___1 = 10,
    LINUX_MIB_XFRMINTMPLMISMATCH___1 = 11,
    LINUX_MIB_XFRMINNOPOLS___1 = 12,
    LINUX_MIB_XFRMINPOLBLOCK___1 = 13,
    LINUX_MIB_XFRMINPOLERROR___1 = 14,
    LINUX_MIB_XFRMOUTERROR___1 = 15,
    LINUX_MIB_XFRMOUTBUNDLEGENERROR___1 = 16,
    LINUX_MIB_XFRMOUTBUNDLECHECKERROR___1 = 17,
    LINUX_MIB_XFRMOUTNOSTATES___1 = 18,
    LINUX_MIB_XFRMOUTSTATEPROTOERROR___1 = 19,
    LINUX_MIB_XFRMOUTSTATEMODEERROR___1 = 20,
    LINUX_MIB_XFRMOUTSTATESEQERROR___1 = 21,
    LINUX_MIB_XFRMOUTSTATEEXPIRED___1 = 22,
    LINUX_MIB_XFRMOUTPOLBLOCK___1 = 23,
    LINUX_MIB_XFRMOUTPOLDEAD___1 = 24,
    LINUX_MIB_XFRMOUTPOLERROR___1 = 25,
    __LINUX_MIB_XFRMMAX___1 = 26
} ;
enum __anonenum_194___1 {
    NFPROTO_UNSPEC___1 = 0,
    NFPROTO_IPV4___1 = 2,
    NFPROTO_ARP___1 = 3,
    NFPROTO_BRIDGE___1 = 7,
    NFPROTO_IPV6___1 = 10,
    NFPROTO_DECNET___1 = 12,
    NFPROTO_NUMPROTO___1 = 13
} ;
enum __anonenum_221___1 {
    XFRM_POLICY_IN___1 = 0,
    XFRM_POLICY_OUT___1 = 1,
    XFRM_POLICY_FWD___1 = 2,
    XFRM_POLICY_MASK___1 = 3,
    XFRM_POLICY_MAX___1 = 3
} ;
enum __anonenum_261___1 {
    RTAX_UNSPEC___1 = 0,
    RTAX_LOCK___1 = 1,
    RTAX_MTU___1 = 2,
    RTAX_WINDOW___1 = 3,
    RTAX_RTT___1 = 4,
    RTAX_RTTVAR___1 = 5,
    RTAX_SSTHRESH___1 = 6,
    RTAX_CWND___1 = 7,
    RTAX_ADVMSS___1 = 8,
    RTAX_REORDERING___1 = 9,
    RTAX_HOPLIMIT___1 = 10,
    RTAX_INITCWND___1 = 11,
    RTAX_FEATURES___1 = 12,
    RTAX_RTO_MIN___1 = 13,
    __RTAX_MAX___1 = 14
} ;
struct dchannel {
   struct mISDNdevice dev ;
   u_long Flags ;
   struct work_struct workq ;
   void (*phfunc)(struct dchannel * ) ;
   u_int state ;
   void *l1 ;
   void *hw ;
   int slot ;
   struct timer_list timer ;
   struct sk_buff *rx_skb ;
   int maxlen ;
   struct sk_buff_head squeue ;
   struct sk_buff_head rqueue ;
   struct sk_buff *tx_skb ;
   int tx_idx ;
   int debug ;
   int err_crc ;
   int err_tx ;
   int err_rx ;
};
struct bchannel {
   struct mISDNchannel ch ;
   int nr ;
   u_long Flags ;
   struct work_struct workq ;
   u_int state ;
   void *hw ;
   int slot ;
   struct timer_list timer ;
   struct sk_buff *rx_skb ;
   int maxlen ;
   struct sk_buff *next_skb ;
   struct sk_buff *tx_skb ;
   struct sk_buff_head rqueue ;
   int rcount ;
   int tx_idx ;
   int debug ;
   int err_crc ;
   int err_tx ;
   int err_rx ;
};
enum hrtimer_restart;
enum __anonenum_185___2 {
    IPSTATS_MIB_NUM___2 = 0,
    IPSTATS_MIB_INPKTS___2 = 1,
    IPSTATS_MIB_INHDRERRORS___2 = 2,
    IPSTATS_MIB_INTOOBIGERRORS___2 = 3,
    IPSTATS_MIB_INNOROUTES___2 = 4,
    IPSTATS_MIB_INADDRERRORS___2 = 5,
    IPSTATS_MIB_INUNKNOWNPROTOS___2 = 6,
    IPSTATS_MIB_INTRUNCATEDPKTS___2 = 7,
    IPSTATS_MIB_INDISCARDS___2 = 8,
    IPSTATS_MIB_INDELIVERS___2 = 9,
    IPSTATS_MIB_OUTFORWDATAGRAMS___2 = 10,
    IPSTATS_MIB_OUTPKTS___2 = 11,
    IPSTATS_MIB_OUTDISCARDS___2 = 12,
    IPSTATS_MIB_OUTNOROUTES___2 = 13,
    IPSTATS_MIB_REASMTIMEOUT___2 = 14,
    IPSTATS_MIB_REASMREQDS___2 = 15,
    IPSTATS_MIB_REASMOKS___2 = 16,
    IPSTATS_MIB_REASMFAILS___2 = 17,
    IPSTATS_MIB_FRAGOKS___2 = 18,
    IPSTATS_MIB_FRAGFAILS___2 = 19,
    IPSTATS_MIB_FRAGCREATES___2 = 20,
    IPSTATS_MIB_INMCASTPKTS___2 = 21,
    IPSTATS_MIB_OUTMCASTPKTS___2 = 22,
    IPSTATS_MIB_INBCASTPKTS___2 = 23,
    IPSTATS_MIB_OUTBCASTPKTS___2 = 24,
    IPSTATS_MIB_INOCTETS___2 = 25,
    IPSTATS_MIB_OUTOCTETS___2 = 26,
    IPSTATS_MIB_INMCASTOCTETS___2 = 27,
    IPSTATS_MIB_OUTMCASTOCTETS___2 = 28,
    IPSTATS_MIB_INBCASTOCTETS___2 = 29,
    IPSTATS_MIB_OUTBCASTOCTETS___2 = 30,
    __IPSTATS_MIB_MAX___2 = 31
} ;
enum __anonenum_186___2 {
    ICMP_MIB_NUM___2 = 0,
    ICMP_MIB_INMSGS___2 = 1,
    ICMP_MIB_INERRORS___2 = 2,
    ICMP_MIB_INDESTUNREACHS___2 = 3,
    ICMP_MIB_INTIMEEXCDS___2 = 4,
    ICMP_MIB_INPARMPROBS___2 = 5,
    ICMP_MIB_INSRCQUENCHS___2 = 6,
    ICMP_MIB_INREDIRECTS___2 = 7,
    ICMP_MIB_INECHOS___2 = 8,
    ICMP_MIB_INECHOREPS___2 = 9,
    ICMP_MIB_INTIMESTAMPS___2 = 10,
    ICMP_MIB_INTIMESTAMPREPS___2 = 11,
    ICMP_MIB_INADDRMASKS___2 = 12,
    ICMP_MIB_INADDRMASKREPS___2 = 13,
    ICMP_MIB_OUTMSGS___2 = 14,
    ICMP_MIB_OUTERRORS___2 = 15,
    ICMP_MIB_OUTDESTUNREACHS___2 = 16,
    ICMP_MIB_OUTTIMEEXCDS___2 = 17,
    ICMP_MIB_OUTPARMPROBS___2 = 18,
    ICMP_MIB_OUTSRCQUENCHS___2 = 19,
    ICMP_MIB_OUTREDIRECTS___2 = 20,
    ICMP_MIB_OUTECHOS___2 = 21,
    ICMP_MIB_OUTECHOREPS___2 = 22,
    ICMP_MIB_OUTTIMESTAMPS___2 = 23,
    ICMP_MIB_OUTTIMESTAMPREPS___2 = 24,
    ICMP_MIB_OUTADDRMASKS___2 = 25,
    ICMP_MIB_OUTADDRMASKREPS___2 = 26,
    __ICMP_MIB_MAX___2 = 27
} ;
enum __anonenum_187___2 {
    ICMP6_MIB_NUM___2 = 0,
    ICMP6_MIB_INMSGS___2 = 1,
    ICMP6_MIB_INERRORS___2 = 2,
    ICMP6_MIB_OUTMSGS___2 = 3,
    __ICMP6_MIB_MAX___2 = 4
} ;
enum __anonenum_188___2 {
    TCP_MIB_NUM___2 = 0,
    TCP_MIB_RTOALGORITHM___2 = 1,
    TCP_MIB_RTOMIN___2 = 2,
    TCP_MIB_RTOMAX___2 = 3,
    TCP_MIB_MAXCONN___2 = 4,
    TCP_MIB_ACTIVEOPENS___2 = 5,
    TCP_MIB_PASSIVEOPENS___2 = 6,
    TCP_MIB_ATTEMPTFAILS___2 = 7,
    TCP_MIB_ESTABRESETS___2 = 8,
    TCP_MIB_CURRESTAB___2 = 9,
    TCP_MIB_INSEGS___2 = 10,
    TCP_MIB_OUTSEGS___2 = 11,
    TCP_MIB_RETRANSSEGS___2 = 12,
    TCP_MIB_INERRS___2 = 13,
    TCP_MIB_OUTRSTS___2 = 14,
    __TCP_MIB_MAX___2 = 15
} ;
enum __anonenum_189___2 {
    UDP_MIB_NUM___2 = 0,
    UDP_MIB_INDATAGRAMS___2 = 1,
    UDP_MIB_NOPORTS___2 = 2,
    UDP_MIB_INERRORS___2 = 3,
    UDP_MIB_OUTDATAGRAMS___2 = 4,
    UDP_MIB_RCVBUFERRORS___2 = 5,
    UDP_MIB_SNDBUFERRORS___2 = 6,
    __UDP_MIB_MAX___2 = 7
} ;
enum __anonenum_190___2 {
    LINUX_MIB_NUM___2 = 0,
    LINUX_MIB_SYNCOOKIESSENT___2 = 1,
    LINUX_MIB_SYNCOOKIESRECV___2 = 2,
    LINUX_MIB_SYNCOOKIESFAILED___2 = 3,
    LINUX_MIB_EMBRYONICRSTS___2 = 4,
    LINUX_MIB_PRUNECALLED___2 = 5,
    LINUX_MIB_RCVPRUNED___2 = 6,
    LINUX_MIB_OFOPRUNED___2 = 7,
    LINUX_MIB_OUTOFWINDOWICMPS___2 = 8,
    LINUX_MIB_LOCKDROPPEDICMPS___2 = 9,
    LINUX_MIB_ARPFILTER___2 = 10,
    LINUX_MIB_TIMEWAITED___2 = 11,
    LINUX_MIB_TIMEWAITRECYCLED___2 = 12,
    LINUX_MIB_TIMEWAITKILLED___2 = 13,
    LINUX_MIB_PAWSPASSIVEREJECTED___2 = 14,
    LINUX_MIB_PAWSACTIVEREJECTED___2 = 15,
    LINUX_MIB_PAWSESTABREJECTED___2 = 16,
    LINUX_MIB_DELAYEDACKS___2 = 17,
    LINUX_MIB_DELAYEDACKLOCKED___2 = 18,
    LINUX_MIB_DELAYEDACKLOST___2 = 19,
    LINUX_MIB_LISTENOVERFLOWS___2 = 20,
    LINUX_MIB_LISTENDROPS___2 = 21,
    LINUX_MIB_TCPPREQUEUED___2 = 22,
    LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___2 = 23,
    LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___2 = 24,
    LINUX_MIB_TCPPREQUEUEDROPPED___2 = 25,
    LINUX_MIB_TCPHPHITS___2 = 26,
    LINUX_MIB_TCPHPHITSTOUSER___2 = 27,
    LINUX_MIB_TCPPUREACKS___2 = 28,
    LINUX_MIB_TCPHPACKS___2 = 29,
    LINUX_MIB_TCPRENORECOVERY___2 = 30,
    LINUX_MIB_TCPSACKRECOVERY___2 = 31,
    LINUX_MIB_TCPSACKRENEGING___2 = 32,
    LINUX_MIB_TCPFACKREORDER___2 = 33,
    LINUX_MIB_TCPSACKREORDER___2 = 34,
    LINUX_MIB_TCPRENOREORDER___2 = 35,
    LINUX_MIB_TCPTSREORDER___2 = 36,
    LINUX_MIB_TCPFULLUNDO___2 = 37,
    LINUX_MIB_TCPPARTIALUNDO___2 = 38,
    LINUX_MIB_TCPDSACKUNDO___2 = 39,
    LINUX_MIB_TCPLOSSUNDO___2 = 40,
    LINUX_MIB_TCPLOSS___2 = 41,
    LINUX_MIB_TCPLOSTRETRANSMIT___2 = 42,
    LINUX_MIB_TCPRENOFAILURES___2 = 43,
    LINUX_MIB_TCPSACKFAILURES___2 = 44,
    LINUX_MIB_TCPLOSSFAILURES___2 = 45,
    LINUX_MIB_TCPFASTRETRANS___2 = 46,
    LINUX_MIB_TCPFORWARDRETRANS___2 = 47,
    LINUX_MIB_TCPSLOWSTARTRETRANS___2 = 48,
    LINUX_MIB_TCPTIMEOUTS___2 = 49,
    LINUX_MIB_TCPRENORECOVERYFAIL___2 = 50,
    LINUX_MIB_TCPSACKRECOVERYFAIL___2 = 51,
    LINUX_MIB_TCPSCHEDULERFAILED___2 = 52,
    LINUX_MIB_TCPRCVCOLLAPSED___2 = 53,
    LINUX_MIB_TCPDSACKOLDSENT___2 = 54,
    LINUX_MIB_TCPDSACKOFOSENT___2 = 55,
    LINUX_MIB_TCPDSACKRECV___2 = 56,
    LINUX_MIB_TCPDSACKOFORECV___2 = 57,
    LINUX_MIB_TCPABORTONSYN___2 = 58,
    LINUX_MIB_TCPABORTONDATA___2 = 59,
    LINUX_MIB_TCPABORTONCLOSE___2 = 60,
    LINUX_MIB_TCPABORTONMEMORY___2 = 61,
    LINUX_MIB_TCPABORTONTIMEOUT___2 = 62,
    LINUX_MIB_TCPABORTONLINGER___2 = 63,
    LINUX_MIB_TCPABORTFAILED___2 = 64,
    LINUX_MIB_TCPMEMORYPRESSURES___2 = 65,
    LINUX_MIB_TCPSACKDISCARD___2 = 66,
    LINUX_MIB_TCPDSACKIGNOREDOLD___2 = 67,
    LINUX_MIB_TCPDSACKIGNOREDNOUNDO___2 = 68,
    LINUX_MIB_TCPSPURIOUSRTOS___2 = 69,
    LINUX_MIB_TCPMD5NOTFOUND___2 = 70,
    LINUX_MIB_TCPMD5UNEXPECTED___2 = 71,
    LINUX_MIB_SACKSHIFTED___2 = 72,
    LINUX_MIB_SACKMERGED___2 = 73,
    LINUX_MIB_SACKSHIFTFALLBACK___2 = 74,
    __LINUX_MIB_MAX___2 = 75
} ;
enum __anonenum_191___2 {
    LINUX_MIB_XFRMNUM___2 = 0,
    LINUX_MIB_XFRMINERROR___2 = 1,
    LINUX_MIB_XFRMINBUFFERERROR___2 = 2,
    LINUX_MIB_XFRMINHDRERROR___2 = 3,
    LINUX_MIB_XFRMINNOSTATES___2 = 4,
    LINUX_MIB_XFRMINSTATEPROTOERROR___2 = 5,
    LINUX_MIB_XFRMINSTATEMODEERROR___2 = 6,
    LINUX_MIB_XFRMINSTATESEQERROR___2 = 7,
    LINUX_MIB_XFRMINSTATEEXPIRED___2 = 8,
    LINUX_MIB_XFRMINSTATEMISMATCH___2 = 9,
    LINUX_MIB_XFRMINSTATEINVALID___2 = 10,
    LINUX_MIB_XFRMINTMPLMISMATCH___2 = 11,
    LINUX_MIB_XFRMINNOPOLS___2 = 12,
    LINUX_MIB_XFRMINPOLBLOCK___2 = 13,
    LINUX_MIB_XFRMINPOLERROR___2 = 14,
    LINUX_MIB_XFRMOUTERROR___2 = 15,
    LINUX_MIB_XFRMOUTBUNDLEGENERROR___2 = 16,
    LINUX_MIB_XFRMOUTBUNDLECHECKERROR___2 = 17,
    LINUX_MIB_XFRMOUTNOSTATES___2 = 18,
    LINUX_MIB_XFRMOUTSTATEPROTOERROR___2 = 19,
    LINUX_MIB_XFRMOUTSTATEMODEERROR___2 = 20,
    LINUX_MIB_XFRMOUTSTATESEQERROR___2 = 21,
    LINUX_MIB_XFRMOUTSTATEEXPIRED___2 = 22,
    LINUX_MIB_XFRMOUTPOLBLOCK___2 = 23,
    LINUX_MIB_XFRMOUTPOLDEAD___2 = 24,
    LINUX_MIB_XFRMOUTPOLERROR___2 = 25,
    __LINUX_MIB_XFRMMAX___2 = 26
} ;
enum __anonenum_194___2 {
    NFPROTO_UNSPEC___2 = 0,
    NFPROTO_IPV4___2 = 2,
    NFPROTO_ARP___2 = 3,
    NFPROTO_BRIDGE___2 = 7,
    NFPROTO_IPV6___2 = 10,
    NFPROTO_DECNET___2 = 12,
    NFPROTO_NUMPROTO___2 = 13
} ;
enum __anonenum_221___2 {
    XFRM_POLICY_IN___2 = 0,
    XFRM_POLICY_OUT___2 = 1,
    XFRM_POLICY_FWD___2 = 2,
    XFRM_POLICY_MASK___2 = 3,
    XFRM_POLICY_MAX___2 = 3
} ;
enum __anonenum_261___2 {
    RTAX_UNSPEC___2 = 0,
    RTAX_LOCK___2 = 1,
    RTAX_MTU___2 = 2,
    RTAX_WINDOW___2 = 3,
    RTAX_RTT___2 = 4,
    RTAX_RTTVAR___2 = 5,
    RTAX_SSTHRESH___2 = 6,
    RTAX_CWND___2 = 7,
    RTAX_ADVMSS___2 = 8,
    RTAX_REORDERING___2 = 9,
    RTAX_HOPLIMIT___2 = 10,
    RTAX_INITCWND___2 = 11,
    RTAX_FEATURES___2 = 12,
    RTAX_RTO_MIN___2 = 13,
    __RTAX_MAX___2 = 14
} ;
enum hrtimer_restart;
struct __anonstruct_local_t_100 {
   atomic_long_t a ;
};
typedef struct __anonstruct_local_t_100 local_t;
enum __anonenum_185___3 {
    IPSTATS_MIB_NUM___3 = 0,
    IPSTATS_MIB_INPKTS___3 = 1,
    IPSTATS_MIB_INHDRERRORS___3 = 2,
    IPSTATS_MIB_INTOOBIGERRORS___3 = 3,
    IPSTATS_MIB_INNOROUTES___3 = 4,
    IPSTATS_MIB_INADDRERRORS___3 = 5,
    IPSTATS_MIB_INUNKNOWNPROTOS___3 = 6,
    IPSTATS_MIB_INTRUNCATEDPKTS___3 = 7,
    IPSTATS_MIB_INDISCARDS___3 = 8,
    IPSTATS_MIB_INDELIVERS___3 = 9,
    IPSTATS_MIB_OUTFORWDATAGRAMS___3 = 10,
    IPSTATS_MIB_OUTPKTS___3 = 11,
    IPSTATS_MIB_OUTDISCARDS___3 = 12,
    IPSTATS_MIB_OUTNOROUTES___3 = 13,
    IPSTATS_MIB_REASMTIMEOUT___3 = 14,
    IPSTATS_MIB_REASMREQDS___3 = 15,
    IPSTATS_MIB_REASMOKS___3 = 16,
    IPSTATS_MIB_REASMFAILS___3 = 17,
    IPSTATS_MIB_FRAGOKS___3 = 18,
    IPSTATS_MIB_FRAGFAILS___3 = 19,
    IPSTATS_MIB_FRAGCREATES___3 = 20,
    IPSTATS_MIB_INMCASTPKTS___3 = 21,
    IPSTATS_MIB_OUTMCASTPKTS___3 = 22,
    IPSTATS_MIB_INBCASTPKTS___3 = 23,
    IPSTATS_MIB_OUTBCASTPKTS___3 = 24,
    IPSTATS_MIB_INOCTETS___3 = 25,
    IPSTATS_MIB_OUTOCTETS___3 = 26,
    IPSTATS_MIB_INMCASTOCTETS___3 = 27,
    IPSTATS_MIB_OUTMCASTOCTETS___3 = 28,
    IPSTATS_MIB_INBCASTOCTETS___3 = 29,
    IPSTATS_MIB_OUTBCASTOCTETS___3 = 30,
    __IPSTATS_MIB_MAX___3 = 31
} ;
enum __anonenum_186___3 {
    ICMP_MIB_NUM___3 = 0,
    ICMP_MIB_INMSGS___3 = 1,
    ICMP_MIB_INERRORS___3 = 2,
    ICMP_MIB_INDESTUNREACHS___3 = 3,
    ICMP_MIB_INTIMEEXCDS___3 = 4,
    ICMP_MIB_INPARMPROBS___3 = 5,
    ICMP_MIB_INSRCQUENCHS___3 = 6,
    ICMP_MIB_INREDIRECTS___3 = 7,
    ICMP_MIB_INECHOS___3 = 8,
    ICMP_MIB_INECHOREPS___3 = 9,
    ICMP_MIB_INTIMESTAMPS___3 = 10,
    ICMP_MIB_INTIMESTAMPREPS___3 = 11,
    ICMP_MIB_INADDRMASKS___3 = 12,
    ICMP_MIB_INADDRMASKREPS___3 = 13,
    ICMP_MIB_OUTMSGS___3 = 14,
    ICMP_MIB_OUTERRORS___3 = 15,
    ICMP_MIB_OUTDESTUNREACHS___3 = 16,
    ICMP_MIB_OUTTIMEEXCDS___3 = 17,
    ICMP_MIB_OUTPARMPROBS___3 = 18,
    ICMP_MIB_OUTSRCQUENCHS___3 = 19,
    ICMP_MIB_OUTREDIRECTS___3 = 20,
    ICMP_MIB_OUTECHOS___3 = 21,
    ICMP_MIB_OUTECHOREPS___3 = 22,
    ICMP_MIB_OUTTIMESTAMPS___3 = 23,
    ICMP_MIB_OUTTIMESTAMPREPS___3 = 24,
    ICMP_MIB_OUTADDRMASKS___3 = 25,
    ICMP_MIB_OUTADDRMASKREPS___3 = 26,
    __ICMP_MIB_MAX___3 = 27
} ;
enum __anonenum_187___3 {
    ICMP6_MIB_NUM___3 = 0,
    ICMP6_MIB_INMSGS___3 = 1,
    ICMP6_MIB_INERRORS___3 = 2,
    ICMP6_MIB_OUTMSGS___3 = 3,
    __ICMP6_MIB_MAX___3 = 4
} ;
enum __anonenum_188___3 {
    TCP_MIB_NUM___3 = 0,
    TCP_MIB_RTOALGORITHM___3 = 1,
    TCP_MIB_RTOMIN___3 = 2,
    TCP_MIB_RTOMAX___3 = 3,
    TCP_MIB_MAXCONN___3 = 4,
    TCP_MIB_ACTIVEOPENS___3 = 5,
    TCP_MIB_PASSIVEOPENS___3 = 6,
    TCP_MIB_ATTEMPTFAILS___3 = 7,
    TCP_MIB_ESTABRESETS___3 = 8,
    TCP_MIB_CURRESTAB___3 = 9,
    TCP_MIB_INSEGS___3 = 10,
    TCP_MIB_OUTSEGS___3 = 11,
    TCP_MIB_RETRANSSEGS___3 = 12,
    TCP_MIB_INERRS___3 = 13,
    TCP_MIB_OUTRSTS___3 = 14,
    __TCP_MIB_MAX___3 = 15
} ;
enum __anonenum_189___3 {
    UDP_MIB_NUM___3 = 0,
    UDP_MIB_INDATAGRAMS___3 = 1,
    UDP_MIB_NOPORTS___3 = 2,
    UDP_MIB_INERRORS___3 = 3,
    UDP_MIB_OUTDATAGRAMS___3 = 4,
    UDP_MIB_RCVBUFERRORS___3 = 5,
    UDP_MIB_SNDBUFERRORS___3 = 6,
    __UDP_MIB_MAX___3 = 7
} ;
enum __anonenum_190___3 {
    LINUX_MIB_NUM___3 = 0,
    LINUX_MIB_SYNCOOKIESSENT___3 = 1,
    LINUX_MIB_SYNCOOKIESRECV___3 = 2,
    LINUX_MIB_SYNCOOKIESFAILED___3 = 3,
    LINUX_MIB_EMBRYONICRSTS___3 = 4,
    LINUX_MIB_PRUNECALLED___3 = 5,
    LINUX_MIB_RCVPRUNED___3 = 6,
    LINUX_MIB_OFOPRUNED___3 = 7,
    LINUX_MIB_OUTOFWINDOWICMPS___3 = 8,
    LINUX_MIB_LOCKDROPPEDICMPS___3 = 9,
    LINUX_MIB_ARPFILTER___3 = 10,
    LINUX_MIB_TIMEWAITED___3 = 11,
    LINUX_MIB_TIMEWAITRECYCLED___3 = 12,
    LINUX_MIB_TIMEWAITKILLED___3 = 13,
    LINUX_MIB_PAWSPASSIVEREJECTED___3 = 14,
    LINUX_MIB_PAWSACTIVEREJECTED___3 = 15,
    LINUX_MIB_PAWSESTABREJECTED___3 = 16,
    LINUX_MIB_DELAYEDACKS___3 = 17,
    LINUX_MIB_DELAYEDACKLOCKED___3 = 18,
    LINUX_MIB_DELAYEDACKLOST___3 = 19,
    LINUX_MIB_LISTENOVERFLOWS___3 = 20,
    LINUX_MIB_LISTENDROPS___3 = 21,
    LINUX_MIB_TCPPREQUEUED___3 = 22,
    LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___3 = 23,
    LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___3 = 24,
    LINUX_MIB_TCPPREQUEUEDROPPED___3 = 25,
    LINUX_MIB_TCPHPHITS___3 = 26,
    LINUX_MIB_TCPHPHITSTOUSER___3 = 27,
    LINUX_MIB_TCPPUREACKS___3 = 28,
    LINUX_MIB_TCPHPACKS___3 = 29,
    LINUX_MIB_TCPRENORECOVERY___3 = 30,
    LINUX_MIB_TCPSACKRECOVERY___3 = 31,
    LINUX_MIB_TCPSACKRENEGING___3 = 32,
    LINUX_MIB_TCPFACKREORDER___3 = 33,
    LINUX_MIB_TCPSACKREORDER___3 = 34,
    LINUX_MIB_TCPRENOREORDER___3 = 35,
    LINUX_MIB_TCPTSREORDER___3 = 36,
    LINUX_MIB_TCPFULLUNDO___3 = 37,
    LINUX_MIB_TCPPARTIALUNDO___3 = 38,
    LINUX_MIB_TCPDSACKUNDO___3 = 39,
    LINUX_MIB_TCPLOSSUNDO___3 = 40,
    LINUX_MIB_TCPLOSS___3 = 41,
    LINUX_MIB_TCPLOSTRETRANSMIT___3 = 42,
    LINUX_MIB_TCPRENOFAILURES___3 = 43,
    LINUX_MIB_TCPSACKFAILURES___3 = 44,
    LINUX_MIB_TCPLOSSFAILURES___3 = 45,
    LINUX_MIB_TCPFASTRETRANS___3 = 46,
    LINUX_MIB_TCPFORWARDRETRANS___3 = 47,
    LINUX_MIB_TCPSLOWSTARTRETRANS___3 = 48,
    LINUX_MIB_TCPTIMEOUTS___3 = 49,
    LINUX_MIB_TCPRENORECOVERYFAIL___3 = 50,
    LINUX_MIB_TCPSACKRECOVERYFAIL___3 = 51,
    LINUX_MIB_TCPSCHEDULERFAILED___3 = 52,
    LINUX_MIB_TCPRCVCOLLAPSED___3 = 53,
    LINUX_MIB_TCPDSACKOLDSENT___3 = 54,
    LINUX_MIB_TCPDSACKOFOSENT___3 = 55,
    LINUX_MIB_TCPDSACKRECV___3 = 56,
    LINUX_MIB_TCPDSACKOFORECV___3 = 57,
    LINUX_MIB_TCPABORTONSYN___3 = 58,
    LINUX_MIB_TCPABORTONDATA___3 = 59,
    LINUX_MIB_TCPABORTONCLOSE___3 = 60,
    LINUX_MIB_TCPABORTONMEMORY___3 = 61,
    LINUX_MIB_TCPABORTONTIMEOUT___3 = 62,
    LINUX_MIB_TCPABORTONLINGER___3 = 63,
    LINUX_MIB_TCPABORTFAILED___3 = 64,
    LINUX_MIB_TCPMEMORYPRESSURES___3 = 65,
    LINUX_MIB_TCPSACKDISCARD___3 = 66,
    LINUX_MIB_TCPDSACKIGNOREDOLD___3 = 67,
    LINUX_MIB_TCPDSACKIGNOREDNOUNDO___3 = 68,
    LINUX_MIB_TCPSPURIOUSRTOS___3 = 69,
    LINUX_MIB_TCPMD5NOTFOUND___3 = 70,
    LINUX_MIB_TCPMD5UNEXPECTED___3 = 71,
    LINUX_MIB_SACKSHIFTED___3 = 72,
    LINUX_MIB_SACKMERGED___3 = 73,
    LINUX_MIB_SACKSHIFTFALLBACK___3 = 74,
    __LINUX_MIB_MAX___3 = 75
} ;
enum __anonenum_191___3 {
    LINUX_MIB_XFRMNUM___3 = 0,
    LINUX_MIB_XFRMINERROR___3 = 1,
    LINUX_MIB_XFRMINBUFFERERROR___3 = 2,
    LINUX_MIB_XFRMINHDRERROR___3 = 3,
    LINUX_MIB_XFRMINNOSTATES___3 = 4,
    LINUX_MIB_XFRMINSTATEPROTOERROR___3 = 5,
    LINUX_MIB_XFRMINSTATEMODEERROR___3 = 6,
    LINUX_MIB_XFRMINSTATESEQERROR___3 = 7,
    LINUX_MIB_XFRMINSTATEEXPIRED___3 = 8,
    LINUX_MIB_XFRMINSTATEMISMATCH___3 = 9,
    LINUX_MIB_XFRMINSTATEINVALID___3 = 10,
    LINUX_MIB_XFRMINTMPLMISMATCH___3 = 11,
    LINUX_MIB_XFRMINNOPOLS___3 = 12,
    LINUX_MIB_XFRMINPOLBLOCK___3 = 13,
    LINUX_MIB_XFRMINPOLERROR___3 = 14,
    LINUX_MIB_XFRMOUTERROR___3 = 15,
    LINUX_MIB_XFRMOUTBUNDLEGENERROR___3 = 16,
    LINUX_MIB_XFRMOUTBUNDLECHECKERROR___3 = 17,
    LINUX_MIB_XFRMOUTNOSTATES___3 = 18,
    LINUX_MIB_XFRMOUTSTATEPROTOERROR___3 = 19,
    LINUX_MIB_XFRMOUTSTATEMODEERROR___3 = 20,
    LINUX_MIB_XFRMOUTSTATESEQERROR___3 = 21,
    LINUX_MIB_XFRMOUTSTATEEXPIRED___3 = 22,
    LINUX_MIB_XFRMOUTPOLBLOCK___3 = 23,
    LINUX_MIB_XFRMOUTPOLDEAD___3 = 24,
    LINUX_MIB_XFRMOUTPOLERROR___3 = 25,
    __LINUX_MIB_XFRMMAX___3 = 26
} ;
enum __anonenum_194___3 {
    NFPROTO_UNSPEC___3 = 0,
    NFPROTO_IPV4___3 = 2,
    NFPROTO_ARP___3 = 3,
    NFPROTO_BRIDGE___3 = 7,
    NFPROTO_IPV6___3 = 10,
    NFPROTO_DECNET___3 = 12,
    NFPROTO_NUMPROTO___3 = 13
} ;
enum __anonenum_221___3 {
    XFRM_POLICY_IN___3 = 0,
    XFRM_POLICY_OUT___3 = 1,
    XFRM_POLICY_FWD___3 = 2,
    XFRM_POLICY_MASK___3 = 3,
    XFRM_POLICY_MAX___3 = 3
} ;
enum __anonenum_261___3 {
    RTAX_UNSPEC___3 = 0,
    RTAX_LOCK___3 = 1,
    RTAX_MTU___3 = 2,
    RTAX_WINDOW___3 = 3,
    RTAX_RTT___3 = 4,
    RTAX_RTTVAR___3 = 5,
    RTAX_SSTHRESH___3 = 6,
    RTAX_CWND___3 = 7,
    RTAX_ADVMSS___3 = 8,
    RTAX_REORDERING___3 = 9,
    RTAX_HOPLIMIT___3 = 10,
    RTAX_INITCWND___3 = 11,
    RTAX_FEATURES___3 = 12,
    RTAX_RTO_MIN___3 = 13,
    __RTAX_MAX___3 = 14
} ;
typedef int dchannel_l1callback(struct dchannel * , u_int  );
struct layer1;
struct layer1 {
   u_long Flags ;
   struct FsmInst l1m ;
   struct FsmTimer timer ;
   int delay ;
   struct dchannel *dch ;
   dchannel_l1callback *dcb ;
};
enum __anonenum_275 {
    ST_L1_F2 = 0,
    ST_L1_F3 = 1,
    ST_L1_F4 = 2,
    ST_L1_F5 = 3,
    ST_L1_F6 = 4,
    ST_L1_F7 = 5,
    ST_L1_F8 = 6
} ;
enum __anonenum_276 {
    EV_PH_ACTIVATE = 0,
    EV_PH_DEACTIVATE = 1,
    EV_RESET_IND = 2,
    EV_DEACT_CNF = 3,
    EV_DEACT_IND = 4,
    EV_POWER_UP = 5,
    EV_ANYSIG_IND = 6,
    EV_INFO2_IND = 7,
    EV_INFO4_IND = 8,
    EV_TIMER_DEACT = 9,
    EV_TIMER_ACT = 10,
    EV_TIMER3 = 11
} ;
enum hrtimer_restart;
enum __anonenum_185___4 {
    IPSTATS_MIB_NUM___4 = 0,
    IPSTATS_MIB_INPKTS___4 = 1,
    IPSTATS_MIB_INHDRERRORS___4 = 2,
    IPSTATS_MIB_INTOOBIGERRORS___4 = 3,
    IPSTATS_MIB_INNOROUTES___4 = 4,
    IPSTATS_MIB_INADDRERRORS___4 = 5,
    IPSTATS_MIB_INUNKNOWNPROTOS___4 = 6,
    IPSTATS_MIB_INTRUNCATEDPKTS___4 = 7,
    IPSTATS_MIB_INDISCARDS___4 = 8,
    IPSTATS_MIB_INDELIVERS___4 = 9,
    IPSTATS_MIB_OUTFORWDATAGRAMS___4 = 10,
    IPSTATS_MIB_OUTPKTS___4 = 11,
    IPSTATS_MIB_OUTDISCARDS___4 = 12,
    IPSTATS_MIB_OUTNOROUTES___4 = 13,
    IPSTATS_MIB_REASMTIMEOUT___4 = 14,
    IPSTATS_MIB_REASMREQDS___4 = 15,
    IPSTATS_MIB_REASMOKS___4 = 16,
    IPSTATS_MIB_REASMFAILS___4 = 17,
    IPSTATS_MIB_FRAGOKS___4 = 18,
    IPSTATS_MIB_FRAGFAILS___4 = 19,
    IPSTATS_MIB_FRAGCREATES___4 = 20,
    IPSTATS_MIB_INMCASTPKTS___4 = 21,
    IPSTATS_MIB_OUTMCASTPKTS___4 = 22,
    IPSTATS_MIB_INBCASTPKTS___4 = 23,
    IPSTATS_MIB_OUTBCASTPKTS___4 = 24,
    IPSTATS_MIB_INOCTETS___4 = 25,
    IPSTATS_MIB_OUTOCTETS___4 = 26,
    IPSTATS_MIB_INMCASTOCTETS___4 = 27,
    IPSTATS_MIB_OUTMCASTOCTETS___4 = 28,
    IPSTATS_MIB_INBCASTOCTETS___4 = 29,
    IPSTATS_MIB_OUTBCASTOCTETS___4 = 30,
    __IPSTATS_MIB_MAX___4 = 31
} ;
enum __anonenum_186___4 {
    ICMP_MIB_NUM___4 = 0,
    ICMP_MIB_INMSGS___4 = 1,
    ICMP_MIB_INERRORS___4 = 2,
    ICMP_MIB_INDESTUNREACHS___4 = 3,
    ICMP_MIB_INTIMEEXCDS___4 = 4,
    ICMP_MIB_INPARMPROBS___4 = 5,
    ICMP_MIB_INSRCQUENCHS___4 = 6,
    ICMP_MIB_INREDIRECTS___4 = 7,
    ICMP_MIB_INECHOS___4 = 8,
    ICMP_MIB_INECHOREPS___4 = 9,
    ICMP_MIB_INTIMESTAMPS___4 = 10,
    ICMP_MIB_INTIMESTAMPREPS___4 = 11,
    ICMP_MIB_INADDRMASKS___4 = 12,
    ICMP_MIB_INADDRMASKREPS___4 = 13,
    ICMP_MIB_OUTMSGS___4 = 14,
    ICMP_MIB_OUTERRORS___4 = 15,
    ICMP_MIB_OUTDESTUNREACHS___4 = 16,
    ICMP_MIB_OUTTIMEEXCDS___4 = 17,
    ICMP_MIB_OUTPARMPROBS___4 = 18,
    ICMP_MIB_OUTSRCQUENCHS___4 = 19,
    ICMP_MIB_OUTREDIRECTS___4 = 20,
    ICMP_MIB_OUTECHOS___4 = 21,
    ICMP_MIB_OUTECHOREPS___4 = 22,
    ICMP_MIB_OUTTIMESTAMPS___4 = 23,
    ICMP_MIB_OUTTIMESTAMPREPS___4 = 24,
    ICMP_MIB_OUTADDRMASKS___4 = 25,
    ICMP_MIB_OUTADDRMASKREPS___4 = 26,
    __ICMP_MIB_MAX___4 = 27
} ;
enum __anonenum_187___4 {
    ICMP6_MIB_NUM___4 = 0,
    ICMP6_MIB_INMSGS___4 = 1,
    ICMP6_MIB_INERRORS___4 = 2,
    ICMP6_MIB_OUTMSGS___4 = 3,
    __ICMP6_MIB_MAX___4 = 4
} ;
enum __anonenum_188___4 {
    TCP_MIB_NUM___4 = 0,
    TCP_MIB_RTOALGORITHM___4 = 1,
    TCP_MIB_RTOMIN___4 = 2,
    TCP_MIB_RTOMAX___4 = 3,
    TCP_MIB_MAXCONN___4 = 4,
    TCP_MIB_ACTIVEOPENS___4 = 5,
    TCP_MIB_PASSIVEOPENS___4 = 6,
    TCP_MIB_ATTEMPTFAILS___4 = 7,
    TCP_MIB_ESTABRESETS___4 = 8,
    TCP_MIB_CURRESTAB___4 = 9,
    TCP_MIB_INSEGS___4 = 10,
    TCP_MIB_OUTSEGS___4 = 11,
    TCP_MIB_RETRANSSEGS___4 = 12,
    TCP_MIB_INERRS___4 = 13,
    TCP_MIB_OUTRSTS___4 = 14,
    __TCP_MIB_MAX___4 = 15
} ;
enum __anonenum_189___4 {
    UDP_MIB_NUM___4 = 0,
    UDP_MIB_INDATAGRAMS___4 = 1,
    UDP_MIB_NOPORTS___4 = 2,
    UDP_MIB_INERRORS___4 = 3,
    UDP_MIB_OUTDATAGRAMS___4 = 4,
    UDP_MIB_RCVBUFERRORS___4 = 5,
    UDP_MIB_SNDBUFERRORS___4 = 6,
    __UDP_MIB_MAX___4 = 7
} ;
enum __anonenum_190___4 {
    LINUX_MIB_NUM___4 = 0,
    LINUX_MIB_SYNCOOKIESSENT___4 = 1,
    LINUX_MIB_SYNCOOKIESRECV___4 = 2,
    LINUX_MIB_SYNCOOKIESFAILED___4 = 3,
    LINUX_MIB_EMBRYONICRSTS___4 = 4,
    LINUX_MIB_PRUNECALLED___4 = 5,
    LINUX_MIB_RCVPRUNED___4 = 6,
    LINUX_MIB_OFOPRUNED___4 = 7,
    LINUX_MIB_OUTOFWINDOWICMPS___4 = 8,
    LINUX_MIB_LOCKDROPPEDICMPS___4 = 9,
    LINUX_MIB_ARPFILTER___4 = 10,
    LINUX_MIB_TIMEWAITED___4 = 11,
    LINUX_MIB_TIMEWAITRECYCLED___4 = 12,
    LINUX_MIB_TIMEWAITKILLED___4 = 13,
    LINUX_MIB_PAWSPASSIVEREJECTED___4 = 14,
    LINUX_MIB_PAWSACTIVEREJECTED___4 = 15,
    LINUX_MIB_PAWSESTABREJECTED___4 = 16,
    LINUX_MIB_DELAYEDACKS___4 = 17,
    LINUX_MIB_DELAYEDACKLOCKED___4 = 18,
    LINUX_MIB_DELAYEDACKLOST___4 = 19,
    LINUX_MIB_LISTENOVERFLOWS___4 = 20,
    LINUX_MIB_LISTENDROPS___4 = 21,
    LINUX_MIB_TCPPREQUEUED___4 = 22,
    LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___4 = 23,
    LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___4 = 24,
    LINUX_MIB_TCPPREQUEUEDROPPED___4 = 25,
    LINUX_MIB_TCPHPHITS___4 = 26,
    LINUX_MIB_TCPHPHITSTOUSER___4 = 27,
    LINUX_MIB_TCPPUREACKS___4 = 28,
    LINUX_MIB_TCPHPACKS___4 = 29,
    LINUX_MIB_TCPRENORECOVERY___4 = 30,
    LINUX_MIB_TCPSACKRECOVERY___4 = 31,
    LINUX_MIB_TCPSACKRENEGING___4 = 32,
    LINUX_MIB_TCPFACKREORDER___4 = 33,
    LINUX_MIB_TCPSACKREORDER___4 = 34,
    LINUX_MIB_TCPRENOREORDER___4 = 35,
    LINUX_MIB_TCPTSREORDER___4 = 36,
    LINUX_MIB_TCPFULLUNDO___4 = 37,
    LINUX_MIB_TCPPARTIALUNDO___4 = 38,
    LINUX_MIB_TCPDSACKUNDO___4 = 39,
    LINUX_MIB_TCPLOSSUNDO___4 = 40,
    LINUX_MIB_TCPLOSS___4 = 41,
    LINUX_MIB_TCPLOSTRETRANSMIT___4 = 42,
    LINUX_MIB_TCPRENOFAILURES___4 = 43,
    LINUX_MIB_TCPSACKFAILURES___4 = 44,
    LINUX_MIB_TCPLOSSFAILURES___4 = 45,
    LINUX_MIB_TCPFASTRETRANS___4 = 46,
    LINUX_MIB_TCPFORWARDRETRANS___4 = 47,
    LINUX_MIB_TCPSLOWSTARTRETRANS___4 = 48,
    LINUX_MIB_TCPTIMEOUTS___4 = 49,
    LINUX_MIB_TCPRENORECOVERYFAIL___4 = 50,
    LINUX_MIB_TCPSACKRECOVERYFAIL___4 = 51,
    LINUX_MIB_TCPSCHEDULERFAILED___4 = 52,
    LINUX_MIB_TCPRCVCOLLAPSED___4 = 53,
    LINUX_MIB_TCPDSACKOLDSENT___4 = 54,
    LINUX_MIB_TCPDSACKOFOSENT___4 = 55,
    LINUX_MIB_TCPDSACKRECV___4 = 56,
    LINUX_MIB_TCPDSACKOFORECV___4 = 57,
    LINUX_MIB_TCPABORTONSYN___4 = 58,
    LINUX_MIB_TCPABORTONDATA___4 = 59,
    LINUX_MIB_TCPABORTONCLOSE___4 = 60,
    LINUX_MIB_TCPABORTONMEMORY___4 = 61,
    LINUX_MIB_TCPABORTONTIMEOUT___4 = 62,
    LINUX_MIB_TCPABORTONLINGER___4 = 63,
    LINUX_MIB_TCPABORTFAILED___4 = 64,
    LINUX_MIB_TCPMEMORYPRESSURES___4 = 65,
    LINUX_MIB_TCPSACKDISCARD___4 = 66,
    LINUX_MIB_TCPDSACKIGNOREDOLD___4 = 67,
    LINUX_MIB_TCPDSACKIGNOREDNOUNDO___4 = 68,
    LINUX_MIB_TCPSPURIOUSRTOS___4 = 69,
    LINUX_MIB_TCPMD5NOTFOUND___4 = 70,
    LINUX_MIB_TCPMD5UNEXPECTED___4 = 71,
    LINUX_MIB_SACKSHIFTED___4 = 72,
    LINUX_MIB_SACKMERGED___4 = 73,
    LINUX_MIB_SACKSHIFTFALLBACK___4 = 74,
    __LINUX_MIB_MAX___4 = 75
} ;
enum __anonenum_191___4 {
    LINUX_MIB_XFRMNUM___4 = 0,
    LINUX_MIB_XFRMINERROR___4 = 1,
    LINUX_MIB_XFRMINBUFFERERROR___4 = 2,
    LINUX_MIB_XFRMINHDRERROR___4 = 3,
    LINUX_MIB_XFRMINNOSTATES___4 = 4,
    LINUX_MIB_XFRMINSTATEPROTOERROR___4 = 5,
    LINUX_MIB_XFRMINSTATEMODEERROR___4 = 6,
    LINUX_MIB_XFRMINSTATESEQERROR___4 = 7,
    LINUX_MIB_XFRMINSTATEEXPIRED___4 = 8,
    LINUX_MIB_XFRMINSTATEMISMATCH___4 = 9,
    LINUX_MIB_XFRMINSTATEINVALID___4 = 10,
    LINUX_MIB_XFRMINTMPLMISMATCH___4 = 11,
    LINUX_MIB_XFRMINNOPOLS___4 = 12,
    LINUX_MIB_XFRMINPOLBLOCK___4 = 13,
    LINUX_MIB_XFRMINPOLERROR___4 = 14,
    LINUX_MIB_XFRMOUTERROR___4 = 15,
    LINUX_MIB_XFRMOUTBUNDLEGENERROR___4 = 16,
    LINUX_MIB_XFRMOUTBUNDLECHECKERROR___4 = 17,
    LINUX_MIB_XFRMOUTNOSTATES___4 = 18,
    LINUX_MIB_XFRMOUTSTATEPROTOERROR___4 = 19,
    LINUX_MIB_XFRMOUTSTATEMODEERROR___4 = 20,
    LINUX_MIB_XFRMOUTSTATESEQERROR___4 = 21,
    LINUX_MIB_XFRMOUTSTATEEXPIRED___4 = 22,
    LINUX_MIB_XFRMOUTPOLBLOCK___4 = 23,
    LINUX_MIB_XFRMOUTPOLDEAD___4 = 24,
    LINUX_MIB_XFRMOUTPOLERROR___4 = 25,
    __LINUX_MIB_XFRMMAX___4 = 26
} ;
enum __anonenum_194___4 {
    NFPROTO_UNSPEC___4 = 0,
    NFPROTO_IPV4___4 = 2,
    NFPROTO_ARP___4 = 3,
    NFPROTO_BRIDGE___4 = 7,
    NFPROTO_IPV6___4 = 10,
    NFPROTO_DECNET___4 = 12,
    NFPROTO_NUMPROTO___4 = 13
} ;
enum __anonenum_221___4 {
    XFRM_POLICY_IN___4 = 0,
    XFRM_POLICY_OUT___4 = 1,
    XFRM_POLICY_FWD___4 = 2,
    XFRM_POLICY_MASK___4 = 3,
    XFRM_POLICY_MAX___4 = 3
} ;
enum __anonenum_261___4 {
    RTAX_UNSPEC___4 = 0,
    RTAX_LOCK___4 = 1,
    RTAX_MTU___4 = 2,
    RTAX_WINDOW___4 = 3,
    RTAX_RTT___4 = 4,
    RTAX_RTTVAR___4 = 5,
    RTAX_SSTHRESH___4 = 6,
    RTAX_CWND___4 = 7,
    RTAX_ADVMSS___4 = 8,
    RTAX_REORDERING___4 = 9,
    RTAX_HOPLIMIT___4 = 10,
    RTAX_INITCWND___4 = 11,
    RTAX_FEATURES___4 = 12,
    RTAX_RTO_MIN___4 = 13,
    __RTAX_MAX___4 = 14
} ;
struct manager {
   struct mISDNchannel ch ;
   struct mISDNchannel bcast ;
   u_long options ;
   struct list_head layer2 ;
   rwlock_t lock ;
   struct FsmInst deact ;
   struct FsmTimer datimer ;
   struct sk_buff_head sendq ;
   struct mISDNchannel *up ;
   u_int nextid ;
   u_int lastid ;
};
struct layer2;
struct teimgr {
   int ri ;
   int rcnt ;
   struct FsmInst tei_m ;
   struct FsmTimer timer ;
   int tval ;
   int nval ;
   struct layer2 *l2 ;
   struct manager *mgr ;
};
struct laddr {
   u_char A ;
   u_char B ;
};
struct layer2 {
   struct list_head list ;
   struct mISDNchannel ch ;
   u_long flag ;
   int id ;
   struct mISDNchannel *up ;
   signed char sapi ;
   signed char tei ;
   struct laddr addr ;
   u_int maxlen ;
   struct teimgr *tm ;
   u_int vs ;
   u_int va ;
   u_int vr ;
   int rc ;
   u_int window ;
   u_int sow ;
   struct FsmInst l2m ;
   struct FsmTimer t200 ;
   struct FsmTimer t203 ;
   int T200 ;
   int N200 ;
   int T203 ;
   u_int next_id ;
   u_int down_id ;
   struct sk_buff *windowar[8] ;
   struct sk_buff_head i_queue ;
   struct sk_buff_head ui_queue ;
   struct sk_buff_head down_queue ;
   struct sk_buff_head tmp_queue ;
};
enum __anonenum_275___0 {
    ST_L2_1 = 0,
    ST_L2_2 = 1,
    ST_L2_3 = 2,
    ST_L2_4 = 3,
    ST_L2_5 = 4,
    ST_L2_6 = 5,
    ST_L2_7 = 6,
    ST_L2_8 = 7
} ;
enum __anonenum_276___0 {
    EV_L2_UI = 0,
    EV_L2_SABME = 1,
    EV_L2_DISC = 2,
    EV_L2_DM = 3,
    EV_L2_UA = 4,
    EV_L2_FRMR = 5,
    EV_L2_SUPER = 6,
    EV_L2_I = 7,
    EV_L2_DL_DATA = 8,
    EV_L2_ACK_PULL = 9,
    EV_L2_DL_UNITDATA = 10,
    EV_L2_DL_ESTABLISH_REQ = 11,
    EV_L2_DL_RELEASE_REQ = 12,
    EV_L2_MDL_ASSIGN = 13,
    EV_L2_MDL_REMOVE = 14,
    EV_L2_MDL_ERROR = 15,
    EV_L1_DEACTIVATE = 16,
    EV_L2_T200 = 17,
    EV_L2_T203 = 18,
    EV_L2_SET_OWN_BUSY = 19,
    EV_L2_CLEAR_OWN_BUSY = 20,
    EV_L2_FRAME_ERROR = 21
} ;
enum hrtimer_restart;
enum __anonenum_185___5 {
    IPSTATS_MIB_NUM___5 = 0,
    IPSTATS_MIB_INPKTS___5 = 1,
    IPSTATS_MIB_INHDRERRORS___5 = 2,
    IPSTATS_MIB_INTOOBIGERRORS___5 = 3,
    IPSTATS_MIB_INNOROUTES___5 = 4,
    IPSTATS_MIB_INADDRERRORS___5 = 5,
    IPSTATS_MIB_INUNKNOWNPROTOS___5 = 6,
    IPSTATS_MIB_INTRUNCATEDPKTS___5 = 7,
    IPSTATS_MIB_INDISCARDS___5 = 8,
    IPSTATS_MIB_INDELIVERS___5 = 9,
    IPSTATS_MIB_OUTFORWDATAGRAMS___5 = 10,
    IPSTATS_MIB_OUTPKTS___5 = 11,
    IPSTATS_MIB_OUTDISCARDS___5 = 12,
    IPSTATS_MIB_OUTNOROUTES___5 = 13,
    IPSTATS_MIB_REASMTIMEOUT___5 = 14,
    IPSTATS_MIB_REASMREQDS___5 = 15,
    IPSTATS_MIB_REASMOKS___5 = 16,
    IPSTATS_MIB_REASMFAILS___5 = 17,
    IPSTATS_MIB_FRAGOKS___5 = 18,
    IPSTATS_MIB_FRAGFAILS___5 = 19,
    IPSTATS_MIB_FRAGCREATES___5 = 20,
    IPSTATS_MIB_INMCASTPKTS___5 = 21,
    IPSTATS_MIB_OUTMCASTPKTS___5 = 22,
    IPSTATS_MIB_INBCASTPKTS___5 = 23,
    IPSTATS_MIB_OUTBCASTPKTS___5 = 24,
    IPSTATS_MIB_INOCTETS___5 = 25,
    IPSTATS_MIB_OUTOCTETS___5 = 26,
    IPSTATS_MIB_INMCASTOCTETS___5 = 27,
    IPSTATS_MIB_OUTMCASTOCTETS___5 = 28,
    IPSTATS_MIB_INBCASTOCTETS___5 = 29,
    IPSTATS_MIB_OUTBCASTOCTETS___5 = 30,
    __IPSTATS_MIB_MAX___5 = 31
} ;
enum __anonenum_186___5 {
    ICMP_MIB_NUM___5 = 0,
    ICMP_MIB_INMSGS___5 = 1,
    ICMP_MIB_INERRORS___5 = 2,
    ICMP_MIB_INDESTUNREACHS___5 = 3,
    ICMP_MIB_INTIMEEXCDS___5 = 4,
    ICMP_MIB_INPARMPROBS___5 = 5,
    ICMP_MIB_INSRCQUENCHS___5 = 6,
    ICMP_MIB_INREDIRECTS___5 = 7,
    ICMP_MIB_INECHOS___5 = 8,
    ICMP_MIB_INECHOREPS___5 = 9,
    ICMP_MIB_INTIMESTAMPS___5 = 10,
    ICMP_MIB_INTIMESTAMPREPS___5 = 11,
    ICMP_MIB_INADDRMASKS___5 = 12,
    ICMP_MIB_INADDRMASKREPS___5 = 13,
    ICMP_MIB_OUTMSGS___5 = 14,
    ICMP_MIB_OUTERRORS___5 = 15,
    ICMP_MIB_OUTDESTUNREACHS___5 = 16,
    ICMP_MIB_OUTTIMEEXCDS___5 = 17,
    ICMP_MIB_OUTPARMPROBS___5 = 18,
    ICMP_MIB_OUTSRCQUENCHS___5 = 19,
    ICMP_MIB_OUTREDIRECTS___5 = 20,
    ICMP_MIB_OUTECHOS___5 = 21,
    ICMP_MIB_OUTECHOREPS___5 = 22,
    ICMP_MIB_OUTTIMESTAMPS___5 = 23,
    ICMP_MIB_OUTTIMESTAMPREPS___5 = 24,
    ICMP_MIB_OUTADDRMASKS___5 = 25,
    ICMP_MIB_OUTADDRMASKREPS___5 = 26,
    __ICMP_MIB_MAX___5 = 27
} ;
enum __anonenum_187___5 {
    ICMP6_MIB_NUM___5 = 0,
    ICMP6_MIB_INMSGS___5 = 1,
    ICMP6_MIB_INERRORS___5 = 2,
    ICMP6_MIB_OUTMSGS___5 = 3,
    __ICMP6_MIB_MAX___5 = 4
} ;
enum __anonenum_188___5 {
    TCP_MIB_NUM___5 = 0,
    TCP_MIB_RTOALGORITHM___5 = 1,
    TCP_MIB_RTOMIN___5 = 2,
    TCP_MIB_RTOMAX___5 = 3,
    TCP_MIB_MAXCONN___5 = 4,
    TCP_MIB_ACTIVEOPENS___5 = 5,
    TCP_MIB_PASSIVEOPENS___5 = 6,
    TCP_MIB_ATTEMPTFAILS___5 = 7,
    TCP_MIB_ESTABRESETS___5 = 8,
    TCP_MIB_CURRESTAB___5 = 9,
    TCP_MIB_INSEGS___5 = 10,
    TCP_MIB_OUTSEGS___5 = 11,
    TCP_MIB_RETRANSSEGS___5 = 12,
    TCP_MIB_INERRS___5 = 13,
    TCP_MIB_OUTRSTS___5 = 14,
    __TCP_MIB_MAX___5 = 15
} ;
enum __anonenum_189___5 {
    UDP_MIB_NUM___5 = 0,
    UDP_MIB_INDATAGRAMS___5 = 1,
    UDP_MIB_NOPORTS___5 = 2,
    UDP_MIB_INERRORS___5 = 3,
    UDP_MIB_OUTDATAGRAMS___5 = 4,
    UDP_MIB_RCVBUFERRORS___5 = 5,
    UDP_MIB_SNDBUFERRORS___5 = 6,
    __UDP_MIB_MAX___5 = 7
} ;
enum __anonenum_190___5 {
    LINUX_MIB_NUM___5 = 0,
    LINUX_MIB_SYNCOOKIESSENT___5 = 1,
    LINUX_MIB_SYNCOOKIESRECV___5 = 2,
    LINUX_MIB_SYNCOOKIESFAILED___5 = 3,
    LINUX_MIB_EMBRYONICRSTS___5 = 4,
    LINUX_MIB_PRUNECALLED___5 = 5,
    LINUX_MIB_RCVPRUNED___5 = 6,
    LINUX_MIB_OFOPRUNED___5 = 7,
    LINUX_MIB_OUTOFWINDOWICMPS___5 = 8,
    LINUX_MIB_LOCKDROPPEDICMPS___5 = 9,
    LINUX_MIB_ARPFILTER___5 = 10,
    LINUX_MIB_TIMEWAITED___5 = 11,
    LINUX_MIB_TIMEWAITRECYCLED___5 = 12,
    LINUX_MIB_TIMEWAITKILLED___5 = 13,
    LINUX_MIB_PAWSPASSIVEREJECTED___5 = 14,
    LINUX_MIB_PAWSACTIVEREJECTED___5 = 15,
    LINUX_MIB_PAWSESTABREJECTED___5 = 16,
    LINUX_MIB_DELAYEDACKS___5 = 17,
    LINUX_MIB_DELAYEDACKLOCKED___5 = 18,
    LINUX_MIB_DELAYEDACKLOST___5 = 19,
    LINUX_MIB_LISTENOVERFLOWS___5 = 20,
    LINUX_MIB_LISTENDROPS___5 = 21,
    LINUX_MIB_TCPPREQUEUED___5 = 22,
    LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___5 = 23,
    LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___5 = 24,
    LINUX_MIB_TCPPREQUEUEDROPPED___5 = 25,
    LINUX_MIB_TCPHPHITS___5 = 26,
    LINUX_MIB_TCPHPHITSTOUSER___5 = 27,
    LINUX_MIB_TCPPUREACKS___5 = 28,
    LINUX_MIB_TCPHPACKS___5 = 29,
    LINUX_MIB_TCPRENORECOVERY___5 = 30,
    LINUX_MIB_TCPSACKRECOVERY___5 = 31,
    LINUX_MIB_TCPSACKRENEGING___5 = 32,
    LINUX_MIB_TCPFACKREORDER___5 = 33,
    LINUX_MIB_TCPSACKREORDER___5 = 34,
    LINUX_MIB_TCPRENOREORDER___5 = 35,
    LINUX_MIB_TCPTSREORDER___5 = 36,
    LINUX_MIB_TCPFULLUNDO___5 = 37,
    LINUX_MIB_TCPPARTIALUNDO___5 = 38,
    LINUX_MIB_TCPDSACKUNDO___5 = 39,
    LINUX_MIB_TCPLOSSUNDO___5 = 40,
    LINUX_MIB_TCPLOSS___5 = 41,
    LINUX_MIB_TCPLOSTRETRANSMIT___5 = 42,
    LINUX_MIB_TCPRENOFAILURES___5 = 43,
    LINUX_MIB_TCPSACKFAILURES___5 = 44,
    LINUX_MIB_TCPLOSSFAILURES___5 = 45,
    LINUX_MIB_TCPFASTRETRANS___5 = 46,
    LINUX_MIB_TCPFORWARDRETRANS___5 = 47,
    LINUX_MIB_TCPSLOWSTARTRETRANS___5 = 48,
    LINUX_MIB_TCPTIMEOUTS___5 = 49,
    LINUX_MIB_TCPRENORECOVERYFAIL___5 = 50,
    LINUX_MIB_TCPSACKRECOVERYFAIL___5 = 51,
    LINUX_MIB_TCPSCHEDULERFAILED___5 = 52,
    LINUX_MIB_TCPRCVCOLLAPSED___5 = 53,
    LINUX_MIB_TCPDSACKOLDSENT___5 = 54,
    LINUX_MIB_TCPDSACKOFOSENT___5 = 55,
    LINUX_MIB_TCPDSACKRECV___5 = 56,
    LINUX_MIB_TCPDSACKOFORECV___5 = 57,
    LINUX_MIB_TCPABORTONSYN___5 = 58,
    LINUX_MIB_TCPABORTONDATA___5 = 59,
    LINUX_MIB_TCPABORTONCLOSE___5 = 60,
    LINUX_MIB_TCPABORTONMEMORY___5 = 61,
    LINUX_MIB_TCPABORTONTIMEOUT___5 = 62,
    LINUX_MIB_TCPABORTONLINGER___5 = 63,
    LINUX_MIB_TCPABORTFAILED___5 = 64,
    LINUX_MIB_TCPMEMORYPRESSURES___5 = 65,
    LINUX_MIB_TCPSACKDISCARD___5 = 66,
    LINUX_MIB_TCPDSACKIGNOREDOLD___5 = 67,
    LINUX_MIB_TCPDSACKIGNOREDNOUNDO___5 = 68,
    LINUX_MIB_TCPSPURIOUSRTOS___5 = 69,
    LINUX_MIB_TCPMD5NOTFOUND___5 = 70,
    LINUX_MIB_TCPMD5UNEXPECTED___5 = 71,
    LINUX_MIB_SACKSHIFTED___5 = 72,
    LINUX_MIB_SACKMERGED___5 = 73,
    LINUX_MIB_SACKSHIFTFALLBACK___5 = 74,
    __LINUX_MIB_MAX___5 = 75
} ;
enum __anonenum_191___5 {
    LINUX_MIB_XFRMNUM___5 = 0,
    LINUX_MIB_XFRMINERROR___5 = 1,
    LINUX_MIB_XFRMINBUFFERERROR___5 = 2,
    LINUX_MIB_XFRMINHDRERROR___5 = 3,
    LINUX_MIB_XFRMINNOSTATES___5 = 4,
    LINUX_MIB_XFRMINSTATEPROTOERROR___5 = 5,
    LINUX_MIB_XFRMINSTATEMODEERROR___5 = 6,
    LINUX_MIB_XFRMINSTATESEQERROR___5 = 7,
    LINUX_MIB_XFRMINSTATEEXPIRED___5 = 8,
    LINUX_MIB_XFRMINSTATEMISMATCH___5 = 9,
    LINUX_MIB_XFRMINSTATEINVALID___5 = 10,
    LINUX_MIB_XFRMINTMPLMISMATCH___5 = 11,
    LINUX_MIB_XFRMINNOPOLS___5 = 12,
    LINUX_MIB_XFRMINPOLBLOCK___5 = 13,
    LINUX_MIB_XFRMINPOLERROR___5 = 14,
    LINUX_MIB_XFRMOUTERROR___5 = 15,
    LINUX_MIB_XFRMOUTBUNDLEGENERROR___5 = 16,
    LINUX_MIB_XFRMOUTBUNDLECHECKERROR___5 = 17,
    LINUX_MIB_XFRMOUTNOSTATES___5 = 18,
    LINUX_MIB_XFRMOUTSTATEPROTOERROR___5 = 19,
    LINUX_MIB_XFRMOUTSTATEMODEERROR___5 = 20,
    LINUX_MIB_XFRMOUTSTATESEQERROR___5 = 21,
    LINUX_MIB_XFRMOUTSTATEEXPIRED___5 = 22,
    LINUX_MIB_XFRMOUTPOLBLOCK___5 = 23,
    LINUX_MIB_XFRMOUTPOLDEAD___5 = 24,
    LINUX_MIB_XFRMOUTPOLERROR___5 = 25,
    __LINUX_MIB_XFRMMAX___5 = 26
} ;
enum __anonenum_194___5 {
    NFPROTO_UNSPEC___5 = 0,
    NFPROTO_IPV4___5 = 2,
    NFPROTO_ARP___5 = 3,
    NFPROTO_BRIDGE___5 = 7,
    NFPROTO_IPV6___5 = 10,
    NFPROTO_DECNET___5 = 12,
    NFPROTO_NUMPROTO___5 = 13
} ;
enum __anonenum_221___5 {
    XFRM_POLICY_IN___5 = 0,
    XFRM_POLICY_OUT___5 = 1,
    XFRM_POLICY_FWD___5 = 2,
    XFRM_POLICY_MASK___5 = 3,
    XFRM_POLICY_MAX___5 = 3
} ;
enum __anonenum_261___5 {
    RTAX_UNSPEC___5 = 0,
    RTAX_LOCK___5 = 1,
    RTAX_MTU___5 = 2,
    RTAX_WINDOW___5 = 3,
    RTAX_RTT___5 = 4,
    RTAX_RTTVAR___5 = 5,
    RTAX_SSTHRESH___5 = 6,
    RTAX_CWND___5 = 7,
    RTAX_ADVMSS___5 = 8,
    RTAX_REORDERING___5 = 9,
    RTAX_HOPLIMIT___5 = 10,
    RTAX_INITCWND___5 = 11,
    RTAX_FEATURES___5 = 12,
    RTAX_RTO_MIN___5 = 13,
    __RTAX_MAX___5 = 14
} ;
enum __anonenum_275___1 {
    ST_L2_1___0 = 0,
    ST_L2_2___0 = 1,
    ST_L2_3___0 = 2,
    ST_L2_4___0 = 3,
    ST_L2_5___0 = 4,
    ST_L2_6___0 = 5,
    ST_L2_7___0 = 6,
    ST_L2_8___0 = 7
} ;
enum __anonenum_276___1 {
    ST_L1_DEACT = 0,
    ST_L1_DEACT_PENDING = 1,
    ST_L1_ACTIV = 2
} ;
enum __anonenum_277 {
    EV_ACTIVATE = 0,
    EV_ACTIVATE_IND = 1,
    EV_DEACTIVATE = 2,
    EV_DEACTIVATE_IND = 3,
    EV_UI = 4,
    EV_DATIMER = 5
} ;
enum __anonenum_278 {
    ST_TEI_NOP = 0,
    ST_TEI_IDREQ = 1,
    ST_TEI_IDVERIFY = 2
} ;
enum __anonenum_279 {
    EV_IDREQ = 0,
    EV_ASSIGN = 1,
    EV_ASSIGN_REQ = 2,
    EV_DENIED = 3,
    EV_CHKREQ = 4,
    EV_CHKRESP = 5,
    EV_REMOVE = 6,
    EV_VERIFY = 7,
    EV_TIMER = 8
} ;
enum hrtimer_restart;
typedef struct poll_table_struct poll_table;
struct miscdevice {
   int minor ;
   char const   *name ;
   struct file_operations  const  *fops ;
   struct list_head list ;
   struct device *parent ;
   struct device *this_device ;
   char const   *devnode ;
};
struct mISDNtimerdev {
   int next_id ;
   struct list_head pending ;
   struct list_head expired ;
   wait_queue_head_t wait ;
   u_int work ;
   spinlock_t lock ;
};
struct mISDNtimer {
   struct list_head list ;
   struct mISDNtimerdev *dev ;
   struct timer_list tl ;
   int id ;
};
typedef __u16 __le16;
enum hrtimer_restart;
struct usb_device_descriptor {
   __u8 bLength ;
   __u8 bDescriptorType ;
   __le16 bcdUSB ;
   __u8 bDeviceClass ;
   __u8 bDeviceSubClass ;
   __u8 bDeviceProtocol ;
   __u8 bMaxPacketSize0 ;
   __le16 idVendor ;
   __le16 idProduct ;
   __le16 bcdDevice ;
   __u8 iManufacturer ;
   __u8 iProduct ;
   __u8 iSerialNumber ;
   __u8 bNumConfigurations ;
} __attribute__((__packed__)) ;
struct usb_config_descriptor {
   __u8 bLength ;
   __u8 bDescriptorType ;
   __le16 wTotalLength ;
   __u8 bNumInterfaces ;
   __u8 bConfigurationValue ;
   __u8 iConfiguration ;
   __u8 bmAttributes ;
   __u8 bMaxPower ;
} __attribute__((__packed__)) ;
struct usb_interface_descriptor {
   __u8 bLength ;
   __u8 bDescriptorType ;
   __u8 bInterfaceNumber ;
   __u8 bAlternateSetting ;
   __u8 bNumEndpoints ;
   __u8 bInterfaceClass ;
   __u8 bInterfaceSubClass ;
   __u8 bInterfaceProtocol ;
   __u8 iInterface ;
} __attribute__((__packed__)) ;
struct usb_endpoint_descriptor {
   __u8 bLength ;
   __u8 bDescriptorType ;
   __u8 bEndpointAddress ;
   __u8 bmAttributes ;
   __le16 wMaxPacketSize ;
   __u8 bInterval ;
   __u8 bRefresh ;
   __u8 bSynchAddress ;
} __attribute__((__packed__)) ;
struct usb_ss_ep_comp_descriptor {
   __u8 bLength ;
   __u8 bDescriptorType ;
   __u8 bMaxBurst ;
   __u8 bmAttributes ;
   __u16 wBytesPerInterval ;
} __attribute__((__packed__)) ;
struct usb_interface_assoc_descriptor {
   __u8 bLength ;
   __u8 bDescriptorType ;
   __u8 bFirstInterface ;
   __u8 bInterfaceCount ;
   __u8 bFunctionClass ;
   __u8 bFunctionSubClass ;
   __u8 bFunctionProtocol ;
   __u8 iFunction ;
} __attribute__((__packed__)) ;
enum usb_device_speed {
    USB_SPEED_UNKNOWN = 0,
    USB_SPEED_LOW = 1,
    USB_SPEED_FULL = 2,
    USB_SPEED_HIGH = 3,
    USB_SPEED_VARIABLE = 4,
    USB_SPEED_SUPER = 5
} ;
enum usb_device_state {
    USB_STATE_NOTATTACHED = 0,
    USB_STATE_ATTACHED = 1,
    USB_STATE_POWERED = 2,
    USB_STATE_RECONNECTING = 3,
    USB_STATE_UNAUTHENTICATED = 4,
    USB_STATE_DEFAULT = 5,
    USB_STATE_ADDRESS = 6,
    USB_STATE_CONFIGURED = 7,
    USB_STATE_SUSPENDED = 8
} ;
struct usb_device;
struct wusb_dev;
struct ep_device;
struct usb_host_ss_ep_comp {
   struct usb_ss_ep_comp_descriptor desc ;
   unsigned char *extra ;
   int extralen ;
};
struct usb_host_endpoint {
   struct usb_endpoint_descriptor desc ;
   struct list_head urb_list ;
   void *hcpriv ;
   struct ep_device *ep_dev ;
   struct usb_host_ss_ep_comp *ss_ep_comp ;
   unsigned char *extra ;
   int extralen ;
   int enabled ;
};
struct usb_host_interface {
   struct usb_interface_descriptor desc ;
   struct usb_host_endpoint *endpoint ;
   char *string ;
   unsigned char *extra ;
   int extralen ;
};
enum usb_interface_condition {
    USB_INTERFACE_UNBOUND = 0,
    USB_INTERFACE_BINDING = 1,
    USB_INTERFACE_BOUND = 2,
    USB_INTERFACE_UNBINDING = 3
} ;
struct usb_interface {
   struct usb_host_interface *altsetting ;
   struct usb_host_interface *cur_altsetting ;
   unsigned int num_altsetting ;
   struct usb_interface_assoc_descriptor *intf_assoc ;
   int minor ;
   enum usb_interface_condition condition ;
   unsigned int is_active : 1 ;
   unsigned int sysfs_files_created : 1 ;
   unsigned int ep_devs_created : 1 ;
   unsigned int unregistering : 1 ;
   unsigned int needs_remote_wakeup : 1 ;
   unsigned int needs_altsetting0 : 1 ;
   unsigned int needs_binding : 1 ;
   unsigned int reset_running : 1 ;
   struct device dev ;
   struct device *usb_dev ;
   int pm_usage_cnt ;
   struct work_struct reset_ws ;
};
struct usb_interface_cache {
   unsigned int num_altsetting ;
   struct kref ref ;
   struct usb_host_interface altsetting[0] ;
};
struct usb_host_config {
   struct usb_config_descriptor desc ;
   char *string ;
   struct usb_interface_assoc_descriptor *intf_assoc[32 / 2] ;
   struct usb_interface *interface[32] ;
   struct usb_interface_cache *intf_cache[32] ;
   unsigned char *extra ;
   int extralen ;
};
struct usb_devmap {
   unsigned long devicemap[128UL / (8UL * sizeof(unsigned long ))] ;
};
struct mon_bus;
struct usb_bus {
   struct device *controller ;
   int busnum ;
   char const   *bus_name ;
   u8 uses_dma ;
   u8 otg_port ;
   unsigned int is_b_host : 1 ;
   unsigned int b_hnp_enable : 1 ;
   int devnum_next ;
   struct usb_devmap devmap ;
   struct usb_device *root_hub ;
   struct list_head bus_list ;
   int bandwidth_allocated ;
   int bandwidth_int_reqs ;
   int bandwidth_isoc_reqs ;
   struct dentry *usbfs_dentry ;
   struct mon_bus *mon_bus ;
   int monitored ;
};
struct usb_tt;
struct usb_device {
   int devnum ;
   char devpath[16] ;
   u32 route ;
   enum usb_device_state state ;
   enum usb_device_speed speed ;
   struct usb_tt *tt ;
   int ttport ;
   unsigned int toggle[2] ;
   struct usb_device *parent ;
   struct usb_bus *bus ;
   struct usb_host_endpoint ep0 ;
   struct device dev ;
   struct usb_device_descriptor descriptor ;
   struct usb_host_config *config ;
   struct usb_host_config *actconfig ;
   struct usb_host_endpoint *ep_in[16] ;
   struct usb_host_endpoint *ep_out[16] ;
   char **rawdescriptors ;
   unsigned short bus_mA ;
   u8 portnum ;
   u8 level ;
   unsigned int can_submit : 1 ;
   unsigned int discon_suspended : 1 ;
   unsigned int persist_enabled : 1 ;
   unsigned int have_langid : 1 ;
   unsigned int authorized : 1 ;
   unsigned int authenticated : 1 ;
   unsigned int wusb : 1 ;
   int string_langid ;
   char *product ;
   char *manufacturer ;
   char *serial ;
   struct list_head filelist ;
   struct device *usb_classdev ;
   struct dentry *usbfs_dentry ;
   int maxchild ;
   struct usb_device *children[31] ;
   int pm_usage_cnt ;
   u32 quirks ;
   atomic_t urbnum ;
   unsigned long active_duration ;
   struct delayed_work autosuspend ;
   struct work_struct autoresume ;
   struct mutex pm_mutex ;
   unsigned long last_busy ;
   int autosuspend_delay ;
   unsigned long connect_time ;
   unsigned int auto_pm : 1 ;
   unsigned int do_remote_wakeup : 1 ;
   unsigned int reset_resume : 1 ;
   unsigned int autosuspend_disabled : 1 ;
   unsigned int autoresume_disabled : 1 ;
   unsigned int skip_sys_resume : 1 ;
   struct wusb_dev *wusb_dev ;
   int slot_id ;
};
struct usb_iso_packet_descriptor {
   unsigned int offset ;
   unsigned int length ;
   unsigned int actual_length ;
   int status ;
};
struct urb;
struct usb_anchor {
   struct list_head urb_list ;
   wait_queue_head_t wait ;
   spinlock_t lock ;
   unsigned int poisoned : 1 ;
};
struct usb_sg_request;
struct urb {
   struct kref kref ;
   void *hcpriv ;
   atomic_t use_count ;
   atomic_t reject ;
   int unlinked ;
   struct list_head urb_list ;
   struct list_head anchor_list ;
   struct usb_anchor *anchor ;
   struct usb_device *dev ;
   struct usb_host_endpoint *ep ;
   unsigned int pipe ;
   int status ;
   unsigned int transfer_flags ;
   void *transfer_buffer ;
   dma_addr_t transfer_dma ;
   struct usb_sg_request *sg ;
   int num_sgs ;
   u32 transfer_buffer_length ;
   u32 actual_length ;
   unsigned char *setup_packet ;
   dma_addr_t setup_dma ;
   int start_frame ;
   int number_of_packets ;
   int interval ;
   int error_count ;
   void *context ;
   void (*complete)(struct urb * ) ;
   struct usb_iso_packet_descriptor iso_frame_desc[0] ;
};
struct usb_sg_request {
   int status ;
   size_t bytes ;
   spinlock_t lock ;
   struct usb_device *dev ;
   int pipe ;
   struct scatterlist *sg ;
   int nents ;
   int entries ;
   struct urb **urbs ;
   int count ;
   struct completion complete ;
};
void __builtin_prefetch(void const   *  , ...) ;
__inline static int test_and_set_bit(int nr , unsigned long volatile   *addr ) 
{ 
  int oldbit ;

  {
  __asm__  volatile   (".section .smp_locks,\"a\"\n"
                       " "
                       ".balign 8"
                       " "
                       "\n"
                       " "
                       ".quad"
                       " "
                       "661f\n"
                       ".previous\n"
                       "661:\n\tlock; "
                       "bts %2,%1\n\t"
                       "sbb %0,%0": "=r" (oldbit), "+m" (*((long volatile   *)addr)): "Ir" (nr): "memory");
  return (oldbit);
}
}
__inline static int test_and_clear_bit(int nr , unsigned long volatile   *addr ) 
{ 
  int oldbit ;

  {
  __asm__  volatile   (".section .smp_locks,\"a\"\n"
                       " "
                       ".balign 8"
                       " "
                       "\n"
                       " "
                       ".quad"
                       " "
                       "661f\n"
                       ".previous\n"
                       "661:\n\tlock; "
                       "btr %2,%1\n\t"
                       "sbb %0,%0": "=r" (oldbit), "+m" (*((long volatile   *)addr)): "Ir" (nr): "memory");
  return (oldbit);
}
}
extern int ( /* format attribute */  sprintf)(char *buf , char const   *fmt  , ...) ;
extern int ( /* format attribute */  printk)(char const   *fmt  , ...) ;
extern unsigned long strlen(char const   *s ) ;
extern char *strcpy(char *dest , char const   *src ) ;
extern void __list_add(struct list_head *new , struct list_head *prev , struct list_head *next ) ;
__inline static void list_add_tail(struct list_head *new , struct list_head *head ) 
{ 


  {
  __list_add(new, head->prev, head);
  return;
}
}
extern void list_del(struct list_head *entry ) ;
extern void _read_lock(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern unsigned long _write_lock_irqsave(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern void _read_unlock(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern void _write_unlock_irqrestore(rwlock_t *lock , unsigned long flags )  __attribute__((__section__(".spinlock.text"))) ;
__inline static char const   *kobject_name(struct kobject  const  *kobj ) 
{ 


  {
  return (kobj->name);
}
}
extern int ( /* format attribute */  add_uevent_var)(struct kobj_uevent_env *env ,
                                                     char const   *format  , ...) ;
extern int param_set_uint(char const   *val , struct kernel_param *kp ) ;
extern int param_get_uint(char *buffer , struct kernel_param *kp ) ;
int init_module(void) ;
void cleanup_module(void) ;
extern struct module __this_module ;
__inline static int test_channelmap(u_int nr , u_char *map ) 
{ 


  {
  if (nr <= (u_int )127) {
    return ((int )*(map + (nr >> 3)) & (1 << (nr & 7U)));
  } else {
    return (0);
  }
}
}
extern int ( __attribute__((__warn_unused_result__)) __class_register)(struct class *class ,
                                                                       struct lock_class_key *key ) ;
extern void class_unregister(struct class *class ) ;
extern int class_for_each_device(struct class *class , struct device *start , void *data ,
                                 int (*fn)(struct device *dev , void *data ) ) ;
extern struct device *class_find_device(struct class *class , struct device *start ,
                                        void *data , int (*match)(struct device * ,
                                                                  void * ) ) ;
__inline static char const   *dev_name(struct device  const  *dev ) 
{ 
  char const   *tmp ;

  {
  tmp = kobject_name(& dev->kobj);
  return (tmp);
}
}
extern int ( /* format attribute */  dev_set_name)(struct device *dev , char const   *name 
                                                   , ...) ;
__inline static void *dev_get_drvdata(struct device  const  *dev ) 
{ 


  {
  return (dev->driver_data);
}
}
__inline static void dev_set_drvdata(struct device *dev , void *data ) 
{ 


  {
  dev->driver_data = data;
  return;
}
}
extern void device_initialize(struct device *dev ) ;
extern int ( __attribute__((__warn_unused_result__)) device_add)(struct device *dev ) ;
extern void device_del(struct device *dev ) ;
extern void put_device(struct device *dev ) ;
int mISDN_register_device(struct mISDNdevice *dev , struct device *parent , char *name ) ;
void mISDN_unregister_device(struct mISDNdevice *dev ) ;
int mISDN_register_Bprotocol(struct Bprotocol *bp ) ;
void mISDN_unregister_Bprotocol(struct Bprotocol *bp ) ;
__inline static struct mISDNdevice *dev_to_mISDN(struct device *dev ) 
{ 
  void *tmp ;

  {
  if (dev) {
    tmp = dev_get_drvdata(dev);
    return (tmp);
  } else {
    return ((void *)0);
  }
}
}
struct mISDNdevice *get_mdevice(u_int id ) ;
int get_mdevice_count(void) ;
int create_stack(struct mISDNdevice *dev ) ;
void delete_stack(struct mISDNdevice *dev ) ;
void mISDN_initstack(u_int *dp ) ;
int misdn_sock_init(u_int *deb ) ;
void misdn_sock_cleanup(void) ;
u_int get_all_Bprotocols(void) ;
struct Bprotocol *get_Bprotocol4mask(u_int m ) ;
struct Bprotocol *get_Bprotocol4id(u_int id ) ;
int mISDN_inittimer(u_int *deb ) ;
void mISDN_timer_cleanup(void) ;
int l1_init(u_int *deb ) ;
void l1_cleanup(void) ;
int Isdnl2_Init(u_int *deb ) ;
void Isdnl2_cleanup(void) ;
void mISDN_init_clock(u_int *dp ) ;
static u_int debug  ;
static char const   __mod_author25[20]  __attribute__((__used__, __unused__, __section__(".modinfo")))  = 
  {      'a',      'u',      't',      'h', 
        'o',      'r',      '=',      'K', 
        'a',      'r',      's',      't', 
        'e',      'n',      ' ',      'K', 
        'e',      'i',      'l',      '\000'};
static char const   __mod_license26[12]  __attribute__((__used__, __unused__, __section__(".modinfo")))  = 
  {      'l',      'i',      'c',      'e', 
        'n',      's',      'e',      '=', 
        'G',      'P',      'L',      '\000'};
static char const   __param_str_debug[6]  = {      'd',      'e',      'b',      'u', 
        'g',      '\000'};
static struct kernel_param  const  __param_debug  __attribute__((__used__, __unused__,
__section__("__param"), __aligned__(sizeof(void *))))  =    {__param_str_debug, ((256 | 32) | 4) | 128, 0, & param_set_uint, & param_get_uint,
    {& debug}};
static char const   __mod_debugtype27[20]  __attribute__((__used__, __unused__, __section__(".modinfo")))  = 
  {      'p',      'a',      'r',      'm', 
        't',      'y',      'p',      'e', 
        '=',      'd',      'e',      'b', 
        'u',      'g',      ':',      'u', 
        'i',      'n',      't',      '\000'};
static u64 device_ids  ;
static struct list_head Bprotocols  =    {& Bprotocols, & Bprotocols};
static rwlock_t bp_lock  =    {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "bp_lock", 0, 0UL}};
static void mISDN_dev_release(struct device *dev ) 
{ 


  {
  return;
}
}
static ssize_t _show_id(struct device *dev , struct device_attribute *attr , char *buf ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;
  int tmp___0 ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  if (! mdev) {
    return (-19);
  } else {

  }
  tmp___0 = sprintf(buf, "%d\n", mdev->id);
  return (tmp___0);
}
}
static ssize_t _show_nrbchan(struct device *dev , struct device_attribute *attr ,
                             char *buf ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;
  int tmp___0 ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  if (! mdev) {
    return (-19);
  } else {

  }
  tmp___0 = sprintf(buf, "%d\n", mdev->nrbchan);
  return (tmp___0);
}
}
static ssize_t _show_d_protocols(struct device *dev , struct device_attribute *attr ,
                                 char *buf ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;
  int tmp___0 ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  if (! mdev) {
    return (-19);
  } else {

  }
  tmp___0 = sprintf(buf, "%d\n", mdev->Dprotocols);
  return (tmp___0);
}
}
static ssize_t _show_b_protocols(struct device *dev , struct device_attribute *attr ,
                                 char *buf ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;
  u_int tmp___0 ;
  int tmp___1 ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  if (! mdev) {
    return (-19);
  } else {

  }
  tmp___0 = get_all_Bprotocols();
  tmp___1 = sprintf(buf, "%d\n", mdev->Bprotocols | tmp___0);
  return (tmp___1);
}
}
static ssize_t _show_protocol(struct device *dev , struct device_attribute *attr ,
                              char *buf ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;
  int tmp___0 ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  if (! mdev) {
    return (-19);
  } else {

  }
  tmp___0 = sprintf(buf, "%d\n", mdev->D.protocol);
  return (tmp___0);
}
}
static ssize_t _show_name(struct device *dev , struct device_attribute *attr , char *buf ) 
{ 
  char const   *tmp ;
  unsigned long tmp___0 ;

  {
  tmp = dev_name(dev);
  strcpy(buf, tmp);
  tmp___0 = strlen(buf);
  return (tmp___0);
}
}
static ssize_t _show_channelmap(struct device *dev , struct device_attribute *attr ,
                                char *buf ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;
  char *bp ;
  int i ;
  char *tmp___0 ;
  int tmp___1 ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  bp = buf;
  i = 0;
  while (1) {
    if ((u_int )i <= mdev->nrbchan) {

    } else {
      break;
    }
    tmp___0 = bp;
    bp = bp + 1;
    tmp___1 = test_channelmap(i, mdev->channelmap);
    *tmp___0 = tmp___1 ? '1' : '0';
    i = i + 1;
  }
  return (bp - buf);
}
}
static struct device_attribute mISDN_dev_attrs[7]  = {      {{"id", 0, (256 | 32) | 4}, & _show_id, (void *)0}, 
        {{"d_protocols", 0, (256 | 32) | 4}, & _show_d_protocols, (void *)0}, 
        {{"b_protocols", 0, (256 | 32) | 4}, & _show_b_protocols, (void *)0}, 
        {{"protocol", 0, (256 | 32) | 4}, & _show_protocol, (void *)0}, 
        {{"channelmap", 0, (256 | 32) | 4}, & _show_channelmap, (void *)0}, 
        {{"nrbchan", 0, (256 | 32) | 4}, & _show_nrbchan, (void *)0}, 
        {{"name", 0, (256 | 32) | 4}, & _show_name, (void *)0}};
static int mISDN_uevent(struct device *dev , struct kobj_uevent_env *env ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;
  int tmp___0 ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  if (! mdev) {
    return (0);
  } else {

  }
  tmp___0 = add_uevent_var(env, "nchans=%d", mdev->nrbchan);
  if (tmp___0) {
    return (-12);
  } else {

  }
  return (0);
}
}
static void mISDN_class_release(struct class *cls ) 
{ 


  {
  return;
}
}
static struct class mISDN_class  = 
     {"mISDN", & __this_module, 0, mISDN_dev_attrs, 0, & mISDN_uevent, 0, & mISDN_class_release,
    & mISDN_dev_release, 0, 0, 0, 0};
static int _get_mdevice(struct device *dev , void *id ) 
{ 
  struct mISDNdevice *mdev ;
  struct mISDNdevice *tmp ;

  {
  tmp = dev_to_mISDN(dev);
  mdev = tmp;
  if (! mdev) {
    return (0);
  } else {

  }
  if (mdev->id != *((u_int *)id)) {
    return (0);
  } else {

  }
  return (1);
}
}
struct mISDNdevice *get_mdevice(u_int id ) 
{ 
  struct device *tmp ;
  struct mISDNdevice *tmp___0 ;

  {
  tmp = class_find_device(& mISDN_class, (void *)0, & id, & _get_mdevice);
  tmp___0 = dev_to_mISDN(tmp);
  return (tmp___0);
}
}
static int _get_mdevice_count(struct device *dev , void *cnt ) 
{ 


  {
  *((int *)cnt) = *((int *)cnt) + 1;
  return (0);
}
}
int get_mdevice_count(void) 
{ 
  int cnt ;

  {
  cnt = 0;
  class_for_each_device(& mISDN_class, (void *)0, & cnt, & _get_mdevice_count);
  return (cnt);
}
}
static int get_free_devid(void) 
{ 
  u_int i ;
  int tmp ;

  {
  i = 0;
  while (1) {
    if (i <= (u_int )63) {

    } else {
      break;
    }
    tmp = test_and_set_bit(i, (u_long *)(& device_ids));
    if (tmp) {

    } else {
      break;
    }
    i = i + (u_int )1;
  }
  if (i > (u_int )63) {
    return (-16);
  } else {

  }
  return (i);
}
}
int mISDN_register_device(struct mISDNdevice *dev , struct device *parent , char *name ) 
{ 
  int err ;
  char const   *tmp ;

  {
  err = get_free_devid();
  if (err < 0) {
    goto error1;
  } else {

  }
  dev->id = err;
  device_initialize(& dev->dev);
  if (name && *(name + 0)) {
    dev_set_name(& dev->dev, "%s", name);
  } else {
    dev_set_name(& dev->dev, "mISDN%d", dev->id);
  }
  if (debug & 255U) {
    tmp = dev_name(& dev->dev);
    printk("<7>mISDN_register %s %d\n", tmp, dev->id);
  } else {

  }
  err = create_stack(dev);
  if (err) {
    goto error1;
  } else {

  }
  dev->dev.class = & mISDN_class;
  dev->dev.platform_data = dev;
  dev->dev.parent = parent;
  dev_set_drvdata(& dev->dev, dev);
  err = device_add(& dev->dev);
  if (err) {
    goto error3;
  } else {

  }
  return (0);
  error3: 
  delete_stack(dev);
  return (err);
  error1: 
  return (err);
}
}
extern void *__crc_mISDN_register_device  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_register_device  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_register_device);
static char const   __kstrtab_mISDN_register_device[22]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'r',      'e', 
        'g',      'i',      's',      't', 
        'e',      'r',      '_',      'd', 
        'e',      'v',      'i',      'c', 
        'e',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_register_device  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_register_device), __kstrtab_mISDN_register_device};
void mISDN_unregister_device(struct mISDNdevice *dev ) 
{ 
  char const   *tmp ;

  {
  if (debug & 255U) {
    tmp = dev_name(& dev->dev);
    printk("<7>mISDN_unregister %s %d\n", tmp, dev->id);
  } else {

  }
  device_del(& dev->dev);
  dev_set_drvdata(& dev->dev, (void *)0);
  test_and_clear_bit(dev->id, (u_long *)(& device_ids));
  delete_stack(dev);
  put_device(& dev->dev);
  return;
}
}
extern void *__crc_mISDN_unregister_device  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_unregister_device  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_unregister_device);
static char const   __kstrtab_mISDN_unregister_device[24]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'u',      'n', 
        'r',      'e',      'g',      'i', 
        's',      't',      'e',      'r', 
        '_',      'd',      'e',      'v', 
        'i',      'c',      'e',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_unregister_device  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_unregister_device), __kstrtab_mISDN_unregister_device};
u_int get_all_Bprotocols(void) 
{ 
  struct Bprotocol *bp ;
  u_int m ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;

  {
  m = 0;
  _read_lock(& bp_lock);
  __mptr = Bprotocols.next;
  bp = (struct Bprotocol *)((char *)__mptr - (unsigned int )(& ((struct Bprotocol *)0)->list));
  while (1) {
    __builtin_prefetch(bp->list.next);
    if ((unsigned long )(& bp->list) != (unsigned long )(& Bprotocols)) {

    } else {
      break;
    }
    m = m | bp->Bprotocols;
    __mptr___0 = bp->list.next;
    bp = (struct Bprotocol *)((char *)__mptr___0 - (unsigned int )(& ((struct Bprotocol *)0)->list));
  }
  _read_unlock(& bp_lock);
  return (m);
}
}
struct Bprotocol *get_Bprotocol4mask(u_int m ) 
{ 
  struct Bprotocol *bp ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;

  {
  _read_lock(& bp_lock);
  __mptr = Bprotocols.next;
  bp = (struct Bprotocol *)((char *)__mptr - (unsigned int )(& ((struct Bprotocol *)0)->list));
  while (1) {
    __builtin_prefetch(bp->list.next);
    if ((unsigned long )(& bp->list) != (unsigned long )(& Bprotocols)) {

    } else {
      break;
    }
    if (bp->Bprotocols & m) {
      _read_unlock(& bp_lock);
      return (bp);
    } else {

    }
    __mptr___0 = bp->list.next;
    bp = (struct Bprotocol *)((char *)__mptr___0 - (unsigned int )(& ((struct Bprotocol *)0)->list));
  }
  _read_unlock(& bp_lock);
  return ((void *)0);
}
}
struct Bprotocol *get_Bprotocol4id(u_int id ) 
{ 
  u_int m ;
  struct Bprotocol *tmp ;

  {
  if (id < (u_int )32 || id > (u_int )63) {
    printk("<4>%s id not in range  %d\n", "get_Bprotocol4id", id);
    return ((void *)0);
  } else {

  }
  m = 1 << (id & 31U);
  tmp = get_Bprotocol4mask(m);
  return (tmp);
}
}
int mISDN_register_Bprotocol(struct Bprotocol *bp ) 
{ 
  u_long flags ;
  struct Bprotocol *old ;

  {
  if (debug & 255U) {
    printk("<7>%s: %s/%x\n", "mISDN_register_Bprotocol", bp->name, bp->Bprotocols);
  } else {

  }
  old = get_Bprotocol4mask(bp->Bprotocols);
  if (old) {
    printk("<4>register duplicate protocol old %s/%x new %s/%x\n", old->name, old->Bprotocols,
           bp->name, bp->Bprotocols);
    return (-16);
  } else {

  }
  while (1) {
    flags = _write_lock_irqsave(& bp_lock);
    break;
  }
  list_add_tail(& bp->list, & Bprotocols);
  while (1) {
    _write_unlock_irqrestore(& bp_lock, flags);
    break;
  }
  return (0);
}
}
extern void *__crc_mISDN_register_Bprotocol  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_register_Bprotocol  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_register_Bprotocol);
static char const   __kstrtab_mISDN_register_Bprotocol[25]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'r',      'e', 
        'g',      'i',      's',      't', 
        'e',      'r',      '_',      'B', 
        'p',      'r',      'o',      't', 
        'o',      'c',      'o',      'l', 
        '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_register_Bprotocol  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_register_Bprotocol), __kstrtab_mISDN_register_Bprotocol};
void mISDN_unregister_Bprotocol(struct Bprotocol *bp ) 
{ 
  u_long flags ;

  {
  if (debug & 255U) {
    printk("<7>%s: %s/%x\n", "mISDN_unregister_Bprotocol", bp->name, bp->Bprotocols);
  } else {

  }
  while (1) {
    flags = _write_lock_irqsave(& bp_lock);
    break;
  }
  list_del(& bp->list);
  while (1) {
    _write_unlock_irqrestore(& bp_lock, flags);
    break;
  }
  return;
}
}
extern void *__crc_mISDN_unregister_Bprotocol  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_unregister_Bprotocol  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_unregister_Bprotocol);
static char const   __kstrtab_mISDN_unregister_Bprotocol[27]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'u',      'n', 
        'r',      'e',      'g',      'i', 
        's',      't',      'e',      'r', 
        '_',      'B',      'p',      'r', 
        'o',      't',      'o',      'c', 
        'o',      'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_unregister_Bprotocol  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_unregister_Bprotocol), __kstrtab_mISDN_unregister_Bprotocol};
static struct lock_class_key __key___3  ;
static int mISDNInit(void) 
{ 
  int err ;
  int tmp ;

  {
  printk("<6>Modular ISDN core version %d.%d.%d\n", 1, 1, 21);
  mISDN_init_clock(& debug);
  mISDN_initstack(& debug);
  tmp = __class_register(& mISDN_class, & __key___3);
  err = tmp;
  if (err) {
    goto error1;
  } else {

  }
  err = mISDN_inittimer(& debug);
  if (err) {
    goto error2;
  } else {

  }
  err = l1_init(& debug);
  if (err) {
    goto error3;
  } else {

  }
  err = Isdnl2_Init(& debug);
  if (err) {
    goto error4;
  } else {

  }
  err = misdn_sock_init(& debug);
  if (err) {
    goto error5;
  } else {

  }
  return (0);
  error5: 
  Isdnl2_cleanup();
  error4: 
  l1_cleanup();
  error3: 
  mISDN_timer_cleanup();
  error2: 
  class_unregister(& mISDN_class);
  error1: 
  return (err);
}
}
static void mISDN_cleanup(void) 
{ 


  {
  misdn_sock_cleanup();
  Isdnl2_cleanup();
  l1_cleanup();
  mISDN_timer_cleanup();
  class_unregister(& mISDN_class);
  printk("<7>mISDNcore unloaded\n");
  return;
}
}
int init_module(void) 
{ 
  int tmp ;

  {
  tmp = mISDNInit();
  return (tmp);
}
}
void cleanup_module(void) 
{ 


  {
  mISDN_cleanup();
  return;
}
}
void ldv_check_final_state(void) ;
extern void ldv_initialize(void) ;
extern void ldv_handler_precall(void) ;
extern int nondet_int(void) ;
int LDV_IN_INTERRUPT  ;
int main(void) 
{ 
  struct device *var_group1 ;
  struct kobj_uevent_env *var_group2 ;
  struct class *var_group3 ;
  int tmp ;
  int tmp___0 ;
  int tmp___1 ;

  {
  LDV_IN_INTERRUPT = 1;
  ldv_initialize();
  ldv_handler_precall();
  tmp = mISDNInit();
  if (tmp) {
    goto ldv_final;
  } else {

  }
  while (1) {
    tmp___1 = nondet_int();
    if (tmp___1) {

    } else {
      break;
    }
    tmp___0 = nondet_int();
    switch (tmp___0) {
    case 0: 
    ldv_handler_precall();
    mISDN_uevent(var_group1, var_group2);
    break;
    case 1: 
    ldv_handler_precall();
    mISDN_dev_release(var_group1);
    break;
    case 2: 
    ldv_handler_precall();
    mISDN_class_release(var_group3);
    break;
    default: 
    break;
    }
  }
  ldv_handler_precall();
  mISDN_cleanup();
  ldv_final: 
  ldv_check_final_state();
  return 0;
}
}
long ldv__builtin_expect(long exp , long c ) ;
extern  __attribute__((__noreturn__)) int ____ilog2_NaN(void)  __attribute__((__const__)) ;
__inline static int get_order(unsigned long size )  __attribute__((__const__)) ;
__inline static int get_order(unsigned long size ) 
{ 
  int order ;

  {
  size = (size - 1UL) >> (12 - 1);
  order = -1;
  while (1) {
    size = size >> 1;
    order = order + 1;
    if (size) {

    } else {
      break;
    }
  }
  return (order);
}
}
extern unsigned long __get_free_pages(gfp_t gfp_mask , unsigned int order ) ;
extern void kfree(void const   * ) ;
extern unsigned long volatile   jiffies  __attribute__((__section__(".data"))) ;
extern void init_timer_key(struct timer_list *timer , char const   *name , struct lock_class_key *key ) ;
__inline static int timer_pending(struct timer_list  const  *timer ) 
{ 


  {
  return ((unsigned long )timer->entry.next != (unsigned long )((void *)0));
}
}
extern int del_timer(struct timer_list *timer ) ;
extern void add_timer(struct timer_list *timer ) ;
extern struct tracepoint __tracepoint_kmalloc ;
__inline static void trace_kmalloc(unsigned long call_site , void const   *ptr , size_t bytes_req ,
                                   size_t bytes_alloc , gfp_t gfp_flags ) 
{ 
  void **it_func ;
  void **_________p1 ;
  long tmp ;

  {
  tmp = ldv__builtin_expect(! (! __tracepoint_kmalloc.state), 0);
  if (tmp) {
    while (1) {
      while (1) {
        break;
      }
      _________p1 = *((void ** volatile  *)(& __tracepoint_kmalloc.funcs));
      while (1) {
        break;
      }
      it_func = _________p1;
      if (it_func) {
        while (1) {
          (*((void (*)(unsigned long call_site , void const   *ptr , size_t bytes_req ,
                       size_t bytes_alloc , gfp_t gfp_flags ))*it_func))(call_site,
                                                                         ptr, bytes_req,
                                                                         bytes_alloc,
                                                                         gfp_flags);
          it_func = it_func + 1;
          if (*it_func) {

          } else {
            break;
          }
        }
      } else {

      }
      while (1) {
        break;
      }
      break;
    }
  } else {

  }
  return;
}
}
extern void kmemleak_alloc(void const   *ptr , size_t size , int min_count , gfp_t gfp ) ;
extern struct kmem_cache kmalloc_caches[12 + 2] ;
__inline static int ( __attribute__((__always_inline__)) kmalloc_index)(size_t size ) 
{ 
  int tmp ;
  int tmp___0 ;
  int tmp___1 ;
  int tmp___2 ;
  int tmp___3 ;
  int tmp___4 ;
  int tmp___5 ;
  int tmp___6 ;
  int tmp___7 ;
  int tmp___8 ;
  int tmp___9 ;
  int tmp___10 ;
  int tmp___11 ;
  int tmp___12 ;
  int tmp___13 ;
  int tmp___14 ;
  int tmp___15 ;
  int tmp___16 ;
  int tmp___17 ;
  int tmp___18 ;
  int tmp___19 ;
  int tmp___20 ;
  int tmp___21 ;
  int tmp___22 ;
  int tmp___23 ;
  int tmp___24 ;
  int tmp___25 ;
  int tmp___26 ;
  int tmp___27 ;
  int tmp___28 ;
  int tmp___29 ;
  int tmp___30 ;
  int tmp___31 ;
  int tmp___32 ;
  int tmp___33 ;
  int tmp___34 ;
  int tmp___35 ;
  int tmp___36 ;
  int tmp___37 ;
  int tmp___38 ;
  int tmp___39 ;
  int tmp___40 ;
  int tmp___41 ;
  int tmp___42 ;
  int tmp___43 ;
  int tmp___44 ;
  int tmp___45 ;
  int tmp___46 ;
  int tmp___47 ;
  int tmp___48 ;
  int tmp___49 ;
  int tmp___50 ;
  int tmp___51 ;
  int tmp___52 ;
  int tmp___53 ;
  int tmp___54 ;
  int tmp___55 ;
  int tmp___56 ;
  int tmp___57 ;
  int tmp___58 ;
  int tmp___59 ;
  int tmp___60 ;
  int tmp___61 ;
  int tmp___62 ;
  int tmp___63 ;
  int tmp___64 ;
  int tmp___65 ;

  {
  if (! size) {
    return (0);
  } else {

  }
  if (size <= (size_t )8) {
    if (8 < 1) {
      tmp = ____ilog2_NaN();
      tmp___65 = tmp;
    } else {
      if (8ULL & (1ULL << 63)) {
        tmp___64 = 63;
      } else {
        if (8ULL & (1ULL << 62)) {
          tmp___63 = 62;
        } else {
          if (8ULL & (1ULL << 61)) {
            tmp___62 = 61;
          } else {
            if (8ULL & (1ULL << 60)) {
              tmp___61 = 60;
            } else {
              if (8ULL & (1ULL << 59)) {
                tmp___60 = 59;
              } else {
                if (8ULL & (1ULL << 58)) {
                  tmp___59 = 58;
                } else {
                  if (8ULL & (1ULL << 57)) {
                    tmp___58 = 57;
                  } else {
                    if (8ULL & (1ULL << 56)) {
                      tmp___57 = 56;
                    } else {
                      if (8ULL & (1ULL << 55)) {
                        tmp___56 = 55;
                      } else {
                        if (8ULL & (1ULL << 54)) {
                          tmp___55 = 54;
                        } else {
                          if (8ULL & (1ULL << 53)) {
                            tmp___54 = 53;
                          } else {
                            if (8ULL & (1ULL << 52)) {
                              tmp___53 = 52;
                            } else {
                              if (8ULL & (1ULL << 51)) {
                                tmp___52 = 51;
                              } else {
                                if (8ULL & (1ULL << 50)) {
                                  tmp___51 = 50;
                                } else {
                                  if (8ULL & (1ULL << 49)) {
                                    tmp___50 = 49;
                                  } else {
                                    if (8ULL & (1ULL << 48)) {
                                      tmp___49 = 48;
                                    } else {
                                      if (8ULL & (1ULL << 47)) {
                                        tmp___48 = 47;
                                      } else {
                                        if (8ULL & (1ULL << 46)) {
                                          tmp___47 = 46;
                                        } else {
                                          if (8ULL & (1ULL << 45)) {
                                            tmp___46 = 45;
                                          } else {
                                            if (8ULL & (1ULL << 44)) {
                                              tmp___45 = 44;
                                            } else {
                                              if (8ULL & (1ULL << 43)) {
                                                tmp___44 = 43;
                                              } else {
                                                if (8ULL & (1ULL << 42)) {
                                                  tmp___43 = 42;
                                                } else {
                                                  if (8ULL & (1ULL << 41)) {
                                                    tmp___42 = 41;
                                                  } else {
                                                    if (8ULL & (1ULL << 40)) {
                                                      tmp___41 = 40;
                                                    } else {
                                                      if (8ULL & (1ULL << 39)) {
                                                        tmp___40 = 39;
                                                      } else {
                                                        if (8ULL & (1ULL << 38)) {
                                                          tmp___39 = 38;
                                                        } else {
                                                          if (8ULL & (1ULL << 37)) {
                                                            tmp___38 = 37;
                                                          } else {
                                                            if (8ULL & (1ULL << 36)) {
                                                              tmp___37 = 36;
                                                            } else {
                                                              if (8ULL & (1ULL << 35)) {
                                                                tmp___36 = 35;
                                                              } else {
                                                                if (8ULL & (1ULL << 34)) {
                                                                  tmp___35 = 34;
                                                                } else {
                                                                  if (8ULL & (1ULL << 33)) {
                                                                    tmp___34 = 33;
                                                                  } else {
                                                                    if (8ULL & (1ULL << 32)) {
                                                                      tmp___33 = 32;
                                                                    } else {
                                                                      if (8ULL & (1ULL << 31)) {
                                                                        tmp___32 = 31;
                                                                      } else {
                                                                        if (8ULL & (1ULL << 30)) {
                                                                          tmp___31 = 30;
                                                                        } else {
                                                                          if (8ULL & (1ULL << 29)) {
                                                                            tmp___30 = 29;
                                                                          } else {
                                                                            if (8ULL & (1ULL << 28)) {
                                                                              tmp___29 = 28;
                                                                            } else {
                                                                              if (8ULL & (1ULL << 27)) {
                                                                                tmp___28 = 27;
                                                                              } else {
                                                                                if (8ULL & (1ULL << 26)) {
                                                                                  tmp___27 = 26;
                                                                                } else {
                                                                                  if (8ULL & (1ULL << 25)) {
                                                                                    tmp___26 = 25;
                                                                                  } else {
                                                                                    if (8ULL & (1ULL << 24)) {
                                                                                      tmp___25 = 24;
                                                                                    } else {
                                                                                      if (8ULL & (1ULL << 23)) {
                                                                                        tmp___24 = 23;
                                                                                      } else {
                                                                                        if (8ULL & (1ULL << 22)) {
                                                                                          tmp___23 = 22;
                                                                                        } else {
                                                                                          if (8ULL & (1ULL << 21)) {
                                                                                            tmp___22 = 21;
                                                                                          } else {
                                                                                            if (8ULL & (1ULL << 20)) {
                                                                                              tmp___21 = 20;
                                                                                            } else {
                                                                                              if (8ULL & (1ULL << 19)) {
                                                                                                tmp___20 = 19;
                                                                                              } else {
                                                                                                if (8ULL & (1ULL << 18)) {
                                                                                                  tmp___19 = 18;
                                                                                                } else {
                                                                                                  if (8ULL & (1ULL << 17)) {
                                                                                                    tmp___18 = 17;
                                                                                                  } else {
                                                                                                    if (8ULL & (1ULL << 16)) {
                                                                                                      tmp___17 = 16;
                                                                                                    } else {
                                                                                                      if (8ULL & (1ULL << 15)) {
                                                                                                        tmp___16 = 15;
                                                                                                      } else {
                                                                                                        if (8ULL & (1ULL << 14)) {
                                                                                                          tmp___15 = 14;
                                                                                                        } else {
                                                                                                          if (8ULL & (1ULL << 13)) {
                                                                                                            tmp___14 = 13;
                                                                                                          } else {
                                                                                                            if (8ULL & (1ULL << 12)) {
                                                                                                              tmp___13 = 12;
                                                                                                            } else {
                                                                                                              if (8ULL & (1ULL << 11)) {
                                                                                                                tmp___12 = 11;
                                                                                                              } else {
                                                                                                                if (8ULL & (1ULL << 10)) {
                                                                                                                  tmp___11 = 10;
                                                                                                                } else {
                                                                                                                  if (8ULL & (1ULL << 9)) {
                                                                                                                    tmp___10 = 9;
                                                                                                                  } else {
                                                                                                                    if (8ULL & (1ULL << 8)) {
                                                                                                                      tmp___9 = 8;
                                                                                                                    } else {
                                                                                                                      if (8ULL & (1ULL << 7)) {
                                                                                                                        tmp___8 = 7;
                                                                                                                      } else {
                                                                                                                        if (8ULL & (1ULL << 6)) {
                                                                                                                          tmp___7 = 6;
                                                                                                                        } else {
                                                                                                                          if (8ULL & (1ULL << 5)) {
                                                                                                                            tmp___6 = 5;
                                                                                                                          } else {
                                                                                                                            if (8ULL & (1ULL << 4)) {
                                                                                                                              tmp___5 = 4;
                                                                                                                            } else {
                                                                                                                              if (8ULL & (1ULL << 3)) {
                                                                                                                                tmp___4 = 3;
                                                                                                                              } else {
                                                                                                                                if (8ULL & (1ULL << 2)) {
                                                                                                                                  tmp___3 = 2;
                                                                                                                                } else {
                                                                                                                                  if (8ULL & (1ULL << 1)) {
                                                                                                                                    tmp___2 = 1;
                                                                                                                                  } else {
                                                                                                                                    if (8ULL & (1ULL << 0)) {
                                                                                                                                      tmp___1 = 0;
                                                                                                                                    } else {
                                                                                                                                      tmp___0 = ____ilog2_NaN();
                                                                                                                                      tmp___1 = tmp___0;
                                                                                                                                    }
                                                                                                                                    tmp___2 = tmp___1;
                                                                                                                                  }
                                                                                                                                  tmp___3 = tmp___2;
                                                                                                                                }
                                                                                                                                tmp___4 = tmp___3;
                                                                                                                              }
                                                                                                                              tmp___5 = tmp___4;
                                                                                                                            }
                                                                                                                            tmp___6 = tmp___5;
                                                                                                                          }
                                                                                                                          tmp___7 = tmp___6;
                                                                                                                        }
                                                                                                                        tmp___8 = tmp___7;
                                                                                                                      }
                                                                                                                      tmp___9 = tmp___8;
                                                                                                                    }
                                                                                                                    tmp___10 = tmp___9;
                                                                                                                  }
                                                                                                                  tmp___11 = tmp___10;
                                                                                                                }
                                                                                                                tmp___12 = tmp___11;
                                                                                                              }
                                                                                                              tmp___13 = tmp___12;
                                                                                                            }
                                                                                                            tmp___14 = tmp___13;
                                                                                                          }
                                                                                                          tmp___15 = tmp___14;
                                                                                                        }
                                                                                                        tmp___16 = tmp___15;
                                                                                                      }
                                                                                                      tmp___17 = tmp___16;
                                                                                                    }
                                                                                                    tmp___18 = tmp___17;
                                                                                                  }
                                                                                                  tmp___19 = tmp___18;
                                                                                                }
                                                                                                tmp___20 = tmp___19;
                                                                                              }
                                                                                              tmp___21 = tmp___20;
                                                                                            }
                                                                                            tmp___22 = tmp___21;
                                                                                          }
                                                                                          tmp___23 = tmp___22;
                                                                                        }
                                                                                        tmp___24 = tmp___23;
                                                                                      }
                                                                                      tmp___25 = tmp___24;
                                                                                    }
                                                                                    tmp___26 = tmp___25;
                                                                                  }
                                                                                  tmp___27 = tmp___26;
                                                                                }
                                                                                tmp___28 = tmp___27;
                                                                              }
                                                                              tmp___29 = tmp___28;
                                                                            }
                                                                            tmp___30 = tmp___29;
                                                                          }
                                                                          tmp___31 = tmp___30;
                                                                        }
                                                                        tmp___32 = tmp___31;
                                                                      }
                                                                      tmp___33 = tmp___32;
                                                                    }
                                                                    tmp___34 = tmp___33;
                                                                  }
                                                                  tmp___35 = tmp___34;
                                                                }
                                                                tmp___36 = tmp___35;
                                                              }
                                                              tmp___37 = tmp___36;
                                                            }
                                                            tmp___38 = tmp___37;
                                                          }
                                                          tmp___39 = tmp___38;
                                                        }
                                                        tmp___40 = tmp___39;
                                                      }
                                                      tmp___41 = tmp___40;
                                                    }
                                                    tmp___42 = tmp___41;
                                                  }
                                                  tmp___43 = tmp___42;
                                                }
                                                tmp___44 = tmp___43;
                                              }
                                              tmp___45 = tmp___44;
                                            }
                                            tmp___46 = tmp___45;
                                          }
                                          tmp___47 = tmp___46;
                                        }
                                        tmp___48 = tmp___47;
                                      }
                                      tmp___49 = tmp___48;
                                    }
                                    tmp___50 = tmp___49;
                                  }
                                  tmp___51 = tmp___50;
                                }
                                tmp___52 = tmp___51;
                              }
                              tmp___53 = tmp___52;
                            }
                            tmp___54 = tmp___53;
                          }
                          tmp___55 = tmp___54;
                        }
                        tmp___56 = tmp___55;
                      }
                      tmp___57 = tmp___56;
                    }
                    tmp___58 = tmp___57;
                  }
                  tmp___59 = tmp___58;
                }
                tmp___60 = tmp___59;
              }
              tmp___61 = tmp___60;
            }
            tmp___62 = tmp___61;
          }
          tmp___63 = tmp___62;
        }
        tmp___64 = tmp___63;
      }
      tmp___65 = tmp___64;
    }
    return (tmp___65);
  } else {

  }
  if (size > (size_t )64 && size <= (size_t )96) {
    return (1);
  } else {

  }
  if (size > (size_t )128 && size <= (size_t )192) {
    return (2);
  } else {

  }
  if (size <= (size_t )8) {
    return (3);
  } else {

  }
  if (size <= (size_t )16) {
    return (4);
  } else {

  }
  if (size <= (size_t )32) {
    return (5);
  } else {

  }
  if (size <= (size_t )64) {
    return (6);
  } else {

  }
  if (size <= (size_t )128) {
    return (7);
  } else {

  }
  if (size <= (size_t )256) {
    return (8);
  } else {

  }
  if (size <= (size_t )512) {
    return (9);
  } else {

  }
  if (size <= (size_t )1024) {
    return (10);
  } else {

  }
  if (size <= (size_t )(2 * 1024)) {
    return (11);
  } else {

  }
  if (size <= (size_t )(4 * 1024)) {
    return (12);
  } else {

  }
  if (size <= (size_t )(8 * 1024)) {
    return (13);
  } else {

  }
  if (size <= (size_t )(16 * 1024)) {
    return (14);
  } else {

  }
  if (size <= (size_t )(32 * 1024)) {
    return (15);
  } else {

  }
  if (size <= (size_t )(64 * 1024)) {
    return (16);
  } else {

  }
  if (size <= (size_t )(128 * 1024)) {
    return (17);
  } else {

  }
  if (size <= (size_t )(256 * 1024)) {
    return (18);
  } else {

  }
  if (size <= (size_t )(512 * 1024)) {
    return (19);
  } else {

  }
  if (size <= (size_t )(1024 * 1024)) {
    return (20);
  } else {

  }
  if (size <= (size_t )((2 * 1024) * 1024)) {
    return (21);
  } else {

  }
  return (-1);
}
}
__inline static struct kmem_cache *( __attribute__((__always_inline__)) kmalloc_slab)(size_t size ) 
{ 
  int index ;
  int tmp ;

  {
  tmp = kmalloc_index(size);
  index = tmp;
  if (index == 0) {
    return ((void *)0);
  } else {

  }
  return (& kmalloc_caches[index]);
}
}
extern void *__kmalloc(size_t size , gfp_t flags ) ;
extern void *kmem_cache_alloc_notrace(struct kmem_cache *s , gfp_t gfpflags ) ;
__inline static void *( __attribute__((__always_inline__)) kmalloc_large)(size_t size ,
                                                                          gfp_t flags ) 
{ 
  unsigned int order ;
  int tmp ;
  void *ret ;
  unsigned long tmp___0 ;

  {
  tmp = get_order(size);
  order = tmp;
  tmp___0 = __get_free_pages(flags | 16384U, order);
  ret = (void *)tmp___0;
  kmemleak_alloc(ret, size, 1, flags);
  trace_kmalloc((unsigned long )((void *)0), ret, size, (1UL << 12) << order, flags);
  return (ret);
}
}
__inline static void *( __attribute__((__always_inline__)) kmalloc)(size_t size ,
                                                                    gfp_t flags ) 
{ 
  void *ret ;
  void *tmp ;
  struct kmem_cache *s ;
  struct kmem_cache *tmp___0 ;
  void *tmp___1 ;

  {
  if (0) {
    if (size > 2UL * (1UL << 12)) {
      tmp = kmalloc_large(size, flags);
      return (tmp);
    } else {

    }
    if (! (flags & 1U)) {
      tmp___0 = kmalloc_slab(size);
      s = tmp___0;
      if (! s) {
        return ((void *)16);
      } else {

      }
      ret = kmem_cache_alloc_notrace(s, flags);
      trace_kmalloc((unsigned long )((void *)0), ret, size, s->size, flags);
      return (ret);
    } else {

    }
  } else {

  }
  tmp___1 = __kmalloc(size, flags);
  return (tmp___1);
}
}
__inline static void *kzalloc(size_t size , gfp_t flags ) 
{ 
  void *tmp ;

  {
  tmp = kmalloc(size, flags | 32768U);
  return (tmp);
}
}
void mISDN_FsmNew(struct Fsm *fsm , struct FsmNode *fnlist , int fncount ) ;
void mISDN_FsmFree(struct Fsm *fsm ) ;
int mISDN_FsmEvent(struct FsmInst *fi , int event , void *arg ) ;
void mISDN_FsmChangeState(struct FsmInst *fi , int newstate ) ;
void mISDN_FsmInitTimer(struct FsmInst *fi , struct FsmTimer *ft ) ;
int mISDN_FsmAddTimer(struct FsmTimer *ft , int millisec , int event , void *arg ,
                      int where ) ;
void mISDN_FsmRestartTimer(struct FsmTimer *ft , int millisec , int event , void *arg ,
                           int where ) ;
void mISDN_FsmDelTimer(struct FsmTimer *ft , int where ) ;
void mISDN_FsmNew(struct Fsm *fsm , struct FsmNode *fnlist , int fncount ) 
{ 
  int i ;
  void *tmp ;

  {
  tmp = kzalloc((sizeof(void (*)(struct FsmInst * , int  , void * )) * (unsigned long )fsm->state_count) * (unsigned long )fsm->event_count,
                (16U | 64U) | 128U);
  fsm->jumpmatrix = tmp;
  i = 0;
  while (1) {
    if (i < fncount) {

    } else {
      break;
    }
    if ((fnlist + i)->state >= fsm->state_count || (fnlist + i)->event >= fsm->event_count) {
      printk("<3>mISDN_FsmNew Error: %d st(%ld/%ld) ev(%ld/%ld)\n", i, (long )(fnlist + i)->state,
             (long )fsm->state_count, (long )(fnlist + i)->event, (long )fsm->event_count);
    } else {
      *(fsm->jumpmatrix + (fsm->state_count * (fnlist + i)->event + (fnlist + i)->state)) = (fnlist + i)->routine;
    }
    i = i + 1;
  }
  return;
}
}
extern void *__crc_mISDN_FsmNew  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmNew  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmNew);
static char const   __kstrtab_mISDN_FsmNew[13]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'N',      'e',      'w', 
        '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmNew  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmNew), __kstrtab_mISDN_FsmNew};
void mISDN_FsmFree(struct Fsm *fsm ) 
{ 


  {
  kfree((void *)fsm->jumpmatrix);
  return;
}
}
extern void *__crc_mISDN_FsmFree  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmFree  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmFree);
static char const   __kstrtab_mISDN_FsmFree[14]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'F',      'r',      'e', 
        'e',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmFree  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmFree), __kstrtab_mISDN_FsmFree};
int mISDN_FsmEvent(struct FsmInst *fi , int event , void *arg ) 
{ 
  void (*r)(struct FsmInst * , int  , void * ) ;

  {
  if (fi->state >= (fi->fsm)->state_count || event >= (fi->fsm)->event_count) {
    printk("<3>mISDN_FsmEvent Error st(%ld/%ld) ev(%d/%ld)\n", (long )fi->state, (long )(fi->fsm)->state_count,
           event, (long )(fi->fsm)->event_count);
    return (1);
  } else {

  }
  r = *((fi->fsm)->jumpmatrix + ((fi->fsm)->state_count * event + fi->state));
  if (r) {
    if (fi->debug) {
      (*(fi->printdebug))(fi, "State %s Event %s", *((fi->fsm)->strState + fi->state),
                          *((fi->fsm)->strEvent + event));
    } else {

    }
    (*r)(fi, event, arg);
    return (0);
  } else {
    if (fi->debug) {
      (*(fi->printdebug))(fi, "State %s Event %s no action", *((fi->fsm)->strState + fi->state),
                          *((fi->fsm)->strEvent + event));
    } else {

    }
    return (1);
  }
}
}
extern void *__crc_mISDN_FsmEvent  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmEvent  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmEvent);
static char const   __kstrtab_mISDN_FsmEvent[15]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'E',      'v',      'e', 
        'n',      't',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmEvent  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmEvent), __kstrtab_mISDN_FsmEvent};
void mISDN_FsmChangeState(struct FsmInst *fi , int newstate ) 
{ 


  {
  fi->state = newstate;
  if (fi->debug) {
    (*(fi->printdebug))(fi, "ChangeState %s", *((fi->fsm)->strState + newstate));
  } else {

  }
  return;
}
}
extern void *__crc_mISDN_FsmChangeState  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmChangeState  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmChangeState);
static char const   __kstrtab_mISDN_FsmChangeState[21]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'C',      'h',      'a', 
        'n',      'g',      'e',      'S', 
        't',      'a',      't',      'e', 
        '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmChangeState  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmChangeState), __kstrtab_mISDN_FsmChangeState};
static void FsmExpireTimer(struct FsmTimer *ft ) 
{ 


  {
  mISDN_FsmEvent(ft->fi, ft->event, ft->arg);
  return;
}
}
static struct lock_class_key __key  ;
void mISDN_FsmInitTimer(struct FsmInst *fi , struct FsmTimer *ft ) 
{ 


  {
  ft->fi = fi;
  ft->tl.function = (void *)(& FsmExpireTimer);
  ft->tl.data = (long )ft;
  while (1) {
    init_timer_key(& ft->tl, "&ft->tl", & __key);
    break;
  }
  return;
}
}
extern void *__crc_mISDN_FsmInitTimer  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmInitTimer  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmInitTimer);
static char const   __kstrtab_mISDN_FsmInitTimer[19]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'I',      'n',      'i', 
        't',      'T',      'i',      'm', 
        'e',      'r',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmInitTimer  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmInitTimer), __kstrtab_mISDN_FsmInitTimer};
void mISDN_FsmDelTimer(struct FsmTimer *ft , int where ) 
{ 


  {
  del_timer(& ft->tl);
  return;
}
}
extern void *__crc_mISDN_FsmDelTimer  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmDelTimer  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmDelTimer);
static char const   __kstrtab_mISDN_FsmDelTimer[18]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'D',      'e',      'l', 
        'T',      'i',      'm',      'e', 
        'r',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmDelTimer  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmDelTimer), __kstrtab_mISDN_FsmDelTimer};
static struct lock_class_key __key___0  ;
int mISDN_FsmAddTimer(struct FsmTimer *ft , int millisec , int event , void *arg ,
                      int where ) 
{ 
  int tmp ;

  {
  tmp = timer_pending(& ft->tl);
  if (tmp) {
    if ((ft->fi)->debug) {
      printk("<4>mISDN_FsmAddTimer: timer already active!\n");
      (*((ft->fi)->printdebug))(ft->fi, "mISDN_FsmAddTimer already active!");
    } else {

    }
    return (-1);
  } else {

  }
  while (1) {
    init_timer_key(& ft->tl, "&ft->tl", & __key___0);
    break;
  }
  ft->event = event;
  ft->arg = arg;
  ft->tl.expires = jiffies + (unsigned long volatile   )((millisec * 250) / 1000);
  add_timer(& ft->tl);
  return (0);
}
}
extern void *__crc_mISDN_FsmAddTimer  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmAddTimer  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmAddTimer);
static char const   __kstrtab_mISDN_FsmAddTimer[18]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'A',      'd',      'd', 
        'T',      'i',      'm',      'e', 
        'r',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmAddTimer  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmAddTimer), __kstrtab_mISDN_FsmAddTimer};
static struct lock_class_key __key___1  ;
void mISDN_FsmRestartTimer(struct FsmTimer *ft , int millisec , int event , void *arg ,
                           int where ) 
{ 
  int tmp ;

  {
  tmp = timer_pending(& ft->tl);
  if (tmp) {
    del_timer(& ft->tl);
  } else {

  }
  while (1) {
    init_timer_key(& ft->tl, "&ft->tl", & __key___1);
    break;
  }
  ft->event = event;
  ft->arg = arg;
  ft->tl.expires = jiffies + (unsigned long volatile   )((millisec * 250) / 1000);
  add_timer(& ft->tl);
  return;
}
}
extern void *__crc_mISDN_FsmRestartTimer  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_FsmRestartTimer  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_FsmRestartTimer);
static char const   __kstrtab_mISDN_FsmRestartTimer[22]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'F',      's', 
        'm',      'R',      'e',      's', 
        't',      'a',      'r',      't', 
        'T',      'i',      'm',      'e', 
        'r',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_FsmRestartTimer  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_FsmRestartTimer), __kstrtab_mISDN_FsmRestartTimer};
void *memcpy(void * , void const   * , unsigned long  ) ;
extern int memcpy_fromiovec(unsigned char *kdata , struct iovec *iov , int len ) ;
extern int put_cmsg(struct msghdr * , int level , int type , int len , void *data ) ;
__inline static void __set_bit(int nr , unsigned long volatile   *addr ) 
{ 


  {
  __asm__  volatile   ("bts %1,%0": "+m" (*((long volatile   *)addr)): "Ir" (nr): "memory");
  return;
}
}
__inline static void __clear_bit(int nr , unsigned long volatile   *addr ) 
{ 


  {
  __asm__  volatile   ("btr %1,%0": "+m" (*((long volatile   *)addr)): "Ir" (nr));
  return;
}
}
extern void warn_slowpath_null(char const   *file , int const   line ) ;
extern void might_fault(void) ;
extern void *memcpy(void *to , void const   *from , size_t len ) ;
__inline static int hlist_unhashed(struct hlist_node  const  *h ) 
{ 


  {
  return (! h->pprev);
}
}
__inline static void __hlist_del(struct hlist_node *n ) 
{ 
  struct hlist_node *next ;
  struct hlist_node **pprev ;

  {
  next = n->next;
  pprev = n->pprev;
  *pprev = next;
  if (next) {
    next->pprev = pprev;
  } else {

  }
  return;
}
}
__inline static void hlist_add_head(struct hlist_node *n , struct hlist_head *h ) 
{ 
  struct hlist_node *first ;

  {
  first = h->first;
  n->next = first;
  if (first) {
    first->pprev = & n->next;
  } else {

  }
  h->first = n;
  n->pprev = & h->first;
  return;
}
}
__inline static int atomic_read(atomic_t const   *v ) 
{ 


  {
  return (v->counter);
}
}
__inline static void atomic_inc(atomic_t *v ) 
{ 


  {
  __asm__  volatile   (".section .smp_locks,\"a\"\n"
                       " "
                       ".balign 8"
                       " "
                       "\n"
                       " "
                       ".quad"
                       " "
                       "661f\n"
                       ".previous\n"
                       "661:\n\tlock; "
                       "incl %0": "=m" (v->counter): "m" (v->counter));
  return;
}
}
__inline static void atomic_dec(atomic_t *v ) 
{ 


  {
  __asm__  volatile   (".section .smp_locks,\"a\"\n"
                       " "
                       ".balign 8"
                       " "
                       "\n"
                       " "
                       ".quad"
                       " "
                       "661f\n"
                       ".previous\n"
                       "661:\n\tlock; "
                       "decl %0": "=m" (v->counter): "m" (v->counter));
  return;
}
}
__inline static int atomic_dec_and_test(atomic_t *v ) 
{ 
  unsigned char c ;

  {
  __asm__  volatile   (".section .smp_locks,\"a\"\n"
                       " "
                       ".balign 8"
                       " "
                       "\n"
                       " "
                       ".quad"
                       " "
                       "661f\n"
                       ".previous\n"
                       "661:\n\tlock; "
                       "decl %0; sete %1": "=m" (v->counter), "=qm" (c): "m" (v->counter): "memory");
  return ((int )c != 0);
}
}
extern void _read_lock_bh(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern void _write_lock_bh(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern void _read_unlock_bh(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern void _write_unlock_bh(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern struct timeval ns_to_timeval(s64 const   nsec ) ;
extern unsigned int __invalid_size_argument_for_IOC ;
extern int sock_register(struct net_proto_family  const  *fam ) ;
extern void sock_unregister(int family ) ;
extern unsigned long ( __attribute__((__warn_unused_result__)) copy_to_user)(void *to ,
                                                                             void const   *from ,
                                                                             unsigned int len ) ;
extern unsigned long ( __attribute__((__warn_unused_result__)) copy_from_user)(void *to ,
                                                                               void const   *from ,
                                                                               unsigned int len ) ;
extern int device_rename(struct device *dev , char *new_name ) ;
extern ktime_t ktime_get_real(void) ;
extern void kfree_skb(struct sk_buff *skb ) ;
extern struct sk_buff *__alloc_skb(unsigned int size , gfp_t priority , int fclone ,
                                   int node ) ;
__inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) 
{ 
  struct sk_buff *tmp ;

  {
  tmp = __alloc_skb(size, priority, 0, -1);
  return (tmp);
}
}
extern void skb_queue_head(struct sk_buff_head *list , struct sk_buff *newsk ) ;
extern unsigned char *skb_put(struct sk_buff *skb , unsigned int len ) ;
extern unsigned char *skb_push(struct sk_buff *skb , unsigned int len ) ;
extern unsigned char *skb_pull(struct sk_buff *skb , unsigned int len ) ;
__inline static void skb_reserve(struct sk_buff *skb , int len ) 
{ 


  {
  skb->data = skb->data + len;
  skb->tail = skb->tail + (sk_buff_data_t )len;
  return;
}
}
extern void skb_queue_purge(struct sk_buff_head *list ) ;
extern struct sk_buff *skb_recv_datagram(struct sock *sk , unsigned int flags , int noblock ,
                                         int *err ) ;
extern unsigned int datagram_poll(struct file *file , struct socket *sock , struct poll_table_struct *wait ) ;
extern int skb_copy_datagram_iovec(struct sk_buff  const  *from , int offset , struct iovec *to ,
                                   int size ) ;
extern void skb_free_datagram(struct sock *sk , struct sk_buff *skb ) ;
__inline static void skb_get_timestamp(struct sk_buff  const  *skb , struct timeval *stamp ) 
{ 


  {
  *stamp = ns_to_timeval(skb->tstamp.tv64);
  return;
}
}
__inline static void __net_timestamp(struct sk_buff *skb ) 
{ 


  {
  skb->tstamp = ktime_get_real();
  return;
}
}
__inline static int sk_unhashed(struct sock  const  *sk ) 
{ 
  int tmp ;

  {
  tmp = hlist_unhashed(& sk->__sk_common.__annonCompField29.skc_node);
  return (tmp);
}
}
__inline static int sk_hashed(struct sock  const  *sk ) 
{ 
  int tmp ;
  int tmp___0 ;

  {
  tmp = sk_unhashed(sk);
  if (tmp) {
    tmp___0 = 0;
  } else {
    tmp___0 = 1;
  }
  return (tmp___0);
}
}
__inline static void sk_node_init(struct hlist_node *node ) 
{ 


  {
  node->pprev = (void *)0;
  return;
}
}
__inline static void __sk_del_node(struct sock *sk ) 
{ 


  {
  __hlist_del(& sk->__sk_common.__annonCompField29.skc_node);
  return;
}
}
__inline static int __sk_del_node_init(struct sock *sk ) 
{ 
  int tmp ;

  {
  tmp = sk_hashed(sk);
  if (tmp) {
    __sk_del_node(sk);
    sk_node_init(& sk->__sk_common.__annonCompField29.skc_node);
    return (1);
  } else {

  }
  return (0);
}
}
__inline static void sock_hold(struct sock *sk ) 
{ 


  {
  atomic_inc(& sk->__sk_common.skc_refcnt);
  return;
}
}
__inline static void __sock_put(struct sock *sk ) 
{ 


  {
  atomic_dec(& sk->__sk_common.skc_refcnt);
  return;
}
}
__inline static int sk_del_node_init(struct sock *sk ) 
{ 
  int rc ;
  int tmp ;
  int __ret_warn_on ;
  int tmp___0 ;
  int tmp___1 ;
  long tmp___2 ;

  {
  tmp = __sk_del_node_init(sk);
  rc = tmp;
  if (rc) {
    tmp___0 = atomic_read(& sk->__sk_common.skc_refcnt);
    if (tmp___0 == 1) {
      tmp___1 = 1;
    } else {
      tmp___1 = 0;
    }
    __ret_warn_on = tmp___1;
    tmp___2 = ldv__builtin_expect(! (! __ret_warn_on), 0);
    if (tmp___2) {
      warn_slowpath_null("include/net/sock.h", 403);
    } else {

    }
    ldv__builtin_expect(! (! __ret_warn_on), 0);
    __sock_put(sk);
  } else {

  }
  return (rc);
}
}
__inline static void __sk_add_node(struct sock *sk , struct hlist_head *list ) 
{ 


  {
  hlist_add_head(& sk->__sk_common.__annonCompField29.skc_node, list);
  return;
}
}
__inline static void sk_add_node(struct sock *sk , struct hlist_head *list ) 
{ 


  {
  sock_hold(sk);
  __sk_add_node(sk, list);
  return;
}
}
__inline static void sock_set_flag(struct sock *sk , enum sock_flags flag ) 
{ 


  {
  __set_bit(flag, & sk->sk_flags);
  return;
}
}
__inline static void sock_reset_flag(struct sock *sk , enum sock_flags flag ) 
{ 


  {
  __clear_bit(flag, & sk->sk_flags);
  return;
}
}
extern void lock_sock_nested(struct sock *sk , int subclass ) ;
__inline static void lock_sock(struct sock *sk ) 
{ 


  {
  lock_sock_nested(sk, 0);
  return;
}
}
extern void release_sock(struct sock *sk ) ;
extern struct sock *sk_alloc(struct net *net , int family , gfp_t priority , struct proto *prot ) ;
extern void sk_free(struct sock *sk ) ;
extern int sock_no_connect(struct socket * , struct sockaddr * , int  , int  ) ;
extern int sock_no_socketpair(struct socket * , struct socket * ) ;
extern int sock_no_accept(struct socket * , struct socket * , int  ) ;
extern int sock_no_getname(struct socket * , struct sockaddr * , int * , int  ) ;
extern unsigned int sock_no_poll(struct file * , struct socket * , struct poll_table_struct * ) ;
extern int sock_no_listen(struct socket * , int  ) ;
extern int sock_no_shutdown(struct socket * , int  ) ;
extern int sock_no_getsockopt(struct socket * , int  , int  , char * , int * ) ;
extern int sock_no_setsockopt(struct socket * , int  , int  , char * , int  ) ;
extern int sock_no_sendmsg(struct kiocb * , struct socket * , struct msghdr * , size_t  ) ;
extern int sock_no_recvmsg(struct kiocb * , struct socket * , struct msghdr * , size_t  ,
                           int  ) ;
extern int sock_no_mmap(struct file *file , struct socket *sock , struct vm_area_struct *vma ) ;
extern void sock_init_data(struct socket *sock , struct sock *sk ) ;
__inline static void sock_put(struct sock *sk ) 
{ 
  int tmp ;

  {
  tmp = atomic_dec_and_test(& sk->__sk_common.skc_refcnt);
  if (tmp) {
    sk_free(sk);
  } else {

  }
  return;
}
}
__inline static void sk_set_socket(struct sock *sk , struct socket *sock ) 
{ 


  {
  sk->sk_socket = sock;
  return;
}
}
__inline static void sock_orphan(struct sock *sk ) 
{ 


  {
  _write_lock_bh(& sk->sk_callback_lock);
  sock_set_flag(sk, SOCK_DEAD);
  sk_set_socket(sk, (void *)0);
  sk->sk_sleep = (void *)0;
  _write_unlock_bh(& sk->sk_callback_lock);
  return;
}
}
extern int sock_queue_rcv_skb(struct sock *sk , struct sk_buff *skb ) ;
int connect_Bstack(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol ,
                   struct sockaddr_mISDN *adr ) ;
int connect_layer1(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol ,
                   struct sockaddr_mISDN *adr ) ;
int create_l2entity(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol ,
                    struct sockaddr_mISDN *adr ) ;
void delete_channel(struct mISDNchannel *ch ) ;
static u_int *debug___0  ;
static struct proto mISDN_proto  = 
     {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0U, 0, 0, 0, 0, 0,
    0, 0, 0, 0, sizeof(struct mISDN_sock ), 0, 0, 0, 0, {0}, & __this_module, {'m',
                                                                               'i',
                                                                               's',
                                                                               'd',
                                                                               'n',
                                                                               '\000'},
    {0, 0}};
static struct mISDN_sock_list data_sockets  =    {{0}, {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "data_sockets.lock", 0,
                                                     0UL}}};
static struct mISDN_sock_list base_sockets  =    {{0}, {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "base_sockets.lock", 0,
                                                     0UL}}};
__inline static struct sk_buff *_l2_alloc_skb(unsigned int len , gfp_t gfp_mask ) 
{ 
  struct sk_buff *skb ;
  long tmp ;

  {
  skb = alloc_skb(len + 4U, gfp_mask);
  tmp = ldv__builtin_expect(! (! skb), 1);
  if (tmp) {
    skb_reserve(skb, 4);
  } else {

  }
  return (skb);
}
}
static void mISDN_sock_link(struct mISDN_sock_list *l , struct sock *sk ) 
{ 


  {
  _write_lock_bh(& l->lock);
  sk_add_node(sk, & l->head);
  _write_unlock_bh(& l->lock);
  return;
}
}
static void mISDN_sock_unlink(struct mISDN_sock_list *l , struct sock *sk ) 
{ 


  {
  _write_lock_bh(& l->lock);
  sk_del_node_init(sk);
  _write_unlock_bh(& l->lock);
  return;
}
}
static int mISDN_send(struct mISDNchannel *ch , struct sk_buff *skb ) 
{ 
  struct mISDN_sock *msk ;
  int err ;
  struct mISDNchannel  const  *__mptr ;

  {
  __mptr = ch;
  msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch));
  if (*debug___0 & 4U) {
    printk("<7>%s len %d %p\n", "mISDN_send", skb->len, skb);
  } else {

  }
  if ((int volatile   )msk->sk.__sk_common.skc_state == (int volatile   )3) {
    return (-49);
  } else {

  }
  __net_timestamp(skb);
  err = sock_queue_rcv_skb(& msk->sk, skb);
  if (err) {
    printk("<4>%s: error %d\n", "mISDN_send", err);
  } else {

  }
  return (err);
}
}
static int mISDN_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) 
{ 
  struct mISDN_sock *msk ;
  struct mISDNchannel  const  *__mptr ;

  {
  __mptr = ch;
  msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch));
  if (*debug___0 & 4U) {
    printk("<7>%s(%p, %x, %p)\n", "mISDN_ctrl", ch, cmd, arg);
  } else {

  }
  switch (cmd) {
  case (u_int )512: 
  msk->sk.__sk_common.skc_state = 3;
  break;
  }
  return (0);
}
}
__inline static void mISDN_sock_cmsg(struct sock *sk , struct msghdr *msg , struct sk_buff *skb ) 
{ 
  struct timeval tv ;

  {
  if (((struct mISDN_sock *)sk)->cmask & 1U) {
    skb_get_timestamp(skb, & tv);
    put_cmsg(msg, 0, 1, sizeof(tv), & tv);
  } else {

  }
  return;
}
}
static int mISDN_sock_recvmsg(struct kiocb *iocb , struct socket *sock , struct msghdr *msg ,
                              size_t len , int flags ) 
{ 
  struct sk_buff *skb ;
  struct sock *sk ;
  struct sockaddr_mISDN *maddr ;
  int copied ;
  int err ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp ;
  unsigned char *tmp___0 ;

  {
  sk = sock->sk;
  if (*debug___0 & 4U) {
    printk("<7>%s: len %d, flags %x ch.nr %d, proto %x\n", "mISDN_sock_recvmsg", (int )len,
           flags, ((struct mISDN_sock *)sk)->ch.nr, sk->sk_protocol);
  } else {

  }
  if (flags & 1) {
    return (-95);
  } else {

  }
  if ((int volatile   )sk->__sk_common.skc_state == (int volatile   )3) {
    return (0);
  } else {

  }
  skb = skb_recv_datagram(sk, flags, flags & 64, & err);
  if (! skb) {
    return (err);
  } else {

  }
  if ((unsigned long )msg->msg_namelen >= sizeof(struct sockaddr_mISDN )) {
    msg->msg_namelen = sizeof(struct sockaddr_mISDN );
    maddr = (struct sockaddr_mISDN *)msg->msg_name;
    maddr->family = 34;
    maddr->dev = (((struct mISDN_sock *)sk)->dev)->id;
    if ((int )sk->sk_protocol == 16 || (int )sk->sk_protocol == 17) {
      maddr->channel = (((struct mISDNhead *)(& skb->cb[0]))->id >> 16) & 255U;
      maddr->tei = (((struct mISDNhead *)(& skb->cb[0]))->id >> 8) & 255U;
      maddr->sapi = ((struct mISDNhead *)(& skb->cb[0]))->id & 255U;
    } else {
      maddr->channel = ((struct mISDN_sock *)sk)->ch.nr;
      maddr->sapi = ((struct mISDN_sock *)sk)->ch.addr & 255U;
      maddr->tei = (((struct mISDN_sock *)sk)->ch.addr >> 8) & 255U;
    }
  } else {
    if (msg->msg_namelen) {
      printk("<4>%s: too small namelen %d\n", "mISDN_sock_recvmsg", msg->msg_namelen);
    } else {

    }
    msg->msg_namelen = 0;
  }
  copied = (unsigned long )skb->len + sizeof(struct mISDNhead );
  if (len < (size_t )copied) {
    if (flags & 2) {
      atomic_dec(& skb->users);
    } else {
      skb_queue_head(& sk->sk_receive_queue, skb);
    }
    return (-28);
  } else {

  }
  __len = sizeof(struct mISDNhead );
  if (__len >= (size_t )64) {
    tmp = skb_push(skb, sizeof(struct mISDNhead ));
    __ret = memcpy(tmp, (struct mISDNhead *)(& skb->cb[0]), __len);
  } else {
    tmp___0 = skb_push(skb, sizeof(struct mISDNhead ));
    __ret = memcpy(tmp___0, (struct mISDNhead *)(& skb->cb[0]), __len);
  }
  err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  mISDN_sock_cmsg(sk, msg, skb);
  skb_free_datagram(sk, skb);
  return (err ? err : copied);
}
}
static int mISDN_sock_sendmsg(struct kiocb *iocb , struct socket *sock , struct msghdr *msg ,
                              size_t len ) 
{ 
  struct sock *sk ;
  struct sk_buff *skb ;
  int err ;
  struct sockaddr_mISDN *maddr ;
  unsigned char *tmp ;
  int tmp___0 ;
  size_t __len ;
  void *__ret ;

  {
  sk = sock->sk;
  err = -12;
  if (*debug___0 & 4U) {
    printk("<7>%s: len %d flags %x ch %d proto %x\n", "mISDN_sock_sendmsg", (int )len,
           msg->msg_flags, ((struct mISDN_sock *)sk)->ch.nr, sk->sk_protocol);
  } else {

  }
  if (msg->msg_flags & 1U) {
    return (-95);
  } else {

  }
  if (msg->msg_flags & (unsigned int )(~ ((64 | 16384) | 8192))) {
    return (-22);
  } else {

  }
  if (len < sizeof(struct mISDNhead )) {
    return (-22);
  } else {

  }
  if ((int volatile   )sk->__sk_common.skc_state != (int volatile   )2) {
    return (-77);
  } else {

  }
  lock_sock(sk);
  skb = _l2_alloc_skb(len, (16U | 64U) | 128U);
  if (! skb) {
    goto done;
  } else {

  }
  tmp = skb_put(skb, len);
  tmp___0 = memcpy_fromiovec(tmp, msg->msg_iov, len);
  if (tmp___0) {
    err = -14;
    goto done;
  } else {

  }
  __len = sizeof(struct mISDNhead );
  if (__len >= (size_t )64) {
    __ret = memcpy((struct mISDNhead *)(& skb->cb[0]), skb->data, __len);
  } else {
    __ret = memcpy((struct mISDNhead *)(& skb->cb[0]), skb->data, __len);
  }
  skb_pull(skb, sizeof(struct mISDNhead ));
  if ((unsigned long )msg->msg_namelen >= sizeof(struct sockaddr_mISDN )) {
    maddr = (struct sockaddr_mISDN *)msg->msg_name;
    ((struct mISDNhead *)(& skb->cb[0]))->id = maddr->channel;
  } else
  if ((int )sk->sk_protocol == 16 || (int )sk->sk_protocol == 17) {
    ((struct mISDNhead *)(& skb->cb[0]))->id = ((struct mISDN_sock *)sk)->ch.nr;
  } else {

  }
  if (*debug___0 & 4U) {
    printk("<7>%s: ID:%x\n", "mISDN_sock_sendmsg", ((struct mISDNhead *)(& skb->cb[0]))->id);
  } else {

  }
  err = -19;
  if (! ((struct mISDN_sock *)sk)->ch.peer) {
    goto done;
  } else {

  }
  err = (*(((struct mISDN_sock *)sk)->ch.recv))(((struct mISDN_sock *)sk)->ch.peer,
                                                skb);
  if (err) {

  } else {
    skb = (void *)0;
    err = len;
  }
  done: 
  if (skb) {
    kfree_skb(skb);
  } else {

  }
  release_sock(sk);
  return (err);
}
}
static int data_sock_release(struct socket *sock ) 
{ 
  struct sock *sk ;

  {
  sk = sock->sk;
  if (*debug___0 & 4U) {
    printk("<7>%s(%p) sk=%p\n", "data_sock_release", sock, sk);
  } else {

  }
  if (! sk) {
    return (0);
  } else {

  }
  switch ((int )sk->sk_protocol) {
  case 4: 
  case 3: 
  case 2: 
  case 1: 
  if ((int volatile   )sk->__sk_common.skc_state == (int volatile   )2) {
    delete_channel(& ((struct mISDN_sock *)sk)->ch);
  } else {
    mISDN_sock_unlink(& data_sockets, sk);
  }
  break;
  case 38: 
  case 37: 
  case 36: 
  case 35: 
  case 34: 
  case 33: 
  case 17: 
  case 16: 
  delete_channel(& ((struct mISDN_sock *)sk)->ch);
  mISDN_sock_unlink(& data_sockets, sk);
  break;
  }
  lock_sock(sk);
  sock_orphan(sk);
  skb_queue_purge(& sk->sk_receive_queue);
  release_sock(sk);
  sock_put(sk);
  return (0);
}
}
static int data_sock_ioctl_bound(struct sock *sk , unsigned int cmd , void *p ) 
{ 
  struct mISDN_ctrl_req cq ;
  int err ;
  int val[2] ;
  struct mISDNchannel *bchan ;
  struct mISDNchannel *next ;
  unsigned long tmp ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  struct list_head  const  *__mptr___1 ;
  unsigned long tmp___0 ;
  int __ret_gu ;
  unsigned long __val_gu ;
  int __ret_gu___0 ;
  unsigned long __val_gu___0 ;

  {
  err = -22;
  lock_sock(sk);
  if (! ((struct mISDN_sock *)sk)->dev) {
    err = -19;
    goto done;
  } else {

  }
  switch (cmd) {
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(69 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  tmp = copy_from_user(& cq, p, sizeof(cq));
  if (tmp) {
    err = -14;
    break;
  } else {

  }
  if (((int )sk->sk_protocol & ~ 31) == 32) {
    __mptr = (((struct mISDN_sock *)sk)->dev)->bchannels.next;
    bchan = (struct mISDNchannel *)((char *)__mptr - (unsigned int )(& ((struct mISDNchannel *)0)->list));
    __mptr___0 = bchan->list.next;
    next = (struct mISDNchannel *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNchannel *)0)->list));
    while (1) {
      if ((unsigned long )(& bchan->list) != (unsigned long )(& (((struct mISDN_sock *)sk)->dev)->bchannels)) {

      } else {
        break;
      }
      if (bchan->nr == (u_int )cq.channel) {
        err = (*(bchan->ctrl))(bchan, 768, & cq);
        break;
      } else {

      }
      bchan = next;
      __mptr___1 = next->list.next;
      next = (struct mISDNchannel *)((char *)__mptr___1 - (unsigned int )(& ((struct mISDNchannel *)0)->list));
    }
  } else {
    err = (*((((struct mISDN_sock *)sk)->dev)->D.ctrl))(& (((struct mISDN_sock *)sk)->dev)->D,
                                                        768, & cq);
  }
  if (err) {
    break;
  } else {

  }
  tmp___0 = copy_to_user(p, & cq, sizeof(cq));
  if (tmp___0) {
    err = -14;
  } else {

  }
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(70 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  if ((int )sk->sk_protocol != 17) {
    err = -22;
    break;
  } else {

  }
  val[0] = cmd;
  might_fault();
  switch (sizeof(*((int *)p))) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p));
  break;
  }
  val[1] = (int )__val_gu;
  if (__ret_gu) {
    err = -14;
    break;
  } else {

  }
  err = (*(((((struct mISDN_sock *)sk)->dev)->teimgr)->ctrl))((((struct mISDN_sock *)sk)->dev)->teimgr,
                                                              768, val);
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(72 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  if ((int )sk->sk_protocol != 17 && (int )sk->sk_protocol != 16) {
    err = -22;
    break;
  } else {

  }
  val[0] = cmd;
  might_fault();
  switch (sizeof(*((int *)p))) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)p));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)p));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)p));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)p));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)p));
  break;
  }
  val[1] = (int )__val_gu___0;
  if (__ret_gu___0) {
    err = -14;
    break;
  } else {

  }
  err = (*(((((struct mISDN_sock *)sk)->dev)->teimgr)->ctrl))((((struct mISDN_sock *)sk)->dev)->teimgr,
                                                              768, val);
  break;
  default: 
  err = -22;
  break;
  }
  done: 
  release_sock(sk);
  return (err);
}
}
static int data_sock_ioctl(struct socket *sock , unsigned int cmd , unsigned long arg ) 
{ 
  int err ;
  int id ;
  struct sock *sk ;
  struct mISDNdevice *dev ;
  struct mISDNversion ver ;
  unsigned long tmp ;
  int __ret_pu ;
  int __pu_val ;
  int __ret_gu ;
  unsigned long __val_gu ;
  struct mISDN_devinfo di ;
  u_int tmp___0 ;
  size_t __len ;
  void *__ret ;
  char const   *tmp___1 ;
  unsigned long tmp___2 ;

  {
  err = 0;
  sk = sock->sk;
  switch (cmd) {
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(66 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  ver.major = 1;
  ver.minor = 1;
  ver.release = 21;
  tmp = copy_to_user((void *)arg, & ver, sizeof(ver));
  if (tmp) {
    err = -14;
  } else {

  }
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(67 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  id = get_mdevice_count();
  might_fault();
  __pu_val = id;
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __put_user_"
                       "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 2UL: 
  __asm__  volatile   ("call __put_user_"
                       "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 4UL: 
  __asm__  volatile   ("call __put_user_"
                       "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 8UL: 
  __asm__  volatile   ("call __put_user_"
                       "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  default: 
  __asm__  volatile   ("call __put_user_"
                       "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  }
  if (__ret_pu) {
    err = -14;
  } else {

  }
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(68 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  might_fault();
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  }
  id = (int )__val_gu;
  if (__ret_gu) {
    err = -14;
    break;
  } else {

  }
  dev = get_mdevice(id);
  if (dev) {
    di.id = dev->id;
    di.Dprotocols = dev->Dprotocols;
    tmp___0 = get_all_Bprotocols();
    di.Bprotocols = dev->Bprotocols | tmp___0;
    di.protocol = dev->D.protocol;
    __len = sizeof(di.channelmap);
    if (__len >= (size_t )64) {
      __ret = memcpy(di.channelmap, dev->channelmap, __len);
    } else {
      __ret = memcpy(di.channelmap, dev->channelmap, __len);
    }
    di.nrbchan = dev->nrbchan;
    tmp___1 = dev_name(& dev->dev);
    strcpy(di.name, tmp___1);
    tmp___2 = copy_to_user((void *)arg, & di, sizeof(di));
    if (tmp___2) {
      err = -14;
    } else {

    }
  } else {
    err = -19;
  }
  break;
  default: 
  if ((int volatile   )sk->__sk_common.skc_state == (int volatile   )2) {
    err = data_sock_ioctl_bound(sk, cmd, (void *)arg);
  } else {
    err = -107;
  }
  }
  return (err);
}
}
static int data_sock_setsockopt(struct socket *sock , int level , int optname , char *optval ,
                                int len ) 
{ 
  struct sock *sk ;
  int err ;
  int opt ;
  int __ret_gu ;
  unsigned long __val_gu ;

  {
  sk = sock->sk;
  err = 0;
  opt = 0;
  if (*debug___0 & 4U) {
    printk("<7>%s(%p, %d, %x, %p, %d)\n", "data_sock_setsockopt", sock, level, optname,
           optval, len);
  } else {

  }
  lock_sock(sk);
  switch (optname) {
  case 1: 
  might_fault();
  switch (sizeof(*((int *)optval))) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval));
  break;
  }
  opt = (int )__val_gu;
  if (__ret_gu) {
    err = -14;
    break;
  } else {

  }
  if (opt) {
    ((struct mISDN_sock *)sk)->cmask = ((struct mISDN_sock *)sk)->cmask | 1U;
  } else {
    ((struct mISDN_sock *)sk)->cmask = ((struct mISDN_sock *)sk)->cmask & (unsigned int )(~ 1);
  }
  break;
  default: 
  err = -92;
  break;
  }
  release_sock(sk);
  return (err);
}
}
static int data_sock_getsockopt(struct socket *sock , int level , int optname , char *optval ,
                                int *optlen ) 
{ 
  struct sock *sk ;
  int len ;
  int opt ;
  int __ret_gu ;
  unsigned long __val_gu ;
  int __ret_pu ;
  char __pu_val ;

  {
  sk = sock->sk;
  might_fault();
  switch (sizeof(*optlen)) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen));
  break;
  }
  len = (int )__val_gu;
  if (__ret_gu) {
    return (-14);
  } else {

  }
  switch (optname) {
  case 1: 
  if (((struct mISDN_sock *)sk)->cmask & 1U) {
    opt = 1;
  } else {
    opt = 0;
  }
  might_fault();
  __pu_val = opt;
  switch (sizeof(*optval)) {
  case 1UL: 
  __asm__  volatile   ("call __put_user_"
                       "1": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx");
  break;
  case 2UL: 
  __asm__  volatile   ("call __put_user_"
                       "2": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx");
  break;
  case 4UL: 
  __asm__  volatile   ("call __put_user_"
                       "4": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx");
  break;
  case 8UL: 
  __asm__  volatile   ("call __put_user_"
                       "8": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx");
  break;
  default: 
  __asm__  volatile   ("call __put_user_"
                       "X": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx");
  break;
  }
  if (__ret_pu) {
    return (-14);
  } else {

  }
  break;
  default: 
  return (-92);
  }
  return (0);
}
}
static int data_sock_bind(struct socket *sock , struct sockaddr *addr , int addr_len ) 
{ 
  struct sockaddr_mISDN *maddr ;
  struct sock *sk ;
  struct hlist_node *node ;
  struct sock *csk ;
  int err ;
  struct hlist_node  const  *__mptr ;

  {
  maddr = (struct sockaddr_mISDN *)addr;
  sk = sock->sk;
  err = 0;
  if (*debug___0 & 4U) {
    printk("<7>%s(%p) sk=%p\n", "data_sock_bind", sock, sk);
  } else {

  }
  if ((unsigned long )addr_len != sizeof(struct sockaddr_mISDN )) {
    return (-22);
  } else {

  }
  if (! maddr || (int )maddr->family != 34) {
    return (-22);
  } else {

  }
  lock_sock(sk);
  if (((struct mISDN_sock *)sk)->dev) {
    err = -114;
    goto done;
  } else {

  }
  ((struct mISDN_sock *)sk)->dev = get_mdevice(maddr->dev);
  if (! ((struct mISDN_sock *)sk)->dev) {
    err = -19;
    goto done;
  } else {

  }
  if ((int )sk->sk_protocol < 32) {
    _read_lock_bh(& data_sockets.lock);
    node = data_sockets.head.first;
    while (1) {
      if (node) {
        __builtin_prefetch(node->next);
        __mptr = node;
        csk = (struct sock *)((char *)__mptr - (unsigned int )(& ((struct sock *)0)->__sk_common.__annonCompField29.skc_node));
      } else {
        break;
      }
      if ((unsigned long )sk == (unsigned long )csk) {
        goto __Cont;
      } else {

      }
      if ((unsigned long )((struct mISDN_sock *)csk)->dev != (unsigned long )((struct mISDN_sock *)sk)->dev) {
        goto __Cont;
      } else {

      }
      if ((int )csk->sk_protocol >= 32) {
        goto __Cont;
      } else {

      }
      if (((((int )csk->sk_protocol == 1 || (int )csk->sk_protocol == 3) || (int )csk->sk_protocol == 5) || (int )csk->sk_protocol == 16) == ((((int )sk->sk_protocol == 1 || (int )sk->sk_protocol == 3) || (int )sk->sk_protocol == 5) || (int )sk->sk_protocol == 16)) {
        goto __Cont;
      } else {

      }
      _read_unlock_bh(& data_sockets.lock);
      err = -16;
      goto done;
      __Cont: /* CIL Label */ 
      node = node->next;
    }
    _read_unlock_bh(& data_sockets.lock);
  } else {

  }
  ((struct mISDN_sock *)sk)->ch.send = & mISDN_send;
  ((struct mISDN_sock *)sk)->ch.ctrl = & mISDN_ctrl;
  switch ((int )sk->sk_protocol) {
  case 4: 
  case 3: 
  case 2: 
  case 1: 
  mISDN_sock_unlink(& data_sockets, sk);
  err = connect_layer1(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch,
                       sk->sk_protocol, maddr);
  if (err) {
    mISDN_sock_link(& data_sockets, sk);
  } else {

  }
  break;
  case 17: 
  case 16: 
  err = create_l2entity(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch,
                        sk->sk_protocol, maddr);
  break;
  case 38: 
  case 37: 
  case 36: 
  case 35: 
  case 34: 
  case 33: 
  err = connect_Bstack(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch,
                       sk->sk_protocol, maddr);
  break;
  default: 
  err = -93;
  }
  if (err) {
    goto done;
  } else {

  }
  sk->__sk_common.skc_state = 2;
  ((struct mISDN_sock *)sk)->ch.protocol = sk->sk_protocol;
  done: 
  release_sock(sk);
  return (err);
}
}
static int data_sock_getname(struct socket *sock , struct sockaddr *addr , int *addr_len ,
                             int peer ) 
{ 
  struct sockaddr_mISDN *maddr ;
  struct sock *sk ;

  {
  maddr = (struct sockaddr_mISDN *)addr;
  sk = sock->sk;
  if (! ((struct mISDN_sock *)sk)->dev) {
    return (-77);
  } else {

  }
  lock_sock(sk);
  *addr_len = sizeof(*maddr);
  maddr->dev = (((struct mISDN_sock *)sk)->dev)->id;
  maddr->channel = ((struct mISDN_sock *)sk)->ch.nr;
  maddr->sapi = ((struct mISDN_sock *)sk)->ch.addr & 255U;
  maddr->tei = (((struct mISDN_sock *)sk)->ch.addr >> 8) & 255U;
  release_sock(sk);
  return (0);
}
}
static struct proto_ops  const  data_sock_ops  = 
     {34, & __this_module, & data_sock_release, & data_sock_bind, & sock_no_connect,
    & sock_no_socketpair, & sock_no_accept, & data_sock_getname, & datagram_poll,
    & data_sock_ioctl, 0, & sock_no_listen, & sock_no_shutdown, & data_sock_setsockopt,
    & data_sock_getsockopt, 0, 0, & mISDN_sock_sendmsg, & mISDN_sock_recvmsg, & sock_no_mmap,
    0, 0};
static int data_sock_create(struct net *net , struct socket *sock , int protocol ) 
{ 
  struct sock *sk ;

  {
  if ((int )sock->type != SOCK_DGRAM) {
    return (-94);
  } else {

  }
  sk = sk_alloc(net, 34, (16U | 64U) | 128U, & mISDN_proto);
  if (! sk) {
    return (-12);
  } else {

  }
  sock_init_data(sock, sk);
  sock->ops = & data_sock_ops;
  sock->state = SS_UNCONNECTED;
  sock_reset_flag(sk, SOCK_ZAPPED);
  sk->sk_protocol = protocol;
  sk->__sk_common.skc_state = 1;
  mISDN_sock_link(& data_sockets, sk);
  return (0);
}
}
static int base_sock_release(struct socket *sock ) 
{ 
  struct sock *sk ;

  {
  sk = sock->sk;
  printk("<7>%s(%p) sk=%p\n", "base_sock_release", sock, sk);
  if (! sk) {
    return (0);
  } else {

  }
  mISDN_sock_unlink(& base_sockets, sk);
  sock_orphan(sk);
  sock_put(sk);
  return (0);
}
}
static int base_sock_ioctl(struct socket *sock , unsigned int cmd , unsigned long arg ) 
{ 
  int err ;
  int id ;
  struct mISDNdevice *dev ;
  struct mISDNversion ver ;
  unsigned long tmp ;
  int __ret_pu ;
  int __pu_val ;
  int __ret_gu ;
  unsigned long __val_gu ;
  struct mISDN_devinfo di ;
  u_int tmp___0 ;
  size_t __len ;
  void *__ret ;
  char const   *tmp___1 ;
  unsigned long tmp___2 ;
  struct mISDN_devrename dn ;
  unsigned long tmp___3 ;

  {
  err = 0;
  switch (cmd) {
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(66 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  ver.major = 1;
  ver.minor = 1;
  ver.release = 21;
  tmp = copy_to_user((void *)arg, & ver, sizeof(ver));
  if (tmp) {
    err = -14;
  } else {

  }
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(67 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  id = get_mdevice_count();
  might_fault();
  __pu_val = id;
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __put_user_"
                       "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 2UL: 
  __asm__  volatile   ("call __put_user_"
                       "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 4UL: 
  __asm__  volatile   ("call __put_user_"
                       "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 8UL: 
  __asm__  volatile   ("call __put_user_"
                       "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  default: 
  __asm__  volatile   ("call __put_user_"
                       "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  }
  if (__ret_pu) {
    err = -14;
  } else {

  }
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(68 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  might_fault();
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  }
  id = (int )__val_gu;
  if (__ret_gu) {
    err = -14;
    break;
  } else {

  }
  dev = get_mdevice(id);
  if (dev) {
    di.id = dev->id;
    di.Dprotocols = dev->Dprotocols;
    tmp___0 = get_all_Bprotocols();
    di.Bprotocols = dev->Bprotocols | tmp___0;
    di.protocol = dev->D.protocol;
    __len = sizeof(di.channelmap);
    if (__len >= (size_t )64) {
      __ret = memcpy(di.channelmap, dev->channelmap, __len);
    } else {
      __ret = memcpy(di.channelmap, dev->channelmap, __len);
    }
    di.nrbchan = dev->nrbchan;
    tmp___1 = dev_name(& dev->dev);
    strcpy(di.name, tmp___1);
    tmp___2 = copy_to_user((void *)arg, & di, sizeof(di));
    if (tmp___2) {
      err = -14;
    } else {

    }
  } else {
    err = -19;
  }
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(71 << 0)) | ((sizeof(struct mISDN_devrename ) == sizeof(struct mISDN_devrename [1]) && sizeof(struct mISDN_devrename ) < (unsigned long )(1 << 14) ? sizeof(struct mISDN_devrename ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  tmp___3 = copy_from_user(& dn, (void *)arg, sizeof(dn));
  if (tmp___3) {
    err = -14;
    break;
  } else {

  }
  dev = get_mdevice(dn.id);
  if (dev) {
    err = device_rename(& dev->dev, dn.name);
  } else {
    err = -19;
  }
  break;
  default: 
  err = -22;
  }
  return (err);
}
}
static int base_sock_bind(struct socket *sock , struct sockaddr *addr , int addr_len ) 
{ 
  struct sockaddr_mISDN *maddr ;
  struct sock *sk ;
  int err ;

  {
  maddr = (struct sockaddr_mISDN *)addr;
  sk = sock->sk;
  err = 0;
  if (! maddr || (int )maddr->family != 34) {
    return (-22);
  } else {

  }
  lock_sock(sk);
  if (((struct mISDN_sock *)sk)->dev) {
    err = -114;
    goto done;
  } else {

  }
  ((struct mISDN_sock *)sk)->dev = get_mdevice(maddr->dev);
  if (! ((struct mISDN_sock *)sk)->dev) {
    err = -19;
    goto done;
  } else {

  }
  sk->__sk_common.skc_state = 2;
  done: 
  release_sock(sk);
  return (err);
}
}
static struct proto_ops  const  base_sock_ops  = 
     {34, & __this_module, & base_sock_release, & base_sock_bind, & sock_no_connect,
    & sock_no_socketpair, & sock_no_accept, & sock_no_getname, & sock_no_poll, & base_sock_ioctl,
    0, & sock_no_listen, & sock_no_shutdown, & sock_no_setsockopt, & sock_no_getsockopt,
    0, 0, & sock_no_sendmsg, & sock_no_recvmsg, & sock_no_mmap, 0, 0};
static int base_sock_create(struct net *net , struct socket *sock , int protocol ) 
{ 
  struct sock *sk ;

  {
  if ((int )sock->type != SOCK_RAW) {
    return (-94);
  } else {

  }
  sk = sk_alloc(net, 34, (16U | 64U) | 128U, & mISDN_proto);
  if (! sk) {
    return (-12);
  } else {

  }
  sock_init_data(sock, sk);
  sock->ops = & base_sock_ops;
  sock->state = SS_UNCONNECTED;
  sock_reset_flag(sk, SOCK_ZAPPED);
  sk->sk_protocol = protocol;
  sk->__sk_common.skc_state = 1;
  mISDN_sock_link(& base_sockets, sk);
  return (0);
}
}
static int mISDN_sock_create(struct net *net , struct socket *sock , int proto ) 
{ 
  int err ;

  {
  err = -93;
  switch (proto) {
  case 0: 
  err = base_sock_create(net, sock, proto);
  break;
  case 38: 
  case 37: 
  case 36: 
  case 35: 
  case 34: 
  case 33: 
  case 17: 
  case 16: 
  case 4: 
  case 3: 
  case 2: 
  case 1: 
  err = data_sock_create(net, sock, proto);
  break;
  default: 
  return (err);
  }
  return (err);
}
}
static struct net_proto_family mISDN_sock_family_ops  =    {34, & mISDN_sock_create, & __this_module};
int misdn_sock_init(u_int *deb ) 
{ 
  int err ;

  {
  debug___0 = deb;
  err = sock_register(& mISDN_sock_family_ops);
  if (err) {
    printk("<3>%s: error(%d)\n", "misdn_sock_init", err);
  } else {

  }
  return (err);
}
}
void misdn_sock_cleanup(void) 
{ 


  {
  sock_unregister(34);
  return;
}
}
void ldv_main2_sequence_infinite_withcheck_stateful(void) 
{ 
  struct socket *var_group1 ;
  unsigned int var_data_sock_ioctl_10_p1 ;
  unsigned long var_data_sock_ioctl_10_p2 ;
  struct sockaddr *var_group2 ;
  int var_data_sock_bind_13_p2 ;
  int *var_data_sock_getname_14_p2 ;
  int var_data_sock_getname_14_p3 ;
  struct kiocb *var_group3 ;
  struct msghdr *var_mISDN_sock_sendmsg_7_p2 ;
  size_t var_mISDN_sock_sendmsg_7_p3 ;
  struct msghdr *var_mISDN_sock_recvmsg_6_p2 ;
  size_t var_mISDN_sock_recvmsg_6_p3 ;
  int var_mISDN_sock_recvmsg_6_p4 ;
  int var_data_sock_setsockopt_11_p1 ;
  int var_data_sock_setsockopt_11_p2 ;
  char *var_data_sock_setsockopt_11_p3 ;
  int var_data_sock_setsockopt_11_p4 ;
  int var_data_sock_getsockopt_12_p1 ;
  int var_data_sock_getsockopt_12_p2 ;
  char *var_data_sock_getsockopt_12_p3 ;
  int *var_data_sock_getsockopt_12_p4 ;
  unsigned int var_base_sock_ioctl_17_p1 ;
  unsigned long var_base_sock_ioctl_17_p2 ;
  int var_base_sock_bind_18_p2 ;
  struct net *var_group4 ;
  int var_mISDN_sock_create_20_p2 ;
  int ldv_s_data_sock_ops_proto_ops ;
  int ldv_s_base_sock_ops_proto_ops ;
  int tmp ;
  int tmp___0 ;

  {
  LDV_IN_INTERRUPT = 1;
  ldv_initialize();
  ldv_s_data_sock_ops_proto_ops = 0;
  ldv_s_base_sock_ops_proto_ops = 0;
  while (1) {
    tmp___0 = nondet_int();
    if ((tmp___0 || ! (ldv_s_data_sock_ops_proto_ops == 0)) || ! (ldv_s_base_sock_ops_proto_ops == 0)) {

    } else {
      break;
    }
    tmp = nondet_int();
    switch (tmp) {
    case 0: 
    if (ldv_s_data_sock_ops_proto_ops == 0) {
      ldv_handler_precall();
      data_sock_release(var_group1);
      ldv_s_data_sock_ops_proto_ops = 0;
    } else {

    }
    break;
    case 1: 
    ldv_handler_precall();
    data_sock_ioctl(var_group1, var_data_sock_ioctl_10_p1, var_data_sock_ioctl_10_p2);
    break;
    case 2: 
    ldv_handler_precall();
    data_sock_bind(var_group1, var_group2, var_data_sock_bind_13_p2);
    break;
    case 3: 
    ldv_handler_precall();
    data_sock_getname(var_group1, var_group2, var_data_sock_getname_14_p2, var_data_sock_getname_14_p3);
    break;
    case 4: 
    ldv_handler_precall();
    mISDN_sock_sendmsg(var_group3, var_group1, var_mISDN_sock_sendmsg_7_p2, var_mISDN_sock_sendmsg_7_p3);
    break;
    case 5: 
    ldv_handler_precall();
    mISDN_sock_recvmsg(var_group3, var_group1, var_mISDN_sock_recvmsg_6_p2, var_mISDN_sock_recvmsg_6_p3,
                       var_mISDN_sock_recvmsg_6_p4);
    break;
    case 6: 
    ldv_handler_precall();
    data_sock_setsockopt(var_group1, var_data_sock_setsockopt_11_p1, var_data_sock_setsockopt_11_p2,
                         var_data_sock_setsockopt_11_p3, var_data_sock_setsockopt_11_p4);
    break;
    case 7: 
    ldv_handler_precall();
    data_sock_getsockopt(var_group1, var_data_sock_getsockopt_12_p1, var_data_sock_getsockopt_12_p2,
                         var_data_sock_getsockopt_12_p3, var_data_sock_getsockopt_12_p4);
    break;
    case 8: 
    if (ldv_s_base_sock_ops_proto_ops == 0) {
      ldv_handler_precall();
      base_sock_release(var_group1);
      ldv_s_base_sock_ops_proto_ops = 0;
    } else {

    }
    break;
    case 9: 
    ldv_handler_precall();
    base_sock_ioctl(var_group1, var_base_sock_ioctl_17_p1, var_base_sock_ioctl_17_p2);
    break;
    case 10: 
    ldv_handler_precall();
    base_sock_bind(var_group1, var_group2, var_base_sock_bind_18_p2);
    break;
    case 11: 
    ldv_handler_precall();
    mISDN_sock_create(var_group4, var_group1, var_mISDN_sock_create_20_p2);
    break;
    default: 
    break;
    }
  }
  ldv_check_final_state();
  return;
}
}
extern char *strncpy(char * , char const   * , __kernel_size_t  ) ;
extern unsigned long _read_lock_irqsave(rwlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern void _read_unlock_irqrestore(rwlock_t *lock , unsigned long flags )  __attribute__((__section__(".spinlock.text"))) ;
extern void do_gettimeofday(struct timeval *tv ) ;
struct mISDNclock *mISDN_register_clock(char *name , int pri , clockctl_func_t *ctl ,
                                        void *priv ) ;
void mISDN_unregister_clock(struct mISDNclock *iclock ) ;
void mISDN_clock_update(struct mISDNclock *iclock , int samples , struct timeval *tv ) ;
unsigned short mISDN_clock_get(void) ;
static u_int *debug___1  ;
static struct list_head iclock_list  =    {& iclock_list, & iclock_list};
static rwlock_t iclock_lock  =    {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "iclock_lock", 0, 0UL}};
static u16 iclock_count  ;
static struct timeval iclock_tv  ;
static int iclock_tv_valid  ;
static struct mISDNclock *iclock_current  ;
void mISDN_init_clock(u_int *dp ) 
{ 


  {
  debug___1 = dp;
  do_gettimeofday(& iclock_tv);
  return;
}
}
static void select_iclock(void) 
{ 
  struct mISDNclock *iclock ;
  struct mISDNclock *bestclock ;
  struct mISDNclock *lastclock ;
  int pri ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;

  {
  bestclock = (void *)0;
  lastclock = (void *)0;
  pri = -128;
  __mptr = iclock_list.next;
  iclock = (struct mISDNclock *)((char *)__mptr - (unsigned int )(& ((struct mISDNclock *)0)->list));
  while (1) {
    __builtin_prefetch(iclock->list.next);
    if ((unsigned long )(& iclock->list) != (unsigned long )(& iclock_list)) {

    } else {
      break;
    }
    if (iclock->pri > pri) {
      pri = iclock->pri;
      bestclock = iclock;
    } else {

    }
    if ((unsigned long )iclock_current == (unsigned long )iclock) {
      lastclock = iclock;
    } else {

    }
    __mptr___0 = iclock->list.next;
    iclock = (struct mISDNclock *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNclock *)0)->list));
  }
  if (lastclock && (unsigned long )bestclock != (unsigned long )lastclock) {
    if (*debug___1 & 33554432U) {
      printk("<7>Old clock source \'%s\' disable.\n", lastclock->name);
    } else {

    }
    (*(lastclock->ctl))(lastclock->priv, 0);
  } else {

  }
  if (bestclock && (unsigned long )bestclock != (unsigned long )iclock_current) {
    if (*debug___1 & 33554432U) {
      printk("<7>New clock source \'%s\' enable.\n", bestclock->name);
    } else {

    }
    (*(bestclock->ctl))(bestclock->priv, 1);
  } else {

  }
  if ((unsigned long )bestclock != (unsigned long )iclock_current) {
    iclock_tv_valid = 0;
  } else {

  }
  iclock_current = bestclock;
  return;
}
}
struct mISDNclock *mISDN_register_clock(char *name , int pri , clockctl_func_t *ctl ,
                                        void *priv ) 
{ 
  u_long flags ;
  struct mISDNclock *iclock ;
  void *tmp ;

  {
  if (*debug___1 & (unsigned int )(255 | 33554432)) {
    printk("<7>%s: %s %d\n", "mISDN_register_clock", name, pri);
  } else {

  }
  tmp = kzalloc(sizeof(struct mISDNclock ), 32U);
  iclock = tmp;
  if (! iclock) {
    printk("<3>%s: No memory for clock entry.\n", "mISDN_register_clock");
    return ((void *)0);
  } else {

  }
  strncpy(iclock->name, name, sizeof(iclock->name) - 1UL);
  iclock->pri = pri;
  iclock->priv = priv;
  iclock->ctl = ctl;
  while (1) {
    flags = _write_lock_irqsave(& iclock_lock);
    break;
  }
  list_add_tail(& iclock->list, & iclock_list);
  select_iclock();
  while (1) {
    _write_unlock_irqrestore(& iclock_lock, flags);
    break;
  }
  return (iclock);
}
}
extern void *__crc_mISDN_register_clock  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_register_clock  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_register_clock);
static char const   __kstrtab_mISDN_register_clock[21]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'r',      'e', 
        'g',      'i',      's',      't', 
        'e',      'r',      '_',      'c', 
        'l',      'o',      'c',      'k', 
        '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_register_clock  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_register_clock), __kstrtab_mISDN_register_clock};
void mISDN_unregister_clock(struct mISDNclock *iclock ) 
{ 
  u_long flags ;

  {
  if (*debug___1 & (unsigned int )(255 | 33554432)) {
    printk("<7>%s: %s %d\n", "mISDN_unregister_clock", iclock->name, iclock->pri);
  } else {

  }
  while (1) {
    flags = _write_lock_irqsave(& iclock_lock);
    break;
  }
  if ((unsigned long )iclock_current == (unsigned long )iclock) {
    if (*debug___1 & 33554432U) {
      printk("<7>Current clock source \'%s\' unregisters.\n", iclock->name);
    } else {

    }
    (*(iclock->ctl))(iclock->priv, 0);
  } else {

  }
  list_del(& iclock->list);
  select_iclock();
  while (1) {
    _write_unlock_irqrestore(& iclock_lock, flags);
    break;
  }
  return;
}
}
extern void *__crc_mISDN_unregister_clock  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_unregister_clock  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_unregister_clock);
static char const   __kstrtab_mISDN_unregister_clock[23]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'u',      'n', 
        'r',      'e',      'g',      'i', 
        's',      't',      'e',      'r', 
        '_',      'c',      'l',      'o', 
        'c',      'k',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_unregister_clock  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_unregister_clock), __kstrtab_mISDN_unregister_clock};
void mISDN_clock_update(struct mISDNclock *iclock , int samples , struct timeval *tv ) 
{ 
  u_long flags ;
  struct timeval tv_now ;
  time_t elapsed_sec ;
  int elapsed_8000th ;

  {
  while (1) {
    flags = _write_lock_irqsave(& iclock_lock);
    break;
  }
  if ((unsigned long )iclock_current != (unsigned long )iclock) {
    printk("<3>%s: \'%s\' sends us clock updates, but we do listen to \'%s\'. This is a bug!\n",
           "mISDN_clock_update", iclock->name, iclock_current ? iclock_current->name : "nothing");
    (*(iclock->ctl))(iclock->priv, 0);
    while (1) {
      _write_unlock_irqrestore(& iclock_lock, flags);
      break;
    }
    return;
  } else {

  }
  if (iclock_tv_valid) {
    iclock_count = (int )iclock_count + samples;
    if (tv) {
      iclock_tv.tv_sec = tv->tv_sec;
      iclock_tv.tv_usec = tv->tv_usec;
    } else {
      do_gettimeofday(& iclock_tv);
    }
  } else {
    if (tv) {
      tv_now.tv_sec = tv->tv_sec;
      tv_now.tv_usec = tv->tv_usec;
    } else {
      do_gettimeofday(& tv_now);
    }
    elapsed_sec = tv_now.tv_sec - iclock_tv.tv_sec;
    elapsed_8000th = tv_now.tv_usec / (__kernel_suseconds_t )125 - iclock_tv.tv_usec / (__kernel_suseconds_t )125;
    if (elapsed_8000th < 0) {
      elapsed_sec = elapsed_sec - (time_t )1;
      elapsed_8000th = elapsed_8000th + 8000;
    } else {

    }
    iclock_count = (time_t )iclock_count + (elapsed_sec * (time_t )8000 + (time_t )elapsed_8000th);
    iclock_tv.tv_sec = tv_now.tv_sec;
    iclock_tv.tv_usec = tv_now.tv_usec;
    iclock_tv_valid = 1;
    if (*debug___1 & 33554432U) {
      printk("Received first clock from source \'%s\'.\n", iclock_current ? iclock_current->name : "nothing");
    } else {

    }
  }
  while (1) {
    _write_unlock_irqrestore(& iclock_lock, flags);
    break;
  }
  return;
}
}
extern void *__crc_mISDN_clock_update  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_clock_update  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_clock_update);
static char const   __kstrtab_mISDN_clock_update[19]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'c',      'l', 
        'o',      'c',      'k',      '_', 
        'u',      'p',      'd',      'a', 
        't',      'e',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_clock_update  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_clock_update), __kstrtab_mISDN_clock_update};
unsigned short mISDN_clock_get(void) 
{ 
  u_long flags ;
  struct timeval tv_now ;
  time_t elapsed_sec ;
  int elapsed_8000th ;
  u16 count ;

  {
  while (1) {
    flags = _read_lock_irqsave(& iclock_lock);
    break;
  }
  do_gettimeofday(& tv_now);
  elapsed_sec = tv_now.tv_sec - iclock_tv.tv_sec;
  elapsed_8000th = tv_now.tv_usec / (__kernel_suseconds_t )125 - iclock_tv.tv_usec / (__kernel_suseconds_t )125;
  if (elapsed_8000th < 0) {
    elapsed_sec = elapsed_sec - (time_t )1;
    elapsed_8000th = elapsed_8000th + 8000;
  } else {

  }
  count = ((time_t )iclock_count + elapsed_sec * (time_t )8000) + (time_t )elapsed_8000th;
  while (1) {
    _read_unlock_irqrestore(& iclock_lock, flags);
    break;
  }
  return (count);
}
}
extern void *__crc_mISDN_clock_get  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_clock_get  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_clock_get);
static char const   __kstrtab_mISDN_clock_get[16]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'c',      'l', 
        'o',      'c',      'k',      '_', 
        'g',      'e',      't',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_clock_get  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_clock_get), __kstrtab_mISDN_clock_get};
__inline static int ( __attribute__((__always_inline__)) constant_test_bit)(unsigned int nr ,
                                                                            unsigned long const volatile   *addr ) 
{ 


  {
  return (((1UL << nr % 64U) & *((unsigned long *)addr + nr / 64U)) != 0UL);
}
}
__inline static void INIT_LIST_HEAD(struct list_head *list ) 
{ 


  {
  list->next = list;
  list->prev = list;
  return;
}
}
extern void lockdep_init_map(struct lockdep_map *lock , char const   *name , struct lock_class_key *key ,
                             int subclass ) ;
extern void __spin_lock_init(spinlock_t *lock , char const   *name , struct lock_class_key *key ) ;
extern void flush_scheduled_work(void) ;
extern int schedule_work(struct work_struct *work ) ;
extern void consume_skb(struct sk_buff *skb ) ;
__inline static void __skb_queue_head_init(struct sk_buff_head *list ) 
{ 
  struct sk_buff *tmp ;

  {
  tmp = (struct sk_buff *)list;
  list->next = tmp;
  list->prev = tmp;
  list->qlen = 0;
  return;
}
}
static struct lock_class_key __key___4  ;
__inline static void skb_queue_head_init(struct sk_buff_head *list ) 
{ 


  {
  while (1) {
    __spin_lock_init(& list->lock, "&list->lock", & __key___4);
    break;
  }
  __skb_queue_head_init(list);
  return;
}
}
extern void skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) ;
extern struct sk_buff *skb_dequeue(struct sk_buff_head *list ) ;
__inline static struct sk_buff *mI_alloc_skb(unsigned int len , gfp_t gfp_mask ) 
{ 
  struct sk_buff *skb ;
  long tmp ;

  {
  skb = alloc_skb((unsigned long )len + sizeof(struct mISDNhead ), gfp_mask);
  tmp = ldv__builtin_expect(! (! skb), 1);
  if (tmp) {
    skb_reserve(skb, sizeof(struct mISDNhead ));
  } else {

  }
  return (skb);
}
}
__inline static struct sk_buff *_alloc_mISDN_skb(u_int prim , u_int id , u_int len ,
                                                 void *dp , gfp_t gfp_mask ) 
{ 
  struct sk_buff *skb ;
  struct sk_buff *tmp ;
  struct mISDNhead *hh ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___1 ;

  {
  tmp = mI_alloc_skb(len, gfp_mask);
  skb = tmp;
  if (! skb) {
    return ((void *)0);
  } else {

  }
  if (len) {
    __len = len;
    tmp___1 = skb_put(skb, len);
    __ret = memcpy(tmp___1, dp, __len);
  } else {

  }
  hh = (struct mISDNhead *)(& skb->cb[0]);
  hh->prim = prim;
  hh->id = id;
  return (skb);
}
}
__inline static void _queue_data(struct mISDNchannel *ch , u_int prim , u_int id ,
                                 u_int len , void *dp , gfp_t gfp_mask ) 
{ 
  struct sk_buff *skb ;
  int tmp ;

  {
  if (! ch->peer) {
    return;
  } else {

  }
  skb = _alloc_mISDN_skb(prim, id, len, dp, gfp_mask);
  if (! skb) {
    return;
  } else {

  }
  tmp = (*(ch->recv))(ch->peer, skb);
  if (tmp) {
    consume_skb(skb);
  } else {

  }
  return;
}
}
int mISDN_initdchannel(struct dchannel *ch , int maxlen , void *phf ) ;
int mISDN_initbchannel(struct bchannel *ch , int maxlen ) ;
int mISDN_freedchannel(struct dchannel *ch ) ;
void mISDN_clear_bchannel(struct bchannel *ch ) ;
int mISDN_freebchannel(struct bchannel *ch ) ;
void queue_ch_frame(struct mISDNchannel *ch , u_int pr , int id , struct sk_buff *skb ) ;
int dchannel_senddata(struct dchannel *ch , struct sk_buff *skb ) ;
int bchannel_senddata(struct bchannel *ch , struct sk_buff *skb ) ;
void recv_Dchannel(struct dchannel *dch ) ;
void recv_Echannel(struct dchannel *ech , struct dchannel *dch ) ;
void recv_Bchannel(struct bchannel *bch , unsigned int id ) ;
void recv_Dchannel_skb(struct dchannel *dch , struct sk_buff *skb ) ;
void recv_Bchannel_skb(struct bchannel *bch , struct sk_buff *skb ) ;
void confirm_Bsend(struct bchannel *bch ) ;
int get_next_bframe(struct bchannel *bch ) ;
int get_next_dframe(struct dchannel *dch ) ;
static void dchannel_bh(struct work_struct *ws ) 
{ 
  struct dchannel *dch ;
  struct work_struct  const  *__mptr ;
  struct sk_buff *skb ;
  int err ;
  long tmp ;
  int tmp___0 ;
  int tmp___1 ;

  {
  __mptr = ws;
  dch = (struct dchannel *)((char *)__mptr - (unsigned int )(& ((struct dchannel *)0)->workq));
  tmp___0 = test_and_clear_bit(30, & dch->Flags);
  if (tmp___0) {
    while (1) {
      skb = skb_dequeue(& dch->rqueue);
      if (skb) {

      } else {
        break;
      }
      tmp = ldv__builtin_expect(! (! dch->dev.D.peer), 1);
      if (tmp) {
        err = (*(dch->dev.D.recv))(dch->dev.D.peer, skb);
        if (err) {
          consume_skb(skb);
        } else {

        }
      } else {
        consume_skb(skb);
      }
    }
  } else {

  }
  tmp___1 = test_and_clear_bit(31, & dch->Flags);
  if (tmp___1) {
    if (dch->phfunc) {
      (*(dch->phfunc))(dch);
    } else {

    }
  } else {

  }
  return;
}
}
static void bchannel_bh(struct work_struct *ws ) 
{ 
  struct bchannel *bch ;
  struct work_struct  const  *__mptr ;
  struct sk_buff *skb ;
  int err ;
  long tmp ;
  int tmp___0 ;

  {
  __mptr = ws;
  bch = (struct bchannel *)((char *)__mptr - (unsigned int )(& ((struct bchannel *)0)->workq));
  tmp___0 = test_and_clear_bit(30, & bch->Flags);
  if (tmp___0) {
    while (1) {
      skb = skb_dequeue(& bch->rqueue);
      if (skb) {

      } else {
        break;
      }
      bch->rcount = bch->rcount - 1;
      tmp = ldv__builtin_expect(! (! bch->ch.peer), 1);
      if (tmp) {
        err = (*(bch->ch.recv))(bch->ch.peer, skb);
        if (err) {
          consume_skb(skb);
        } else {

        }
      } else {
        consume_skb(skb);
      }
    }
  } else {

  }
  return;
}
}
static struct lock_class_key __key___5  ;
int mISDN_initdchannel(struct dchannel *ch , int maxlen , void *phf ) 
{ 
  atomic_long_t __constr_expr_0 ;

  {
  test_and_set_bit(13, & ch->Flags);
  ch->maxlen = maxlen;
  ch->hw = (void *)0;
  ch->rx_skb = (void *)0;
  ch->tx_skb = (void *)0;
  ch->tx_idx = 0;
  ch->phfunc = phf;
  skb_queue_head_init(& ch->squeue);
  skb_queue_head_init(& ch->rqueue);
  INIT_LIST_HEAD(& ch->dev.bchannels);
  while (1) {
    __constr_expr_0.counter = 0;
    ch->workq.data = __constr_expr_0;
    lockdep_init_map(& ch->workq.lockdep_map, "&ch->workq", & __key___5, 0);
    INIT_LIST_HEAD(& ch->workq.entry);
    while (1) {
      ch->workq.func = & dchannel_bh;
      break;
    }
    break;
  }
  return (0);
}
}
extern void *__crc_mISDN_initdchannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_initdchannel  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_initdchannel);
static char const   __kstrtab_mISDN_initdchannel[19]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'i',      'n', 
        'i',      't',      'd',      'c', 
        'h',      'a',      'n',      'n', 
        'e',      'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_initdchannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_initdchannel), __kstrtab_mISDN_initdchannel};
static struct lock_class_key __key___6  ;
int mISDN_initbchannel(struct bchannel *ch , int maxlen ) 
{ 
  atomic_long_t __constr_expr_0 ;

  {
  ch->Flags = 0;
  ch->maxlen = maxlen;
  ch->hw = (void *)0;
  ch->rx_skb = (void *)0;
  ch->tx_skb = (void *)0;
  ch->tx_idx = 0;
  skb_queue_head_init(& ch->rqueue);
  ch->rcount = 0;
  ch->next_skb = (void *)0;
  while (1) {
    __constr_expr_0.counter = 0;
    ch->workq.data = __constr_expr_0;
    lockdep_init_map(& ch->workq.lockdep_map, "&ch->workq", & __key___6, 0);
    INIT_LIST_HEAD(& ch->workq.entry);
    while (1) {
      ch->workq.func = & bchannel_bh;
      break;
    }
    break;
  }
  return (0);
}
}
extern void *__crc_mISDN_initbchannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_initbchannel  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_initbchannel);
static char const   __kstrtab_mISDN_initbchannel[19]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'i',      'n', 
        'i',      't',      'b',      'c', 
        'h',      'a',      'n',      'n', 
        'e',      'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_initbchannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_initbchannel), __kstrtab_mISDN_initbchannel};
int mISDN_freedchannel(struct dchannel *ch ) 
{ 


  {
  if (ch->tx_skb) {
    consume_skb(ch->tx_skb);
    ch->tx_skb = (void *)0;
  } else {

  }
  if (ch->rx_skb) {
    consume_skb(ch->rx_skb);
    ch->rx_skb = (void *)0;
  } else {

  }
  skb_queue_purge(& ch->squeue);
  skb_queue_purge(& ch->rqueue);
  flush_scheduled_work();
  return (0);
}
}
extern void *__crc_mISDN_freedchannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_freedchannel  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_freedchannel);
static char const   __kstrtab_mISDN_freedchannel[19]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'f',      'r', 
        'e',      'e',      'd',      'c', 
        'h',      'a',      'n',      'n', 
        'e',      'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_freedchannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_freedchannel), __kstrtab_mISDN_freedchannel};
void mISDN_clear_bchannel(struct bchannel *ch ) 
{ 


  {
  if (ch->tx_skb) {
    consume_skb(ch->tx_skb);
    ch->tx_skb = (void *)0;
  } else {

  }
  ch->tx_idx = 0;
  if (ch->rx_skb) {
    consume_skb(ch->rx_skb);
    ch->rx_skb = (void *)0;
  } else {

  }
  if (ch->next_skb) {
    consume_skb(ch->next_skb);
    ch->next_skb = (void *)0;
  } else {

  }
  test_and_clear_bit(0, & ch->Flags);
  test_and_clear_bit(1, & ch->Flags);
  test_and_clear_bit(6, & ch->Flags);
  return;
}
}
extern void *__crc_mISDN_clear_bchannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_clear_bchannel  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_clear_bchannel);
static char const   __kstrtab_mISDN_clear_bchannel[21]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'c',      'l', 
        'e',      'a',      'r',      '_', 
        'b',      'c',      'h',      'a', 
        'n',      'n',      'e',      'l', 
        '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_clear_bchannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_clear_bchannel), __kstrtab_mISDN_clear_bchannel};
int mISDN_freebchannel(struct bchannel *ch ) 
{ 


  {
  mISDN_clear_bchannel(ch);
  skb_queue_purge(& ch->rqueue);
  ch->rcount = 0;
  flush_scheduled_work();
  return (0);
}
}
extern void *__crc_mISDN_freebchannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_mISDN_freebchannel  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_mISDN_freebchannel);
static char const   __kstrtab_mISDN_freebchannel[19]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'm',      'I',      'S',      'D', 
        'N',      '_',      'f',      'r', 
        'e',      'e',      'b',      'c', 
        'h',      'a',      'n',      'n', 
        'e',      'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_mISDN_freebchannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& mISDN_freebchannel), __kstrtab_mISDN_freebchannel};
__inline static u_int get_sapi_tei(u_char *p ) 
{ 
  u_int sapi ;
  u_int tei ;

  {
  sapi = (int )*p >> 2;
  tei = (int )*(p + 1) >> 1;
  return (sapi | (tei << 8));
}
}
void recv_Dchannel(struct dchannel *dch ) 
{ 
  struct mISDNhead *hh ;

  {
  if ((dch->rx_skb)->len < 2U) {
    consume_skb(dch->rx_skb);
    dch->rx_skb = (void *)0;
    return;
  } else {

  }
  hh = (struct mISDNhead *)(& (dch->rx_skb)->cb[0]);
  hh->prim = 8194;
  hh->id = get_sapi_tei((dch->rx_skb)->data);
  skb_queue_tail(& dch->rqueue, dch->rx_skb);
  dch->rx_skb = (void *)0;
  while (1) {
    test_and_set_bit(30, & dch->Flags);
    schedule_work(& dch->workq);
    break;
  }
  return;
}
}
extern void *__crc_recv_Dchannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_recv_Dchannel  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_recv_Dchannel);
static char const   __kstrtab_recv_Dchannel[14]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'r',      'e',      'c',      'v', 
        '_',      'D',      'c',      'h', 
        'a',      'n',      'n',      'e', 
        'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_recv_Dchannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& recv_Dchannel), __kstrtab_recv_Dchannel};
void recv_Echannel(struct dchannel *ech , struct dchannel *dch ) 
{ 
  struct mISDNhead *hh ;

  {
  if ((ech->rx_skb)->len < 2U) {
    consume_skb(ech->rx_skb);
    ech->rx_skb = (void *)0;
    return;
  } else {

  }
  hh = (struct mISDNhead *)(& (ech->rx_skb)->cb[0]);
  hh->prim = 12290;
  hh->id = get_sapi_tei((ech->rx_skb)->data);
  skb_queue_tail(& dch->rqueue, ech->rx_skb);
  ech->rx_skb = (void *)0;
  while (1) {
    test_and_set_bit(30, & dch->Flags);
    schedule_work(& dch->workq);
    break;
  }
  return;
}
}
extern void *__crc_recv_Echannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_recv_Echannel  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_recv_Echannel);
static char const   __kstrtab_recv_Echannel[14]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'r',      'e',      'c',      'v', 
        '_',      'E',      'c',      'h', 
        'a',      'n',      'n',      'e', 
        'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_recv_Echannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& recv_Echannel), __kstrtab_recv_Echannel};
void recv_Bchannel(struct bchannel *bch , unsigned int id ) 
{ 
  struct mISDNhead *hh ;

  {
  hh = (struct mISDNhead *)(& (bch->rx_skb)->cb[0]);
  hh->prim = 8194;
  hh->id = id;
  if (bch->rcount >= 64) {
    printk("<4>B-channel %p receive queue overflow, fushing!\n", bch);
    skb_queue_purge(& bch->rqueue);
    bch->rcount = 0;
    return;
  } else {

  }
  bch->rcount = bch->rcount + 1;
  skb_queue_tail(& bch->rqueue, bch->rx_skb);
  bch->rx_skb = (void *)0;
  while (1) {
    test_and_set_bit(30, & bch->Flags);
    schedule_work(& bch->workq);
    break;
  }
  return;
}
}
extern void *__crc_recv_Bchannel  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_recv_Bchannel  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_recv_Bchannel);
static char const   __kstrtab_recv_Bchannel[14]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'r',      'e',      'c',      'v', 
        '_',      'B',      'c',      'h', 
        'a',      'n',      'n',      'e', 
        'l',      '\000'};
static struct kernel_symbol  const  __ksymtab_recv_Bchannel  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& recv_Bchannel), __kstrtab_recv_Bchannel};
void recv_Dchannel_skb(struct dchannel *dch , struct sk_buff *skb ) 
{ 


  {
  skb_queue_tail(& dch->rqueue, skb);
  while (1) {
    test_and_set_bit(30, & dch->Flags);
    schedule_work(& dch->workq);
    break;
  }
  return;
}
}
extern void *__crc_recv_Dchannel_skb  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_recv_Dchannel_skb  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_recv_Dchannel_skb);
static char const   __kstrtab_recv_Dchannel_skb[18]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'r',      'e',      'c',      'v', 
        '_',      'D',      'c',      'h', 
        'a',      'n',      'n',      'e', 
        'l',      '_',      's',      'k', 
        'b',      '\000'};
static struct kernel_symbol  const  __ksymtab_recv_Dchannel_skb  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& recv_Dchannel_skb), __kstrtab_recv_Dchannel_skb};
void recv_Bchannel_skb(struct bchannel *bch , struct sk_buff *skb ) 
{ 


  {
  if (bch->rcount >= 64) {
    printk("<4>B-channel %p receive queue overflow, fushing!\n", bch);
    skb_queue_purge(& bch->rqueue);
    bch->rcount = 0;
  } else {

  }
  bch->rcount = bch->rcount + 1;
  skb_queue_tail(& bch->rqueue, skb);
  while (1) {
    test_and_set_bit(30, & bch->Flags);
    schedule_work(& bch->workq);
    break;
  }
  return;
}
}
extern void *__crc_recv_Bchannel_skb  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_recv_Bchannel_skb  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_recv_Bchannel_skb);
static char const   __kstrtab_recv_Bchannel_skb[18]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'r',      'e',      'c',      'v', 
        '_',      'B',      'c',      'h', 
        'a',      'n',      'n',      'e', 
        'l',      '_',      's',      'k', 
        'b',      '\000'};
static struct kernel_symbol  const  __ksymtab_recv_Bchannel_skb  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& recv_Bchannel_skb), __kstrtab_recv_Bchannel_skb};
static void confirm_Dsend(struct dchannel *dch ) 
{ 
  struct sk_buff *skb ;

  {
  skb = _alloc_mISDN_skb(24578, ((struct mISDNhead *)(& (dch->tx_skb)->cb[0]))->id,
                         0, (void *)0, 32U);
  if (! skb) {
    printk("<3>%s: no skb id %x\n", "confirm_Dsend", ((struct mISDNhead *)(& (dch->tx_skb)->cb[0]))->id);
    return;
  } else {

  }
  skb_queue_tail(& dch->rqueue, skb);
  while (1) {
    test_and_set_bit(30, & dch->Flags);
    schedule_work(& dch->workq);
    break;
  }
  return;
}
}
int get_next_dframe(struct dchannel *dch ) 
{ 


  {
  dch->tx_idx = 0;
  dch->tx_skb = skb_dequeue(& dch->squeue);
  if (dch->tx_skb) {
    confirm_Dsend(dch);
    return (1);
  } else {

  }
  dch->tx_skb = (void *)0;
  test_and_clear_bit(0, & dch->Flags);
  return (0);
}
}
extern void *__crc_get_next_dframe  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_get_next_dframe  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_get_next_dframe);
static char const   __kstrtab_get_next_dframe[16]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'g',      'e',      't',      '_', 
        'n',      'e',      'x',      't', 
        '_',      'd',      'f',      'r', 
        'a',      'm',      'e',      '\000'};
static struct kernel_symbol  const  __ksymtab_get_next_dframe  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& get_next_dframe), __kstrtab_get_next_dframe};
void confirm_Bsend(struct bchannel *bch ) 
{ 
  struct sk_buff *skb ;

  {
  if (bch->rcount >= 64) {
    printk("<4>B-channel %p receive queue overflow, fushing!\n", bch);
    skb_queue_purge(& bch->rqueue);
    bch->rcount = 0;
  } else {

  }
  skb = _alloc_mISDN_skb(24578, ((struct mISDNhead *)(& (bch->tx_skb)->cb[0]))->id,
                         0, (void *)0, 32U);
  if (! skb) {
    printk("<3>%s: no skb id %x\n", "confirm_Bsend", ((struct mISDNhead *)(& (bch->tx_skb)->cb[0]))->id);
    return;
  } else {

  }
  bch->rcount = bch->rcount + 1;
  skb_queue_tail(& bch->rqueue, skb);
  while (1) {
    test_and_set_bit(30, & bch->Flags);
    schedule_work(& bch->workq);
    break;
  }
  return;
}
}
extern void *__crc_confirm_Bsend  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_confirm_Bsend  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_confirm_Bsend);
static char const   __kstrtab_confirm_Bsend[14]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'c',      'o',      'n',      'f', 
        'i',      'r',      'm',      '_', 
        'B',      's',      'e',      'n', 
        'd',      '\000'};
static struct kernel_symbol  const  __ksymtab_confirm_Bsend  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& confirm_Bsend), __kstrtab_confirm_Bsend};
int get_next_bframe(struct bchannel *bch ) 
{ 
  int tmp ;
  int tmp___1 ;

  {
  bch->tx_idx = 0;
  tmp___1 = constant_test_bit(1, & bch->Flags);
  if (tmp___1) {
    bch->tx_skb = bch->next_skb;
    if (bch->tx_skb) {
      bch->next_skb = (void *)0;
      test_and_clear_bit(1, & bch->Flags);
      tmp = constant_test_bit(12, & bch->Flags);
      if (tmp) {

      } else {
        confirm_Bsend(bch);
      }
      return (1);
    } else {
      test_and_clear_bit(1, & bch->Flags);
      printk("<4>B TX_NEXT without skb\n");
    }
  } else {

  }
  bch->tx_skb = (void *)0;
  test_and_clear_bit(0, & bch->Flags);
  return (0);
}
}
extern void *__crc_get_next_bframe  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_get_next_bframe  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_get_next_bframe);
static char const   __kstrtab_get_next_bframe[16]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'g',      'e',      't',      '_', 
        'n',      'e',      'x',      't', 
        '_',      'b',      'f',      'r', 
        'a',      'm',      'e',      '\000'};
static struct kernel_symbol  const  __ksymtab_get_next_bframe  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& get_next_bframe), __kstrtab_get_next_bframe};
void queue_ch_frame(struct mISDNchannel *ch , u_int pr , int id , struct sk_buff *skb ) 
{ 
  struct mISDNhead *hh ;
  int tmp ;

  {
  if (! skb) {
    _queue_data(ch, pr, id, 0, (void *)0, 32U);
  } else {
    if (ch->peer) {
      hh = (struct mISDNhead *)(& skb->cb[0]);
      hh->prim = pr;
      hh->id = id;
      tmp = (*(ch->recv))(ch->peer, skb);
      if (tmp) {

      } else {
        return;
      }
    } else {

    }
    consume_skb(skb);
  }
  return;
}
}
extern void *__crc_queue_ch_frame  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_queue_ch_frame  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_queue_ch_frame);
static char const   __kstrtab_queue_ch_frame[15]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'q',      'u',      'e',      'u', 
        'e',      '_',      'c',      'h', 
        '_',      'f',      'r',      'a', 
        'm',      'e',      '\000'};
static struct kernel_symbol  const  __ksymtab_queue_ch_frame  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& queue_ch_frame), __kstrtab_queue_ch_frame};
int dchannel_senddata(struct dchannel *ch , struct sk_buff *skb ) 
{ 
  int tmp ;

  {
  if (skb->len <= 0U) {
    printk("<4>%s: skb too small\n", "dchannel_senddata");
    return (-22);
  } else {

  }
  if (skb->len > (unsigned int )ch->maxlen) {
    printk("<4>%s: skb too large(%d/%d)\n", "dchannel_senddata", skb->len, ch->maxlen);
    return (-22);
  } else {

  }
  tmp = test_and_set_bit(0, & ch->Flags);
  if (tmp) {
    skb_queue_tail(& ch->squeue, skb);
    return (0);
  } else {
    ch->tx_skb = skb;
    ch->tx_idx = 0;
    return (1);
  }
}
}
extern void *__crc_dchannel_senddata  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_dchannel_senddata  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_dchannel_senddata);
static char const   __kstrtab_dchannel_senddata[18]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'd',      'c',      'h',      'a', 
        'n',      'n',      'e',      'l', 
        '_',      's',      'e',      'n', 
        'd',      'd',      'a',      't', 
        'a',      '\000'};
static struct kernel_symbol  const  __ksymtab_dchannel_senddata  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& dchannel_senddata), __kstrtab_dchannel_senddata};
int bchannel_senddata(struct bchannel *ch , struct sk_buff *skb ) 
{ 
  int tmp ;

  {
  if (skb->len <= 0U) {
    printk("<4>%s: skb too small\n", "bchannel_senddata");
    return (-22);
  } else {

  }
  if (skb->len > (unsigned int )ch->maxlen) {
    printk("<4>%s: skb too large(%d/%d)\n", "bchannel_senddata", skb->len, ch->maxlen);
    return (-22);
  } else {

  }
  if (ch->next_skb) {
    printk("<4>%s: next_skb exist ERROR (skb->len=%d next_skb->len=%d)\n", "bchannel_senddata",
           skb->len, (ch->next_skb)->len);
    return (-16);
  } else {

  }
  tmp = test_and_set_bit(0, & ch->Flags);
  if (tmp) {
    test_and_set_bit(1, & ch->Flags);
    ch->next_skb = skb;
    return (0);
  } else {
    ch->tx_skb = skb;
    ch->tx_idx = 0;
    return (1);
  }
}
}
extern void *__crc_bchannel_senddata  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_bchannel_senddata  __attribute__((__used__,
__unused__, __section__("__kcrctab")))  =    (unsigned long )(& __crc_bchannel_senddata);
static char const   __kstrtab_bchannel_senddata[18]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'b',      'c',      'h',      'a', 
        'n',      'n',      'e',      'l', 
        '_',      's',      'e',      'n', 
        'd',      'd',      'a',      't', 
        'a',      '\000'};
static struct kernel_symbol  const  __ksymtab_bchannel_senddata  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& bchannel_senddata), __kstrtab_bchannel_senddata};
__inline static int variable_test_bit(int nr , unsigned long const volatile   *addr ) 
{ 
  int oldbit ;

  {
  __asm__  volatile   ("bt %2,%1\n\t"
                       "sbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)),
                       "Ir" (nr));
  return (oldbit);
}
}
extern void __bad_percpu_size(void) ;
extern struct task_struct *per_cpu__current_task  __attribute__((__section__(".data.percpu"))) ;
__inline static struct task_struct *( __attribute__((__always_inline__)) get_current)(void) 
{ 
  struct task_struct *ret__ ;

  {
  switch (sizeof(per_cpu__current_task)) {
  case 1UL: 
  __asm__  ("mov"
            "b "
            "%%"
            "gs"
            ":%P"
            "1"
            ",%0": "=q" (ret__): "m" (per_cpu__current_task));
  break;
  case 2UL: 
  __asm__  ("mov"
            "w "
            "%%"
            "gs"
            ":%P"
            "1"
            ",%0": "=r" (ret__): "m" (per_cpu__current_task));
  break;
  case 4UL: 
  __asm__  ("mov"
            "l "
            "%%"
            "gs"
            ":%P"
            "1"
            ",%0": "=r" (ret__): "m" (per_cpu__current_task));
  break;
  case 8UL: 
  __asm__  ("mov"
            "q "
            "%%"
            "gs"
            ":%P"
            "1"
            ",%0": "=r" (ret__): "m" (per_cpu__current_task));
  break;
  default: 
  __bad_percpu_size();
  }
  return (ret__);
}
}
extern void *memset(void *s , int c , size_t n ) ;
__inline static long PTR_ERR(void const   *ptr ) 
{ 


  {
  return ((long )ptr);
}
}
__inline static long IS_ERR(void const   *ptr ) 
{ 
  long tmp ;

  {
  tmp = ldv__builtin_expect(! (! ((unsigned long )ptr >= 0xfffffffffffff001UL)), 0);
  return (tmp);
}
}
__inline static int list_is_last(struct list_head  const  *list , struct list_head  const  *head ) 
{ 


  {
  return ((unsigned long )list->next == (unsigned long )head);
}
}
__inline static int list_empty(struct list_head  const  *head ) 
{ 


  {
  return ((unsigned long )head->next == (unsigned long )head);
}
}
__inline static int hlist_empty(struct hlist_head  const  *h ) 
{ 


  {
  return (! h->first);
}
}
__inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) 
{ 
  int tmp___0 ;

  {
  tmp___0 = variable_test_bit(flag, (unsigned long *)(& ti->flags));
  return (tmp___0);
}
}
extern void __rwlock_init(rwlock_t *lock , char const   *name , struct lock_class_key *key ) ;
extern void init_waitqueue_head(wait_queue_head_t *q ) ;
extern void __wake_up(wait_queue_head_t *q , unsigned int mode , int nr , void *key ) ;
extern void prepare_to_wait(wait_queue_head_t *q , wait_queue_t *wait , int state ) ;
extern void finish_wait(wait_queue_head_t *q , wait_queue_t *wait ) ;
extern int autoremove_wake_function(wait_queue_t *wait , unsigned int mode , int sync ,
                                    void *key ) ;
__inline static void init_completion(struct completion *x ) 
{ 


  {
  x->done = 0;
  init_waitqueue_head(& x->wait);
  return;
}
}
extern void wait_for_completion(struct completion * ) ;
extern void complete(struct completion * ) ;
extern void __mutex_init(struct mutex *lock , char const   *name , struct lock_class_key *key ) ;
extern void mutex_lock_nested(struct mutex *lock , unsigned int subclass ) ;
extern void mutex_unlock(struct mutex *lock ) ;
extern struct sk_buff *skb_copy(struct sk_buff  const  *skb , gfp_t priority ) ;
__inline static int skb_queue_empty(struct sk_buff_head  const  *list ) 
{ 


  {
  return ((unsigned long )list->next == (unsigned long )((struct sk_buff *)list));
}
}
static struct lock_class_key __key___7  ;
__inline static void skb_queue_head_init___0(struct sk_buff_head *list ) 
{ 


  {
  while (1) {
    __spin_lock_init(& list->lock, "&list->lock", & __key___7);
    break;
  }
  __skb_queue_head_init(list);
  return;
}
}
__inline static void sigfillset(sigset_t *set ) 
{ 


  {
  switch (64 / 64) {
  default: 
  memset(set, -1, sizeof(sigset_t ));
  break;
  case 2: 
  set->sig[1] = -1;
  case 1: 
  set->sig[0] = -1;
  break;
  }
  return;
}
}
extern void schedule(void) ;
extern int wake_up_process(struct task_struct *tsk ) ;
__inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) 
{ 
  int tmp ;

  {
  tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag);
  return (tmp);
}
}
__inline static int signal_pending(struct task_struct *p ) 
{ 
  int tmp ;
  int tmp___0 ;
  long tmp___1 ;

  {
  tmp = test_tsk_thread_flag(p, 2);
  if (tmp) {
    tmp___0 = 1;
  } else {
    tmp___0 = 0;
  }
  tmp___1 = ldv__builtin_expect(tmp___0, 0);
  return (tmp___1);
}
}
void set_channel_address(struct mISDNchannel *ch , u_int sapi , u_int tei ) ;
extern struct task_struct *( /* format attribute */  kthread_create)(int (*threadfn)(void *data ) ,
                                                                     void *data ,
                                                                     char const   *namefmt 
                                                                     , ...) ;
extern void lock_kernel(void)  __attribute__((__section__(".spinlock.text"))) ;
extern void unlock_kernel(void)  __attribute__((__section__(".spinlock.text"))) ;
int create_teimanager(struct mISDNdevice *dev ) ;
void delete_teimanager(struct mISDNchannel *ch ) ;
void add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) ;
void __add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) ;
static u_int *debug___2  ;
__inline static void _queue_message(struct mISDNstack *st , struct sk_buff *skb ) 
{ 
  struct mISDNhead *hh ;
  int tmp ;
  int tmp___1 ;
  long tmp___2 ;

  {
  hh = (struct mISDNhead *)(& skb->cb[0]);
  if (*debug___2 & 64U) {
    printk("<7>%s prim(%x) id(%x) %p\n", "_queue_message", hh->prim, hh->id, skb);
  } else {

  }
  skb_queue_tail(& st->msgq, skb);
  tmp = constant_test_bit(16, & st->status);
  if (tmp) {
    tmp___1 = 0;
  } else {
    tmp___1 = 1;
  }
  tmp___2 = ldv__builtin_expect(tmp___1, 1);
  if (tmp___2) {
    test_and_set_bit(0, & st->status);
    __wake_up(& st->workq, 1, 1, (void *)0);
  } else {

  }
  return;
}
}
static int mISDN_queue_message(struct mISDNchannel *ch , struct sk_buff *skb ) 
{ 


  {
  _queue_message(ch->st, skb);
  return (0);
}
}
static struct mISDNchannel *get_channel4id(struct mISDNstack *st , u_int id ) 
{ 
  struct mISDNchannel *ch ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;

  {
  mutex_lock_nested(& st->lmutex, 0);
  __mptr = st->layer2.next;
  ch = (struct mISDNchannel *)((char *)__mptr - (unsigned int )(& ((struct mISDNchannel *)0)->list));
  while (1) {
    __builtin_prefetch(ch->list.next);
    if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) {

    } else {
      break;
    }
    if (id == ch->nr) {
      goto unlock;
    } else {

    }
    __mptr___0 = ch->list.next;
    ch = (struct mISDNchannel *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNchannel *)0)->list));
  }
  ch = (void *)0;
  unlock: 
  mutex_unlock(& st->lmutex);
  return (ch);
}
}
static void send_socklist(struct mISDN_sock_list *sl , struct sk_buff *skb ) 
{ 
  struct hlist_node *node ;
  struct sock *sk ;
  struct sk_buff *cskb ;
  int tmp ;
  struct hlist_node  const  *__mptr ;

  {
  cskb = (void *)0;
  _read_lock(& sl->lock);
  node = sl->head.first;
  while (1) {
    if (node) {
      __builtin_prefetch(node->next);
      __mptr = node;
      sk = (struct sock *)((char *)__mptr - (unsigned int )(& ((struct sock *)0)->__sk_common.__annonCompField29.skc_node));
    } else {
      break;
    }
    if ((int volatile   )sk->__sk_common.skc_state != (int volatile   )2) {
      goto __Cont;
    } else {

    }
    if (! cskb) {
      cskb = skb_copy(skb, (16U | 64U) | 128U);
    } else {

    }
    if (! cskb) {
      printk("<4>%s no skb\n", "send_socklist");
      break;
    } else {

    }
    tmp = sock_queue_rcv_skb(sk, cskb);
    if (tmp) {

    } else {
      cskb = (void *)0;
    }
    __Cont: /* CIL Label */ 
    node = node->next;
  }
  _read_unlock(& sl->lock);
  if (cskb) {
    consume_skb(cskb);
  } else {

  }
  return;
}
}
static void send_layer2(struct mISDNstack *st , struct sk_buff *skb ) 
{ 
  struct sk_buff *cskb ;
  struct mISDNhead *hh ;
  struct mISDNchannel *ch ;
  int ret ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  int tmp ;
  struct list_head  const  *__mptr___1 ;
  struct list_head  const  *__mptr___2 ;

  {
  hh = (struct mISDNhead *)(& skb->cb[0]);
  if (! st) {
    return;
  } else {

  }
  mutex_lock_nested(& st->lmutex, 0);
  if ((hh->id & 65535U) == 65535U) {
    __mptr = st->layer2.next;
    ch = (struct mISDNchannel *)((char *)__mptr - (unsigned int )(& ((struct mISDNchannel *)0)->list));
    while (1) {
      __builtin_prefetch(ch->list.next);
      if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) {

      } else {
        break;
      }
      tmp = list_is_last(& ch->list, & st->layer2);
      if (tmp) {
        cskb = skb;
        skb = (void *)0;
      } else {
        cskb = skb_copy(skb, (16U | 64U) | 128U);
      }
      if (cskb) {
        ret = (*(ch->send))(ch, cskb);
        if (ret) {
          if (*debug___2 & 16U) {
            printk("<7>%s ch%d prim(%x) addr(%x) err %d\n", "send_layer2", ch->nr,
                   hh->prim, ch->addr, ret);
          } else {

          }
          consume_skb(cskb);
        } else {

        }
      } else {
        printk("<4>%s ch%d addr %x no mem\n", "send_layer2", ch->nr, ch->addr);
        goto out;
      }
      __mptr___0 = ch->list.next;
      ch = (struct mISDNchannel *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNchannel *)0)->list));
    }
  } else {
    __mptr___1 = st->layer2.next;
    ch = (struct mISDNchannel *)((char *)__mptr___1 - (unsigned int )(& ((struct mISDNchannel *)0)->list));
    while (1) {
      __builtin_prefetch(ch->list.next);
      if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) {

      } else {
        break;
      }
      if ((hh->id & 65535U) == ch->addr) {
        ret = (*(ch->send))(ch, skb);
        if (! ret) {
          skb = (void *)0;
        } else {

        }
        goto out;
      } else {

      }
      __mptr___2 = ch->list.next;
      ch = (struct mISDNchannel *)((char *)__mptr___2 - (unsigned int )(& ((struct mISDNchannel *)0)->list));
    }
    ret = (*(((st->dev)->teimgr)->ctrl))((st->dev)->teimgr, 1024, skb);
    if (! ret) {
      skb = (void *)0;
    } else
    if (*debug___2 & 16U) {
      printk("<7>%s ch%d mgr prim(%x) addr(%x) err %d\n", "send_layer2", ch->nr, hh->prim,
             ch->addr, ret);
    } else {

    }
  }
  out: 
  mutex_unlock(& st->lmutex);
  if (skb) {
    consume_skb(skb);
  } else {

  }
  return;
}
}
__inline static int send_msg_to_layer(struct mISDNstack *st , struct sk_buff *skb ) 
{ 
  struct mISDNhead *hh ;
  struct mISDNchannel *ch ;
  int lm ;
  int tmp ;
  int tmp___0 ;
  int tmp___1 ;
  int tmp___2 ;
  char const   *tmp___3 ;
  int __ret_warn_on ;
  long tmp___4 ;
  int tmp___5 ;
  char const   *tmp___6 ;
  char const   *tmp___7 ;

  {
  hh = (struct mISDNhead *)(& skb->cb[0]);
  lm = hh->prim & 255U;
  if (*debug___2 & 64U) {
    printk("<7>%s prim(%x) id(%x) %p\n", "send_msg_to_layer", hh->prim, hh->id, skb);
  } else {

  }
  if (lm == 1) {
    tmp = hlist_empty(& st->l1sock.head);
    if (tmp) {

    } else {
      __net_timestamp(skb);
      send_socklist(& st->l1sock, skb);
    }
    tmp___0 = (*((st->layer1)->send))(st->layer1, skb);
    return (tmp___0);
  } else
  if (lm == 2) {
    tmp___1 = hlist_empty(& st->l1sock.head);
    if (tmp___1) {

    } else {
      send_socklist(& st->l1sock, skb);
    }
    send_layer2(st, skb);
    return (0);
  } else
  if (lm == 4) {
    ch = get_channel4id(st, hh->id);
    if (ch) {
      tmp___2 = (*(ch->send))(ch, skb);
      return (tmp___2);
    } else {
      tmp___3 = dev_name(& (st->dev)->dev);
      printk("<4>%s: dev(%s) prim(%x) id(%x) no channel\n", "send_msg_to_layer", tmp___3,
             hh->prim, hh->id);
    }
  } else
  if (lm == 8) {
    __ret_warn_on = ! (! (lm == 8));
    tmp___4 = ldv__builtin_expect(! (! __ret_warn_on), 0);
    if (tmp___4) {
      warn_slowpath_null("/work/ldvuser/novikov/work/current--X--drivers/isdn/mISDN/mISDN_core.ko--X--defaultlinux--X--68_1--X--cpachecker/linux/csd_deg_dscv/30/dscv_tempdir/dscv/ri/68_1/drivers/isdn/mISDN/stack.c",
                         179);
    } else {

    }
    ldv__builtin_expect(! (! __ret_warn_on), 0);
    ch = get_channel4id(st, hh->id);
    if (ch) {
      tmp___5 = (*(ch->send))(ch, skb);
      return (tmp___5);
    } else {
      tmp___6 = dev_name(& (st->dev)->dev);
      printk("<4>%s: dev(%s) prim(%x) id(%x) no channel\n", "send_msg_to_layer", tmp___6,
             hh->prim, hh->id);
    }
  } else {
    tmp___7 = dev_name(& (st->dev)->dev);
    printk("<4>%s: dev(%s) prim %x not delivered\n", "send_msg_to_layer", tmp___7,
           hh->prim);
  }
  return (-3);
}
}
static void do_clear_stack(struct mISDNstack *st ) 
{ 


  {
  return;
}
}
static int mISDNStackd(void *data ) 
{ 
  struct mISDNstack *st ;
  int err ;
  struct task_struct *tmp ;
  char const   *tmp___0 ;
  struct sk_buff *skb ;
  int tmp___1 ;
  int tmp___3 ;
  long tmp___4 ;
  char const   *tmp___5 ;
  long tmp___6 ;
  int tmp___7 ;
  int tmp___9 ;
  long tmp___10 ;
  int tmp___11 ;
  int tmp___13 ;
  int tmp___15 ;
  int tmp___16 ;
  int tmp___17 ;
  int __ret ;
  wait_queue_t __wait ;
  struct task_struct *tmp___19 ;
  struct task_struct *tmp___20 ;
  int tmp___21 ;
  char const   *tmp___22 ;
  int tmp___23 ;

  {
  st = data;
  err = 0;
  lock_kernel();
  tmp = get_current();
  sigfillset(& tmp->blocked);
  unlock_kernel();
  if (*debug___2 & 32U) {
    tmp___0 = dev_name(& (st->dev)->dev);
    printk("<7>mISDNStackd %s started\n", tmp___0);
  } else {

  }
  if ((unsigned long )st->notify != (unsigned long )((void *)0)) {
    complete(st->notify);
    st->notify = (void *)0;
  } else {

  }
  while (1) {
    tmp___1 = constant_test_bit(16, & st->status);
    if (tmp___1) {
      tmp___3 = 1;
    } else {
      tmp___3 = 0;
    }
    tmp___4 = ldv__builtin_expect(tmp___3, 0);
    if (tmp___4) {
      test_and_clear_bit(0, & st->status);
      test_and_clear_bit(30, & st->status);
    } else {
      test_and_set_bit(30, & st->status);
    }
    while (1) {
      tmp___11 = constant_test_bit(0, & st->status);
      if (tmp___11) {

      } else {
        break;
      }
      skb = skb_dequeue(& st->msgq);
      if (! skb) {
        test_and_clear_bit(0, & st->status);
        skb = skb_dequeue(& st->msgq);
        if (! skb) {
          continue;
        } else {

        }
        test_and_set_bit(0, & st->status);
      } else {

      }
      err = send_msg_to_layer(st, skb);
      tmp___6 = ldv__builtin_expect(! (! err), 0);
      if (tmp___6) {
        if (*debug___2 & 16U) {
          tmp___5 = dev_name(& (st->dev)->dev);
          printk("<7>%s: %s prim(%x) id(%x) send call(%d)\n", "mISDNStackd", tmp___5,
                 ((struct mISDNhead *)(& skb->cb[0]))->prim, ((struct mISDNhead *)(& skb->cb[0]))->id,
                 err);
        } else {

        }
        consume_skb(skb);
        continue;
      } else {

      }
      tmp___7 = constant_test_bit(16, & st->status);
      if (tmp___7) {
        tmp___9 = 1;
      } else {
        tmp___9 = 0;
      }
      tmp___10 = ldv__builtin_expect(tmp___9, 0);
      if (tmp___10) {
        test_and_clear_bit(0, & st->status);
        test_and_clear_bit(30, & st->status);
        break;
      } else {

      }
    }
    tmp___13 = constant_test_bit(2, & st->status);
    if (tmp___13) {
      test_and_set_bit(16, & st->status);
      test_and_clear_bit(30, & st->status);
      do_clear_stack(st);
      test_and_clear_bit(2, & st->status);
      test_and_set_bit(3, & st->status);
    } else {

    }
    tmp___16 = test_and_clear_bit(3, & st->status);
    if (tmp___16) {
      test_and_clear_bit(16, & st->status);
      test_and_set_bit(30, & st->status);
      tmp___15 = skb_queue_empty(& st->msgq);
      if (tmp___15) {

      } else {
        test_and_set_bit(0, & st->status);
      }
    } else {

    }
    tmp___17 = constant_test_bit(15, & st->status);
    if (tmp___17) {
      break;
    } else {

    }
    if ((unsigned long )st->notify != (unsigned long )((void *)0)) {
      complete(st->notify);
      st->notify = (void *)0;
    } else {

    }
    test_and_clear_bit(29, & st->status);
    __ret = 0;
    if (! (st->status & 65535UL)) {
      while (1) {
        tmp___19 = get_current();
        __wait.flags = 0U;
        __wait.private = tmp___19;
        __wait.func = & autoremove_wake_function;
        __wait.task_list.next = & __wait.task_list;
        __wait.task_list.prev = & __wait.task_list;
        while (1) {
          prepare_to_wait(& st->workq, & __wait, 1);
          if (st->status & 65535UL) {
            break;
          } else {

          }
          tmp___20 = get_current();
          tmp___21 = signal_pending(tmp___20);
          if (tmp___21) {

          } else {
            schedule();
            goto __Cont;
          }
          __ret = -512;
          break;
          __Cont: /* CIL Label */ ;
        }
        finish_wait(& st->workq, & __wait);
        break;
      }
    } else {

    }
    if (*debug___2 & 32U) {
      tmp___22 = dev_name(& (st->dev)->dev);
      printk("<7>%s: %s wake status %08lx\n", "mISDNStackd", tmp___22, st->status);
    } else {

    }
    test_and_set_bit(29, & st->status);
    test_and_clear_bit(4, & st->status);
    tmp___23 = constant_test_bit(16, & st->status);
    if (tmp___23) {
      test_and_clear_bit(30, & st->status);
    } else {

    }
  }
  test_and_set_bit(31, & st->status);
  test_and_clear_bit(30, & st->status);
  test_and_clear_bit(29, & st->status);
  test_and_clear_bit(15, & st->status);
  skb_queue_purge(& st->msgq);
  st->thread = (void *)0;
  if ((unsigned long )st->notify != (unsigned long )((void *)0)) {
    complete(st->notify);
    st->notify = (void *)0;
  } else {

  }
  return (0);
}
}
static int l1_receive(struct mISDNchannel *ch , struct sk_buff *skb ) 
{ 


  {
  if (! ch->st) {
    return (-19);
  } else {

  }
  __net_timestamp(skb);
  _queue_message(ch->st, skb);
  return (0);
}
}
void set_channel_address(struct mISDNchannel *ch , u_int sapi , u_int tei ) 
{ 


  {
  ch->addr = sapi | (tei << 8);
  return;
}
}
void __add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) 
{ 


  {
  list_add_tail(& ch->list, & st->layer2);
  return;
}
}
void add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) 
{ 


  {
  mutex_lock_nested(& st->lmutex, 0);
  __add_layer2(ch, st);
  mutex_unlock(& st->lmutex);
  return;
}
}
static int st_own_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) 
{ 
  int tmp ;

  {
  if (! ch->st || (ch->st)->layer1) {
    return (-22);
  } else {

  }
  tmp = (*(((ch->st)->layer1)->ctrl))((ch->st)->layer1, cmd, arg);
  return (tmp);
}
}
static struct lock_class_key __key___8  ;
static struct lock_class_key __key___9  ;
int create_stack(struct mISDNdevice *dev ) 
{ 
  struct mISDNstack *newst ;
  int err ;
  struct completion done ;
  void *tmp ;
  char const   *tmp___0 ;
  struct task_struct *__k ;
  char const   *tmp___1 ;
  struct task_struct *tmp___2 ;
  long tmp___3 ;
  long tmp___4 ;
  char const   *tmp___5 ;
  long tmp___6 ;

  {
  init_completion(& done);
  done = done;
  tmp = kzalloc(sizeof(struct mISDNstack ), (16U | 64U) | 128U);
  newst = tmp;
  if (! newst) {
    printk("<3>kmalloc mISDN_stack failed\n");
    return (-12);
  } else {

  }
  newst->dev = dev;
  INIT_LIST_HEAD(& newst->layer2);
  newst->l1sock.head.first = (void *)0;
  while (1) {
    __rwlock_init(& newst->l1sock.lock, "&newst->l1sock.lock", & __key___8);
    break;
  }
  init_waitqueue_head(& newst->workq);
  skb_queue_head_init___0(& newst->msgq);
  while (1) {
    __mutex_init(& newst->lmutex, "&newst->lmutex", & __key___9);
    break;
  }
  dev->D.st = newst;
  err = create_teimanager(dev);
  if (err) {
    printk("<3>kmalloc teimanager failed\n");
    kfree(newst);
    return (err);
  } else {

  }
  (dev->teimgr)->peer = & newst->own;
  (dev->teimgr)->recv = & mISDN_queue_message;
  (dev->teimgr)->st = newst;
  newst->layer1 = & dev->D;
  dev->D.recv = & l1_receive;
  dev->D.peer = & newst->own;
  newst->own.st = newst;
  newst->own.ctrl = & st_own_ctrl;
  newst->own.send = & mISDN_queue_message;
  newst->own.recv = & mISDN_queue_message;
  if (*debug___2 & 2U) {
    tmp___0 = dev_name(& (newst->dev)->dev);
    printk("<7>%s: st(%s)\n", "create_stack", tmp___0);
  } else {

  }
  newst->notify = & done;
  tmp___1 = dev_name(& (newst->dev)->dev);
  tmp___2 = kthread_create(& mISDNStackd, (void *)newst, "mISDN_%s", tmp___1);
  __k = tmp___2;
  tmp___3 = IS_ERR(__k);
  if (tmp___3) {

  } else {
    wake_up_process(__k);
  }
  newst->thread = __k;
  tmp___6 = IS_ERR(newst->thread);
  if (tmp___6) {
    tmp___4 = PTR_ERR(newst->thread);
    err = tmp___4;
    tmp___5 = dev_name(& (newst->dev)->dev);
    printk("<3>mISDN:cannot create kernel thread for %s (%d)\n", tmp___5, err);
    delete_teimanager(dev->teimgr);
    kfree(newst);
  } else {
    wait_for_completion(& done);
  }
  return (err);
}
}
int connect_layer1(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol ,
                   struct sockaddr_mISDN *adr ) 
{ 
  struct mISDN_sock *msk ;
  struct mISDNchannel  const  *__mptr ;
  struct channel_req rq ;
  int err ;
  char const   *tmp ;

  {
  __mptr = ch;
  msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch));
  if (*debug___2 & 2U) {
    tmp = dev_name(& dev->dev);
    printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "connect_layer1", tmp, protocol,
           adr->dev, adr->channel, adr->sapi, adr->tei);
  } else {

  }
  switch (protocol) {
  case (u_int )3: 
  case (u_int )1: 
  case (u_int )4: 
  case (u_int )2: 
  ch->recv = & mISDN_queue_message;
  ch->peer = & (dev->D.st)->own;
  ch->st = dev->D.st;
  rq.protocol = protocol;
  rq.adr.channel = adr->channel;
  err = (*(dev->D.ctrl))(& dev->D, 256, & rq);
  printk("<7>%s: ret %d (dev %d)\n", "connect_layer1", err, dev->id);
  if (err) {
    return (err);
  } else {

  }
  _write_lock_bh(& (dev->D.st)->l1sock.lock);
  sk_add_node(& msk->sk, & (dev->D.st)->l1sock.head);
  _write_unlock_bh(& (dev->D.st)->l1sock.lock);
  break;
  default: 
  return (-92);
  }
  return (0);
}
}
int connect_Bstack(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol ,
                   struct sockaddr_mISDN *adr ) 
{ 
  struct channel_req rq ;
  struct channel_req rq2 ;
  int pmask ;
  int err ;
  struct Bprotocol *bp ;
  char const   *tmp ;

  {
  if (*debug___2 & 2U) {
    tmp = dev_name(& dev->dev);
    printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "connect_Bstack", tmp, protocol,
           adr->dev, adr->channel, adr->sapi, adr->tei);
  } else {

  }
  ch->st = dev->D.st;
  pmask = 1 << (protocol & 31U);
  if ((unsigned int )pmask & dev->Bprotocols) {
    rq.protocol = protocol;
    rq.adr = *adr;
    err = (*(dev->D.ctrl))(& dev->D, 256, & rq);
    if (err) {
      return (err);
    } else {

    }
    ch->recv = (rq.ch)->send;
    ch->peer = rq.ch;
    (rq.ch)->recv = ch->send;
    (rq.ch)->peer = ch;
    (rq.ch)->st = dev->D.st;
  } else {
    bp = get_Bprotocol4mask(pmask);
    if (! bp) {
      return (-92);
    } else {

    }
    rq2.protocol = protocol;
    rq2.adr = *adr;
    rq2.ch = ch;
    err = (*(bp->create))(& rq2);
    if (err) {
      return (err);
    } else {

    }
    ch->recv = (rq2.ch)->send;
    ch->peer = rq2.ch;
    (rq2.ch)->st = dev->D.st;
    rq.protocol = rq2.protocol;
    rq.adr = *adr;
    err = (*(dev->D.ctrl))(& dev->D, 256, & rq);
    if (err) {
      (*((rq2.ch)->ctrl))(rq2.ch, 512, (void *)0);
      return (err);
    } else {

    }
    (rq2.ch)->recv = (rq.ch)->send;
    (rq2.ch)->peer = rq.ch;
    (rq.ch)->recv = (rq2.ch)->send;
    (rq.ch)->peer = rq2.ch;
    (rq.ch)->st = dev->D.st;
  }
  ch->protocol = protocol;
  ch->nr = (rq.ch)->nr;
  return (0);
}
}
int create_l2entity(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol ,
                    struct sockaddr_mISDN *adr ) 
{ 
  struct channel_req rq ;
  int err ;
  char const   *tmp ;

  {
  if (*debug___2 & 2U) {
    tmp = dev_name(& dev->dev);
    printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "create_l2entity", tmp, protocol,
           adr->dev, adr->channel, adr->sapi, adr->tei);
  } else {

  }
  rq.protocol = 1;
  if (dev->Dprotocols & (unsigned int )(1 << 3)) {
    rq.protocol = 3;
  } else {

  }
  switch (protocol) {
  case (u_int )17: 
  rq.protocol = 2;
  if (dev->Dprotocols & (unsigned int )(1 << 4)) {
    rq.protocol = 4;
  } else {

  }
  case (u_int )16: 
  ch->recv = & mISDN_queue_message;
  ch->peer = & (dev->D.st)->own;
  ch->st = dev->D.st;
  rq.adr.channel = 0;
  err = (*(dev->D.ctrl))(& dev->D, 256, & rq);
  printk("<7>%s: ret 1 %d\n", "create_l2entity", err);
  if (err) {
    break;
  } else {

  }
  rq.protocol = protocol;
  rq.adr = *adr;
  rq.ch = ch;
  err = (*((dev->teimgr)->ctrl))(dev->teimgr, 256, & rq);
  printk("<7>%s: ret 2 %d\n", "create_l2entity", err);
  if (! err) {
    if (protocol == (u_int )17 && ! rq.ch) {
      break;
    } else {

    }
    add_layer2(rq.ch, dev->D.st);
    (rq.ch)->recv = & mISDN_queue_message;
    (rq.ch)->peer = & (dev->D.st)->own;
    (*((rq.ch)->ctrl))(rq.ch, 256, (void *)0);
  } else {

  }
  break;
  default: 
  err = -93;
  }
  return (err);
}
}
void delete_channel(struct mISDNchannel *ch ) 
{ 
  struct mISDN_sock *msk ;
  struct mISDNchannel  const  *__mptr ;
  struct mISDNchannel *pch ;
  char const   *tmp ;

  {
  __mptr = ch;
  msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch));
  if (! ch->st) {
    printk("<4>%s: no stack\n", "delete_channel");
    return;
  } else {

  }
  if (*debug___2 & 2U) {
    tmp = dev_name(& ((ch->st)->dev)->dev);
    printk("<7>%s: st(%s) protocol(%x)\n", "delete_channel", tmp, ch->protocol);
  } else {

  }
  if (ch->protocol >= (u_int )32) {
    if (ch->peer) {
      (*((ch->peer)->ctrl))(ch->peer, 512, (void *)0);
      ch->peer = (void *)0;
    } else {

    }
    return;
  } else {

  }
  switch (ch->protocol) {
  case (u_int )3: 
  case (u_int )4: 
  case (u_int )1: 
  case (u_int )2: 
  _write_lock_bh(& (ch->st)->l1sock.lock);
  sk_del_node_init(& msk->sk);
  _write_unlock_bh(& (ch->st)->l1sock.lock);
  (*(((ch->st)->dev)->D.ctrl))(& ((ch->st)->dev)->D, 512, (void *)0);
  break;
  case (u_int )16: 
  pch = get_channel4id(ch->st, ch->nr);
  if (pch) {
    mutex_lock_nested(& (ch->st)->lmutex, 0);
    list_del(& pch->list);
    mutex_unlock(& (ch->st)->lmutex);
    (*(pch->ctrl))(pch, 512, (void *)0);
    pch = ((ch->st)->dev)->teimgr;
    (*(pch->ctrl))(pch, 512, (void *)0);
  } else {
    printk("<4>%s: no l2 channel\n", "delete_channel");
  }
  break;
  case (u_int )17: 
  pch = ((ch->st)->dev)->teimgr;
  if (pch) {
    (*(pch->ctrl))(pch, 512, (void *)0);
  } else {
    printk("<4>%s: no l2 channel\n", "delete_channel");
  }
  break;
  default: 
  break;
  }
  return;
}
}
void delete_stack(struct mISDNdevice *dev ) 
{ 
  struct mISDNstack *st ;
  struct completion done ;
  char const   *tmp ;
  int tmp___0 ;
  int tmp___1 ;

  {
  st = dev->D.st;
  init_completion(& done);
  done = done;
  if (*debug___2 & 2U) {
    tmp = dev_name(& (st->dev)->dev);
    printk("<7>%s: st(%s)\n", "delete_stack", tmp);
  } else {

  }
  if (dev->teimgr) {
    delete_teimanager(dev->teimgr);
  } else {

  }
  if (st->thread) {
    if (st->notify) {
      printk("<4>%s: notifier in use\n", "delete_stack");
      complete(st->notify);
    } else {

    }
    st->notify = & done;
    test_and_set_bit(15, & st->status);
    test_and_set_bit(4, & st->status);
    __wake_up(& st->workq, 1, 1, (void *)0);
    wait_for_completion(& done);
  } else {

  }
  tmp___0 = list_empty(& st->layer2);
  if (tmp___0) {

  } else {
    printk("<4>%s: layer2 list not empty\n", "delete_stack");
  }
  tmp___1 = hlist_empty(& st->l1sock.head);
  if (tmp___1) {

  } else {
    printk("<4>%s: layer1 list not empty\n", "delete_stack");
  }
  kfree(st);
  return;
}
}
void mISDN_initstack(u_int *dp ) 
{ 


  {
  debug___2 = dp;
  return;
}
}
void ldv__builtin_va_end(__builtin_va_list  ) ;
void ldv__builtin_va_start(__builtin_va_list  ) ;
extern int ( /* format attribute */  vprintk)(char const   *fmt , va_list args ) ;
extern unsigned long __per_cpu_offset[4096] ;
extern int per_cpu__cpu_number  __attribute__((__section__(".data.percpu"))) ;
__inline static void local_inc(local_t *l ) 
{ 


  {
  __asm__  volatile   (" "
                       "incq"
                       " "
                       "%0": "+m" (l->a.counter));
  return;
}
}
__inline static local_t *__module_ref_addr(struct module *mod , int cpu ) 
{ 


  {
  return ((local_t *)(mod->refptr + __per_cpu_offset[cpu]));
}
}
__inline static void __module_get(struct module *module ) 
{ 
  int ret__ ;
  local_t *tmp ;

  {
  if (module) {
    while (1) {
      break;
    }
    switch (sizeof(per_cpu__cpu_number)) {
    case 1UL: 
    __asm__  ("mov"
              "b "
              "%%"
              "gs"
              ":%P"
              "1"
              ",%0": "=q" (ret__): "m" (per_cpu__cpu_number));
    break;
    case 2UL: 
    __asm__  ("mov"
              "w "
              "%%"
              "gs"
              ":%P"
              "1"
              ",%0": "=r" (ret__): "m" (per_cpu__cpu_number));
    break;
    case 4UL: 
    __asm__  ("mov"
              "l "
              "%%"
              "gs"
              ":%P"
              "1"
              ",%0": "=r" (ret__): "m" (per_cpu__cpu_number));
    break;
    case 8UL: 
    __asm__  ("mov"
              "q "
              "%%"
              "gs"
              ":%P"
              "1"
              ",%0": "=r" (ret__): "m" (per_cpu__cpu_number));
    break;
    default: 
    __bad_percpu_size();
    }
    tmp = __module_ref_addr(module, ret__);
    local_inc(tmp);
    while (1) {
      break;
    }
  } else {

  }
  return;
}
}
extern void module_put(struct module *module ) ;
int create_l1(struct dchannel *dch , dchannel_l1callback *dcb ) ;
int l1_event(struct layer1 *l1 , u_int event ) ;
static u_int *debug___3  ;
static struct Fsm l1fsm_s  =    {(void *)0, 0, 0, (void *)0, (void *)0};
static char *strL1SState[7]  = {      "ST_L1_F2",      "ST_L1_F3",      "ST_L1_F4",      "ST_L1_F5", 
        "ST_L1_F6",      "ST_L1_F7",      "ST_L1_F8"};
static char *strL1Event[12]  = 
  {      "EV_PH_ACTIVATE",      "EV_PH_DEACTIVATE",      "EV_RESET_IND",      "EV_DEACT_CNF", 
        "EV_DEACT_IND",      "EV_POWER_UP",      "EV_ANYSIG_IND",      "EV_INFO2_IND", 
        "EV_INFO4_IND",      "EV_TIMER_DEACT",      "EV_TIMER_ACT",      "EV_TIMER3"};
static void l1m_debug(struct FsmInst *fi , char *fmt  , ...) 
{ 
  struct layer1 *l1 ;
  va_list va ;
  char const   *tmp ;

  {
  l1 = fi->userdata;
  ldv__builtin_va_start(va);
  tmp = dev_name(& (l1->dch)->dev.dev);
  printk("<7>%s: ", tmp);
  vprintk(fmt, va);
  printk("\n");
  ldv__builtin_va_end(va);
  return;
}
}
static void l1_reset(struct FsmInst *fi , int event , void *arg ) 
{ 


  {
  mISDN_FsmChangeState(fi, ST_L1_F3);
  return;
}
}
static void l1_deact_cnf(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;
  int tmp ;

  {
  l1 = fi->userdata;
  mISDN_FsmChangeState(fi, ST_L1_F3);
  tmp = constant_test_bit(1, & l1->Flags);
  if (tmp) {
    (*(l1->dcb))(l1->dch, 35586);
  } else {

  }
  return;
}
}
static void l1_deact_req_s(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;

  {
  l1 = fi->userdata;
  mISDN_FsmChangeState(fi, ST_L1_F3);
  mISDN_FsmRestartTimer(& l1->timer, 550, EV_TIMER_DEACT, (void *)0, 2);
  test_and_set_bit(3, & l1->Flags);
  return;
}
}
static void l1_power_up_s(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;
  int tmp ;

  {
  l1 = fi->userdata;
  tmp = constant_test_bit(1, & l1->Flags);
  if (tmp) {
    mISDN_FsmChangeState(fi, ST_L1_F4);
    (*(l1->dcb))(l1->dch, 33538);
  } else {
    mISDN_FsmChangeState(fi, ST_L1_F3);
  }
  return;
}
}
static void l1_go_F5(struct FsmInst *fi , int event , void *arg ) 
{ 


  {
  mISDN_FsmChangeState(fi, ST_L1_F5);
  return;
}
}
static void l1_go_F8(struct FsmInst *fi , int event , void *arg ) 
{ 


  {
  mISDN_FsmChangeState(fi, ST_L1_F8);
  return;
}
}
static void l1_info2_ind(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;

  {
  l1 = fi->userdata;
  mISDN_FsmChangeState(fi, ST_L1_F6);
  (*(l1->dcb))(l1->dch, 33538);
  return;
}
}
static void l1_info4_ind(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;
  int tmp ;
  int tmp___0 ;
  int tmp___1 ;

  {
  l1 = fi->userdata;
  mISDN_FsmChangeState(fi, ST_L1_F7);
  (*(l1->dcb))(l1->dch, 33538);
  tmp = test_and_clear_bit(3, & l1->Flags);
  if (tmp) {
    mISDN_FsmDelTimer(& l1->timer, 4);
  } else {

  }
  tmp___1 = constant_test_bit(2, & l1->Flags);
  if (tmp___1) {

  } else {
    tmp___0 = test_and_clear_bit(5, & l1->Flags);
    if (tmp___0) {
      mISDN_FsmDelTimer(& l1->timer, 3);
    } else {

    }
    mISDN_FsmRestartTimer(& l1->timer, 110, EV_TIMER_ACT, (void *)0, 2);
    test_and_set_bit(4, & l1->Flags);
  }
  return;
}
}
static void l1_timer3(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;
  int tmp ;
  int tmp___0 ;

  {
  l1 = fi->userdata;
  test_and_clear_bit(5, & l1->Flags);
  tmp___0 = test_and_clear_bit(1, & l1->Flags);
  if (tmp___0) {
    tmp = test_and_clear_bit(8, & l1->Flags);
    if (tmp) {
      (*(l1->dcb))(l1->dch, 36610);
    } else {

    }
    (*(l1->dcb))(l1->dch, 514);
  } else {

  }
  if (l1->l1m.state != ST_L1_F6) {
    mISDN_FsmChangeState(fi, ST_L1_F3);
    (*(l1->dcb))(l1->dch, 35586);
  } else {

  }
  return;
}
}
static void l1_timer_act(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;

  {
  l1 = fi->userdata;
  test_and_clear_bit(4, & l1->Flags);
  test_and_set_bit(2, & l1->Flags);
  (*(l1->dcb))(l1->dch, 258);
  return;
}
}
static void l1_timer_deact(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;
  int tmp ;

  {
  l1 = fi->userdata;
  test_and_clear_bit(3, & l1->Flags);
  test_and_clear_bit(2, & l1->Flags);
  tmp = test_and_clear_bit(8, & l1->Flags);
  if (tmp) {
    (*(l1->dcb))(l1->dch, 36610);
  } else {

  }
  (*(l1->dcb))(l1->dch, 514);
  (*(l1->dcb))(l1->dch, 35842);
  return;
}
}
static void l1_activate_s(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;

  {
  l1 = fi->userdata;
  mISDN_FsmRestartTimer(& l1->timer, 7000, EV_TIMER3, (void *)0, 2);
  test_and_set_bit(5, & l1->Flags);
  (*(l1->dcb))(l1->dch, 35330);
  return;
}
}
static void l1_activate_no(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer1 *l1 ;
  int tmp ;
  int tmp___0 ;
  int tmp___2 ;

  {
  l1 = fi->userdata;
  tmp___0 = constant_test_bit(3, & l1->Flags);
  if (tmp___0) {

  } else {
    tmp___2 = constant_test_bit(5, & l1->Flags);
    if (tmp___2) {

    } else {
      test_and_clear_bit(1, & l1->Flags);
      tmp = test_and_clear_bit(8, & l1->Flags);
      if (tmp) {
        (*(l1->dcb))(l1->dch, 36610);
      } else {

      }
      (*(l1->dcb))(l1->dch, 514);
    }
  }
  return;
}
}
static struct FsmNode L1SFnList[44]  = 
  {      {ST_L1_F3, EV_PH_ACTIVATE, & l1_activate_s}, 
        {ST_L1_F6, EV_PH_ACTIVATE, & l1_activate_no}, 
        {ST_L1_F8, EV_PH_ACTIVATE, & l1_activate_no}, 
        {ST_L1_F3, EV_RESET_IND, & l1_reset}, 
        {ST_L1_F4, EV_RESET_IND, & l1_reset}, 
        {ST_L1_F5, EV_RESET_IND, & l1_reset}, 
        {ST_L1_F6, EV_RESET_IND, & l1_reset}, 
        {ST_L1_F7, EV_RESET_IND, & l1_reset}, 
        {ST_L1_F8, EV_RESET_IND, & l1_reset}, 
        {ST_L1_F3, EV_DEACT_CNF, & l1_deact_cnf}, 
        {ST_L1_F4, EV_DEACT_CNF, & l1_deact_cnf}, 
        {ST_L1_F5, EV_DEACT_CNF, & l1_deact_cnf}, 
        {ST_L1_F6, EV_DEACT_CNF, & l1_deact_cnf}, 
        {ST_L1_F7, EV_DEACT_CNF, & l1_deact_cnf}, 
        {ST_L1_F8, EV_DEACT_CNF, & l1_deact_cnf}, 
        {ST_L1_F6, EV_DEACT_IND, & l1_deact_req_s}, 
        {ST_L1_F7, EV_DEACT_IND, & l1_deact_req_s}, 
        {ST_L1_F8, EV_DEACT_IND, & l1_deact_req_s}, 
        {ST_L1_F3, EV_POWER_UP, & l1_power_up_s}, 
        {ST_L1_F4, EV_ANYSIG_IND, & l1_go_F5}, 
        {ST_L1_F6, EV_ANYSIG_IND, & l1_go_F8}, 
        {ST_L1_F7, EV_ANYSIG_IND, & l1_go_F8}, 
        {ST_L1_F3, EV_INFO2_IND, & l1_info2_ind}, 
        {ST_L1_F4, EV_INFO2_IND, & l1_info2_ind}, 
        {ST_L1_F5, EV_INFO2_IND, & l1_info2_ind}, 
        {ST_L1_F7, EV_INFO2_IND, & l1_info2_ind}, 
        {ST_L1_F8, EV_INFO2_IND, & l1_info2_ind}, 
        {ST_L1_F3, EV_INFO4_IND, & l1_info4_ind}, 
        {ST_L1_F4, EV_INFO4_IND, & l1_info4_ind}, 
        {ST_L1_F5, EV_INFO4_IND, & l1_info4_ind}, 
        {ST_L1_F6, EV_INFO4_IND, & l1_info4_ind}, 
        {ST_L1_F8, EV_INFO4_IND, & l1_info4_ind}, 
        {ST_L1_F3, EV_TIMER3, & l1_timer3}, 
        {ST_L1_F4, EV_TIMER3, & l1_timer3}, 
        {ST_L1_F5, EV_TIMER3, & l1_timer3}, 
        {ST_L1_F6, EV_TIMER3, & l1_timer3}, 
        {ST_L1_F8, EV_TIMER3, & l1_timer3}, 
        {ST_L1_F7, EV_TIMER_ACT, & l1_timer_act}, 
        {ST_L1_F3, EV_TIMER_DEACT, & l1_timer_deact}, 
        {ST_L1_F4, EV_TIMER_DEACT, & l1_timer_deact}, 
        {ST_L1_F5, EV_TIMER_DEACT, & l1_timer_deact}, 
        {ST_L1_F6, EV_TIMER_DEACT, & l1_timer_deact}, 
        {ST_L1_F7, EV_TIMER_DEACT, & l1_timer_deact}, 
        {ST_L1_F8, EV_TIMER_DEACT, & l1_timer_deact}};
static void release_l1(struct layer1 *l1 ) 
{ 


  {
  mISDN_FsmDelTimer(& l1->timer, 0);
  if (l1->dch) {
    (l1->dch)->l1 = (void *)0;
  } else {

  }
  module_put(& __this_module);
  kfree(l1);
  return;
}
}
int l1_event(struct layer1 *l1 , u_int event ) 
{ 
  int err ;
  int tmp ;

  {
  err = 0;
  if (! l1) {
    return (-22);
  } else {

  }
  switch (event) {
  case (u_int )36866: 
  mISDN_FsmEvent(& l1->l1m, EV_RESET_IND, (void *)0);
  break;
  case (u_int )37378: 
  mISDN_FsmEvent(& l1->l1m, EV_DEACT_IND, (void *)0);
  break;
  case (u_int )37122: 
  mISDN_FsmEvent(& l1->l1m, EV_POWER_UP, (void *)0);
  break;
  case (u_int )37890: 
  mISDN_FsmEvent(& l1->l1m, EV_DEACT_CNF, (void *)0);
  break;
  case (u_int )34818: 
  mISDN_FsmEvent(& l1->l1m, EV_ANYSIG_IND, (void *)0);
  break;
  case (u_int )34562: 
  mISDN_FsmEvent(& l1->l1m, EV_ANYSIG_IND, (void *)0);
  break;
  case (u_int )33282: 
  mISDN_FsmEvent(& l1->l1m, EV_INFO2_IND, (void *)0);
  break;
  case (u_int )34050: 
  mISDN_FsmEvent(& l1->l1m, EV_INFO4_IND, (void *)0);
  break;
  case (u_int )34306: 
  mISDN_FsmEvent(& l1->l1m, EV_INFO4_IND, (void *)0);
  break;
  case (u_int )257: 
  tmp = constant_test_bit(2, & l1->Flags);
  if (tmp) {
    (*(l1->dcb))(l1->dch, 258);
  } else {
    test_and_set_bit(1, & l1->Flags);
    mISDN_FsmEvent(& l1->l1m, EV_PH_ACTIVATE, (void *)0);
  }
  break;
  case (u_int )512: 
  release_l1(l1);
  break;
  default: 
  if (*debug___3 & 65280U) {
    printk("<7>%s %x unhandled\n", "l1_event", event);
  } else {

  }
  err = -22;
  }
  return (err);
}
}
extern void *__crc_l1_event  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_l1_event  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_l1_event);
static char const   __kstrtab_l1_event[9]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'l',      '1',      '_',      'e', 
        'v',      'e',      'n',      't', 
        '\000'};
static struct kernel_symbol  const  __ksymtab_l1_event  __attribute__((__used__, __unused__,
__section__("__ksymtab")))  =    {(unsigned long )(& l1_event), __kstrtab_l1_event};
int create_l1(struct dchannel *dch , dchannel_l1callback *dcb ) 
{ 
  struct layer1 *nl1 ;
  void *tmp ;

  {
  tmp = kzalloc(sizeof(struct layer1 ), 32U);
  nl1 = tmp;
  if (! nl1) {
    printk("<3>kmalloc struct layer1 failed\n");
    return (-12);
  } else {

  }
  nl1->l1m.fsm = & l1fsm_s;
  nl1->l1m.state = ST_L1_F3;
  nl1->Flags = 0;
  nl1->l1m.debug = *debug___3 & 512U;
  nl1->l1m.userdata = nl1;
  nl1->l1m.userint = 0;
  nl1->l1m.printdebug = & l1m_debug;
  nl1->dch = dch;
  nl1->dcb = dcb;
  mISDN_FsmInitTimer(& nl1->l1m, & nl1->timer);
  __module_get(& __this_module);
  dch->l1 = nl1;
  return (0);
}
}
extern void *__crc_create_l1  __attribute__((__weak__)) ;
static unsigned long const   __kcrctab_create_l1  __attribute__((__used__, __unused__,
__section__("__kcrctab")))  =    (unsigned long )(& __crc_create_l1);
static char const   __kstrtab_create_l1[10]  __attribute__((__section__("__ksymtab_strings"),
__aligned__(1)))  = 
  {      'c',      'r',      'e',      'a', 
        't',      'e',      '_',      'l', 
        '1',      '\000'};
static struct kernel_symbol  const  __ksymtab_create_l1  __attribute__((__used__,
__unused__, __section__("__ksymtab")))  =    {(unsigned long )(& create_l1), __kstrtab_create_l1};
int l1_init(u_int *deb ) 
{ 


  {
  debug___3 = deb;
  l1fsm_s.state_count = ST_L1_F8 + 1;
  l1fsm_s.event_count = EV_TIMER3 + 1;
  l1fsm_s.strEvent = strL1Event;
  l1fsm_s.strState = strL1SState;
  mISDN_FsmNew(& l1fsm_s, L1SFnList, sizeof(L1SFnList) / sizeof(L1SFnList[0]) + (sizeof(char [1 - 2 * 0]) - 1UL));
  return (0);
}
}
void l1_cleanup(void) 
{ 


  {
  mISDN_FsmFree(& l1fsm_s);
  return;
}
}
extern struct sk_buff *skb_clone(struct sk_buff *skb , gfp_t priority ) ;
__inline static __u32 skb_queue_len(struct sk_buff_head  const  *list_ ) 
{ 


  {
  return (list_->qlen);
}
}
static struct lock_class_key __key___10  ;
__inline static void skb_queue_head_init___1(struct sk_buff_head *list ) 
{ 


  {
  while (1) {
    __spin_lock_init(& list->lock, "&list->lock", & __key___10);
    break;
  }
  __skb_queue_head_init(list);
  return;
}
}
__inline static unsigned int skb_headroom(struct sk_buff  const  *skb ) 
{ 


  {
  return (skb->data - skb->head);
}
}
extern void skb_trim(struct sk_buff *skb , unsigned int len ) ;
struct layer2 *create_l2(struct mISDNchannel *ch , u_int protocol , u_long options ,
                         int tei , int sapi ) ;
int tei_l2(struct layer2 *l2 , u_int cmd , u_long arg ) ;
int l2_tei(struct layer2 *l2 , u_int cmd , u_long arg ) ;
void TEIrelease(struct layer2 *l2 ) ;
int TEIInit(u_int *deb ) ;
void TEIFree(void) ;
static u_int *debug___4  ;
static struct Fsm l2fsm  =    {(void *)0, 0, 0, (void *)0, (void *)0};
static char *strL2State[8]  = 
  {      "ST_L2_1",      "ST_L2_2",      "ST_L2_3",      "ST_L2_4", 
        "ST_L2_5",      "ST_L2_6",      "ST_L2_7",      "ST_L2_8"};
static char *strL2Event[22]  = 
  {      "EV_L2_UI",      "EV_L2_SABME",      "EV_L2_DISC",      "EV_L2_DM", 
        "EV_L2_UA",      "EV_L2_FRMR",      "EV_L2_SUPER",      "EV_L2_I", 
        "EV_L2_DL_DATA",      "EV_L2_ACK_PULL",      "EV_L2_DL_UNITDATA",      "EV_L2_DL_ESTABLISH_REQ", 
        "EV_L2_DL_RELEASE_REQ",      "EV_L2_MDL_ASSIGN",      "EV_L2_MDL_REMOVE",      "EV_L2_MDL_ERROR", 
        "EV_L1_DEACTIVATE",      "EV_L2_T200",      "EV_L2_T203",      "EV_L2_SET_OWN_BUSY", 
        "EV_L2_CLEAR_OWN_BUSY",      "EV_L2_FRAME_ERROR"};
static void l2m_debug(struct FsmInst *fi , char *fmt  , ...) 
{ 
  struct layer2 *l2 ;
  va_list va ;

  {
  l2 = fi->userdata;
  if (! (*debug___4 & 131072U)) {
    return;
  } else {

  }
  ldv__builtin_va_start(va);
  printk("<7>l2 (sapi %d tei %d): ", l2->sapi, l2->tei);
  vprintk(fmt, va);
  printk("\n");
  ldv__builtin_va_end(va);
  return;
}
}
__inline u_int l2headersize(struct layer2 *l2 , int ui ) 
{ 
  int tmp ;
  int tmp___1 ;

  {
  tmp = constant_test_bit(3, & l2->flag);
  tmp___1 = constant_test_bit(1, & l2->flag);
  return ((tmp && ! ui ? 2 : 1) + (tmp___1 ? 2 : 1));
}
}
__inline u_int l2addrsize(struct layer2 *l2 ) 
{ 
  int tmp ;

  {
  tmp = constant_test_bit(1, & l2->flag);
  return (tmp ? 2 : 1);
}
}
static u_int l2_newid(struct layer2 *l2 ) 
{ 
  u_int id ;
  u_int tmp ;

  {
  tmp = l2->next_id;
  l2->next_id = l2->next_id + (u_int )1;
  id = tmp;
  if (id == (u_int )32767) {
    l2->next_id = 1;
  } else {

  }
  id = id << 16;
  id = id | (unsigned int )((int )l2->tei << 8);
  id = id | (unsigned int )l2->sapi;
  return (id);
}
}
static void l2up(struct layer2 *l2 , u_int prim , struct sk_buff *skb ) 
{ 
  int err ;

  {
  if (! l2->up) {
    return;
  } else {

  }
  ((struct mISDNhead *)(& skb->cb[0]))->prim = prim;
  ((struct mISDNhead *)(& skb->cb[0]))->id = (l2->ch.nr << 16) | l2->ch.addr;
  err = (*((l2->up)->send))(l2->up, skb);
  if (err) {
    printk("<4>%s: err=%d\n", "l2up", err);
    consume_skb(skb);
  } else {

  }
  return;
}
}
static void l2up_create(struct layer2 *l2 , u_int prim , int len , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct mISDNhead *hh ;
  int err ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___0 ;

  {
  if (! l2->up) {
    return;
  } else {

  }
  skb = mI_alloc_skb(len, 32U);
  if (! skb) {
    return;
  } else {

  }
  hh = (struct mISDNhead *)(& skb->cb[0]);
  hh->prim = prim;
  hh->id = (l2->ch.nr << 16) | l2->ch.addr;
  if (len) {
    __len = len;
    tmp___0 = skb_put(skb, len);
    __ret = memcpy(tmp___0, arg, __len);
  } else {

  }
  err = (*((l2->up)->send))(l2->up, skb);
  if (err) {
    printk("<4>%s: err=%d\n", "l2up_create", err);
    consume_skb(skb);
  } else {

  }
  return;
}
}
static int l2down_skb(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  int ret ;

  {
  ret = (*(l2->ch.recv))(l2->ch.peer, skb);
  if (ret && *debug___4 & 524288U) {
    printk("<7>l2down_skb: ret(%d)\n", ret);
  } else {

  }
  return (ret);
}
}
static int l2down_raw(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  struct mISDNhead *hh ;
  int tmp ;
  int tmp___0 ;

  {
  hh = (struct mISDNhead *)(& skb->cb[0]);
  if (hh->prim == 8193U) {
    tmp = test_and_set_bit(17, & l2->flag);
    if (tmp) {
      skb_queue_tail(& l2->down_queue, skb);
      return (0);
    } else {

    }
    l2->down_id = ((struct mISDNhead *)(& skb->cb[0]))->id;
  } else {

  }
  tmp___0 = l2down_skb(l2, skb);
  return (tmp___0);
}
}
static int l2down(struct layer2 *l2 , u_int prim , u_int id , struct sk_buff *skb ) 
{ 
  struct mISDNhead *hh ;
  int tmp ;

  {
  hh = (struct mISDNhead *)(& skb->cb[0]);
  hh->prim = prim;
  hh->id = id;
  tmp = l2down_raw(l2, skb);
  return (tmp);
}
}
static int l2down_create(struct layer2 *l2 , u_int prim , u_int id , int len , void *arg ) 
{ 
  struct sk_buff *skb ;
  int err ;
  struct mISDNhead *hh ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___0 ;

  {
  skb = mI_alloc_skb(len, 32U);
  if (! skb) {
    return (-12);
  } else {

  }
  hh = (struct mISDNhead *)(& skb->cb[0]);
  hh->prim = prim;
  hh->id = id;
  if (len) {
    __len = len;
    tmp___0 = skb_put(skb, len);
    __ret = memcpy(tmp___0, arg, __len);
  } else {

  }
  err = l2down_raw(l2, skb);
  if (err) {
    consume_skb(skb);
  } else {

  }
  return (err);
}
}
static int ph_data_confirm(struct layer2 *l2 , struct mISDNhead *hh , struct sk_buff *skb ) 
{ 
  struct sk_buff *nskb ;
  int ret ;
  int tmp ;
  int tmp___0 ;
  int tmp___2 ;
  int tmp___3 ;

  {
  nskb = skb;
  ret = -11;
  tmp___0 = constant_test_bit(17, & l2->flag);
  if (tmp___0) {
    if (hh->id == l2->down_id) {
      nskb = skb_dequeue(& l2->down_queue);
      if (nskb) {
        l2->down_id = ((struct mISDNhead *)(& nskb->cb[0]))->id;
        tmp = l2down_skb(l2, nskb);
        if (tmp) {
          consume_skb(nskb);
          l2->down_id = 65534;
        } else {

        }
      } else {
        l2->down_id = 65534;
      }
      if (ret) {
        consume_skb(skb);
        ret = 0;
      } else {

      }
      if (l2->down_id == (u_int )65534) {
        test_and_clear_bit(17, & l2->flag);
        mISDN_FsmEvent(& l2->l2m, EV_L2_ACK_PULL, (void *)0);
      } else {

      }
    } else {

    }
  } else {

  }
  tmp___3 = test_and_set_bit(17, & l2->flag);
  if (tmp___3) {

  } else {
    nskb = skb_dequeue(& l2->down_queue);
    if (nskb) {
      l2->down_id = ((struct mISDNhead *)(& nskb->cb[0]))->id;
      tmp___2 = l2down_skb(l2, nskb);
      if (tmp___2) {
        consume_skb(nskb);
        l2->down_id = 65534;
        test_and_clear_bit(17, & l2->flag);
      } else {

      }
    } else {
      test_and_clear_bit(17, & l2->flag);
    }
  }
  return (ret);
}
}
static int l2mgr(struct layer2 *l2 , u_int prim , void *arg ) 
{ 
  long c ;
  int tmp ;
  int tmp___1 ;

  {
  c = (long )arg;
  printk("<4>l2mgr: addr:%x prim %x %c\n", l2->id, prim, (char )c);
  tmp = constant_test_bit(1, & l2->flag);
  if (tmp) {
    tmp___1 = constant_test_bit(15, & l2->flag);
    if (tmp___1) {

    } else {
      switch (c) {
      case (long )'H': 
      case (long )'G': 
      case (long )'D': 
      case (long )'C': 
      l2_tei(l2, prim, (u_long )arg);
      break;
      }
    }
  } else {

  }
  return (0);
}
}
static void set_peer_busy(struct layer2 *l2 ) 
{ 
  __u32 tmp ;
  __u32 tmp___0 ;

  {
  test_and_set_bit(10, & l2->flag);
  tmp = skb_queue_len(& l2->i_queue);
  if (tmp) {
    test_and_set_bit(16, & l2->flag);
  } else {
    tmp___0 = skb_queue_len(& l2->ui_queue);
    if (tmp___0) {
      test_and_set_bit(16, & l2->flag);
    } else {

    }
  }
  return;
}
}
static void clear_peer_busy(struct layer2 *l2 ) 
{ 
  int tmp ;

  {
  tmp = test_and_clear_bit(10, & l2->flag);
  if (tmp) {
    test_and_clear_bit(16, & l2->flag);
  } else {

  }
  return;
}
}
static void InitWin(struct layer2 *l2 ) 
{ 
  int i ;

  {
  i = 0;
  while (1) {
    if (i < 8) {

    } else {
      break;
    }
    l2->windowar[i] = (void *)0;
    i = i + 1;
  }
  return;
}
}
static int freewin(struct layer2 *l2 ) 
{ 
  int i ;
  int cnt ;

  {
  cnt = 0;
  i = 0;
  while (1) {
    if (i < 8) {

    } else {
      break;
    }
    if (l2->windowar[i]) {
      cnt = cnt + 1;
      consume_skb(l2->windowar[i]);
      l2->windowar[i] = (void *)0;
    } else {

    }
    i = i + 1;
  }
  return (cnt);
}
}
static void ReleaseWin(struct layer2 *l2 ) 
{ 
  int cnt ;
  int tmp ;

  {
  tmp = freewin(l2);
  cnt = tmp;
  if (cnt) {
    printk("<4>isdnl2 freed %d skbuffs in release\n", cnt);
  } else {

  }
  return;
}
}
__inline unsigned int cansend(struct layer2 *l2 ) 
{ 
  unsigned int p1 ;
  int tmp ;
  int tmp___1 ;
  int tmp___3 ;

  {
  tmp = constant_test_bit(3, & l2->flag);
  if (tmp) {
    p1 = (l2->vs - l2->va) % 128U;
  } else {
    p1 = (l2->vs - l2->va) % 8U;
  }
  if (p1 < l2->window) {
    tmp___1 = constant_test_bit(10, & l2->flag);
    if (tmp___1) {
      tmp___3 = 0;
    } else {
      tmp___3 = 1;
    }
  } else {
    tmp___3 = 0;
  }
  return (tmp___3);
}
}
__inline void clear_exception(struct layer2 *l2 ) 
{ 


  {
  test_and_clear_bit(7, & l2->flag);
  test_and_clear_bit(8, & l2->flag);
  test_and_clear_bit(9, & l2->flag);
  clear_peer_busy(l2);
  return;
}
}
static int sethdraddr(struct layer2 *l2 , u_char *header , int rsp ) 
{ 
  u_char *ptr ;
  int crbit ;
  int tmp ;
  u_char *tmp___1 ;
  u_char *tmp___2 ;
  int tmp___3 ;
  u_char *tmp___5 ;
  u_char *tmp___6 ;
  int tmp___7 ;

  {
  ptr = header;
  crbit = rsp;
  tmp___7 = constant_test_bit(1, & l2->flag);
  if (tmp___7) {
    tmp = constant_test_bit(18, & l2->flag);
    if (tmp) {
      crbit = ! crbit;
    } else {

    }
    tmp___1 = ptr;
    ptr = ptr + 1;
    *tmp___1 = ((int )l2->sapi << 2) | (crbit ? 2 : 0);
    tmp___2 = ptr;
    ptr = ptr + 1;
    *tmp___2 = ((int )l2->tei << 1) | 1;
    return (2);
  } else {
    tmp___3 = constant_test_bit(2, & l2->flag);
    if (tmp___3) {
      crbit = ! crbit;
    } else {

    }
    if (crbit) {
      tmp___5 = ptr;
      ptr = ptr + 1;
      *tmp___5 = l2->addr.B;
    } else {
      tmp___6 = ptr;
      ptr = ptr + 1;
      *tmp___6 = l2->addr.A;
    }
    return (1);
  }
}
}
__inline static void enqueue_super(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  u_int tmp ;
  int tmp___0 ;

  {
  tmp = l2_newid(l2);
  tmp___0 = l2down(l2, 8193, tmp, skb);
  if (tmp___0) {
    consume_skb(skb);
  } else {

  }
  return;
}
}
__inline static void enqueue_ui(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  u_int tmp ;
  int tmp___0 ;

  {
  if (l2->tm) {
    l2_tei(l2, 7684, 0);
  } else {

  }
  tmp = l2_newid(l2);
  tmp___0 = l2down(l2, 8193, tmp, skb);
  if (tmp___0) {
    consume_skb(skb);
  } else {

  }
  return;
}
}
__inline int IsUI(u_char *data ) 
{ 


  {
  return (((int )*(data + 0) & 239) == 3);
}
}
__inline int IsUA(u_char *data ) 
{ 


  {
  return (((int )*(data + 0) & 239) == 99);
}
}
__inline int IsDM(u_char *data ) 
{ 


  {
  return (((int )*(data + 0) & 239) == 15);
}
}
__inline int IsDISC(u_char *data ) 
{ 


  {
  return (((int )*(data + 0) & 239) == 67);
}
}
__inline int IsSFrame(u_char *data , struct layer2 *l2 ) 
{ 
  register u_char d ;
  int tmp ;

  {
  d = *data;
  tmp = constant_test_bit(3, & l2->flag);
  if (tmp) {

  } else {
    d = (int )d & 15;
  }
  return (((int )d & 243) == 1 && ((int )d & 12) != 12);
}
}
__inline int IsSABME(u_char *data , struct layer2 *l2 ) 
{ 
  u_char d ;
  int tmp ;

  {
  d = (int )*(data + 0) & ~ 16;
  tmp = constant_test_bit(3, & l2->flag);
  return (tmp ? (int )d == 111 : (int )d == 47);
}
}
__inline int IsREJ(u_char *data , struct layer2 *l2 ) 
{ 
  int tmp ;

  {
  tmp = constant_test_bit(3, & l2->flag);
  return (tmp ? (int )*(data + 0) == 9 : ((int )*(data + 0) & 15) == 9);
}
}
__inline int IsFRMR(u_char *data ) 
{ 


  {
  return (((int )*(data + 0) & 239) == 135);
}
}
__inline int IsRNR(u_char *data , struct layer2 *l2 ) 
{ 
  int tmp ;

  {
  tmp = constant_test_bit(3, & l2->flag);
  return (tmp ? (int )*(data + 0) == 5 : ((int )*(data + 0) & 15) == 5);
}
}
static int iframe_error(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  u_int i ;
  int rsp ;
  u_int tmp ;
  int tmp___0 ;
  int tmp___2 ;

  {
  rsp = (int )*(skb->data) & 2;
  tmp = l2addrsize(l2);
  tmp___0 = constant_test_bit(3, & l2->flag);
  i = tmp + (u_int )(tmp___0 ? 2 : 1);
  tmp___2 = constant_test_bit(2, & l2->flag);
  if (tmp___2) {
    rsp = ! rsp;
  } else {

  }
  if (rsp) {
    return ('L');
  } else {

  }
  if (skb->len < i) {
    return ('N');
  } else {

  }
  if (skb->len - i > l2->maxlen) {
    return ('O');
  } else {

  }
  return (0);
}
}
static int super_error(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  u_int tmp ;
  int tmp___0 ;

  {
  tmp = l2addrsize(l2);
  tmp___0 = constant_test_bit(3, & l2->flag);
  if (skb->len != tmp + (u_int )(tmp___0 ? 2 : 1)) {
    return ('N');
  } else {

  }
  return (0);
}
}
static int unnum_error(struct layer2 *l2 , struct sk_buff *skb , int wantrsp ) 
{ 
  int rsp ;
  int tmp ;
  u_int tmp___1 ;

  {
  rsp = ((int )*(skb->data) & 2) >> 1;
  tmp = constant_test_bit(2, & l2->flag);
  if (tmp) {
    rsp = ! rsp;
  } else {

  }
  if (rsp != wantrsp) {
    return ('L');
  } else {

  }
  tmp___1 = l2addrsize(l2);
  if (skb->len != tmp___1 + (u_int )1) {
    return ('N');
  } else {

  }
  return (0);
}
}
static int UI_error(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  int rsp ;
  int tmp ;
  u_int tmp___1 ;

  {
  rsp = (int )*(skb->data) & 2;
  tmp = constant_test_bit(2, & l2->flag);
  if (tmp) {
    rsp = ! rsp;
  } else {

  }
  if (rsp) {
    return ('L');
  } else {

  }
  tmp___1 = l2addrsize(l2);
  if (skb->len > (l2->maxlen + tmp___1) + (u_int )1) {
    return ('O');
  } else {

  }
  return (0);
}
}
static int FRMR_error(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  u_int headers ;
  u_int tmp ;
  u_char *datap ;
  int rsp ;
  int tmp___0 ;
  int tmp___2 ;

  {
  tmp = l2addrsize(l2);
  headers = tmp + (u_int )1;
  datap = skb->data + headers;
  rsp = (int )*(skb->data) & 2;
  tmp___0 = constant_test_bit(2, & l2->flag);
  if (tmp___0) {
    rsp = ! rsp;
  } else {

  }
  if (! rsp) {
    return ('L');
  } else {

  }
  tmp___2 = constant_test_bit(3, & l2->flag);
  if (tmp___2) {
    if (skb->len < headers + (u_int )5) {
      return ('N');
    } else
    if (*debug___4 & 16711680U) {
      l2m_debug(& l2->l2m, "FRMR information %2x %2x %2x %2x %2x", *(datap + 0), *(datap + 1),
                *(datap + 2), *(datap + 3), *(datap + 4));
    } else {

    }
  } else
  if (skb->len < headers + (u_int )3) {
    return ('N');
  } else
  if (*debug___4 & 16711680U) {
    l2m_debug(& l2->l2m, "FRMR information %2x %2x %2x", *(datap + 0), *(datap + 1),
              *(datap + 2));
  } else {

  }
  return (0);
}
}
static unsigned int legalnr(struct layer2 *l2 , unsigned int nr ) 
{ 
  int tmp ;

  {
  tmp = constant_test_bit(3, & l2->flag);
  if (tmp) {
    return ((nr - l2->va) % 128U <= (l2->vs - l2->va) % 128U);
  } else {
    return ((nr - l2->va) % 8U <= (l2->vs - l2->va) % 8U);
  }
}
}
static void setva(struct layer2 *l2 , unsigned int nr ) 
{ 
  struct sk_buff *skb ;
  int tmp ;

  {
  while (1) {
    if (l2->va != nr) {

    } else {
      break;
    }
    l2->va = l2->va + (u_int )1;
    tmp = constant_test_bit(3, & l2->flag);
    if (tmp) {
      l2->va = l2->va % 128U;
    } else {
      l2->va = l2->va % 8U;
    }
    if (l2->windowar[l2->sow]) {
      skb_trim(l2->windowar[l2->sow], 0);
      skb_queue_tail(& l2->tmp_queue, l2->windowar[l2->sow]);
      l2->windowar[l2->sow] = (void *)0;
    } else {

    }
    l2->sow = (l2->sow + (u_int )1) % l2->window;
  }
  skb = skb_dequeue(& l2->tmp_queue);
  while (1) {
    if (skb) {

    } else {
      break;
    }
    consume_skb(skb);
    skb = skb_dequeue(& l2->tmp_queue);
  }
  return;
}
}
static void send_uframe(struct layer2 *l2 , struct sk_buff *skb , u_char cmd , u_char cr ) 
{ 
  u_char tmp[4] ;
  int i ;
  int tmp___0 ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___2 ;

  {
  i = sethdraddr(l2, tmp, cr);
  tmp___0 = i;
  i = i + 1;
  tmp[tmp___0] = cmd;
  if (skb) {
    skb_trim(skb, 0);
  } else {
    skb = mI_alloc_skb(i, 32U);
    if (! skb) {
      printk("<4>%s: can\'t alloc skbuff\n", "send_uframe");
      return;
    } else {

    }
  }
  __len = i;
  tmp___2 = skb_put(skb, i);
  __ret = memcpy(tmp___2, tmp, __len);
  enqueue_super(l2, skb);
  return;
}
}
__inline u_char get_PollFlag(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  u_int tmp ;

  {
  tmp = l2addrsize(l2);
  return ((int )*(skb->data + tmp) & 16);
}
}
__inline u_char get_PollFlagFree(struct layer2 *l2 , struct sk_buff *skb ) 
{ 
  u_char PF ;

  {
  PF = get_PollFlag(l2, skb);
  consume_skb(skb);
  return (PF);
}
}
__inline void start_t200(struct layer2 *l2 , int i ) 
{ 


  {
  mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, i);
  test_and_set_bit(6, & l2->flag);
  return;
}
}
__inline void restart_t200(struct layer2 *l2 , int i ) 
{ 


  {
  mISDN_FsmRestartTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, i);
  test_and_set_bit(6, & l2->flag);
  return;
}
}
__inline void stop_t200(struct layer2 *l2 , int i ) 
{ 
  int tmp ;

  {
  tmp = test_and_clear_bit(6, & l2->flag);
  if (tmp) {
    mISDN_FsmDelTimer(& l2->t200, i);
  } else {

  }
  return;
}
}
__inline void st5_dl_release_l2l3(struct layer2 *l2 ) 
{ 
  int pr ;
  int tmp ;

  {
  tmp = test_and_clear_bit(4, & l2->flag);
  if (tmp) {
    pr = 20744;
  } else {
    pr = 4360;
  }
  l2up_create(l2, pr, 0, (void *)0);
  return;
}
}
__inline void lapb_dl_release_l2l3(struct layer2 *l2 , int f ) 
{ 
  u_int tmp ;
  int tmp___0 ;

  {
  tmp___0 = constant_test_bit(0, & l2->flag);
  if (tmp___0) {
    tmp = l2_newid(l2);
    l2down_create(l2, 513, tmp, 0, (void *)0);
  } else {

  }
  l2up_create(l2, f, 0, (void *)0);
  return;
}
}
static void establishlink(struct FsmInst *fi ) 
{ 
  struct layer2 *l2 ;
  u_char cmd ;
  int tmp ;

  {
  l2 = fi->userdata;
  clear_exception(l2);
  l2->rc = 0;
  tmp = constant_test_bit(3, & l2->flag);
  cmd = (tmp ? 111 : 47) | 16;
  send_uframe(l2, (void *)0, cmd, 0);
  mISDN_FsmDelTimer(& l2->t203, 1);
  restart_t200(l2, 1);
  test_and_clear_bit(4, & l2->flag);
  freewin(l2);
  mISDN_FsmChangeState(fi, ST_L2_5);
  return;
}
}
static void l2_mdl_error_ua(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct layer2 *l2 ;
  u_char tmp ;

  {
  skb = arg;
  l2 = fi->userdata;
  tmp = get_PollFlagFree(l2, skb);
  if (tmp) {
    l2mgr(l2, 7940, (void *)'C');
  } else {
    l2mgr(l2, 7940, (void *)'D');
  }
  return;
}
}
static void l2_mdl_error_dm(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct layer2 *l2 ;
  u_char tmp ;

  {
  skb = arg;
  l2 = fi->userdata;
  tmp = get_PollFlagFree(l2, skb);
  if (tmp) {
    l2mgr(l2, 7940, (void *)'B');
  } else {
    l2mgr(l2, 7940, (void *)'E');
    establishlink(fi);
    test_and_clear_bit(5, & l2->flag);
  }
  return;
}
}
static void l2_st8_mdl_error_dm(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct layer2 *l2 ;
  u_char tmp ;

  {
  skb = arg;
  l2 = fi->userdata;
  tmp = get_PollFlagFree(l2, skb);
  if (tmp) {
    l2mgr(l2, 7940, (void *)'B');
  } else {
    l2mgr(l2, 7940, (void *)'E');
  }
  establishlink(fi);
  test_and_clear_bit(5, & l2->flag);
  return;
}
}
static void l2_go_st3(struct FsmInst *fi , int event , void *arg ) 
{ 


  {
  consume_skb((struct sk_buff *)arg);
  mISDN_FsmChangeState(fi, ST_L2_3);
  return;
}
}
static void l2_mdl_assign(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  mISDN_FsmChangeState(fi, ST_L2_3);
  consume_skb((struct sk_buff *)arg);
  l2_tei(l2, 6404, 0);
  return;
}
}
static void l2_queue_ui_assign(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_tail(& l2->ui_queue, skb);
  mISDN_FsmChangeState(fi, ST_L2_2);
  l2_tei(l2, 6404, 0);
  return;
}
}
static void l2_queue_ui(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_tail(& l2->ui_queue, skb);
  return;
}
}
static void tx_ui(struct layer2 *l2 ) 
{ 
  struct sk_buff *skb ;
  u_char header[4] ;
  int i ;
  int tmp ;
  int tmp___1 ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___3 ;

  {
  i = sethdraddr(l2, header, 0);
  tmp = constant_test_bit(18, & l2->flag);
  if (tmp) {
    header[1] = 255;
  } else {

  }
  tmp___1 = i;
  i = i + 1;
  header[tmp___1] = 3;
  while (1) {
    skb = skb_dequeue(& l2->ui_queue);
    if (skb) {

    } else {
      break;
    }
    __len = i;
    tmp___3 = skb_push(skb, i);
    __ret = memcpy(tmp___3, header, __len);
    enqueue_ui(l2, skb);
  }
  return;
}
}
static void l2_send_ui(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_tail(& l2->ui_queue, skb);
  tx_ui(l2);
  return;
}
}
static void l2_got_ui(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_int tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = l2headersize(l2, 1);
  skb_pull(skb, tmp);
  if (l2->tm) {
    l2_tei(l2, 7684, 0);
  } else {

  }
  l2up(l2, 12552, skb);
  return;
}
}
static void l2_establish(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct layer2 *l2 ;

  {
  skb = arg;
  l2 = fi->userdata;
  establishlink(fi);
  test_and_set_bit(5, & l2->flag);
  consume_skb(skb);
  return;
}
}
static void l2_discard_i_setl3(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct layer2 *l2 ;

  {
  skb = arg;
  l2 = fi->userdata;
  skb_queue_purge(& l2->i_queue);
  test_and_set_bit(5, & l2->flag);
  test_and_clear_bit(4, & l2->flag);
  consume_skb(skb);
  return;
}
}
static void l2_l3_reestablish(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct layer2 *l2 ;

  {
  skb = arg;
  l2 = fi->userdata;
  skb_queue_purge(& l2->i_queue);
  establishlink(fi);
  test_and_set_bit(5, & l2->flag);
  consume_skb(skb);
  return;
}
}
static void l2_release(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_trim(skb, 0);
  l2up(l2, 20744, skb);
  return;
}
}
static void l2_pend_rel(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct layer2 *l2 ;

  {
  skb = arg;
  l2 = fi->userdata;
  test_and_set_bit(4, & l2->flag);
  consume_skb(skb);
  return;
}
}
static void l2_disconnect(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_purge(& l2->i_queue);
  freewin(l2);
  mISDN_FsmChangeState(fi, ST_L2_6);
  l2->rc = 0;
  send_uframe(l2, (void *)0, 67 | 16, 0);
  mISDN_FsmDelTimer(& l2->t203, 1);
  restart_t200(l2, 2);
  if (skb) {
    consume_skb(skb);
  } else {

  }
  return;
}
}
static void l2_start_multi(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_char tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  l2->vs = 0;
  l2->va = 0;
  l2->vr = 0;
  l2->sow = 0;
  clear_exception(l2);
  tmp = get_PollFlag(l2, skb);
  send_uframe(l2, (void *)0, 99 | (int )tmp, 1);
  mISDN_FsmChangeState(fi, ST_L2_7);
  mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 3);
  skb_trim(skb, 0);
  l2up(l2, 4104, skb);
  if (l2->tm) {
    l2_tei(l2, 7172, 0);
  } else {

  }
  return;
}
}
static void l2_send_UA(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_char tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = get_PollFlag(l2, skb);
  send_uframe(l2, skb, 99 | (int )tmp, 1);
  return;
}
}
static void l2_send_DM(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_char tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = get_PollFlag(l2, skb);
  send_uframe(l2, skb, 15 | (int )tmp, 1);
  return;
}
}
static void l2_restart_multi(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int est ;
  u_char tmp ;
  __u32 tmp___0 ;
  unsigned int tmp___1 ;

  {
  l2 = fi->userdata;
  skb = arg;
  est = 0;
  tmp = get_PollFlag(l2, skb);
  send_uframe(l2, skb, 99 | (int )tmp, 1);
  l2mgr(l2, 7940, (void *)'F');
  if (l2->vs != l2->va) {
    skb_queue_purge(& l2->i_queue);
    est = 1;
  } else {

  }
  clear_exception(l2);
  l2->vs = 0;
  l2->va = 0;
  l2->vr = 0;
  l2->sow = 0;
  mISDN_FsmChangeState(fi, ST_L2_7);
  stop_t200(l2, 3);
  mISDN_FsmRestartTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 3);
  if (est) {
    l2up_create(l2, 4104, 0, (void *)0);
  } else {

  }
  tmp___0 = skb_queue_len(& l2->i_queue);
  if (tmp___0) {
    tmp___1 = cansend(l2);
    if (tmp___1) {
      mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0);
    } else {

    }
  } else {

  }
  return;
}
}
static void l2_stop_multi(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_char tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  mISDN_FsmChangeState(fi, ST_L2_4);
  mISDN_FsmDelTimer(& l2->t203, 3);
  stop_t200(l2, 4);
  tmp = get_PollFlag(l2, skb);
  send_uframe(l2, skb, 99 | (int )tmp, 1);
  skb_queue_purge(& l2->i_queue);
  freewin(l2);
  lapb_dl_release_l2l3(l2, 4360);
  if (l2->tm) {
    l2_tei(l2, 7428, 0);
  } else {

  }
  return;
}
}
static void l2_connected(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int pr ;
  u_char tmp ;
  int tmp___0 ;
  int tmp___1 ;
  __u32 tmp___2 ;
  unsigned int tmp___3 ;

  {
  l2 = fi->userdata;
  skb = arg;
  pr = -1;
  tmp = get_PollFlag(l2, skb);
  if (tmp) {

  } else {
    l2_mdl_error_ua(fi, event, arg);
    return;
  }
  consume_skb(skb);
  tmp___0 = test_and_clear_bit(4, & l2->flag);
  if (tmp___0) {
    l2_disconnect(fi, event, (void *)0);
  } else {

  }
  tmp___1 = test_and_clear_bit(5, & l2->flag);
  if (tmp___1) {
    pr = 20488;
  } else
  if (l2->vs != l2->va) {
    skb_queue_purge(& l2->i_queue);
    pr = 4104;
  } else {

  }
  stop_t200(l2, 5);
  l2->vr = 0;
  l2->vs = 0;
  l2->va = 0;
  l2->sow = 0;
  mISDN_FsmChangeState(fi, ST_L2_7);
  mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 4);
  if (pr != -1) {
    l2up_create(l2, pr, 0, (void *)0);
  } else {

  }
  tmp___2 = skb_queue_len(& l2->i_queue);
  if (tmp___2) {
    tmp___3 = cansend(l2);
    if (tmp___3) {
      mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0);
    } else {

    }
  } else {

  }
  if (l2->tm) {
    l2_tei(l2, 7172, 0);
  } else {

  }
  return;
}
}
static void l2_released(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_char tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = get_PollFlag(l2, skb);
  if (tmp) {

  } else {
    l2_mdl_error_ua(fi, event, arg);
    return;
  }
  consume_skb(skb);
  stop_t200(l2, 6);
  lapb_dl_release_l2l3(l2, 20744);
  mISDN_FsmChangeState(fi, ST_L2_4);
  if (l2->tm) {
    l2_tei(l2, 7428, 0);
  } else {

  }
  return;
}
}
static void l2_reestablish(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_char tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = get_PollFlagFree(l2, skb);
  if (tmp) {

  } else {
    establishlink(fi);
    test_and_set_bit(5, & l2->flag);
  }
  return;
}
}
static void l2_st5_dm_release(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int tmp ;
  u_int tmp___1 ;
  int tmp___2 ;
  u_char tmp___4 ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp___4 = get_PollFlagFree(l2, skb);
  if (tmp___4) {
    stop_t200(l2, 7);
    tmp = constant_test_bit(5, & l2->flag);
    if (tmp) {

    } else {
      skb_queue_purge(& l2->i_queue);
    }
    tmp___2 = constant_test_bit(0, & l2->flag);
    if (tmp___2) {
      tmp___1 = l2_newid(l2);
      l2down_create(l2, 513, tmp___1, 0, (void *)0);
    } else {

    }
    st5_dl_release_l2l3(l2);
    mISDN_FsmChangeState(fi, ST_L2_4);
    if (l2->tm) {
      l2_tei(l2, 7428, 0);
    } else {

    }
  } else {

  }
  return;
}
}
static void l2_st6_dm_release(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_char tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = get_PollFlagFree(l2, skb);
  if (tmp) {
    stop_t200(l2, 8);
    lapb_dl_release_l2l3(l2, 20744);
    mISDN_FsmChangeState(fi, ST_L2_4);
    if (l2->tm) {
      l2_tei(l2, 7428, 0);
    } else {

    }
  } else {

  }
  return;
}
}
static void enquiry_cr(struct layer2 *l2 , u_char typ , u_char cr , u_char pf ) 
{ 
  struct sk_buff *skb ;
  u_char tmp[4] ;
  int i ;
  int tmp___0 ;
  int tmp___1 ;
  int tmp___2 ;
  int tmp___3 ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___6 ;

  {
  i = sethdraddr(l2, tmp, cr);
  tmp___3 = constant_test_bit(3, & l2->flag);
  if (tmp___3) {
    tmp___0 = i;
    i = i + 1;
    tmp[tmp___0] = typ;
    tmp___1 = i;
    i = i + 1;
    tmp[tmp___1] = (l2->vr << 1) | (unsigned int )(pf ? 1 : 0);
  } else {
    tmp___2 = i;
    i = i + 1;
    tmp[tmp___2] = ((l2->vr << 5) | (unsigned int )typ) | (unsigned int )(pf ? 16 : 0);
  }
  skb = mI_alloc_skb(i, 32U);
  if (! skb) {
    printk("<4>isdnl2 can\'t alloc sbbuff for enquiry_cr\n");
    return;
  } else {

  }
  __len = i;
  tmp___6 = skb_put(skb, i);
  __ret = memcpy(tmp___6, tmp, __len);
  enqueue_super(l2, skb);
  return;
}
}
__inline void enquiry_response(struct layer2 *l2 ) 
{ 
  int tmp ;

  {
  tmp = constant_test_bit(9, & l2->flag);
  if (tmp) {
    enquiry_cr(l2, 5, 1, 1);
  } else {
    enquiry_cr(l2, 1, 1, 1);
  }
  test_and_clear_bit(7, & l2->flag);
  return;
}
}
__inline void transmit_enquiry(struct layer2 *l2 ) 
{ 
  int tmp ;

  {
  tmp = constant_test_bit(9, & l2->flag);
  if (tmp) {
    enquiry_cr(l2, 5, 0, 1);
  } else {
    enquiry_cr(l2, 1, 0, 1);
  }
  test_and_clear_bit(7, & l2->flag);
  start_t200(l2, 9);
  return;
}
}
static void nrerrorrecovery(struct FsmInst *fi ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  l2mgr(l2, 7940, (void *)'J');
  establishlink(fi);
  test_and_clear_bit(5, & l2->flag);
  return;
}
}
static void invoke_retransmission(struct layer2 *l2 , unsigned int nr ) 
{ 
  u_int p1 ;
  int tmp ;

  {
  if (l2->vs != nr) {
    while (1) {
      if (l2->vs != nr) {

      } else {
        break;
      }
      l2->vs = l2->vs - (u_int )1;
      tmp = constant_test_bit(3, & l2->flag);
      if (tmp) {
        l2->vs = l2->vs % 128U;
        p1 = (l2->vs - l2->va) % 128U;
      } else {
        l2->vs = l2->vs % 8U;
        p1 = (l2->vs - l2->va) % 8U;
      }
      p1 = (p1 + l2->sow) % l2->window;
      if (l2->windowar[p1]) {
        skb_queue_head(& l2->i_queue, l2->windowar[p1]);
      } else {
        printk("<4>%s: windowar[%d] is NULL\n", "invoke_retransmission", p1);
      }
      l2->windowar[p1] = (void *)0;
    }
    mISDN_FsmEvent(& l2->l2m, EV_L2_ACK_PULL, (void *)0);
  } else {

  }
  return;
}
}
static void l2_st7_got_super(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int PollFlag ;
  int rsp ;
  int typ ;
  unsigned int nr ;
  int tmp ;
  u_int tmp___1 ;
  int tmp___2 ;
  int tmp___3 ;
  int tmp___4 ;
  int tmp___6 ;
  __u32 tmp___7 ;
  unsigned int tmp___8 ;

  {
  l2 = fi->userdata;
  skb = arg;
  typ = 1;
  rsp = (int )*(skb->data) & 2;
  tmp = constant_test_bit(2, & l2->flag);
  if (tmp) {
    rsp = ! rsp;
  } else {

  }
  tmp___1 = l2addrsize(l2);
  skb_pull(skb, tmp___1);
  tmp___2 = IsRNR(skb->data, l2);
  if (tmp___2) {
    set_peer_busy(l2);
    typ = 5;
  } else {
    clear_peer_busy(l2);
  }
  tmp___3 = IsREJ(skb->data, l2);
  if (tmp___3) {
    typ = 9;
  } else {

  }
  tmp___4 = constant_test_bit(3, & l2->flag);
  if (tmp___4) {
    PollFlag = ((int )*(skb->data + 1) & 1) == 1;
    nr = (int )*(skb->data + 1) >> 1;
  } else {
    PollFlag = (int )*(skb->data + 0) & 16;
    nr = ((int )*(skb->data + 0) >> 5) & 7;
  }
  consume_skb(skb);
  if (PollFlag) {
    if (rsp) {
      l2mgr(l2, 7940, (void *)'A');
    } else {
      enquiry_response(l2);
    }
  } else {

  }
  tmp___8 = legalnr(l2, nr);
  if (tmp___8) {
    if (typ == 9) {
      setva(l2, nr);
      invoke_retransmission(l2, nr);
      stop_t200(l2, 10);
      tmp___6 = mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 6);
      if (tmp___6) {
        l2m_debug(& l2->l2m, "Restart T203 ST7 REJ");
      } else {

      }
    } else
    if (nr == l2->vs && typ == 1) {
      setva(l2, nr);
      stop_t200(l2, 11);
      mISDN_FsmRestartTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 7);
    } else
    if (l2->va != nr || typ == 5) {
      setva(l2, nr);
      if (typ != 1) {
        mISDN_FsmDelTimer(& l2->t203, 9);
      } else {

      }
      restart_t200(l2, 12);
    } else {

    }
    tmp___7 = skb_queue_len(& l2->i_queue);
    if (tmp___7 && typ == 1) {
      mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0);
    } else {

    }
  } else {
    nrerrorrecovery(fi);
  }
  return;
}
}
static void l2_feed_i_if_reest(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = constant_test_bit(5, & l2->flag);
  if (tmp) {
    consume_skb(skb);
  } else {
    skb_queue_tail(& l2->i_queue, skb);
  }
  return;
}
}
static void l2_feed_i_pull(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_tail(& l2->i_queue, skb);
  mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0);
  return;
}
}
static void l2_feed_iqueue(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_tail(& l2->i_queue, skb);
  return;
}
}
static void l2_got_iframe(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int PollFlag ;
  int i ;
  u_int ns ;
  u_int nr ;
  u_int tmp ;
  int tmp___0 ;
  int tmp___2 ;
  u_int tmp___4 ;
  int tmp___5 ;
  int tmp___6 ;
  int tmp___8 ;
  unsigned int tmp___10 ;
  __u32 tmp___11 ;
  int tmp___12 ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = l2addrsize(l2);
  i = tmp;
  tmp___0 = constant_test_bit(3, & l2->flag);
  if (tmp___0) {
    PollFlag = ((int )*(skb->data + (i + 1)) & 1) == 1;
    ns = (int )*(skb->data + i) >> 1;
    nr = ((int )*(skb->data + (i + 1)) >> 1) & 127;
  } else {
    PollFlag = (int )*(skb->data + i) & 16;
    ns = ((int )*(skb->data + i) >> 1) & 7;
    nr = ((int )*(skb->data + i) >> 5) & 7;
  }
  tmp___6 = constant_test_bit(9, & l2->flag);
  if (tmp___6) {
    consume_skb(skb);
    if (PollFlag) {
      enquiry_response(l2);
    } else {

    }
  } else
  if (l2->vr == ns) {
    l2->vr = l2->vr + (u_int )1;
    tmp___2 = constant_test_bit(3, & l2->flag);
    if (tmp___2) {
      l2->vr = l2->vr % 128U;
    } else {
      l2->vr = l2->vr % 8U;
    }
    test_and_clear_bit(8, & l2->flag);
    if (PollFlag) {
      enquiry_response(l2);
    } else {
      test_and_set_bit(7, & l2->flag);
    }
    tmp___4 = l2headersize(l2, 0);
    skb_pull(skb, tmp___4);
    l2up(l2, 12296, skb);
  } else {
    consume_skb(skb);
    tmp___5 = test_and_set_bit(8, & l2->flag);
    if (tmp___5) {
      if (PollFlag) {
        enquiry_response(l2);
      } else {

      }
    } else {
      enquiry_cr(l2, 9, 1, PollFlag);
      test_and_clear_bit(7, & l2->flag);
    }
  }
  tmp___10 = legalnr(l2, nr);
  if (tmp___10) {
    tmp___8 = constant_test_bit(10, & l2->flag);
    if (tmp___8) {

    } else
    if (fi->state == ST_L2_7) {
      if (nr == l2->vs) {
        stop_t200(l2, 13);
        mISDN_FsmRestartTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 7);
      } else
      if (nr != l2->va) {
        restart_t200(l2, 14);
      } else {

      }
    } else {

    }
    setva(l2, nr);
  } else {
    nrerrorrecovery(fi);
    return;
  }
  tmp___11 = skb_queue_len(& l2->i_queue);
  if (tmp___11 && fi->state == ST_L2_7) {
    mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0);
  } else {

  }
  tmp___12 = test_and_clear_bit(7, & l2->flag);
  if (tmp___12) {
    enquiry_cr(l2, 1, 1, 0);
  } else {

  }
  return;
}
}
static void l2_got_tei(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  u_int info ;
  __u32 tmp ;

  {
  l2 = fi->userdata;
  l2->tei = (signed char )((long )arg);
  set_channel_address(& l2->ch, l2->sapi, l2->tei);
  info = 1;
  l2up_create(l2, 8, sizeof(info), & info);
  if (fi->state == ST_L2_3) {
    establishlink(fi);
    test_and_set_bit(5, & l2->flag);
  } else {
    mISDN_FsmChangeState(fi, ST_L2_4);
  }
  tmp = skb_queue_len(& l2->ui_queue);
  if (tmp) {
    tx_ui(l2);
  } else {

  }
  return;
}
}
static void l2_st5_tout_200(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  u_int tmp ;
  int tmp___0 ;
  int tmp___2 ;
  int tmp___4 ;
  int tmp___6 ;

  {
  l2 = fi->userdata;
  tmp___4 = constant_test_bit(1, & l2->flag);
  if (tmp___4) {
    tmp___6 = constant_test_bit(11, & l2->flag);
    if (tmp___6) {
      mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9);
    } else {
      goto _L;
    }
  } else
  _L: /* CIL Label */ 
  if (l2->rc == l2->N200) {
    mISDN_FsmChangeState(fi, ST_L2_4);
    test_and_clear_bit(6, & l2->flag);
    skb_queue_purge(& l2->i_queue);
    l2mgr(l2, 7940, (void *)'G');
    tmp___0 = constant_test_bit(0, & l2->flag);
    if (tmp___0) {
      tmp = l2_newid(l2);
      l2down_create(l2, 513, tmp, 0, (void *)0);
    } else {

    }
    st5_dl_release_l2l3(l2);
    if (l2->tm) {
      l2_tei(l2, 7428, 0);
    } else {

    }
  } else {
    l2->rc = l2->rc + 1;
    mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9);
    tmp___2 = constant_test_bit(3, & l2->flag);
    send_uframe(l2, (void *)0, (tmp___2 ? 111 : 47) | 16, 0);
  }
  return;
}
}
static void l2_st6_tout_200(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  int tmp ;
  int tmp___1 ;

  {
  l2 = fi->userdata;
  tmp = constant_test_bit(1, & l2->flag);
  if (tmp) {
    tmp___1 = constant_test_bit(11, & l2->flag);
    if (tmp___1) {
      mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9);
    } else {
      goto _L;
    }
  } else
  _L: /* CIL Label */ 
  if (l2->rc == l2->N200) {
    mISDN_FsmChangeState(fi, ST_L2_4);
    test_and_clear_bit(6, & l2->flag);
    l2mgr(l2, 7940, (void *)'H');
    lapb_dl_release_l2l3(l2, 20744);
    if (l2->tm) {
      l2_tei(l2, 7428, 0);
    } else {

    }
  } else {
    l2->rc = l2->rc + 1;
    mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9);
    send_uframe(l2, (void *)0, 67 | 16, 0);
  }
  return;
}
}
static void l2_st7_tout_200(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  int tmp ;
  int tmp___1 ;

  {
  l2 = fi->userdata;
  tmp = constant_test_bit(1, & l2->flag);
  if (tmp) {
    tmp___1 = constant_test_bit(11, & l2->flag);
    if (tmp___1) {
      mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9);
      return;
    } else {

    }
  } else {

  }
  test_and_clear_bit(6, & l2->flag);
  l2->rc = 0;
  mISDN_FsmChangeState(fi, ST_L2_8);
  transmit_enquiry(l2);
  l2->rc = l2->rc + 1;
  return;
}
}
static void l2_st8_tout_200(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  int tmp ;
  int tmp___1 ;

  {
  l2 = fi->userdata;
  tmp = constant_test_bit(1, & l2->flag);
  if (tmp) {
    tmp___1 = constant_test_bit(11, & l2->flag);
    if (tmp___1) {
      mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9);
      return;
    } else {

    }
  } else {

  }
  test_and_clear_bit(6, & l2->flag);
  if (l2->rc == l2->N200) {
    l2mgr(l2, 7940, (void *)'I');
    establishlink(fi);
    test_and_clear_bit(5, & l2->flag);
  } else {
    transmit_enquiry(l2);
    l2->rc = l2->rc + 1;
  }
  return;
}
}
static void l2_st7_tout_203(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  int tmp ;
  int tmp___1 ;

  {
  l2 = fi->userdata;
  tmp = constant_test_bit(1, & l2->flag);
  if (tmp) {
    tmp___1 = constant_test_bit(11, & l2->flag);
    if (tmp___1) {
      mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 9);
      return;
    } else {

    }
  } else {

  }
  mISDN_FsmChangeState(fi, ST_L2_8);
  transmit_enquiry(l2);
  l2->rc = 0;
  return;
}
}
static void l2_pull_iqueue(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  struct sk_buff *nskb ;
  struct sk_buff *oskb ;
  u_char header[4] ;
  u_int i ;
  u_int p1 ;
  unsigned int tmp ;
  int tmp___0 ;
  int tmp___2 ;
  u_int tmp___3 ;
  u_int tmp___4 ;
  u_int tmp___5 ;
  int tmp___6 ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___9 ;
  size_t __len___0 ;
  void *__ret___0 ;
  unsigned char *tmp___11 ;
  size_t __len___1 ;
  void *__ret___1 ;
  unsigned char *tmp___13 ;
  u_int tmp___14 ;
  int tmp___15 ;

  {
  l2 = fi->userdata;
  tmp = cansend(l2);
  if (tmp) {

  } else {
    return;
  }
  skb = skb_dequeue(& l2->i_queue);
  if (! skb) {
    return;
  } else {

  }
  tmp___0 = constant_test_bit(3, & l2->flag);
  if (tmp___0) {
    p1 = (l2->vs - l2->va) % 128U;
  } else {
    p1 = (l2->vs - l2->va) % 8U;
  }
  p1 = (p1 + l2->sow) % l2->window;
  if (l2->windowar[p1]) {
    printk("<4>isdnl2 try overwrite ack queue entry %d\n", p1);
    consume_skb(l2->windowar[p1]);
  } else {

  }
  l2->windowar[p1] = skb;
  tmp___2 = sethdraddr(l2, header, 0);
  i = tmp___2;
  tmp___6 = constant_test_bit(3, & l2->flag);
  if (tmp___6) {
    tmp___3 = i;
    i = i + (u_int )1;
    header[tmp___3] = l2->vs << 1;
    tmp___4 = i;
    i = i + (u_int )1;
    header[tmp___4] = l2->vr << 1;
    l2->vs = (l2->vs + (u_int )1) % 128U;
  } else {
    tmp___5 = i;
    i = i + (u_int )1;
    header[tmp___5] = (l2->vr << 5) | (l2->vs << 1);
    l2->vs = (l2->vs + (u_int )1) % 8U;
  }
  nskb = skb_clone(skb, 32U);
  p1 = skb_headroom(nskb);
  if (p1 >= i) {
    __len = i;
    tmp___9 = skb_push(nskb, i);
    __ret = memcpy(tmp___9, header, __len);
  } else {
    printk("<4>isdnl2 pull_iqueue skb header(%d/%d) too short\n", i, p1);
    oskb = nskb;
    nskb = mI_alloc_skb(oskb->len + i, 32U);
    if (! nskb) {
      consume_skb(oskb);
      printk("<4>%s: no skb mem\n", "l2_pull_iqueue");
      return;
    } else {

    }
    __len___0 = i;
    tmp___11 = skb_put(nskb, i);
    __ret___0 = memcpy(tmp___11, header, __len___0);
    __len___1 = oskb->len;
    tmp___13 = skb_put(nskb, oskb->len);
    __ret___1 = memcpy(tmp___13, oskb->data, __len___1);
    consume_skb(oskb);
  }
  tmp___14 = l2_newid(l2);
  l2down(l2, 8193, tmp___14, nskb);
  test_and_clear_bit(7, & l2->flag);
  tmp___15 = test_and_set_bit(6, & l2->flag);
  if (tmp___15) {

  } else {
    mISDN_FsmDelTimer(& l2->t203, 13);
    mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 11);
  }
  return;
}
}
static void l2_st8_got_super(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int PollFlag ;
  int rsp ;
  int rnr ;
  unsigned int nr ;
  int tmp ;
  u_int tmp___1 ;
  int tmp___2 ;
  int tmp___3 ;
  __u32 tmp___5 ;
  unsigned int tmp___6 ;
  unsigned int tmp___7 ;
  unsigned int tmp___8 ;

  {
  l2 = fi->userdata;
  skb = arg;
  rnr = 0;
  rsp = (int )*(skb->data) & 2;
  tmp = constant_test_bit(2, & l2->flag);
  if (tmp) {
    rsp = ! rsp;
  } else {

  }
  tmp___1 = l2addrsize(l2);
  skb_pull(skb, tmp___1);
  tmp___2 = IsRNR(skb->data, l2);
  if (tmp___2) {
    set_peer_busy(l2);
    rnr = 1;
  } else {
    clear_peer_busy(l2);
  }
  tmp___3 = constant_test_bit(3, & l2->flag);
  if (tmp___3) {
    PollFlag = ((int )*(skb->data + 1) & 1) == 1;
    nr = (int )*(skb->data + 1) >> 1;
  } else {
    PollFlag = (int )*(skb->data + 0) & 16;
    nr = ((int )*(skb->data + 0) >> 5) & 7;
  }
  consume_skb(skb);
  if (rsp && PollFlag) {
    tmp___7 = legalnr(l2, nr);
    if (tmp___7) {
      if (rnr) {
        restart_t200(l2, 15);
      } else {
        stop_t200(l2, 16);
        mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 5);
        setva(l2, nr);
      }
      invoke_retransmission(l2, nr);
      mISDN_FsmChangeState(fi, ST_L2_7);
      tmp___5 = skb_queue_len(& l2->i_queue);
      if (tmp___5) {
        tmp___6 = cansend(l2);
        if (tmp___6) {
          mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0);
        } else {

        }
      } else {

      }
    } else {
      nrerrorrecovery(fi);
    }
  } else {
    if (! rsp && PollFlag) {
      enquiry_response(l2);
    } else {

    }
    tmp___8 = legalnr(l2, nr);
    if (tmp___8) {
      setva(l2, nr);
    } else {
      nrerrorrecovery(fi);
    }
  }
  return;
}
}
static void l2_got_FRMR(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  u_int tmp ;
  int tmp___0 ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = l2addrsize(l2);
  skb_pull(skb, tmp + (u_int )1);
  if (! ((int )*(skb->data + 0) & 1) || ((int )*(skb->data + 0) & 3) == 1) {
    l2mgr(l2, 7940, (void *)'K');
    establishlink(fi);
    test_and_clear_bit(5, & l2->flag);
  } else {
    tmp___0 = IsUA(skb->data);
    if (tmp___0 && fi->state == ST_L2_7) {
      l2mgr(l2, 7940, (void *)'K');
      establishlink(fi);
      test_and_clear_bit(5, & l2->flag);
    } else {

    }
  }
  consume_skb(skb);
  return;
}
}
static void l2_st24_tei_remove(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  skb_queue_purge(& l2->ui_queue);
  l2->tei = 127;
  mISDN_FsmChangeState(fi, ST_L2_1);
  return;
}
}
static void l2_st3_tei_remove(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  skb_queue_purge(& l2->ui_queue);
  l2->tei = 127;
  l2up_create(l2, 4360, 0, (void *)0);
  mISDN_FsmChangeState(fi, ST_L2_1);
  return;
}
}
static void l2_st5_tei_remove(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  skb_queue_purge(& l2->i_queue);
  skb_queue_purge(& l2->ui_queue);
  freewin(l2);
  l2->tei = 127;
  stop_t200(l2, 17);
  st5_dl_release_l2l3(l2);
  mISDN_FsmChangeState(fi, ST_L2_1);
  return;
}
}
static void l2_st6_tei_remove(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  skb_queue_purge(& l2->ui_queue);
  l2->tei = 127;
  stop_t200(l2, 18);
  l2up_create(l2, 4360, 0, (void *)0);
  mISDN_FsmChangeState(fi, ST_L2_1);
  return;
}
}
static void l2_tei_remove(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  skb_queue_purge(& l2->i_queue);
  skb_queue_purge(& l2->ui_queue);
  freewin(l2);
  l2->tei = 127;
  stop_t200(l2, 17);
  mISDN_FsmDelTimer(& l2->t203, 19);
  l2up_create(l2, 4360, 0, (void *)0);
  mISDN_FsmChangeState(fi, ST_L2_1);
  return;
}
}
static void l2_st14_persistant_da(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_purge(& l2->i_queue);
  skb_queue_purge(& l2->ui_queue);
  tmp = test_and_clear_bit(13, & l2->flag);
  if (tmp) {
    l2up(l2, 4360, skb);
  } else {
    consume_skb(skb);
  }
  return;
}
}
static void l2_st5_persistant_da(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_purge(& l2->i_queue);
  skb_queue_purge(& l2->ui_queue);
  freewin(l2);
  stop_t200(l2, 19);
  st5_dl_release_l2l3(l2);
  mISDN_FsmChangeState(fi, ST_L2_4);
  if (l2->tm) {
    l2_tei(l2, 7428, 0);
  } else {

  }
  consume_skb(skb);
  return;
}
}
static void l2_st6_persistant_da(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_purge(& l2->ui_queue);
  stop_t200(l2, 20);
  l2up(l2, 20744, skb);
  mISDN_FsmChangeState(fi, ST_L2_4);
  if (l2->tm) {
    l2_tei(l2, 7428, 0);
  } else {

  }
  return;
}
}
static void l2_persistant_da(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;

  {
  l2 = fi->userdata;
  skb = arg;
  skb_queue_purge(& l2->i_queue);
  skb_queue_purge(& l2->ui_queue);
  freewin(l2);
  stop_t200(l2, 19);
  mISDN_FsmDelTimer(& l2->t203, 19);
  l2up(l2, 4360, skb);
  mISDN_FsmChangeState(fi, ST_L2_4);
  if (l2->tm) {
    l2_tei(l2, 7428, 0);
  } else {

  }
  return;
}
}
static void l2_set_own_busy(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = test_and_set_bit(9, & l2->flag);
  if (tmp) {

  } else {
    enquiry_cr(l2, 5, 1, 0);
    test_and_clear_bit(7, & l2->flag);
  }
  if (skb) {
    consume_skb(skb);
  } else {

  }
  return;
}
}
static void l2_clear_own_busy(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct sk_buff *skb ;
  int tmp ;

  {
  l2 = fi->userdata;
  skb = arg;
  tmp = test_and_clear_bit(9, & l2->flag);
  if (tmp) {

  } else {
    enquiry_cr(l2, 1, 1, 0);
    test_and_clear_bit(7, & l2->flag);
  }
  if (skb) {
    consume_skb(skb);
  } else {

  }
  return;
}
}
static void l2_frame_error(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  l2mgr(l2, 7940, arg);
  return;
}
}
static void l2_frame_error_reest(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct layer2 *l2 ;

  {
  l2 = fi->userdata;
  l2mgr(l2, 7940, arg);
  establishlink(fi);
  test_and_clear_bit(5, & l2->flag);
  return;
}
}
static struct FsmNode L2FnList[88]  = 
  {      {ST_L2_1, EV_L2_DL_ESTABLISH_REQ, & l2_mdl_assign}, 
        {ST_L2_2, EV_L2_DL_ESTABLISH_REQ, & l2_go_st3}, 
        {ST_L2_4, EV_L2_DL_ESTABLISH_REQ, & l2_establish}, 
        {ST_L2_5, EV_L2_DL_ESTABLISH_REQ, & l2_discard_i_setl3}, 
        {ST_L2_7, EV_L2_DL_ESTABLISH_REQ, & l2_l3_reestablish}, 
        {ST_L2_8, EV_L2_DL_ESTABLISH_REQ, & l2_l3_reestablish}, 
        {ST_L2_4, EV_L2_DL_RELEASE_REQ, & l2_release}, 
        {ST_L2_5, EV_L2_DL_RELEASE_REQ, & l2_pend_rel}, 
        {ST_L2_7, EV_L2_DL_RELEASE_REQ, & l2_disconnect}, 
        {ST_L2_8, EV_L2_DL_RELEASE_REQ, & l2_disconnect}, 
        {ST_L2_5, EV_L2_DL_DATA, & l2_feed_i_if_reest}, 
        {ST_L2_7, EV_L2_DL_DATA, & l2_feed_i_pull}, 
        {ST_L2_8, EV_L2_DL_DATA, & l2_feed_iqueue}, 
        {ST_L2_1, EV_L2_DL_UNITDATA, & l2_queue_ui_assign}, 
        {ST_L2_2, EV_L2_DL_UNITDATA, & l2_queue_ui}, 
        {ST_L2_3, EV_L2_DL_UNITDATA, & l2_queue_ui}, 
        {ST_L2_4, EV_L2_DL_UNITDATA, & l2_send_ui}, 
        {ST_L2_5, EV_L2_DL_UNITDATA, & l2_send_ui}, 
        {ST_L2_6, EV_L2_DL_UNITDATA, & l2_send_ui}, 
        {ST_L2_7, EV_L2_DL_UNITDATA, & l2_send_ui}, 
        {ST_L2_8, EV_L2_DL_UNITDATA, & l2_send_ui}, 
        {ST_L2_1, EV_L2_MDL_ASSIGN, & l2_got_tei}, 
        {ST_L2_2, EV_L2_MDL_ASSIGN, & l2_got_tei}, 
        {ST_L2_3, EV_L2_MDL_ASSIGN, & l2_got_tei}, 
        {ST_L2_2, EV_L2_MDL_ERROR, & l2_st24_tei_remove}, 
        {ST_L2_3, EV_L2_MDL_ERROR, & l2_st3_tei_remove}, 
        {ST_L2_4, EV_L2_MDL_REMOVE, & l2_st24_tei_remove}, 
        {ST_L2_5, EV_L2_MDL_REMOVE, & l2_st5_tei_remove}, 
        {ST_L2_6, EV_L2_MDL_REMOVE, & l2_st6_tei_remove}, 
        {ST_L2_7, EV_L2_MDL_REMOVE, & l2_tei_remove}, 
        {ST_L2_8, EV_L2_MDL_REMOVE, & l2_tei_remove}, 
        {ST_L2_4, EV_L2_SABME, & l2_start_multi}, 
        {ST_L2_5, EV_L2_SABME, & l2_send_UA}, 
        {ST_L2_6, EV_L2_SABME, & l2_send_DM}, 
        {ST_L2_7, EV_L2_SABME, & l2_restart_multi}, 
        {ST_L2_8, EV_L2_SABME, & l2_restart_multi}, 
        {ST_L2_4, EV_L2_DISC, & l2_send_DM}, 
        {ST_L2_5, EV_L2_DISC, & l2_send_DM}, 
        {ST_L2_6, EV_L2_DISC, & l2_send_UA}, 
        {ST_L2_7, EV_L2_DISC, & l2_stop_multi}, 
        {ST_L2_8, EV_L2_DISC, & l2_stop_multi}, 
        {ST_L2_4, EV_L2_UA, & l2_mdl_error_ua}, 
        {ST_L2_5, EV_L2_UA, & l2_connected}, 
        {ST_L2_6, EV_L2_UA, & l2_released}, 
        {ST_L2_7, EV_L2_UA, & l2_mdl_error_ua}, 
        {ST_L2_8, EV_L2_UA, & l2_mdl_error_ua}, 
        {ST_L2_4, EV_L2_DM, & l2_reestablish}, 
        {ST_L2_5, EV_L2_DM, & l2_st5_dm_release}, 
        {ST_L2_6, EV_L2_DM, & l2_st6_dm_release}, 
        {ST_L2_7, EV_L2_DM, & l2_mdl_error_dm}, 
        {ST_L2_8, EV_L2_DM, & l2_st8_mdl_error_dm}, 
        {ST_L2_1, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_2, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_3, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_4, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_5, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_6, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_7, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_8, EV_L2_UI, & l2_got_ui}, 
        {ST_L2_7, EV_L2_FRMR, & l2_got_FRMR}, 
        {ST_L2_8, EV_L2_FRMR, & l2_got_FRMR}, 
        {ST_L2_7, EV_L2_SUPER, & l2_st7_got_super}, 
        {ST_L2_8, EV_L2_SUPER, & l2_st8_got_super}, 
        {ST_L2_7, EV_L2_I, & l2_got_iframe}, 
        {ST_L2_8, EV_L2_I, & l2_got_iframe}, 
        {ST_L2_5, EV_L2_T200, & l2_st5_tout_200}, 
        {ST_L2_6, EV_L2_T200, & l2_st6_tout_200}, 
        {ST_L2_7, EV_L2_T200, & l2_st7_tout_200}, 
        {ST_L2_8, EV_L2_T200, & l2_st8_tout_200}, 
        {ST_L2_7, EV_L2_T203, & l2_st7_tout_203}, 
        {ST_L2_7, EV_L2_ACK_PULL, & l2_pull_iqueue}, 
        {ST_L2_7, EV_L2_SET_OWN_BUSY, & l2_set_own_busy}, 
        {ST_L2_8, EV_L2_SET_OWN_BUSY, & l2_set_own_busy}, 
        {ST_L2_7, EV_L2_CLEAR_OWN_BUSY, & l2_clear_own_busy}, 
        {ST_L2_8, EV_L2_CLEAR_OWN_BUSY, & l2_clear_own_busy}, 
        {ST_L2_4, EV_L2_FRAME_ERROR, & l2_frame_error}, 
        {ST_L2_5, EV_L2_FRAME_ERROR, & l2_frame_error}, 
        {ST_L2_6, EV_L2_FRAME_ERROR, & l2_frame_error}, 
        {ST_L2_7, EV_L2_FRAME_ERROR, & l2_frame_error_reest}, 
        {ST_L2_8, EV_L2_FRAME_ERROR, & l2_frame_error_reest}, 
        {ST_L2_1, EV_L1_DEACTIVATE, & l2_st14_persistant_da}, 
        {ST_L2_2, EV_L1_DEACTIVATE, & l2_st24_tei_remove}, 
        {ST_L2_3, EV_L1_DEACTIVATE, & l2_st3_tei_remove}, 
        {ST_L2_4, EV_L1_DEACTIVATE, & l2_st14_persistant_da}, 
        {ST_L2_5, EV_L1_DEACTIVATE, & l2_st5_persistant_da}, 
        {ST_L2_6, EV_L1_DEACTIVATE, & l2_st6_persistant_da}, 
        {ST_L2_7, EV_L1_DEACTIVATE, & l2_persistant_da}, 
        {ST_L2_8, EV_L1_DEACTIVATE, & l2_persistant_da}};
static int ph_data_indication(struct layer2 *l2 , struct mISDNhead *hh , struct sk_buff *skb ) 
{ 
  u_char *datap ;
  int ret ;
  int psapi ;
  int ptei ;
  u_int l ;
  int c ;
  u_char *tmp ;
  u_char *tmp___0 ;
  int tmp___1 ;
  int tmp___3 ;
  int tmp___4 ;
  int tmp___5 ;
  int tmp___6 ;
  int tmp___7 ;
  int tmp___8 ;
  int tmp___9 ;

  {
  datap = skb->data;
  ret = -22;
  c = 0;
  l = l2addrsize(l2);
  if (skb->len <= l) {
    mISDN_FsmEvent(& l2->l2m, EV_L2_FRAME_ERROR, (void *)'N');
    return (ret);
  } else {

  }
  tmp___1 = constant_test_bit(1, & l2->flag);
  if (tmp___1) {
    tmp = datap;
    datap = datap + 1;
    psapi = *tmp;
    tmp___0 = datap;
    datap = datap + 1;
    ptei = *tmp___0;
    if (psapi & 1 || ! (ptei & 1)) {
      printk("<4>l2 D-channel frame wrong EA0/EA1\n");
      return (ret);
    } else {

    }
    psapi = psapi >> 2;
    ptei = ptei >> 1;
    if (psapi != (int )l2->sapi) {
      if (*debug___4 & 16711680U) {
        printk("<7>%s: sapi %d/%d mismatch\n", "ph_data_indication", psapi, l2->sapi);
      } else {

      }
      consume_skb(skb);
      return (0);
    } else {

    }
    if (ptei != (int )l2->tei && ptei != 127) {
      if (*debug___4 & 16711680U) {
        printk("<7>%s: tei %d/%d mismatch\n", "ph_data_indication", ptei, l2->tei);
      } else {

      }
      consume_skb(skb);
      return (0);
    } else {

    }
  } else {
    datap = datap + l;
  }
  if (! ((int )*datap & 1)) {
    c = iframe_error(l2, skb);
    if (! c) {
      ret = mISDN_FsmEvent(& l2->l2m, EV_L2_I, skb);
    } else {

    }
  } else {
    tmp___9 = IsSFrame(datap, l2);
    if (tmp___9) {
      c = super_error(l2, skb);
      if (! c) {
        ret = mISDN_FsmEvent(& l2->l2m, EV_L2_SUPER, skb);
      } else {

      }
    } else {
      tmp___8 = IsUI(datap);
      if (tmp___8) {
        c = UI_error(l2, skb);
        if (! c) {
          ret = mISDN_FsmEvent(& l2->l2m, EV_L2_UI, skb);
        } else {

        }
      } else {
        tmp___7 = IsSABME(datap, l2);
        if (tmp___7) {
          c = unnum_error(l2, skb, 0);
          if (! c) {
            ret = mISDN_FsmEvent(& l2->l2m, EV_L2_SABME, skb);
          } else {

          }
        } else {
          tmp___6 = IsUA(datap);
          if (tmp___6) {
            c = unnum_error(l2, skb, 1);
            if (! c) {
              ret = mISDN_FsmEvent(& l2->l2m, EV_L2_UA, skb);
            } else {

            }
          } else {
            tmp___5 = IsDISC(datap);
            if (tmp___5) {
              c = unnum_error(l2, skb, 0);
              if (! c) {
                ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DISC, skb);
              } else {

              }
            } else {
              tmp___4 = IsDM(datap);
              if (tmp___4) {
                c = unnum_error(l2, skb, 1);
                if (! c) {
                  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DM, skb);
                } else {

                }
              } else {
                tmp___3 = IsFRMR(datap);
                if (tmp___3) {
                  c = FRMR_error(l2, skb);
                  if (! c) {
                    ret = mISDN_FsmEvent(& l2->l2m, EV_L2_FRMR, skb);
                  } else {

                  }
                } else {
                  c = 'L';
                }
              }
            }
          }
        }
      }
    }
  }
  if (c) {
    printk("<4>l2 D-channel frame error %c\n", c);
    mISDN_FsmEvent(& l2->l2m, EV_L2_FRAME_ERROR, (void *)((long )c));
  } else {

  }
  return (ret);
}
}
static int l2_send(struct mISDNchannel *ch , struct sk_buff *skb ) 
{ 
  struct layer2 *l2 ;
  struct mISDNchannel  const  *__mptr ;
  struct mISDNhead *hh ;
  int ret ;
  int tmp ;
  int tmp___0 ;
  int tmp___2 ;
  int tmp___4 ;
  int tmp___6 ;
  int tmp___8 ;
  u_int tmp___10 ;
  int tmp___11 ;
  u_int tmp___13 ;
  int tmp___14 ;

  {
  __mptr = ch;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->ch));
  hh = (struct mISDNhead *)(& skb->cb[0]);
  ret = -22;
  if (*debug___4 & 524288U) {
    printk("<7>%s: prim(%x) id(%x) sapi(%d) tei(%d)\n", "l2_send", hh->prim, hh->id,
           l2->sapi, l2->tei);
  } else {

  }
  switch (hh->prim) {
  case 8194U: 
  ret = ph_data_indication(l2, hh, skb);
  break;
  case 24578U: 
  ret = ph_data_confirm(l2, hh, skb);
  break;
  case 258U: 
  test_and_set_bit(12, & l2->flag);
  l2up_create(l2, 1282, 0, (void *)0);
  tmp = test_and_clear_bit(13, & l2->flag);
  if (tmp) {
    ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_ESTABLISH_REQ, skb);
  } else {

  }
  break;
  case 514U: 
  test_and_clear_bit(12, & l2->flag);
  l2up_create(l2, 1538, 0, (void *)0);
  ret = mISDN_FsmEvent(& l2->l2m, EV_L1_DEACTIVATE, skb);
  break;
  case 1794U: 
  if (! l2->up) {
    break;
  } else {

  }
  ret = (*((l2->up)->send))(l2->up, skb);
  break;
  case 12292U: 
  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_DATA, skb);
  break;
  case 12548U: 
  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_UNITDATA, skb);
  break;
  case 4100U: 
  tmp___0 = constant_test_bit(0, & l2->flag);
  if (tmp___0) {
    test_and_set_bit(2, & l2->flag);
  } else {

  }
  tmp___11 = constant_test_bit(12, & l2->flag);
  if (tmp___11) {
    tmp___2 = constant_test_bit(1, & l2->flag);
    if (tmp___2) {
      ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_ESTABLISH_REQ, skb);
    } else {
      tmp___4 = constant_test_bit(2, & l2->flag);
      if (tmp___4) {
        ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_ESTABLISH_REQ, skb);
      } else {

      }
    }
  } else {
    tmp___6 = constant_test_bit(1, & l2->flag);
    if (tmp___6) {
      test_and_set_bit(13, & l2->flag);
    } else {
      tmp___8 = constant_test_bit(2, & l2->flag);
      if (tmp___8) {
        test_and_set_bit(13, & l2->flag);
      } else {

      }
    }
    tmp___10 = l2_newid(l2);
    ret = l2down(l2, 257, tmp___10, skb);
  }
  break;
  case 4356U: 
  tmp___14 = constant_test_bit(0, & l2->flag);
  if (tmp___14) {
    tmp___13 = l2_newid(l2);
    l2down_create(l2, 513, tmp___13, 0, (void *)0);
  } else {

  }
  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_RELEASE_REQ, skb);
  break;
  default: 
  if (*debug___4 & 16711680U) {
    l2m_debug(& l2->l2m, "l2 unknown pr %04x", hh->prim);
  } else {

  }
  }
  if (ret) {
    consume_skb(skb);
    ret = 0;
  } else {

  }
  return (ret);
}
}
int tei_l2(struct layer2 *l2 , u_int cmd , u_long arg ) 
{ 
  int ret ;

  {
  ret = -22;
  if (*debug___4 & 1048576U) {
    printk("<7>%s: cmd(%x)\n", "tei_l2", cmd);
  } else {

  }
  switch (cmd) {
  case (u_int )6148: 
  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_ASSIGN, (void *)arg);
  break;
  case (u_int )6660: 
  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_REMOVE, (void *)0);
  break;
  case (u_int )7940: 
  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_ERROR, (void *)0);
  break;
  case (u_int )24324: 
  printk("<5>MDL_ERROR|REQ (tei_l2)\n");
  ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_ERROR, (void *)0);
  break;
  }
  return (ret);
}
}
static void release_l2(struct layer2 *l2 ) 
{ 
  int tmp ;

  {
  mISDN_FsmDelTimer(& l2->t200, 21);
  mISDN_FsmDelTimer(& l2->t203, 16);
  skb_queue_purge(& l2->i_queue);
  skb_queue_purge(& l2->ui_queue);
  skb_queue_purge(& l2->down_queue);
  ReleaseWin(l2);
  tmp = constant_test_bit(1, & l2->flag);
  if (tmp) {
    TEIrelease(l2);
    if (l2->ch.st) {
      (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 512, (void *)0);
    } else {

    }
  } else {

  }
  kfree(l2);
  return;
}
}
static int l2_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) 
{ 
  struct layer2 *l2 ;
  struct mISDNchannel  const  *__mptr ;
  u_int info ;
  int tmp ;

  {
  __mptr = ch;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->ch));
  if (*debug___4 & 262144U) {
    printk("<7>%s:(%x)\n", "l2_ctrl", cmd);
  } else {

  }
  switch (cmd) {
  case (u_int )256: 
  tmp = constant_test_bit(1, & l2->flag);
  if (tmp) {
    set_channel_address(& l2->ch, l2->sapi, l2->tei);
    info = 1;
    l2up_create(l2, 8, sizeof(info), & info);
  } else {

  }
  break;
  case (u_int )512: 
  if (l2->ch.peer) {
    (*((l2->ch.peer)->ctrl))(l2->ch.peer, 512, (void *)0);
  } else {

  }
  release_l2(l2);
  break;
  }
  return (0);
}
}
struct layer2 *create_l2(struct mISDNchannel *ch , u_int protocol , u_long options ,
                         int tei , int sapi ) 
{ 
  struct layer2 *l2 ;
  struct channel_req rq ;
  void *tmp ;
  int tmp___0 ;
  int tmp___2 ;
  int tmp___4 ;
  int tmp___6 ;
  int tmp___8 ;
  int tmp___10 ;
  int tmp___12 ;
  int tmp___14 ;
  int tmp___16 ;
  int tmp___18 ;
  int tmp___20 ;

  {
  tmp = kzalloc(sizeof(struct layer2 ), (16U | 64U) | 128U);
  l2 = tmp;
  if (! l2) {
    printk("<3>kzalloc layer2 failed\n");
    return ((void *)0);
  } else {

  }
  l2->next_id = 1;
  l2->down_id = 65534;
  l2->up = ch;
  l2->ch.st = ch->st;
  l2->ch.send = & l2_send;
  l2->ch.ctrl = & l2_ctrl;
  switch (protocol) {
  case (u_int )17: 
  test_and_set_bit(1, & l2->flag);
  test_and_set_bit(18, & l2->flag);
  test_and_set_bit(3, & l2->flag);
  l2->sapi = sapi;
  l2->maxlen = 260;
  tmp___0 = constant_test_bit(1, & options);
  if (tmp___0) {
    l2->window = 7;
  } else {
    l2->window = 1;
  }
  tmp___2 = constant_test_bit(2, & options);
  if (tmp___2) {
    test_and_set_bit(14, & l2->flag);
  } else {

  }
  tmp___4 = constant_test_bit(3, & options);
  if (tmp___4) {
    test_and_set_bit(15, & l2->flag);
  } else {

  }
  l2->tei = tei;
  l2->T200 = 1000;
  l2->N200 = 3;
  l2->T203 = 10000;
  tmp___6 = constant_test_bit(1, & options);
  if (tmp___6) {
    rq.protocol = 4;
  } else {
    rq.protocol = 2;
  }
  rq.adr.channel = 0;
  (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 256, & rq);
  break;
  case (u_int )16: 
  test_and_set_bit(1, & l2->flag);
  test_and_set_bit(3, & l2->flag);
  test_and_set_bit(2, & l2->flag);
  l2->sapi = sapi;
  l2->maxlen = 260;
  tmp___8 = constant_test_bit(1, & options);
  if (tmp___8) {
    l2->window = 7;
  } else {
    l2->window = 1;
  }
  tmp___10 = constant_test_bit(2, & options);
  if (tmp___10) {
    test_and_set_bit(14, & l2->flag);
  } else {

  }
  tmp___12 = constant_test_bit(3, & options);
  if (tmp___12) {
    test_and_set_bit(15, & l2->flag);
  } else {

  }
  l2->tei = tei;
  l2->T200 = 1000;
  l2->N200 = 3;
  l2->T203 = 10000;
  tmp___14 = constant_test_bit(1, & options);
  if (tmp___14) {
    rq.protocol = 3;
  } else {
    rq.protocol = 1;
  }
  rq.adr.channel = 0;
  (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 256, & rq);
  break;
  case (u_int )35: 
  test_and_set_bit(0, & l2->flag);
  l2->window = 7;
  l2->maxlen = 2048;
  l2->T200 = 1000;
  l2->N200 = 4;
  l2->T203 = 5000;
  l2->addr.A = 3;
  l2->addr.B = 1;
  break;
  default: 
  printk("<3>layer2 create failed prt %x\n", protocol);
  kfree(l2);
  return ((void *)0);
  }
  skb_queue_head_init___1(& l2->i_queue);
  skb_queue_head_init___1(& l2->ui_queue);
  skb_queue_head_init___1(& l2->down_queue);
  skb_queue_head_init___1(& l2->tmp_queue);
  InitWin(l2);
  l2->l2m.fsm = & l2fsm;
  tmp___16 = constant_test_bit(0, & l2->flag);
  if (tmp___16) {
    l2->l2m.state = ST_L2_4;
  } else {
    tmp___18 = constant_test_bit(14, & l2->flag);
    if (tmp___18) {
      l2->l2m.state = ST_L2_4;
    } else {
      tmp___20 = constant_test_bit(18, & l2->flag);
      if (tmp___20) {
        l2->l2m.state = ST_L2_4;
      } else {
        l2->l2m.state = ST_L2_1;
      }
    }
  }
  l2->l2m.debug = *debug___4;
  l2->l2m.userdata = l2;
  l2->l2m.userint = 0;
  l2->l2m.printdebug = & l2m_debug;
  mISDN_FsmInitTimer(& l2->l2m, & l2->t200);
  mISDN_FsmInitTimer(& l2->l2m, & l2->t203);
  return (l2);
}
}
static int x75create(struct channel_req *crq ) 
{ 
  struct layer2 *l2 ;

  {
  if (crq->protocol != (u_int )35) {
    return (-93);
  } else {

  }
  l2 = create_l2(crq->ch, crq->protocol, 0, 0, 0);
  if (! l2) {
    return (-12);
  } else {

  }
  crq->ch = & l2->ch;
  crq->protocol = 34;
  return (0);
}
}
static struct Bprotocol X75SLP  =    {{0, 0}, "X75SLP", 1 << (35 & 31), & x75create};
int Isdnl2_Init(u_int *deb ) 
{ 


  {
  debug___4 = deb;
  mISDN_register_Bprotocol(& X75SLP);
  l2fsm.state_count = ST_L2_8 + 1;
  l2fsm.event_count = EV_L2_FRAME_ERROR + 1;
  l2fsm.strEvent = strL2Event;
  l2fsm.strState = strL2State;
  mISDN_FsmNew(& l2fsm, L2FnList, sizeof(L2FnList) / sizeof(L2FnList[0]) + (sizeof(char [1 - 2 * 0]) - 1UL));
  TEIInit(deb);
  return (0);
}
}
void Isdnl2_cleanup(void) 
{ 


  {
  mISDN_unregister_Bprotocol(& X75SLP);
  TEIFree();
  mISDN_FsmFree(& l2fsm);
  return;
}
}
void ldv_main7_sequence_infinite_withcheck_stateful(void) 
{ 
  struct channel_req *var_group1 ;
  int tmp ;
  int tmp___0 ;

  {
  LDV_IN_INTERRUPT = 1;
  ldv_initialize();
  while (1) {
    tmp___0 = nondet_int();
    if (tmp___0) {

    } else {
      break;
    }
    tmp = nondet_int();
    switch (tmp) {
    case 0: 
    ldv_handler_precall();
    x75create(var_group1);
    break;
    default: 
    break;
    }
  }
  ldv_check_final_state();
  return;
}
}
extern void get_random_bytes(void *buf , int nbytes ) ;
static struct lock_class_key __key___11  ;
__inline static void skb_queue_head_init___2(struct sk_buff_head *list ) 
{ 


  {
  while (1) {
    __spin_lock_init(& list->lock, "&list->lock", & __key___11);
    break;
  }
  __skb_queue_head_init(list);
  return;
}
}
static u_int *debug___5  ;
static struct Fsm deactfsm  =    {(void *)0, 0, 0, (void *)0, (void *)0};
static struct Fsm teifsmu  =    {(void *)0, 0, 0, (void *)0, (void *)0};
static struct Fsm teifsmn  =    {(void *)0, 0, 0, (void *)0, (void *)0};
static char *strDeactState[3]  = {      "ST_L1_DEACT",      "ST_L1_DEACT_PENDING",      "ST_L1_ACTIV"};
static char *strDeactEvent[6]  = {      "EV_ACTIVATE",      "EV_ACTIVATE_IND",      "EV_DEACTIVATE",      "EV_DEACTIVATE_IND", 
        "EV_UI",      "EV_DATIMER"};
static void da_debug(struct FsmInst *fi , char *fmt  , ...) 
{ 
  struct manager *mgr ;
  va_list va ;

  {
  mgr = fi->userdata;
  if (! (*debug___5 & 2097152U)) {
    return;
  } else {

  }
  ldv__builtin_va_start(va);
  printk("<7>mgr(%d): ", ((mgr->ch.st)->dev)->id);
  vprintk(fmt, va);
  printk("\n");
  ldv__builtin_va_end(va);
  return;
}
}
static void da_activate(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct manager *mgr ;

  {
  mgr = fi->userdata;
  if (fi->state == ST_L1_DEACT_PENDING) {
    mISDN_FsmDelTimer(& mgr->datimer, 1);
  } else {

  }
  mISDN_FsmChangeState(fi, ST_L1_ACTIV);
  return;
}
}
static void da_deactivate_ind(struct FsmInst *fi , int event , void *arg ) 
{ 


  {
  mISDN_FsmChangeState(fi, ST_L1_DEACT);
  return;
}
}
static void da_deactivate(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct manager *mgr ;
  struct layer2 *l2 ;
  u_long flags ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  int tmp ;

  {
  mgr = fi->userdata;
  while (1) {
    flags = _read_lock_irqsave(& mgr->lock);
    break;
  }
  __mptr = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    __builtin_prefetch(l2->list.next);
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    if (l2->l2m.state > ST_L2_4) {
      while (1) {
        _read_unlock_irqrestore(& mgr->lock, flags);
        break;
      }
      return;
    } else {

    }
    __mptr___0 = l2->list.next;
    l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  while (1) {
    _read_unlock_irqrestore(& mgr->lock, flags);
    break;
  }
  tmp = constant_test_bit(5, & mgr->options);
  if (tmp) {

  } else {
    mISDN_FsmAddTimer(& mgr->datimer, 10000, EV_DATIMER, (void *)0, 1);
    mISDN_FsmChangeState(fi, ST_L1_DEACT_PENDING);
  }
  return;
}
}
static void da_ui(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct manager *mgr ;
  int tmp ;

  {
  mgr = fi->userdata;
  tmp = constant_test_bit(5, & mgr->options);
  if (tmp) {

  } else {
    mISDN_FsmDelTimer(& mgr->datimer, 2);
    mISDN_FsmAddTimer(& mgr->datimer, 10000, EV_DATIMER, (void *)0, 2);
  }
  return;
}
}
static void da_timer(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct manager *mgr ;
  struct layer2 *l2 ;
  u_long flags ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;

  {
  mgr = fi->userdata;
  while (1) {
    flags = _read_lock_irqsave(& mgr->lock);
    break;
  }
  __mptr = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    __builtin_prefetch(l2->list.next);
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    if (l2->l2m.state > ST_L2_4) {
      while (1) {
        _read_unlock_irqrestore(& mgr->lock, flags);
        break;
      }
      mISDN_FsmChangeState(fi, ST_L1_ACTIV);
      return;
    } else {

    }
    __mptr___0 = l2->list.next;
    l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  while (1) {
    _read_unlock_irqrestore(& mgr->lock, flags);
    break;
  }
  mISDN_FsmChangeState(fi, ST_L1_DEACT);
  _queue_data(& mgr->ch, 513, 65535, 0, (void *)0, 32U);
  return;
}
}
static struct FsmNode DeactFnList[6]  = {      {ST_L1_DEACT, EV_ACTIVATE_IND, & da_activate}, 
        {ST_L1_ACTIV, EV_DEACTIVATE_IND, & da_deactivate_ind}, 
        {ST_L1_ACTIV, EV_DEACTIVATE, & da_deactivate}, 
        {ST_L1_DEACT_PENDING, EV_ACTIVATE, & da_activate}, 
        {ST_L1_DEACT_PENDING, EV_UI, & da_ui}, 
        {ST_L1_DEACT_PENDING, EV_DATIMER, & da_timer}};
static char *strTeiState[3]  = {      "ST_TEI_NOP",      "ST_TEI_IDREQ",      "ST_TEI_IDVERIFY"};
static char *strTeiEvent[9]  = 
  {      "EV_IDREQ",      "EV_ASSIGN",      "EV_ASSIGN_REQ",      "EV_DENIED", 
        "EV_CHKREQ",      "EV_CHKRESP",      "EV_REMOVE",      "EV_VERIFY", 
        "EV_TIMER"};
static void tei_debug(struct FsmInst *fi , char *fmt  , ...) 
{ 
  struct teimgr *tm ;
  va_list va ;

  {
  tm = fi->userdata;
  if (! (*debug___5 & 2097152U)) {
    return;
  } else {

  }
  ldv__builtin_va_start(va);
  printk("<7>sapi(%d) tei(%d): ", (tm->l2)->sapi, (tm->l2)->tei);
  vprintk(fmt, va);
  printk("\n");
  ldv__builtin_va_end(va);
  return;
}
}
static int get_free_id(struct manager *mgr ) 
{ 
  u64 ids ;
  int i ;
  struct layer2 *l2 ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  int tmp___0 ;

  {
  ids = 0;
  __mptr = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    __builtin_prefetch(l2->list.next);
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    if (l2->ch.nr > (u_int )63) {
      printk("<4>%s: more as 63 layer2 for one device\n", "get_free_id");
      return (-16);
    } else {

    }
    test_and_set_bit(l2->ch.nr, (u_long *)(& ids));
    __mptr___0 = l2->list.next;
    l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  i = 1;
  while (1) {
    if (i < 64) {

    } else {
      break;
    }
    tmp___0 = variable_test_bit(i, (u_long *)(& ids));
    if (tmp___0) {

    } else {
      return (i);
    }
    i = i + 1;
  }
  printk("<4>%s: more as 63 layer2 for one device\n", "get_free_id");
  return (-16);
}
}
static int get_free_tei(struct manager *mgr ) 
{ 
  u64 ids ;
  int i ;
  struct layer2 *l2 ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  int tmp___0 ;

  {
  ids = 0;
  __mptr = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    __builtin_prefetch(l2->list.next);
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    if (l2->ch.nr == (u_int )0) {
      goto __Cont;
    } else {

    }
    if ((l2->ch.addr & 255U) != 0U) {
      goto __Cont;
    } else {

    }
    i = l2->ch.addr >> 8;
    if (i < 64) {
      goto __Cont;
    } else {

    }
    i = i - 64;
    test_and_set_bit(i, (u_long *)(& ids));
    __Cont: /* CIL Label */ 
    __mptr___0 = l2->list.next;
    l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  i = 0;
  while (1) {
    if (i < 64) {

    } else {
      break;
    }
    tmp___0 = variable_test_bit(i, (u_long *)(& ids));
    if (tmp___0) {

    } else {
      return (i + 64);
    }
    i = i + 1;
  }
  printk("<4>%s: more as 63 dynamic tei for one device\n", "get_free_tei");
  return (-1);
}
}
static void teiup_create(struct manager *mgr , u_int prim , int len , void *arg ) 
{ 
  struct sk_buff *skb ;
  struct mISDNhead *hh ;
  int err ;
  size_t __len ;
  void *__ret ;
  unsigned char *tmp___0 ;

  {
  skb = mI_alloc_skb(len, 32U);
  if (! skb) {
    return;
  } else {

  }
  hh = (struct mISDNhead *)(& skb->cb[0]);
  hh->prim = prim;
  hh->id = (mgr->ch.nr << 16) | mgr->ch.addr;
  if (len) {
    __len = len;
    tmp___0 = skb_put(skb, len);
    __ret = memcpy(tmp___0, arg, __len);
  } else {

  }
  err = (*((mgr->up)->send))(mgr->up, skb);
  if (err) {
    printk("<4>%s: err=%d\n", "teiup_create", err);
    consume_skb(skb);
  } else {

  }
  return;
}
}
static u_int new_id(struct manager *mgr ) 
{ 
  u_int id ;
  u_int tmp ;

  {
  tmp = mgr->nextid;
  mgr->nextid = mgr->nextid + (u_int )1;
  id = tmp;
  if (id == (u_int )32767) {
    mgr->nextid = 1;
  } else {

  }
  id = id << 16;
  id = id | (unsigned int )(127 << 8);
  id = id | 63U;
  return (id);
}
}
static void do_send(struct manager *mgr ) 
{ 
  int tmp ;
  struct sk_buff *skb ;
  struct sk_buff *tmp___1 ;
  int tmp___2 ;
  int tmp___3 ;

  {
  tmp = constant_test_bit(16, & mgr->options);
  if (tmp) {

  } else {
    return;
  }
  tmp___3 = test_and_set_bit(17, & mgr->options);
  if (tmp___3) {

  } else {
    tmp___1 = skb_dequeue(& mgr->sendq);
    skb = tmp___1;
    if (! skb) {
      test_and_clear_bit(17, & mgr->options);
      return;
    } else {

    }
    mgr->lastid = ((struct mISDNhead *)(& skb->cb[0]))->id;
    mISDN_FsmEvent(& mgr->deact, EV_UI, (void *)0);
    tmp___2 = (*(mgr->ch.recv))(mgr->ch.peer, skb);
    if (tmp___2) {
      consume_skb(skb);
      test_and_clear_bit(17, & mgr->options);
      mgr->lastid = 65534;
    } else {

    }
  }
  return;
}
}
static void do_ack(struct manager *mgr , u_int id ) 
{ 
  struct sk_buff *skb ;
  int tmp ;
  int tmp___0 ;
  int tmp___2 ;

  {
  tmp___2 = constant_test_bit(17, & mgr->options);
  if (tmp___2) {
    if (id == mgr->lastid) {
      tmp___0 = constant_test_bit(16, & mgr->options);
      if (tmp___0) {
        skb = skb_dequeue(& mgr->sendq);
        if (skb) {
          mgr->lastid = ((struct mISDNhead *)(& skb->cb[0]))->id;
          tmp = (*(mgr->ch.recv))(mgr->ch.peer, skb);
          if (tmp) {

          } else {
            return;
          }
          consume_skb(skb);
        } else {

        }
      } else {

      }
      mgr->lastid = 65534;
      test_and_clear_bit(17, & mgr->options);
    } else {

    }
  } else {

  }
  return;
}
}
static void mgr_send_down(struct manager *mgr , struct sk_buff *skb ) 
{ 
  int tmp ;

  {
  skb_queue_tail(& mgr->sendq, skb);
  tmp = constant_test_bit(16, & mgr->options);
  if (tmp) {
    do_send(mgr);
  } else {
    _queue_data(& mgr->ch, 257, 65535, 0, (void *)0, (16U | 64U) | 128U);
  }
  return;
}
}
static int dl_unit_data(struct manager *mgr , struct sk_buff *skb ) 
{ 
  int tmp ;
  int tmp___1 ;

  {
  tmp = constant_test_bit(25, & mgr->options);
  if (tmp) {

  } else {
    return (-22);
  }
  tmp___1 = constant_test_bit(16, & mgr->options);
  if (tmp___1) {

  } else {
    _queue_data(& mgr->ch, 257, 65535, 0, (void *)0, (16U | 64U) | 128U);
  }
  skb_push(skb, 3);
  *(skb->data + 0) = 2;
  *(skb->data + 1) = 255;
  *(skb->data + 2) = 3;
  ((struct mISDNhead *)(& skb->cb[0]))->prim = 8193;
  ((struct mISDNhead *)(& skb->cb[0]))->id = new_id(mgr);
  skb_queue_tail(& mgr->sendq, skb);
  do_send(mgr);
  return (0);
}
}
static unsigned int random_ri(void) 
{ 
  u16 x ;

  {
  get_random_bytes(& x, sizeof(x));
  return (x);
}
}
static struct layer2 *findtei(struct manager *mgr , int tei ) 
{ 
  struct layer2 *l2 ;
  u_long flags ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;

  {
  while (1) {
    flags = _read_lock_irqsave(& mgr->lock);
    break;
  }
  __mptr = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    __builtin_prefetch(l2->list.next);
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    if ((((int )l2->sapi == 0 && (int )l2->tei > 0) && (int )l2->tei != 127) && (int )l2->tei == tei) {
      goto done;
    } else {

    }
    __mptr___0 = l2->list.next;
    l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  l2 = (void *)0;
  done: 
  while (1) {
    _read_unlock_irqrestore(& mgr->lock, flags);
    break;
  }
  return (l2);
}
}
static void put_tei_msg(struct manager *mgr , u_char m_id , unsigned int ri , int tei ) 
{ 
  struct sk_buff *skb ;
  u_char bp[8] ;
  int tmp ;
  u_int tmp___1 ;

  {
  bp[0] = 63 << 2;
  tmp = constant_test_bit(25, & mgr->options);
  if (tmp) {
    bp[0] = (int )bp[0] | 2;
  } else {

  }
  bp[1] = (127 << 1) | 1;
  bp[2] = 3;
  bp[3] = 15;
  bp[4] = ri >> 8;
  bp[5] = ri & 255U;
  bp[6] = m_id;
  bp[7] = ((tei << 1) & 255) | 1;
  tmp___1 = new_id(mgr);
  skb = _alloc_mISDN_skb(8193, tmp___1, 8, bp, 32U);
  if (! skb) {
    printk("<4>%s: no skb for tei msg\n", "put_tei_msg");
    return;
  } else {

  }
  mgr_send_down(mgr, skb);
  return;
}
}
static void tei_id_request(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  unsigned int tmp ;

  {
  tm = fi->userdata;
  if ((int )(tm->l2)->tei != 127) {
    (*(tm->tei_m.printdebug))(& tm->tei_m, "assign request for allready assigned tei %d",
                              (tm->l2)->tei);
    return;
  } else {

  }
  tmp = random_ri();
  tm->ri = tmp;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(& tm->tei_m, "assign request ri %d", tm->ri);
  } else {

  }
  put_tei_msg(tm->mgr, 1, tm->ri, 127);
  mISDN_FsmChangeState(fi, ST_TEI_IDREQ);
  mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 1);
  tm->nval = 3;
  return;
}
}
static void tei_id_assign(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  struct layer2 *l2 ;
  u_char *dp ;
  int ri ;
  int tei ;
  u_char *tmp ;
  u_char *tmp___0 ;

  {
  tm = fi->userdata;
  dp = arg;
  tmp = dp;
  dp = dp + 1;
  ri = (unsigned int )*tmp << 8;
  tmp___0 = dp;
  dp = dp + 1;
  ri = ri + (int )*tmp___0;
  dp = dp + 1;
  tei = (int )*dp >> 1;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "identity assign ri %d tei %d", ri, tei);
  } else {

  }
  l2 = findtei(tm->mgr, tei);
  if (l2) {
    if (ri != (l2->tm)->ri) {
      (*(tm->tei_m.printdebug))(fi, "possible duplicate assignment tei %d", tei);
      tei_l2(l2, 24324, 0);
    } else {

    }
  } else
  if (ri == tm->ri) {
    mISDN_FsmDelTimer(& tm->timer, 1);
    mISDN_FsmChangeState(fi, ST_TEI_NOP);
    tei_l2(tm->l2, 6148, tei);
  } else {

  }
  return;
}
}
static void tei_id_test_dup(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  struct layer2 *l2 ;
  u_char *dp ;
  int tei ;
  int ri ;
  u_char *tmp ;
  u_char *tmp___0 ;

  {
  tm = fi->userdata;
  dp = arg;
  tmp = dp;
  dp = dp + 1;
  ri = (unsigned int )*tmp << 8;
  tmp___0 = dp;
  dp = dp + 1;
  ri = ri + (int )*tmp___0;
  dp = dp + 1;
  tei = (int )*dp >> 1;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "foreign identity assign ri %d tei %d", ri, tei);
  } else {

  }
  l2 = findtei(tm->mgr, tei);
  if (l2) {
    if (ri != (l2->tm)->ri) {
      (*(tm->tei_m.printdebug))(fi, "possible duplicate assignment tei %d", tei);
      mISDN_FsmEvent(& (l2->tm)->tei_m, EV_VERIFY, (void *)0);
    } else {

    }
  } else {

  }
  return;
}
}
static void tei_id_denied(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  u_char *dp ;
  int ri ;
  int tei ;
  u_char *tmp ;
  u_char *tmp___0 ;

  {
  tm = fi->userdata;
  dp = arg;
  tmp = dp;
  dp = dp + 1;
  ri = (unsigned int )*tmp << 8;
  tmp___0 = dp;
  dp = dp + 1;
  ri = ri + (int )*tmp___0;
  dp = dp + 1;
  tei = (int )*dp >> 1;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "identity denied ri %d tei %d", ri, tei);
  } else {

  }
  return;
}
}
static void tei_id_chk_req(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  u_char *dp ;
  int tei ;
  unsigned int tmp ;

  {
  tm = fi->userdata;
  dp = arg;
  tei = (int )*(dp + 3) >> 1;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "identity check req tei %d", tei);
  } else {

  }
  if ((int )(tm->l2)->tei != 127 && (tei == 127 || tei == (int )(tm->l2)->tei)) {
    mISDN_FsmDelTimer(& tm->timer, 4);
    mISDN_FsmChangeState(& tm->tei_m, ST_TEI_NOP);
    tmp = random_ri();
    put_tei_msg(tm->mgr, 5, tmp, (tm->l2)->tei);
  } else {

  }
  return;
}
}
static void tei_id_remove(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  u_char *dp ;
  int tei ;

  {
  tm = fi->userdata;
  dp = arg;
  tei = (int )*(dp + 3) >> 1;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "identity remove tei %d", tei);
  } else {

  }
  if ((int )(tm->l2)->tei != 127 && (tei == 127 || tei == (int )(tm->l2)->tei)) {
    mISDN_FsmDelTimer(& tm->timer, 5);
    mISDN_FsmChangeState(& tm->tei_m, ST_TEI_NOP);
    tei_l2(tm->l2, 6660, 0);
  } else {

  }
  return;
}
}
static void tei_id_verify(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;

  {
  tm = fi->userdata;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "id verify request for tei %d", (tm->l2)->tei);
  } else {

  }
  put_tei_msg(tm->mgr, 7, 0, (tm->l2)->tei);
  mISDN_FsmChangeState(& tm->tei_m, ST_TEI_IDVERIFY);
  mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 2);
  tm->nval = 2;
  return;
}
}
static void tei_id_req_tout(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  unsigned int tmp ;

  {
  tm = fi->userdata;
  tm->nval = tm->nval - 1;
  if (tm->nval) {
    tmp = random_ri();
    tm->ri = tmp;
    if (*debug___5 & 1048576U) {
      (*(tm->tei_m.printdebug))(fi, "assign req(%d) ri %d", 4 - tm->nval, tm->ri);
    } else {

    }
    put_tei_msg(tm->mgr, 1, tm->ri, 127);
    mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 3);
  } else {
    (*(tm->tei_m.printdebug))(fi, "assign req failed");
    tei_l2(tm->l2, 24324, 0);
    mISDN_FsmChangeState(fi, ST_TEI_NOP);
  }
  return;
}
}
static void tei_id_ver_tout(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;

  {
  tm = fi->userdata;
  tm->nval = tm->nval - 1;
  if (tm->nval) {
    if (*debug___5 & 1048576U) {
      (*(tm->tei_m.printdebug))(fi, "id verify req(%d) for tei %d", 3 - tm->nval,
                                (tm->l2)->tei);
    } else {

    }
    put_tei_msg(tm->mgr, 7, 0, (tm->l2)->tei);
    mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 4);
  } else {
    (*(tm->tei_m.printdebug))(fi, "verify req for tei %d failed", (tm->l2)->tei);
    tei_l2(tm->l2, 6660, 0);
    mISDN_FsmChangeState(fi, ST_TEI_NOP);
  }
  return;
}
}
static struct FsmNode TeiFnListUser[11]  = 
  {      {ST_TEI_NOP, EV_IDREQ, & tei_id_request}, 
        {ST_TEI_NOP, EV_ASSIGN, & tei_id_test_dup}, 
        {ST_TEI_NOP, EV_VERIFY, & tei_id_verify}, 
        {ST_TEI_NOP, EV_REMOVE, & tei_id_remove}, 
        {ST_TEI_NOP, EV_CHKREQ, & tei_id_chk_req}, 
        {ST_TEI_IDREQ, EV_TIMER, & tei_id_req_tout}, 
        {ST_TEI_IDREQ, EV_ASSIGN, & tei_id_assign}, 
        {ST_TEI_IDREQ, EV_DENIED, & tei_id_denied}, 
        {ST_TEI_IDVERIFY, EV_TIMER, & tei_id_ver_tout}, 
        {ST_TEI_IDVERIFY, EV_REMOVE, & tei_id_remove}, 
        {ST_TEI_IDVERIFY, EV_CHKREQ, & tei_id_chk_req}};
static void tei_l2remove(struct layer2 *l2 ) 
{ 


  {
  put_tei_msg((l2->tm)->mgr, 6, 0, l2->tei);
  tei_l2(l2, 6660, 0);
  list_del(& l2->ch.list);
  (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0);
  return;
}
}
static void tei_assign_req(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  u_char *dp ;
  u_char *tmp ;
  u_char *tmp___0 ;

  {
  tm = fi->userdata;
  dp = arg;
  if ((int )(tm->l2)->tei == 127) {
    (*(tm->tei_m.printdebug))(& tm->tei_m, "net tei assign request without tei");
    return;
  } else {

  }
  tmp = dp;
  dp = dp + 1;
  tm->ri = (unsigned int )*tmp << 8;
  tmp___0 = dp;
  dp = dp + 1;
  tm->ri = tm->ri + (int )*tmp___0;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(& tm->tei_m, "net assign request ri %d teim %d", tm->ri,
                              *dp);
  } else {

  }
  put_tei_msg(tm->mgr, 2, tm->ri, (tm->l2)->tei);
  mISDN_FsmChangeState(fi, ST_TEI_NOP);
  return;
}
}
static void tei_id_chk_req_net(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;

  {
  tm = fi->userdata;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "id check request for tei %d", (tm->l2)->tei);
  } else {

  }
  tm->rcnt = 0;
  put_tei_msg(tm->mgr, 4, 0, (tm->l2)->tei);
  mISDN_FsmChangeState(& tm->tei_m, ST_TEI_IDVERIFY);
  mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 2);
  tm->nval = 2;
  return;
}
}
static void tei_id_chk_resp(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  u_char *dp ;
  int tei ;

  {
  tm = fi->userdata;
  dp = arg;
  tei = (int )*(dp + 3) >> 1;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "identity check resp tei %d", tei);
  } else {

  }
  if (tei == (int )(tm->l2)->tei) {
    tm->rcnt = tm->rcnt + 1;
  } else {

  }
  return;
}
}
static void tei_id_verify_net(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;
  u_char *dp ;
  int tei ;

  {
  tm = fi->userdata;
  dp = arg;
  tei = (int )*(dp + 3) >> 1;
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(fi, "identity verify req tei %d/%d", tei, (tm->l2)->tei);
  } else {

  }
  if (tei == (int )(tm->l2)->tei) {
    tei_id_chk_req_net(fi, event, arg);
  } else {

  }
  return;
}
}
static void tei_id_ver_tout_net(struct FsmInst *fi , int event , void *arg ) 
{ 
  struct teimgr *tm ;

  {
  tm = fi->userdata;
  if (tm->rcnt == 1) {
    if (*debug___5 & 1048576U) {
      (*(tm->tei_m.printdebug))(fi, "check req for tei %d sucessful\n", (tm->l2)->tei);
    } else {

    }
    mISDN_FsmChangeState(fi, ST_TEI_NOP);
  } else
  if (tm->rcnt > 1) {
    tei_l2remove(tm->l2);
  } else {
    tm->nval = tm->nval - 1;
    if (tm->nval) {
      if (*debug___5 & 1048576U) {
        (*(tm->tei_m.printdebug))(fi, "id check req(%d) for tei %d", 3 - tm->nval,
                                  (tm->l2)->tei);
      } else {

      }
      put_tei_msg(tm->mgr, 4, 0, (tm->l2)->tei);
      mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 4);
    } else {
      (*(tm->tei_m.printdebug))(fi, "check req for tei %d failed", (tm->l2)->tei);
      mISDN_FsmChangeState(fi, ST_TEI_NOP);
      tei_l2remove(tm->l2);
    }
  }
  return;
}
}
static struct FsmNode TeiFnListNet[5]  = {      {ST_TEI_NOP, EV_ASSIGN_REQ, & tei_assign_req}, 
        {ST_TEI_NOP, EV_VERIFY, & tei_id_verify_net}, 
        {ST_TEI_NOP, EV_CHKREQ, & tei_id_chk_req_net}, 
        {ST_TEI_IDVERIFY, EV_TIMER, & tei_id_ver_tout_net}, 
        {ST_TEI_IDVERIFY, EV_CHKRESP, & tei_id_chk_resp}};
static void tei_ph_data_ind(struct teimgr *tm , u_int mt , u_char *dp , int len ) 
{ 
  int tmp ;

  {
  tmp = constant_test_bit(15, & (tm->l2)->flag);
  if (tmp) {
    return;
  } else {

  }
  if (*debug___5 & 1048576U) {
    (*(tm->tei_m.printdebug))(& tm->tei_m, "tei handler mt %x", mt);
  } else {

  }
  if (mt == (u_int )2) {
    mISDN_FsmEvent(& tm->tei_m, EV_ASSIGN, dp);
  } else
  if (mt == (u_int )3) {
    mISDN_FsmEvent(& tm->tei_m, EV_DENIED, dp);
  } else
  if (mt == (u_int )4) {
    mISDN_FsmEvent(& tm->tei_m, EV_CHKREQ, dp);
  } else
  if (mt == (u_int )6) {
    mISDN_FsmEvent(& tm->tei_m, EV_REMOVE, dp);
  } else
  if (mt == (u_int )7) {
    mISDN_FsmEvent(& tm->tei_m, EV_VERIFY, dp);
  } else
  if (mt == (u_int )5) {
    mISDN_FsmEvent(& tm->tei_m, EV_CHKRESP, dp);
  } else {

  }
  return;
}
}
static struct layer2 *create_new_tei(struct manager *mgr , int tei , int sapi ) 
{ 
  u_long opt ;
  u_long flags ;
  int id ;
  struct layer2 *l2 ;
  void *tmp ;

  {
  opt = 0;
  if (! mgr->up) {
    return ((void *)0);
  } else {

  }
  if (tei >= 0 && tei < 64) {
    test_and_set_bit(3, & opt);
  } else {

  }
  if (((mgr->ch.st)->dev)->Dprotocols & (unsigned int )((1 << 3) | (1 << 4))) {
    test_and_set_bit(1, & opt);
  } else {

  }
  l2 = create_l2(mgr->up, 17, opt, tei, sapi);
  if (! l2) {
    printk("<4>%s:no memory for layer2\n", "create_new_tei");
    return ((void *)0);
  } else {

  }
  tmp = kzalloc(sizeof(struct teimgr ), (16U | 64U) | 128U);
  l2->tm = tmp;
  if (! l2->tm) {
    kfree(l2);
    printk("<4>%s:no memory for teimgr\n", "create_new_tei");
    return ((void *)0);
  } else {

  }
  (l2->tm)->mgr = mgr;
  (l2->tm)->l2 = l2;
  (l2->tm)->tei_m.debug = *debug___5 & 2097152U;
  (l2->tm)->tei_m.userdata = l2->tm;
  (l2->tm)->tei_m.printdebug = & tei_debug;
  (l2->tm)->tei_m.fsm = & teifsmn;
  (l2->tm)->tei_m.state = ST_TEI_NOP;
  (l2->tm)->tval = 2000;
  mISDN_FsmInitTimer(& (l2->tm)->tei_m, & (l2->tm)->timer);
  while (1) {
    flags = _write_lock_irqsave(& mgr->lock);
    break;
  }
  id = get_free_id(mgr);
  list_add_tail(& l2->list, & mgr->layer2);
  while (1) {
    _write_unlock_irqrestore(& mgr->lock, flags);
    break;
  }
  if (id < 0) {
    (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0);
    printk("<4>%s:no free id\n", "create_new_tei");
    return ((void *)0);
  } else {
    l2->ch.nr = id;
    __add_layer2(& l2->ch, mgr->ch.st);
    l2->ch.recv = mgr->ch.recv;
    l2->ch.peer = mgr->ch.peer;
    (*(l2->ch.ctrl))(& l2->ch, 256, (void *)0);
  }
  return (l2);
}
}
static void new_tei_req(struct manager *mgr , u_char *dp ) 
{ 
  int tei ;
  int ri ;
  struct layer2 *l2 ;

  {
  ri = (int )*(dp + 0) << 8;
  ri = ri + (int )*(dp + 1);
  if (! mgr->up) {
    goto denied;
  } else {

  }
  if (! ((int )*(dp + 3) & 1)) {
    goto denied;
  } else {

  }
  if ((int )*(dp + 3) != 255) {
    tei = (int )*(dp + 3) >> 1;
  } else {
    tei = get_free_tei(mgr);
  }
  if (tei < 0) {
    printk("<4>%s:No free tei\n", "new_tei_req");
    goto denied;
  } else {

  }
  l2 = create_new_tei(mgr, tei, 0);
  if (! l2) {
    goto denied;
  } else {
    mISDN_FsmEvent(& (l2->tm)->tei_m, EV_ASSIGN_REQ, dp);
  }
  return;
  denied: 
  put_tei_msg(mgr, 3, ri, 127);
  return;
}
}
static int ph_data_ind(struct manager *mgr , struct sk_buff *skb ) 
{ 
  int ret ;
  struct layer2 *l2 ;
  struct layer2 *nl2 ;
  u_char mt ;
  int tmp ;
  int tmp___1 ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  struct list_head  const  *__mptr___1 ;

  {
  ret = -22;
  if (skb->len < 8U) {
    if (*debug___5 & 1048576U) {
      printk("<7>%s: short mgr frame %d/8\n", "ph_data_ind", skb->len);
    } else {

    }
    goto done;
  } else {

  }
  if ((int )*(skb->data + 0) >> 2 != 63) {
    goto done;
  } else {

  }
  if ((int )*(skb->data + 0) & 1) {
    goto done;
  } else {

  }
  if (! ((int )*(skb->data + 1) & 1)) {
    goto done;
  } else {

  }
  if ((int )*(skb->data + 1) >> 1 != 127) {
    goto done;
  } else {

  }
  if (((int )*(skb->data + 2) & 239) != 3) {
    goto done;
  } else {

  }
  if ((int )*(skb->data + 3) != 15) {
    goto done;
  } else {

  }
  mt = *(skb->data + 6);
  switch ((int )mt) {
  case 7: 
  case 5: 
  case 1: 
  tmp = constant_test_bit(25, & mgr->options);
  if (tmp) {

  } else {
    goto done;
  }
  break;
  case 6: 
  case 4: 
  case 3: 
  case 2: 
  tmp___1 = constant_test_bit(25, & mgr->options);
  if (tmp___1) {
    goto done;
  } else {

  }
  break;
  default: 
  goto done;
  }
  ret = 0;
  if ((int )mt == 1) {
    new_tei_req(mgr, skb->data + 4);
    goto done;
  } else {

  }
  __mptr = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
  __mptr___0 = l2->list.next;
  nl2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    tei_ph_data_ind(l2->tm, mt, skb->data + 4, skb->len - 4U);
    l2 = nl2;
    __mptr___1 = nl2->list.next;
    nl2 = (struct layer2 *)((char *)__mptr___1 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  done: 
  return (ret);
}
}
int l2_tei(struct layer2 *l2 , u_int cmd , u_long arg ) 
{ 
  struct teimgr *tm ;
  int tmp ;
  int tmp___1 ;
  int tmp___3 ;
  int tmp___5 ;
  int tmp___7 ;
  int tmp___9 ;

  {
  tm = l2->tm;
  tmp = constant_test_bit(15, & l2->flag);
  if (tmp) {
    return (0);
  } else {

  }
  if (*debug___5 & 1048576U) {
    printk("<7>%s: cmd(%x)\n", "l2_tei", cmd);
  } else {

  }
  switch (cmd) {
  case (u_int )6404: 
  mISDN_FsmEvent(& tm->tei_m, EV_IDREQ, (void *)0);
  break;
  case (u_int )7940: 
  tmp___1 = constant_test_bit(25, & (tm->mgr)->options);
  if (tmp___1) {
    mISDN_FsmEvent(& tm->tei_m, EV_CHKREQ, & l2->tei);
  } else {

  }
  tmp___3 = constant_test_bit(24, & (tm->mgr)->options);
  if (tmp___3) {
    mISDN_FsmEvent(& tm->tei_m, EV_VERIFY, (void *)0);
  } else {

  }
  break;
  case (u_int )7172: 
  tmp___5 = constant_test_bit(25, & (tm->mgr)->options);
  if (tmp___5) {
    mISDN_FsmEvent(& (tm->mgr)->deact, EV_ACTIVATE, (void *)0);
  } else {

  }
  break;
  case (u_int )7428: 
  tmp___7 = constant_test_bit(25, & (tm->mgr)->options);
  if (tmp___7) {
    mISDN_FsmEvent(& (tm->mgr)->deact, EV_DEACTIVATE, (void *)0);
  } else {

  }
  break;
  case (u_int )7684: 
  tmp___9 = constant_test_bit(25, & (tm->mgr)->options);
  if (tmp___9) {
    mISDN_FsmEvent(& (tm->mgr)->deact, EV_UI, (void *)0);
  } else {

  }
  break;
  }
  return (0);
}
}
void TEIrelease(struct layer2 *l2 ) 
{ 
  struct teimgr *tm ;
  u_long flags ;

  {
  tm = l2->tm;
  mISDN_FsmDelTimer(& tm->timer, 1);
  while (1) {
    flags = _write_lock_irqsave(& (tm->mgr)->lock);
    break;
  }
  list_del(& l2->list);
  while (1) {
    _write_unlock_irqrestore(& (tm->mgr)->lock, flags);
    break;
  }
  l2->tm = (void *)0;
  kfree(tm);
  return;
}
}
static int create_teimgr(struct manager *mgr , struct channel_req *crq ) 
{ 
  struct layer2 *l2 ;
  u_long opt ;
  u_long flags ;
  int id ;
  char const   *tmp ;
  int tmp___0 ;
  int tmp___2 ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  int tmp___4 ;
  void *tmp___5 ;

  {
  opt = 0;
  if (*debug___5 & 1048576U) {
    tmp = dev_name(& ((mgr->ch.st)->dev)->dev);
    printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "create_teimgr", tmp, crq->protocol,
           crq->adr.dev, crq->adr.channel, crq->adr.sapi, crq->adr.tei);
  } else {

  }
  if ((int )crq->adr.tei > 127) {
    return (-22);
  } else {

  }
  if ((int )crq->adr.tei < 64) {
    test_and_set_bit(3, & opt);
  } else {

  }
  if ((int )crq->adr.tei == 0) {
    test_and_set_bit(2, & opt);
  } else {

  }
  tmp___2 = constant_test_bit(25, & mgr->options);
  if (tmp___2) {
    if (crq->protocol == (u_int )16) {
      return (-93);
    } else {

    }
    if ((int )crq->adr.tei != 0 && (int )crq->adr.tei != 127) {
      return (-22);
    } else {

    }
    if (mgr->up) {
      printk("<4>%s: only one network manager is allowed\n", "create_teimgr");
      return (-16);
    } else {

    }
  } else {
    tmp___0 = constant_test_bit(24, & mgr->options);
    if (tmp___0) {
      if (crq->protocol == (u_int )17) {
        return (-93);
      } else {

      }
      if ((int )crq->adr.tei >= 64 && (int )crq->adr.tei < 127) {
        return (-22);
      } else {

      }
    } else {
      if (crq->protocol == (u_int )17) {
        test_and_set_bit(25, & mgr->options);
      } else {

      }
      if (crq->protocol == (u_int )16) {
        test_and_set_bit(24, & mgr->options);
      } else {

      }
    }
  }
  if (((mgr->ch.st)->dev)->Dprotocols & (unsigned int )((1 << 3) | (1 << 4))) {
    test_and_set_bit(1, & opt);
  } else {

  }
  if (crq->protocol == (u_int )17 && (int )crq->adr.tei == 127) {
    mgr->up = crq->ch;
    id = 1;
    teiup_create(mgr, 8, sizeof(id), & id);
    crq->ch = (void *)0;
    tmp___4 = list_empty(& mgr->layer2);
    if (tmp___4) {

    } else {
      while (1) {
        flags = _read_lock_irqsave(& mgr->lock);
        break;
      }
      __mptr = mgr->layer2.next;
      l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
      while (1) {
        __builtin_prefetch(l2->list.next);
        if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

        } else {
          break;
        }
        l2->up = mgr->up;
        (*(l2->ch.ctrl))(& l2->ch, 256, (void *)0);
        __mptr___0 = l2->list.next;
        l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
      }
      while (1) {
        _read_unlock_irqrestore(& mgr->lock, flags);
        break;
      }
    }
    return (0);
  } else {

  }
  l2 = create_l2(crq->ch, crq->protocol, opt, crq->adr.tei, crq->adr.sapi);
  if (! l2) {
    return (-12);
  } else {

  }
  tmp___5 = kzalloc(sizeof(struct teimgr ), (16U | 64U) | 128U);
  l2->tm = tmp___5;
  if (! l2->tm) {
    kfree(l2);
    printk("<3>kmalloc teimgr failed\n");
    return (-12);
  } else {

  }
  (l2->tm)->mgr = mgr;
  (l2->tm)->l2 = l2;
  (l2->tm)->tei_m.debug = *debug___5 & 2097152U;
  (l2->tm)->tei_m.userdata = l2->tm;
  (l2->tm)->tei_m.printdebug = & tei_debug;
  if (crq->protocol == (u_int )16) {
    (l2->tm)->tei_m.fsm = & teifsmu;
    (l2->tm)->tei_m.state = ST_TEI_NOP;
    (l2->tm)->tval = 1000;
  } else {
    (l2->tm)->tei_m.fsm = & teifsmn;
    (l2->tm)->tei_m.state = ST_TEI_NOP;
    (l2->tm)->tval = 2000;
  }
  mISDN_FsmInitTimer(& (l2->tm)->tei_m, & (l2->tm)->timer);
  while (1) {
    flags = _write_lock_irqsave(& mgr->lock);
    break;
  }
  id = get_free_id(mgr);
  list_add_tail(& l2->list, & mgr->layer2);
  while (1) {
    _write_unlock_irqrestore(& mgr->lock, flags);
    break;
  }
  if (id < 0) {
    (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0);
  } else {
    l2->ch.nr = id;
    (l2->up)->nr = id;
    crq->ch = & l2->ch;
    id = 0;
  }
  return (id);
}
}
static int mgr_send(struct mISDNchannel *ch , struct sk_buff *skb ) 
{ 
  struct manager *mgr ;
  struct mISDNhead *hh ;
  int ret ;
  struct mISDNchannel  const  *__mptr ;
  int tmp ;

  {
  hh = (struct mISDNhead *)(& skb->cb[0]);
  ret = -22;
  __mptr = ch;
  mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->ch));
  if (*debug___5 & 524288U) {
    printk("<7>%s: prim(%x) id(%x)\n", "mgr_send", hh->prim, hh->id);
  } else {

  }
  switch (hh->prim) {
  case 8194U: 
  mISDN_FsmEvent(& mgr->deact, EV_UI, (void *)0);
  ret = ph_data_ind(mgr, skb);
  break;
  case 24578U: 
  do_ack(mgr, hh->id);
  ret = 0;
  break;
  case 258U: 
  test_and_set_bit(16, & mgr->options);
  mISDN_FsmEvent(& mgr->deact, EV_ACTIVATE_IND, (void *)0);
  do_send(mgr);
  ret = 0;
  break;
  case 514U: 
  test_and_clear_bit(16, & mgr->options);
  mISDN_FsmEvent(& mgr->deact, EV_DEACTIVATE_IND, (void *)0);
  ret = 0;
  break;
  case 12548U: 
  tmp = dl_unit_data(mgr, skb);
  return (tmp);
  }
  if (! ret) {
    consume_skb(skb);
  } else {

  }
  return (ret);
}
}
static int free_teimanager(struct manager *mgr ) 
{ 
  struct layer2 *l2 ;
  struct layer2 *nl2 ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  struct list_head  const  *__mptr___1 ;
  struct list_head  const  *__mptr___2 ;
  struct list_head  const  *__mptr___3 ;
  struct list_head  const  *__mptr___4 ;
  int tmp ;
  int tmp___1 ;
  int tmp___3 ;
  int tmp___4 ;

  {
  test_and_clear_bit(5, & mgr->options);
  tmp___1 = constant_test_bit(25, & mgr->options);
  if (tmp___1) {
    mgr->up = (void *)0;
    tmp = constant_test_bit(4, & mgr->options);
    if (tmp) {
      __mptr = mgr->layer2.next;
      l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list));
      __mptr___0 = l2->list.next;
      nl2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
      while (1) {
        if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

        } else {
          break;
        }
        put_tei_msg(mgr, 6, 0, l2->tei);
        mutex_lock_nested(& (mgr->ch.st)->lmutex, 0);
        list_del(& l2->ch.list);
        mutex_unlock(& (mgr->ch.st)->lmutex);
        (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0);
        l2 = nl2;
        __mptr___1 = nl2->list.next;
        nl2 = (struct layer2 *)((char *)__mptr___1 - (unsigned int )(& ((struct layer2 *)0)->list));
      }
      test_and_clear_bit(25, & mgr->options);
    } else {
      __mptr___2 = mgr->layer2.next;
      l2 = (struct layer2 *)((char *)__mptr___2 - (unsigned int )(& ((struct layer2 *)0)->list));
      __mptr___3 = l2->list.next;
      nl2 = (struct layer2 *)((char *)__mptr___3 - (unsigned int )(& ((struct layer2 *)0)->list));
      while (1) {
        if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

        } else {
          break;
        }
        l2->up = (void *)0;
        l2 = nl2;
        __mptr___4 = nl2->list.next;
        nl2 = (struct layer2 *)((char *)__mptr___4 - (unsigned int )(& ((struct layer2 *)0)->list));
      }
    }
  } else {

  }
  tmp___4 = constant_test_bit(24, & mgr->options);
  if (tmp___4) {
    tmp___3 = list_empty(& mgr->layer2);
    if (tmp___3) {
      test_and_clear_bit(24, & mgr->options);
    } else {

    }
  } else {

  }
  (*(((mgr->ch.st)->dev)->D.ctrl))(& ((mgr->ch.st)->dev)->D, 512, (void *)0);
  return (0);
}
}
static int ctrl_teimanager(struct manager *mgr , void *arg ) 
{ 
  int *val ;
  int ret ;

  {
  val = (int *)arg;
  ret = 0;
  switch (*(val + 0)) {
  case (int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(70 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  if (*(val + 1)) {
    test_and_set_bit(4, & mgr->options);
  } else {
    test_and_clear_bit(4, & mgr->options);
  }
  break;
  case (int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(72 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  if (*(val + 1)) {
    test_and_set_bit(5, & mgr->options);
  } else {
    test_and_clear_bit(5, & mgr->options);
  }
  break;
  default: 
  ret = -22;
  }
  return (ret);
}
}
static int check_data(struct manager *mgr , struct sk_buff *skb ) 
{ 
  struct mISDNhead *hh ;
  int ret ;
  int tei ;
  int sapi ;
  struct layer2 *l2 ;
  int tmp ;

  {
  hh = (struct mISDNhead *)(& skb->cb[0]);
  if (*debug___5 & 262144U) {
    printk("<7>%s: prim(%x) id(%x)\n", "check_data", hh->prim, hh->id);
  } else {

  }
  tmp = constant_test_bit(24, & mgr->options);
  if (tmp) {
    return (-107);
  } else {

  }
  if (hh->prim != 8194U) {
    return (-107);
  } else {

  }
  if (skb->len != 3U) {
    return (-107);
  } else {

  }
  if ((int )*(skb->data + 0) & 3) {
    return (-22);
  } else {

  }
  sapi = (int )*(skb->data + 0) >> 2;
  if (! ((int )*(skb->data + 1) & 1)) {
    return (-22);
  } else {

  }
  tei = (int )*(skb->data + 1) >> 1;
  if (tei > 63) {
    return (-107);
  } else {

  }
  if (((int )*(skb->data + 2) & ~ 16) != 111) {
    return (-107);
  } else {

  }
  if (*debug___5 & 262144U) {
    printk("<7>%s: SABME sapi(%d) tei(%d)\n", "check_data", sapi, tei);
  } else {

  }
  l2 = create_new_tei(mgr, tei, sapi);
  if (! l2) {
    if (*debug___5 & 262144U) {
      printk("<7>%s: failed to create new tei\n", "check_data");
    } else {

    }
    return (-12);
  } else {

  }
  ret = (*(l2->ch.send))(& l2->ch, skb);
  return (ret);
}
}
void delete_teimanager(struct mISDNchannel *ch ) 
{ 
  struct manager *mgr ;
  struct layer2 *l2 ;
  struct layer2 *nl2 ;
  struct mISDNchannel  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  struct list_head  const  *__mptr___1 ;
  struct list_head  const  *__mptr___2 ;

  {
  __mptr = ch;
  mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->ch));
  __mptr___0 = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  __mptr___1 = l2->list.next;
  nl2 = (struct layer2 *)((char *)__mptr___1 - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    mutex_lock_nested(& (mgr->ch.st)->lmutex, 0);
    list_del(& l2->ch.list);
    mutex_unlock(& (mgr->ch.st)->lmutex);
    (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0);
    l2 = nl2;
    __mptr___2 = nl2->list.next;
    nl2 = (struct layer2 *)((char *)__mptr___2 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  list_del(& mgr->ch.list);
  list_del(& mgr->bcast.list);
  skb_queue_purge(& mgr->sendq);
  kfree(mgr);
  return;
}
}
static int mgr_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) 
{ 
  struct manager *mgr ;
  int ret ;
  struct mISDNchannel  const  *__mptr ;

  {
  ret = -22;
  __mptr = ch;
  mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->ch));
  if (*debug___5 & 262144U) {
    printk("<7>%s(%x, %p)\n", "mgr_ctrl", cmd, arg);
  } else {

  }
  switch (cmd) {
  case (u_int )256: 
  ret = create_teimgr(mgr, arg);
  break;
  case (u_int )512: 
  ret = free_teimanager(mgr);
  break;
  case (u_int )768: 
  ret = ctrl_teimanager(mgr, arg);
  break;
  case (u_int )1024: 
  ret = check_data(mgr, arg);
  break;
  }
  return (ret);
}
}
static int mgr_bcast(struct mISDNchannel *ch , struct sk_buff *skb ) 
{ 
  struct manager *mgr ;
  struct mISDNchannel  const  *__mptr ;
  struct mISDNhead *hh ;
  struct sk_buff *cskb ;
  struct layer2 *l2 ;
  u_long flags ;
  int ret ;
  struct list_head  const  *__mptr___0 ;
  struct list_head  const  *__mptr___1 ;
  int tmp ;

  {
  __mptr = ch;
  mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->bcast));
  hh = (struct mISDNhead *)(& skb->cb[0]);
  cskb = (void *)0;
  while (1) {
    flags = _read_lock_irqsave(& mgr->lock);
    break;
  }
  __mptr___0 = mgr->layer2.next;
  l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list));
  while (1) {
    __builtin_prefetch(l2->list.next);
    if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) {

    } else {
      break;
    }
    if ((hh->id & 255U) == (l2->ch.addr & 255U)) {
      tmp = list_is_last(& l2->list, & mgr->layer2);
      if (tmp) {
        cskb = skb;
        skb = (void *)0;
      } else
      if (! cskb) {
        cskb = skb_copy(skb, (16U | 64U) | 128U);
      } else {

      }
      if (cskb) {
        ret = (*(l2->ch.send))(& l2->ch, cskb);
        if (ret) {
          if (*debug___5 & 16U) {
            printk("<7>%s ch%d prim(%x) addr(%x) err %d\n", "mgr_bcast", l2->ch.nr,
                   hh->prim, l2->ch.addr, ret);
          } else {

          }
        } else {
          cskb = (void *)0;
        }
      } else {
        printk("<4>%s ch%d addr %x no mem\n", "mgr_bcast", ch->nr, ch->addr);
        goto out;
      }
    } else {

    }
    __mptr___1 = l2->list.next;
    l2 = (struct layer2 *)((char *)__mptr___1 - (unsigned int )(& ((struct layer2 *)0)->list));
  }
  out: 
  while (1) {
    _read_unlock_irqrestore(& mgr->lock, flags);
    break;
  }
  if (cskb) {
    consume_skb(cskb);
  } else {

  }
  if (skb) {
    consume_skb(skb);
  } else {

  }
  return (0);
}
}
static int mgr_bcast_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) 
{ 


  {
  return (-22);
}
}
static struct lock_class_key __key___12  ;
int create_teimanager(struct mISDNdevice *dev ) 
{ 
  struct manager *mgr ;
  void *tmp ;

  {
  tmp = kzalloc(sizeof(struct manager ), (16U | 64U) | 128U);
  mgr = tmp;
  if (! mgr) {
    return (-12);
  } else {

  }
  INIT_LIST_HEAD(& mgr->layer2);
  while (1) {
    __rwlock_init(& mgr->lock, "&mgr->lock", & __key___12);
    break;
  }
  skb_queue_head_init___2(& mgr->sendq);
  mgr->nextid = 1;
  mgr->lastid = 65534;
  mgr->ch.send = & mgr_send;
  mgr->ch.ctrl = & mgr_ctrl;
  mgr->ch.st = dev->D.st;
  set_channel_address(& mgr->ch, 63, 127);
  add_layer2(& mgr->ch, dev->D.st);
  mgr->bcast.send = & mgr_bcast;
  mgr->bcast.ctrl = & mgr_bcast_ctrl;
  mgr->bcast.st = dev->D.st;
  set_channel_address(& mgr->bcast, 0, 127);
  add_layer2(& mgr->bcast, dev->D.st);
  mgr->deact.debug = *debug___5 & 8U;
  mgr->deact.userdata = mgr;
  mgr->deact.printdebug = & da_debug;
  mgr->deact.fsm = & deactfsm;
  mgr->deact.state = ST_L1_DEACT;
  mISDN_FsmInitTimer(& mgr->deact, & mgr->datimer);
  dev->teimgr = & mgr->ch;
  return (0);
}
}
int TEIInit(u_int *deb ) 
{ 


  {
  debug___5 = deb;
  teifsmu.state_count = ST_TEI_IDVERIFY + 1;
  teifsmu.event_count = EV_TIMER + 1;
  teifsmu.strEvent = strTeiEvent;
  teifsmu.strState = strTeiState;
  mISDN_FsmNew(& teifsmu, TeiFnListUser, sizeof(TeiFnListUser) / sizeof(TeiFnListUser[0]) + (sizeof(char [1 - 2 * 0]) - 1UL));
  teifsmn.state_count = ST_TEI_IDVERIFY + 1;
  teifsmn.event_count = EV_TIMER + 1;
  teifsmn.strEvent = strTeiEvent;
  teifsmn.strState = strTeiState;
  mISDN_FsmNew(& teifsmn, TeiFnListNet, sizeof(TeiFnListNet) / sizeof(TeiFnListNet[0]) + (sizeof(char [1 - 2 * 0]) - 1UL));
  deactfsm.state_count = ST_L1_ACTIV + 1;
  deactfsm.event_count = EV_DATIMER + 1;
  deactfsm.strEvent = strDeactEvent;
  deactfsm.strState = strDeactState;
  mISDN_FsmNew(& deactfsm, DeactFnList, sizeof(DeactFnList) / sizeof(DeactFnList[0]) + (sizeof(char [1 - 2 * 0]) - 1UL));
  return (0);
}
}
void TEIFree(void) 
{ 


  {
  mISDN_FsmFree(& teifsmu);
  mISDN_FsmFree(& teifsmn);
  mISDN_FsmFree(& deactfsm);
  return;
}
}
__inline static void __list_del(struct list_head *prev , struct list_head *next ) 
{ 


  {
  next->prev = prev;
  prev->next = next;
  return;
}
}
__inline static void list_del_init(struct list_head *entry ) 
{ 


  {
  __list_del(entry->prev, entry->next);
  INIT_LIST_HEAD(entry);
  return;
}
}
__inline static void list_move_tail(struct list_head *list , struct list_head *head ) 
{ 


  {
  __list_del(list->prev, list->next);
  list_add_tail(list, head);
  return;
}
}
extern unsigned long _spin_lock_irqsave(spinlock_t *lock )  __attribute__((__section__(".spinlock.text"))) ;
extern void _spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags )  __attribute__((__section__(".spinlock.text"))) ;
extern int nonseekable_open(struct inode *inode , struct file *filp ) ;
__inline static void poll_wait(struct file *filp , wait_queue_head_t *wait_address ,
                               poll_table *p ) 
{ 


  {
  if (p && wait_address) {
    (*(p->qproc))(filp, wait_address, p);
  } else {

  }
  return;
}
}
extern int misc_register(struct miscdevice *misc ) ;
extern int misc_deregister(struct miscdevice *misc ) ;
static u_int *debug___6  ;
static struct lock_class_key __key___13  ;
static int mISDN_open(struct inode *ino , struct file *filep ) 
{ 
  struct mISDNtimerdev *dev ;
  void *tmp ;
  int tmp___0 ;

  {
  if (*debug___6 & 16777216U) {
    printk("<7>%s(%p,%p)\n", "mISDN_open", ino, filep);
  } else {

  }
  tmp = kmalloc(sizeof(struct mISDNtimerdev ), (16U | 64U) | 128U);
  dev = tmp;
  if (! dev) {
    return (-12);
  } else {

  }
  dev->next_id = 1;
  INIT_LIST_HEAD(& dev->pending);
  INIT_LIST_HEAD(& dev->expired);
  while (1) {
    __spin_lock_init(& dev->lock, "&dev->lock", & __key___13);
    break;
  }
  dev->work = 0;
  init_waitqueue_head(& dev->wait);
  filep->private_data = dev;
  __module_get(& __this_module);
  tmp___0 = nonseekable_open(ino, filep);
  return (tmp___0);
}
}
static int mISDN_close(struct inode *ino , struct file *filep ) 
{ 
  struct mISDNtimerdev *dev ;
  struct mISDNtimer *timer ;
  struct mISDNtimer *next ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;
  struct list_head  const  *__mptr___1 ;
  struct list_head  const  *__mptr___2 ;
  struct list_head  const  *__mptr___3 ;
  struct list_head  const  *__mptr___4 ;

  {
  dev = filep->private_data;
  if (*debug___6 & 16777216U) {
    printk("<7>%s(%p,%p)\n", "mISDN_close", ino, filep);
  } else {

  }
  __mptr = dev->pending.next;
  timer = (struct mISDNtimer *)((char *)__mptr - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  __mptr___0 = timer->list.next;
  next = (struct mISDNtimer *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  while (1) {
    if ((unsigned long )(& timer->list) != (unsigned long )(& dev->pending)) {

    } else {
      break;
    }
    del_timer(& timer->tl);
    kfree(timer);
    timer = next;
    __mptr___1 = next->list.next;
    next = (struct mISDNtimer *)((char *)__mptr___1 - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  }
  __mptr___2 = dev->expired.next;
  timer = (struct mISDNtimer *)((char *)__mptr___2 - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  __mptr___3 = timer->list.next;
  next = (struct mISDNtimer *)((char *)__mptr___3 - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  while (1) {
    if ((unsigned long )(& timer->list) != (unsigned long )(& dev->expired)) {

    } else {
      break;
    }
    kfree(timer);
    timer = next;
    __mptr___4 = next->list.next;
    next = (struct mISDNtimer *)((char *)__mptr___4 - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  }
  kfree(dev);
  module_put(& __this_module);
  return (0);
}
}
static ssize_t mISDN_read(struct file *filep , char *buf , size_t count , loff_t *off ) 
{ 
  struct mISDNtimerdev *dev ;
  struct mISDNtimer *timer ;
  u_long flags ;
  int ret ;
  int __ret ;
  wait_queue_t __wait ;
  struct task_struct *tmp ;
  int tmp___0 ;
  struct task_struct *tmp___1 ;
  int tmp___2 ;
  int tmp___3 ;
  struct task_struct *tmp___4 ;
  int tmp___5 ;
  int tmp___6 ;
  int __ret_pu ;
  int __pu_val ;
  int tmp___7 ;

  {
  dev = filep->private_data;
  ret = 0;
  if (*debug___6 & 16777216U) {
    printk("<7>%s(%p, %p, %d, %p)\n", "mISDN_read", filep, buf, (int )count, off);
  } else {

  }
  if (*off != filep->f_pos) {
    return (-29);
  } else {

  }
  tmp___6 = list_empty(& dev->expired);
  if (tmp___6 && dev->work == (u_int )0) {
    if (filep->f_flags & 2048U) {
      return (-11);
    } else {

    }
    __ret = 0;
    if (dev->work) {

    } else {
      tmp___3 = list_empty(& dev->expired);
      if (tmp___3) {
        while (1) {
          tmp = get_current();
          __wait.flags = 0U;
          __wait.private = tmp;
          __wait.func = & autoremove_wake_function;
          __wait.task_list.next = & __wait.task_list;
          __wait.task_list.prev = & __wait.task_list;
          while (1) {
            prepare_to_wait(& dev->wait, & __wait, 1);
            if (dev->work) {
              break;
            } else {
              tmp___0 = list_empty(& dev->expired);
              if (tmp___0) {

              } else {
                break;
              }
            }
            tmp___1 = get_current();
            tmp___2 = signal_pending(tmp___1);
            if (tmp___2) {

            } else {
              schedule();
              goto __Cont;
            }
            __ret = -512;
            break;
            __Cont: /* CIL Label */ ;
          }
          finish_wait(& dev->wait, & __wait);
          break;
        }
      } else {

      }
    }
    tmp___4 = get_current();
    tmp___5 = signal_pending(tmp___4);
    if (tmp___5) {
      return (-512);
    } else {

    }
  } else {

  }
  if (count < sizeof(int )) {
    return (-28);
  } else {

  }
  if (dev->work) {
    dev->work = 0;
  } else {

  }
  tmp___7 = list_empty(& dev->expired);
  if (tmp___7) {

  } else {
    while (1) {
      flags = _spin_lock_irqsave(& dev->lock);
      break;
    }
    timer = (struct mISDNtimer *)dev->expired.next;
    list_del(& timer->list);
    while (1) {
      _spin_unlock_irqrestore(& dev->lock, flags);
      break;
    }
    might_fault();
    __pu_val = timer->id;
    switch (sizeof(*((int *)buf))) {
    case 1UL: 
    __asm__  volatile   ("call __put_user_"
                         "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx");
    break;
    case 2UL: 
    __asm__  volatile   ("call __put_user_"
                         "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx");
    break;
    case 4UL: 
    __asm__  volatile   ("call __put_user_"
                         "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx");
    break;
    case 8UL: 
    __asm__  volatile   ("call __put_user_"
                         "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx");
    break;
    default: 
    __asm__  volatile   ("call __put_user_"
                         "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx");
    break;
    }
    if (__ret_pu) {
      ret = -14;
    } else {
      ret = sizeof(int );
    }
    kfree(timer);
  }
  return (ret);
}
}
static unsigned int mISDN_poll(struct file *filep , poll_table *wait ) 
{ 
  struct mISDNtimerdev *dev ;
  unsigned int mask ;
  int tmp ;
  int tmp___0 ;

  {
  dev = filep->private_data;
  mask = 8;
  if (*debug___6 & 16777216U) {
    printk("<7>%s(%p, %p)\n", "mISDN_poll", filep, wait);
  } else {

  }
  if (dev) {
    poll_wait(filep, & dev->wait, wait);
    mask = 0;
    if (dev->work) {
      mask = mask | (unsigned int )(1 | 64);
    } else {
      tmp = list_empty(& dev->expired);
      if (tmp) {

      } else {
        mask = mask | (unsigned int )(1 | 64);
      }
    }
    if (*debug___6 & 16777216U) {
      tmp___0 = list_empty(& dev->expired);
      printk("<7>%s work(%d) empty(%d)\n", "mISDN_poll", dev->work, tmp___0);
    } else {

    }
  } else {

  }
  return (mask);
}
}
static void dev_expire_timer(unsigned long data ) 
{ 
  struct mISDNtimer *timer ;
  u_long flags ;

  {
  timer = (void *)data;
  while (1) {
    flags = _spin_lock_irqsave(& (timer->dev)->lock);
    break;
  }
  list_move_tail(& timer->list, & (timer->dev)->expired);
  while (1) {
    _spin_unlock_irqrestore(& (timer->dev)->lock, flags);
    break;
  }
  __wake_up(& (timer->dev)->wait, 1, 1, (void *)0);
  return;
}
}
static struct lock_class_key __key___14  ;
static int misdn_add_timer(struct mISDNtimerdev *dev , int timeout ) 
{ 
  int id ;
  u_long flags ;
  struct mISDNtimer *timer ;
  void *tmp ;
  int tmp___0 ;

  {
  if (! timeout) {
    dev->work = 1;
    __wake_up(& dev->wait, 1, 1, (void *)0);
    id = 0;
  } else {
    tmp = kzalloc(sizeof(struct mISDNtimer ), (16U | 64U) | 128U);
    timer = tmp;
    if (! timer) {
      return (-12);
    } else {

    }
    while (1) {
      flags = _spin_lock_irqsave(& dev->lock);
      break;
    }
    tmp___0 = dev->next_id;
    dev->next_id = dev->next_id + 1;
    timer->id = tmp___0;
    if (dev->next_id < 0) {
      dev->next_id = 1;
    } else {

    }
    list_add_tail(& timer->list, & dev->pending);
    while (1) {
      _spin_unlock_irqrestore(& dev->lock, flags);
      break;
    }
    timer->dev = dev;
    timer->tl.data = (long )timer;
    timer->tl.function = & dev_expire_timer;
    while (1) {
      init_timer_key(& timer->tl, "&timer->tl", & __key___14);
      break;
    }
    timer->tl.expires = jiffies + (unsigned long volatile   )(((u_long )250 * (u_long )timeout) / (u_long )1000);
    add_timer(& timer->tl);
    id = timer->id;
  }
  return (id);
}
}
static int misdn_del_timer(struct mISDNtimerdev *dev , int id ) 
{ 
  u_long flags ;
  struct mISDNtimer *timer ;
  int ret ;
  struct list_head  const  *__mptr ;
  struct list_head  const  *__mptr___0 ;

  {
  ret = 0;
  while (1) {
    flags = _spin_lock_irqsave(& dev->lock);
    break;
  }
  __mptr = dev->pending.next;
  timer = (struct mISDNtimer *)((char *)__mptr - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  while (1) {
    __builtin_prefetch(timer->list.next);
    if ((unsigned long )(& timer->list) != (unsigned long )(& dev->pending)) {

    } else {
      break;
    }
    if (timer->id == id) {
      list_del_init(& timer->list);
      del_timer(& timer->tl);
      ret = timer->id;
      kfree(timer);
      goto unlock;
    } else {

    }
    __mptr___0 = timer->list.next;
    timer = (struct mISDNtimer *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNtimer *)0)->list));
  }
  unlock: 
  while (1) {
    _spin_unlock_irqrestore(& dev->lock, flags);
    break;
  }
  return (ret);
}
}
static int mISDN_ioctl(struct inode *inode , struct file *filep , unsigned int cmd ,
                       unsigned long arg ) 
{ 
  struct mISDNtimerdev *dev ;
  int id ;
  int tout ;
  int ret ;
  int __ret_gu ;
  unsigned long __val_gu ;
  int __ret_pu ;
  int __pu_val ;
  int __ret_gu___0 ;
  unsigned long __val_gu___0 ;
  int __ret_pu___0 ;
  int __pu_val___0 ;

  {
  dev = filep->private_data;
  ret = 0;
  if (*debug___6 & 16777216U) {
    printk("<7>%s(%p, %x, %lx)\n", "mISDN_ioctl", filep, cmd, arg);
  } else {

  }
  switch (cmd) {
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(64 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  might_fault();
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg));
  break;
  }
  tout = (int )__val_gu;
  if (__ret_gu) {
    ret = -14;
    break;
  } else {

  }
  id = misdn_add_timer(dev, tout);
  if (*debug___6 & 16777216U) {
    printk("<7>%s add %d id %d\n", "mISDN_ioctl", tout, id);
  } else {

  }
  if (id < 0) {
    ret = id;
    break;
  } else {

  }
  might_fault();
  __pu_val = id;
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __put_user_"
                       "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 2UL: 
  __asm__  volatile   ("call __put_user_"
                       "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 4UL: 
  __asm__  volatile   ("call __put_user_"
                       "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  case 8UL: 
  __asm__  volatile   ("call __put_user_"
                       "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  default: 
  __asm__  volatile   ("call __put_user_"
                       "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx");
  break;
  }
  if (__ret_pu) {
    ret = -14;
  } else {

  }
  break;
  case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(65 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): 
  might_fault();
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __get_user_"
                       "1": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg));
  break;
  case 2UL: 
  __asm__  volatile   ("call __get_user_"
                       "2": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg));
  break;
  case 4UL: 
  __asm__  volatile   ("call __get_user_"
                       "4": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg));
  break;
  case 8UL: 
  __asm__  volatile   ("call __get_user_"
                       "8": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg));
  break;
  default: 
  __asm__  volatile   ("call __get_user_"
                       "X": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg));
  break;
  }
  id = (int )__val_gu___0;
  if (__ret_gu___0) {
    ret = -14;
    break;
  } else {

  }
  if (*debug___6 & 16777216U) {
    printk("<7>%s del id %d\n", "mISDN_ioctl", id);
  } else {

  }
  id = misdn_del_timer(dev, id);
  might_fault();
  __pu_val___0 = id;
  switch (sizeof(*((int *)arg))) {
  case 1UL: 
  __asm__  volatile   ("call __put_user_"
                       "1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx");
  break;
  case 2UL: 
  __asm__  volatile   ("call __put_user_"
                       "2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx");
  break;
  case 4UL: 
  __asm__  volatile   ("call __put_user_"
                       "4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx");
  break;
  case 8UL: 
  __asm__  volatile   ("call __put_user_"
                       "8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx");
  break;
  default: 
  __asm__  volatile   ("call __put_user_"
                       "X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx");
  break;
  }
  if (__ret_pu___0) {
    ret = -14;
  } else {

  }
  break;
  default: 
  ret = -22;
  }
  return (ret);
}
}
static struct file_operations  const  mISDN_fops  = 
     {0, 0, & mISDN_read, 0, 0, 0, 0, & mISDN_poll, & mISDN_ioctl, 0, 0, 0, & mISDN_open,
    0, & mISDN_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static struct miscdevice mISDNtimer  =    {255, "mISDNtimer", & mISDN_fops, {0, 0}, 0, 0, 0};
int mISDN_inittimer(u_int *deb ) 
{ 
  int err ;

  {
  debug___6 = deb;
  err = misc_register(& mISDNtimer);
  if (err) {
    printk("<4>mISDN: Could not register timer device\n");
  } else {

  }
  return (err);
}
}
void mISDN_timer_cleanup(void) 
{ 


  {
  misc_deregister(& mISDNtimer);
  return;
}
}
extern void ldv_check_return_value(int res ) ;
static ssize_t res_mISDN_read_2  ;
static int res_mISDN_open_0  ;
void ldv_main9_sequence_infinite_withcheck_stateful(void) 
{ 
  struct file *var_group1 ;
  char *var_mISDN_read_2_p1 ;
  size_t var_mISDN_read_2_p2 ;
  loff_t *var_mISDN_read_2_p3 ;
  poll_table *var_mISDN_poll_3_p1 ;
  struct inode *var_group2 ;
  unsigned int var_mISDN_ioctl_7_p2 ;
  unsigned long var_mISDN_ioctl_7_p3 ;
  unsigned long var_dev_expire_timer_4_p0 ;
  int ldv_s_mISDN_fops_file_operations ;
  int tmp ;
  int tmp___0 ;

  {
  LDV_IN_INTERRUPT = 1;
  ldv_initialize();
  ldv_s_mISDN_fops_file_operations = 0;
  while (1) {
    tmp___0 = nondet_int();
    if (tmp___0 || ! (ldv_s_mISDN_fops_file_operations == 0)) {

    } else {
      break;
    }
    tmp = nondet_int();
    switch (tmp) {
    case 0: 
    if (ldv_s_mISDN_fops_file_operations == 0) {
      ldv_handler_precall();
      res_mISDN_open_0 = mISDN_open(var_group2, var_group1);
      ldv_check_return_value(res_mISDN_open_0);
      if (res_mISDN_open_0) {
        goto ldv_module_exit;
      } else {

      }
      ldv_s_mISDN_fops_file_operations = ldv_s_mISDN_fops_file_operations + 1;
    } else {

    }
    break;
    case 1: 
    if (ldv_s_mISDN_fops_file_operations == 1) {
      ldv_handler_precall();
      res_mISDN_read_2 = mISDN_read(var_group1, var_mISDN_read_2_p1, var_mISDN_read_2_p2,
                                    var_mISDN_read_2_p3);
      ldv_check_return_value(res_mISDN_read_2);
      if (res_mISDN_read_2 < (ssize_t )0) {
        goto ldv_module_exit;
      } else {

      }
      ldv_s_mISDN_fops_file_operations = ldv_s_mISDN_fops_file_operations + 1;
    } else {

    }
    break;
    case 2: 
    if (ldv_s_mISDN_fops_file_operations == 2) {
      ldv_handler_precall();
      mISDN_close(var_group2, var_group1);
      ldv_s_mISDN_fops_file_operations = 0;
    } else {

    }
    break;
    case 3: 
    ldv_handler_precall();
    mISDN_poll(var_group1, var_mISDN_poll_3_p1);
    break;
    case 4: 
    ldv_handler_precall();
    mISDN_ioctl(var_group2, var_group1, var_mISDN_ioctl_7_p2, var_mISDN_ioctl_7_p3);
    break;
    case 5: 
    ldv_handler_precall();
    dev_expire_timer(var_dev_expire_timer_4_p0);
    break;
    default: 
    break;
    }
  }
  ldv_module_exit: 
  ldv_check_final_state();
  return;
}
}
struct urb *usb_alloc_urb(int iso_packets , gfp_t mem_flags ) ;
void usb_free_urb(struct urb *urb ) ;
__inline static void ldv_error(void) 
{ 


  {
  LDV_ERROR: {reach_error();abort();}
}
}
__inline static void ldv_stop(void) 
{ 


  {
  LDV_STOP: 
  goto LDV_STOP;
}
}
extern void *ldv_undef_ptr(void) ;
long ldv__builtin_expect(long exp , long c ) 
{ 


  {
  return (exp);
}
}
int ldv_urb_state  =    0;
int ldv_coherent_state  =    0;
void *usb_alloc_coherent(struct usb_device *dev , size_t size , gfp_t mem_flags ,
                         dma_addr_t *dma ) 
{ 
  void *arbitrary_memory ;
  void *tmp ;

  {
  while (1) {
    tmp = ldv_undef_ptr();
    arbitrary_memory = tmp;
    if (! arbitrary_memory) {
      return ((void *)0);
    } else {

    }
    ldv_coherent_state = ldv_coherent_state + 1;
    return (arbitrary_memory);
    break;
  }
  return ((void *)0);
}
}
void usb_free_coherent(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) 
{ 


  {
  while (1) {
    if ((unsigned long )addr != (unsigned long )((void *)0)) {

    } else {
      ldv_stop();
    }
    if (addr) {
      if (ldv_coherent_state >= 1) {

      } else {
        ldv_error();
      }
      ldv_coherent_state = ldv_coherent_state - 1;
    } else {

    }
    break;
  }
  return;
}
}
struct urb *usb_alloc_urb(int iso_packets , gfp_t mem_flags ) 
{ 
  void *arbitrary_memory ;
  void *tmp ;

  {
  while (1) {
    tmp = ldv_undef_ptr();
    arbitrary_memory = tmp;
    if (! arbitrary_memory) {
      return ((void *)0);
    } else {

    }
    ldv_urb_state = ldv_urb_state + 1;
    return (arbitrary_memory);
    break;
  }
  return ((struct urb *)0);
}
}
void usb_free_urb(struct urb *urb ) 
{ 


  {
  while (1) {
    if ((unsigned long )urb != (unsigned long )((struct urb *)0)) {

    } else {
      ldv_stop();
    }
    if (urb) {
      if (ldv_urb_state >= 1) {

      } else {
        ldv_error();
      }
      ldv_urb_state = ldv_urb_state - 1;
    } else {

    }
    break;
  }
  return;
}
}
void ldv_check_final_state(void) 
{ 


  {
  if (ldv_urb_state == 0) {

  } else {
    ldv_error();
  }
  if (ldv_coherent_state == 0) {

  } else {
    ldv_error();
  }
  return;
}
}