./Ultimate.py --spec ../../sv-benchmarks/c/properties/unreach-call.prp --file ../../sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c --full-output --architecture 32bit -------------------------------------------------------------------------------- Checking for ERROR reachability Using default analysis Version aa418289 Calling Ultimate with: java -Dosgi.configuration.area=/tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/data/config -Xmx12G -Xms1G -jar /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/plugins/org.eclipse.equinox.launcher_1.3.100.v20150511-1540.jar -data @noDefault -ultimatedata /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/data -tc /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/config/AutomizerReach.xml -i ../../sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c -s /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf --cacsl2boogietranslator.entry.function main --witnessprinter.witness.directory /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer --witnessprinter.witness.filename witness.graphml --witnessprinter.write.witness.besides.input.file false --witnessprinter.graph.data.specification CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) --witnessprinter.graph.data.producer Automizer --witnessprinter.graph.data.architecture 32bit --witnessprinter.graph.data.programhash 1ca069cb8d4103e8fb4700634948424bd87542bc ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ Execution finished normally Writing output log to file Ultimate.log Writing human readable error path to file UltimateCounterExample.errorpath Result: FALSE --- Real Ultimate output --- This is Ultimate 0.1.23-aa41828 [2018-11-23 07:39:07,303 INFO L170 SettingsManager]: Resetting all preferences to default values... [2018-11-23 07:39:07,304 INFO L174 SettingsManager]: Resetting UltimateCore preferences to default values [2018-11-23 07:39:07,310 INFO L177 SettingsManager]: Ultimate Commandline Interface provides no preferences, ignoring... [2018-11-23 07:39:07,310 INFO L174 SettingsManager]: Resetting Boogie Preprocessor preferences to default values [2018-11-23 07:39:07,311 INFO L174 SettingsManager]: Resetting Boogie Procedure Inliner preferences to default values [2018-11-23 07:39:07,312 INFO L174 SettingsManager]: Resetting Abstract Interpretation preferences to default values [2018-11-23 07:39:07,313 INFO L174 SettingsManager]: Resetting LassoRanker preferences to default values [2018-11-23 07:39:07,314 INFO L174 SettingsManager]: Resetting Reaching Definitions preferences to default values [2018-11-23 07:39:07,315 INFO L174 SettingsManager]: Resetting SyntaxChecker preferences to default values [2018-11-23 07:39:07,315 INFO L177 SettingsManager]: Büchi Program Product provides no preferences, ignoring... [2018-11-23 07:39:07,315 INFO L174 SettingsManager]: Resetting LTL2Aut preferences to default values [2018-11-23 07:39:07,316 INFO L174 SettingsManager]: Resetting PEA to Boogie preferences to default values [2018-11-23 07:39:07,316 INFO L174 SettingsManager]: Resetting BlockEncodingV2 preferences to default values [2018-11-23 07:39:07,317 INFO L174 SettingsManager]: Resetting ChcToBoogie preferences to default values [2018-11-23 07:39:07,317 INFO L174 SettingsManager]: Resetting AutomataScriptInterpreter preferences to default values [2018-11-23 07:39:07,318 INFO L174 SettingsManager]: Resetting BuchiAutomizer preferences to default values [2018-11-23 07:39:07,319 INFO L174 SettingsManager]: Resetting CACSL2BoogieTranslator preferences to default values [2018-11-23 07:39:07,320 INFO L174 SettingsManager]: Resetting CodeCheck preferences to default values [2018-11-23 07:39:07,321 INFO L174 SettingsManager]: Resetting InvariantSynthesis preferences to default values [2018-11-23 07:39:07,321 INFO L174 SettingsManager]: Resetting RCFGBuilder preferences to default values [2018-11-23 07:39:07,322 INFO L174 SettingsManager]: Resetting TraceAbstraction preferences to default values [2018-11-23 07:39:07,324 INFO L177 SettingsManager]: TraceAbstractionConcurrent provides no preferences, ignoring... [2018-11-23 07:39:07,324 INFO L177 SettingsManager]: TraceAbstractionWithAFAs provides no preferences, ignoring... [2018-11-23 07:39:07,324 INFO L174 SettingsManager]: Resetting TreeAutomizer preferences to default values [2018-11-23 07:39:07,325 INFO L174 SettingsManager]: Resetting IcfgTransformer preferences to default values [2018-11-23 07:39:07,325 INFO L174 SettingsManager]: Resetting Boogie Printer preferences to default values [2018-11-23 07:39:07,325 INFO L174 SettingsManager]: Resetting ReqPrinter preferences to default values [2018-11-23 07:39:07,326 INFO L174 SettingsManager]: Resetting Witness Printer preferences to default values [2018-11-23 07:39:07,327 INFO L177 SettingsManager]: Boogie PL CUP Parser provides no preferences, ignoring... [2018-11-23 07:39:07,327 INFO L174 SettingsManager]: Resetting CDTParser preferences to default values [2018-11-23 07:39:07,327 INFO L177 SettingsManager]: AutomataScriptParser provides no preferences, ignoring... [2018-11-23 07:39:07,328 INFO L177 SettingsManager]: ReqParser provides no preferences, ignoring... [2018-11-23 07:39:07,328 INFO L174 SettingsManager]: Resetting SmtParser preferences to default values [2018-11-23 07:39:07,328 INFO L174 SettingsManager]: Resetting Witness Parser preferences to default values [2018-11-23 07:39:07,329 INFO L181 SettingsManager]: Finished resetting all preferences to default values... [2018-11-23 07:39:07,329 INFO L98 SettingsManager]: Beginning loading settings from /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf [2018-11-23 07:39:07,336 INFO L110 SettingsManager]: Loading preferences was successful [2018-11-23 07:39:07,336 INFO L112 SettingsManager]: Preferences different from defaults after loading the file: [2018-11-23 07:39:07,337 INFO L131 SettingsManager]: Preferences of Boogie Procedure Inliner differ from their defaults: [2018-11-23 07:39:07,337 INFO L133 SettingsManager]: * ... calls to implemented procedures=ONLY_FOR_CONCURRENT_PROGRAMS [2018-11-23 07:39:07,338 INFO L131 SettingsManager]: Preferences of BlockEncodingV2 differ from their defaults: [2018-11-23 07:39:07,338 INFO L133 SettingsManager]: * Create parallel compositions if possible=false [2018-11-23 07:39:07,338 INFO L133 SettingsManager]: * Use SBE=true [2018-11-23 07:39:07,338 INFO L131 SettingsManager]: Preferences of CACSL2BoogieTranslator differ from their defaults: [2018-11-23 07:39:07,338 INFO L133 SettingsManager]: * sizeof long=4 [2018-11-23 07:39:07,338 INFO L133 SettingsManager]: * Overapproximate operations on floating types=true [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * sizeof POINTER=4 [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * Check division by zero=IGNORE [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * Pointer to allocated memory at dereference=IGNORE [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * If two pointers are subtracted or compared they have the same base address=IGNORE [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * Check array bounds for arrays that are off heap=IGNORE [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * sizeof long double=12 [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * Check if freed pointer was valid=false [2018-11-23 07:39:07,339 INFO L133 SettingsManager]: * Use constant arrays=true [2018-11-23 07:39:07,340 INFO L133 SettingsManager]: * Pointer base address is valid at dereference=IGNORE [2018-11-23 07:39:07,340 INFO L131 SettingsManager]: Preferences of RCFGBuilder differ from their defaults: [2018-11-23 07:39:07,340 INFO L133 SettingsManager]: * Size of a code block=SequenceOfStatements [2018-11-23 07:39:07,340 INFO L133 SettingsManager]: * To the following directory=./dump/ [2018-11-23 07:39:07,340 INFO L133 SettingsManager]: * SMT solver=External_DefaultMode [2018-11-23 07:39:07,340 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 07:39:07,340 INFO L131 SettingsManager]: Preferences of TraceAbstraction differ from their defaults: [2018-11-23 07:39:07,341 INFO L133 SettingsManager]: * Compute Interpolants along a Counterexample=FPandBP [2018-11-23 07:39:07,341 INFO L133 SettingsManager]: * Positions where we compute the Hoare Annotation=LoopsAndPotentialCycles [2018-11-23 07:39:07,341 INFO L133 SettingsManager]: * Trace refinement strategy=CAMEL [2018-11-23 07:39:07,341 INFO L133 SettingsManager]: * SMT solver=External_ModelsAndUnsatCoreMode [2018-11-23 07:39:07,341 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in [2018-11-23 07:39:07,341 INFO L133 SettingsManager]: * Compute Hoare Annotation of negated interpolant automaton, abstraction and CFG=true Applying setting for plugin de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator: Entry function -> main Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness directory -> /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness filename -> witness.graphml Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Write witness besides input file -> false Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data specification -> CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data producer -> Automizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data architecture -> 32bit Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data programhash -> 1ca069cb8d4103e8fb4700634948424bd87542bc [2018-11-23 07:39:07,365 INFO L81 nceAwareModelManager]: Repository-Root is: /tmp [2018-11-23 07:39:07,375 INFO L258 ainManager$Toolchain]: [Toolchain 1]: Applicable parser(s) successfully (re)initialized [2018-11-23 07:39:07,377 INFO L214 ainManager$Toolchain]: [Toolchain 1]: Toolchain selected. [2018-11-23 07:39:07,379 INFO L271 PluginConnector]: Initializing CDTParser... [2018-11-23 07:39:07,379 INFO L276 PluginConnector]: CDTParser initialized [2018-11-23 07:39:07,379 INFO L418 ainManager$Toolchain]: [Toolchain 1]: Parsing single file: /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/../../sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c [2018-11-23 07:39:07,424 INFO L221 CDTParser]: Created temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/data/721559bb3/e458b073c795456dbc9fc61247562c50/FLAGb8b077928 [2018-11-23 07:39:07,745 INFO L307 CDTParser]: Found 1 translation units. [2018-11-23 07:39:07,746 INFO L161 CDTParser]: Scanning /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c [2018-11-23 07:39:07,750 INFO L355 CDTParser]: About to delete temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/data/721559bb3/e458b073c795456dbc9fc61247562c50/FLAGb8b077928 [2018-11-23 07:39:08,181 INFO L363 CDTParser]: Successfully deleted /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/data/721559bb3/e458b073c795456dbc9fc61247562c50 [2018-11-23 07:39:08,184 INFO L296 ainManager$Toolchain]: ####################### [Toolchain 1] ####################### [2018-11-23 07:39:08,185 INFO L131 ToolchainWalker]: Walking toolchain with 6 elements. [2018-11-23 07:39:08,185 INFO L113 PluginConnector]: ------------------------CACSL2BoogieTranslator---------------------------- [2018-11-23 07:39:08,185 INFO L271 PluginConnector]: Initializing CACSL2BoogieTranslator... [2018-11-23 07:39:08,188 INFO L276 PluginConnector]: CACSL2BoogieTranslator initialized [2018-11-23 07:39:08,188 INFO L185 PluginConnector]: Executing the observer ACSLObjectContainerObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,190 INFO L205 PluginConnector]: Invalid model from CACSL2BoogieTranslator for observer de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.ACSLObjectContainerObserver@1c47d32d and model type de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08, skipping insertion in model container [2018-11-23 07:39:08,190 INFO L185 PluginConnector]: Executing the observer CACSL2BoogieTranslatorObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,197 INFO L145 MainTranslator]: Starting translation in SV-COMP mode [2018-11-23 07:39:08,208 INFO L176 MainTranslator]: Built tables and reachable declarations [2018-11-23 07:39:08,326 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 07:39:08,329 INFO L191 MainTranslator]: Completed pre-run [2018-11-23 07:39:08,342 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 07:39:08,350 INFO L195 MainTranslator]: Completed translation [2018-11-23 07:39:08,350 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08 WrapperNode [2018-11-23 07:39:08,350 INFO L132 PluginConnector]: ------------------------ END CACSL2BoogieTranslator---------------------------- [2018-11-23 07:39:08,351 INFO L113 PluginConnector]: ------------------------Boogie Procedure Inliner---------------------------- [2018-11-23 07:39:08,351 INFO L271 PluginConnector]: Initializing Boogie Procedure Inliner... [2018-11-23 07:39:08,351 INFO L276 PluginConnector]: Boogie Procedure Inliner initialized [2018-11-23 07:39:08,358 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,362 INFO L185 PluginConnector]: Executing the observer Inliner from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,368 INFO L132 PluginConnector]: ------------------------ END Boogie Procedure Inliner---------------------------- [2018-11-23 07:39:08,368 INFO L113 PluginConnector]: ------------------------Boogie Preprocessor---------------------------- [2018-11-23 07:39:08,368 INFO L271 PluginConnector]: Initializing Boogie Preprocessor... [2018-11-23 07:39:08,368 INFO L276 PluginConnector]: Boogie Preprocessor initialized [2018-11-23 07:39:08,376 INFO L185 PluginConnector]: Executing the observer EnsureBoogieModelObserver from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,376 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,377 INFO L185 PluginConnector]: Executing the observer ConstExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,377 INFO L185 PluginConnector]: Executing the observer StructExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,380 INFO L185 PluginConnector]: Executing the observer UnstructureCode from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,381 INFO L185 PluginConnector]: Executing the observer FunctionInliner from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,382 INFO L185 PluginConnector]: Executing the observer BoogieSymbolTableConstructor from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... [2018-11-23 07:39:08,383 INFO L132 PluginConnector]: ------------------------ END Boogie Preprocessor---------------------------- [2018-11-23 07:39:08,383 INFO L113 PluginConnector]: ------------------------RCFGBuilder---------------------------- [2018-11-23 07:39:08,383 INFO L271 PluginConnector]: Initializing RCFGBuilder... [2018-11-23 07:39:08,384 INFO L276 PluginConnector]: RCFGBuilder initialized [2018-11-23 07:39:08,384 INFO L185 PluginConnector]: Executing the observer RCFGBuilderObserver from plugin RCFGBuilder for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (1/1) ... No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 07:39:08,471 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.init [2018-11-23 07:39:08,472 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.init [2018-11-23 07:39:08,472 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.start [2018-11-23 07:39:08,472 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.start [2018-11-23 07:39:08,472 INFO L130 BoogieDeclarations]: Found specification of procedure main [2018-11-23 07:39:08,472 INFO L138 BoogieDeclarations]: Found implementation of procedure main [2018-11-23 07:39:08,472 INFO L130 BoogieDeclarations]: Found specification of procedure fibo [2018-11-23 07:39:08,472 INFO L138 BoogieDeclarations]: Found implementation of procedure fibo [2018-11-23 07:39:08,587 INFO L275 CfgBuilder]: Using the 1 location(s) as analysis (start of procedure ULTIMATE.start) [2018-11-23 07:39:08,588 INFO L280 CfgBuilder]: Removed 0 assue(true) statements. [2018-11-23 07:39:08,588 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 07:39:08 BoogieIcfgContainer [2018-11-23 07:39:08,588 INFO L132 PluginConnector]: ------------------------ END RCFGBuilder---------------------------- [2018-11-23 07:39:08,589 INFO L113 PluginConnector]: ------------------------TraceAbstraction---------------------------- [2018-11-23 07:39:08,589 INFO L271 PluginConnector]: Initializing TraceAbstraction... [2018-11-23 07:39:08,591 INFO L276 PluginConnector]: TraceAbstraction initialized [2018-11-23 07:39:08,592 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "CDTParser AST 23.11 07:39:08" (1/3) ... [2018-11-23 07:39:08,592 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@ec1e6b3 and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 07:39:08, skipping insertion in model container [2018-11-23 07:39:08,593 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 07:39:08" (2/3) ... [2018-11-23 07:39:08,593 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@ec1e6b3 and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 07:39:08, skipping insertion in model container [2018-11-23 07:39:08,593 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 07:39:08" (3/3) ... [2018-11-23 07:39:08,594 INFO L112 eAbstractionObserver]: Analyzing ICFG fibo_10_false-unreach-call_true-termination.c [2018-11-23 07:39:08,603 INFO L156 ceAbstractionStarter]: Automizer settings: Hoare:true NWA Interpolation:FPandBP Determinization: PREDICATE_ABSTRACTION [2018-11-23 07:39:08,609 INFO L168 ceAbstractionStarter]: Appying trace abstraction to program that has 1 error locations. [2018-11-23 07:39:08,620 INFO L257 AbstractCegarLoop]: Starting to check reachability of 1 error locations. [2018-11-23 07:39:08,642 INFO L133 ementStrategyFactory]: Using default assertion order modulation [2018-11-23 07:39:08,643 INFO L382 AbstractCegarLoop]: Interprodecural is true [2018-11-23 07:39:08,643 INFO L383 AbstractCegarLoop]: Hoare is true [2018-11-23 07:39:08,643 INFO L384 AbstractCegarLoop]: Compute interpolants for FPandBP [2018-11-23 07:39:08,643 INFO L385 AbstractCegarLoop]: Backedges is STRAIGHT_LINE [2018-11-23 07:39:08,644 INFO L386 AbstractCegarLoop]: Determinization is PREDICATE_ABSTRACTION [2018-11-23 07:39:08,644 INFO L387 AbstractCegarLoop]: Difference is false [2018-11-23 07:39:08,644 INFO L388 AbstractCegarLoop]: Minimize is MINIMIZE_SEVPA [2018-11-23 07:39:08,644 INFO L393 AbstractCegarLoop]: ======== Iteration 0==of CEGAR loop == AllErrorsAtOnce======== [2018-11-23 07:39:08,659 INFO L276 IsEmpty]: Start isEmpty. Operand 24 states. [2018-11-23 07:39:08,663 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 14 [2018-11-23 07:39:08,663 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:08,664 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:08,666 INFO L423 AbstractCegarLoop]: === Iteration 1 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:08,670 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:08,671 INFO L82 PathProgramCache]: Analyzing trace with hash 537028541, now seen corresponding path program 1 times [2018-11-23 07:39:08,672 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:08,673 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:08,713 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:08,714 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:08,714 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:08,739 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:08,789 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 07:39:08,791 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 07:39:08,791 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 07:39:08,794 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 07:39:08,802 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 07:39:08,802 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 07:39:08,804 INFO L87 Difference]: Start difference. First operand 24 states. Second operand 5 states. [2018-11-23 07:39:08,870 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:08,870 INFO L93 Difference]: Finished difference Result 35 states and 41 transitions. [2018-11-23 07:39:08,871 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 07:39:08,872 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 13 [2018-11-23 07:39:08,872 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:08,878 INFO L225 Difference]: With dead ends: 35 [2018-11-23 07:39:08,878 INFO L226 Difference]: Without dead ends: 21 [2018-11-23 07:39:08,880 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 07:39:08,890 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 21 states. [2018-11-23 07:39:08,903 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 21 to 21. [2018-11-23 07:39:08,904 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 21 states. [2018-11-23 07:39:08,904 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 21 states to 21 states and 25 transitions. [2018-11-23 07:39:08,905 INFO L78 Accepts]: Start accepts. Automaton has 21 states and 25 transitions. Word has length 13 [2018-11-23 07:39:08,905 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:08,905 INFO L480 AbstractCegarLoop]: Abstraction has 21 states and 25 transitions. [2018-11-23 07:39:08,906 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 07:39:08,906 INFO L276 IsEmpty]: Start isEmpty. Operand 21 states and 25 transitions. [2018-11-23 07:39:08,906 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 15 [2018-11-23 07:39:08,907 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:08,907 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:08,907 INFO L423 AbstractCegarLoop]: === Iteration 2 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:08,907 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:08,907 INFO L82 PathProgramCache]: Analyzing trace with hash 179123823, now seen corresponding path program 1 times [2018-11-23 07:39:08,907 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:08,907 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:08,908 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:08,908 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:08,908 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:08,913 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:08,933 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 07:39:08,933 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 07:39:08,933 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 07:39:08,935 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 07:39:08,935 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 07:39:08,935 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 07:39:08,935 INFO L87 Difference]: Start difference. First operand 21 states and 25 transitions. Second operand 5 states. [2018-11-23 07:39:09,000 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:09,000 INFO L93 Difference]: Finished difference Result 27 states and 32 transitions. [2018-11-23 07:39:09,001 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 07:39:09,001 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 14 [2018-11-23 07:39:09,001 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:09,001 INFO L225 Difference]: With dead ends: 27 [2018-11-23 07:39:09,001 INFO L226 Difference]: Without dead ends: 23 [2018-11-23 07:39:09,002 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 07:39:09,002 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 23 states. [2018-11-23 07:39:09,005 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 23 to 21. [2018-11-23 07:39:09,005 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 21 states. [2018-11-23 07:39:09,006 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 21 states to 21 states and 25 transitions. [2018-11-23 07:39:09,006 INFO L78 Accepts]: Start accepts. Automaton has 21 states and 25 transitions. Word has length 14 [2018-11-23 07:39:09,006 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:09,007 INFO L480 AbstractCegarLoop]: Abstraction has 21 states and 25 transitions. [2018-11-23 07:39:09,007 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 07:39:09,007 INFO L276 IsEmpty]: Start isEmpty. Operand 21 states and 25 transitions. [2018-11-23 07:39:09,007 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 27 [2018-11-23 07:39:09,008 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:09,008 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:09,008 INFO L423 AbstractCegarLoop]: === Iteration 3 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:09,008 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:09,008 INFO L82 PathProgramCache]: Analyzing trace with hash 806022394, now seen corresponding path program 1 times [2018-11-23 07:39:09,008 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:09,008 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:09,009 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,009 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:09,009 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,018 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:09,073 INFO L134 CoverageAnalysis]: Checked inductivity of 12 backedges. 5 proven. 3 refuted. 0 times theorem prover too weak. 4 trivial. 0 not checked. [2018-11-23 07:39:09,073 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:09,073 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:09,084 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:09,095 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:09,101 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:09,142 INFO L134 CoverageAnalysis]: Checked inductivity of 12 backedges. 2 proven. 6 refuted. 0 times theorem prover too weak. 4 trivial. 0 not checked. [2018-11-23 07:39:09,161 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:09,161 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 6] total 8 [2018-11-23 07:39:09,161 INFO L459 AbstractCegarLoop]: Interpolant automaton has 8 states [2018-11-23 07:39:09,162 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 8 interpolants. [2018-11-23 07:39:09,162 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=15, Invalid=41, Unknown=0, NotChecked=0, Total=56 [2018-11-23 07:39:09,162 INFO L87 Difference]: Start difference. First operand 21 states and 25 transitions. Second operand 8 states. [2018-11-23 07:39:09,266 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:09,266 INFO L93 Difference]: Finished difference Result 38 states and 49 transitions. [2018-11-23 07:39:09,267 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 8 states. [2018-11-23 07:39:09,267 INFO L78 Accepts]: Start accepts. Automaton has 8 states. Word has length 26 [2018-11-23 07:39:09,267 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:09,268 INFO L225 Difference]: With dead ends: 38 [2018-11-23 07:39:09,268 INFO L226 Difference]: Without dead ends: 23 [2018-11-23 07:39:09,269 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 38 GetRequests, 27 SyntacticMatches, 1 SemanticMatches, 10 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 9 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=36, Invalid=96, Unknown=0, NotChecked=0, Total=132 [2018-11-23 07:39:09,269 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 23 states. [2018-11-23 07:39:09,272 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 23 to 23. [2018-11-23 07:39:09,272 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 23 states. [2018-11-23 07:39:09,273 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 23 states to 23 states and 27 transitions. [2018-11-23 07:39:09,273 INFO L78 Accepts]: Start accepts. Automaton has 23 states and 27 transitions. Word has length 26 [2018-11-23 07:39:09,274 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:09,274 INFO L480 AbstractCegarLoop]: Abstraction has 23 states and 27 transitions. [2018-11-23 07:39:09,274 INFO L481 AbstractCegarLoop]: Interpolant automaton has 8 states. [2018-11-23 07:39:09,274 INFO L276 IsEmpty]: Start isEmpty. Operand 23 states and 27 transitions. [2018-11-23 07:39:09,275 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 28 [2018-11-23 07:39:09,275 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:09,275 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:09,275 INFO L423 AbstractCegarLoop]: === Iteration 4 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:09,275 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:09,275 INFO L82 PathProgramCache]: Analyzing trace with hash -983862936, now seen corresponding path program 1 times [2018-11-23 07:39:09,275 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:09,275 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:09,276 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,276 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:09,276 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,284 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:09,313 INFO L134 CoverageAnalysis]: Checked inductivity of 13 backedges. 2 proven. 6 refuted. 0 times theorem prover too weak. 5 trivial. 0 not checked. [2018-11-23 07:39:09,313 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:09,313 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:09,327 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:09,336 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:09,338 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:09,346 INFO L134 CoverageAnalysis]: Checked inductivity of 13 backedges. 2 proven. 6 refuted. 0 times theorem prover too weak. 5 trivial. 0 not checked. [2018-11-23 07:39:09,360 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:09,360 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 6] total 6 [2018-11-23 07:39:09,361 INFO L459 AbstractCegarLoop]: Interpolant automaton has 6 states [2018-11-23 07:39:09,361 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 6 interpolants. [2018-11-23 07:39:09,361 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=10, Invalid=20, Unknown=0, NotChecked=0, Total=30 [2018-11-23 07:39:09,361 INFO L87 Difference]: Start difference. First operand 23 states and 27 transitions. Second operand 6 states. [2018-11-23 07:39:09,407 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:09,407 INFO L93 Difference]: Finished difference Result 32 states and 41 transitions. [2018-11-23 07:39:09,408 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 6 states. [2018-11-23 07:39:09,408 INFO L78 Accepts]: Start accepts. Automaton has 6 states. Word has length 27 [2018-11-23 07:39:09,408 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:09,409 INFO L225 Difference]: With dead ends: 32 [2018-11-23 07:39:09,409 INFO L226 Difference]: Without dead ends: 28 [2018-11-23 07:39:09,409 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 37 GetRequests, 31 SyntacticMatches, 0 SemanticMatches, 6 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=20, Invalid=36, Unknown=0, NotChecked=0, Total=56 [2018-11-23 07:39:09,409 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 28 states. [2018-11-23 07:39:09,412 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 28 to 28. [2018-11-23 07:39:09,412 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 28 states. [2018-11-23 07:39:09,413 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 28 states to 28 states and 37 transitions. [2018-11-23 07:39:09,413 INFO L78 Accepts]: Start accepts. Automaton has 28 states and 37 transitions. Word has length 27 [2018-11-23 07:39:09,413 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:09,413 INFO L480 AbstractCegarLoop]: Abstraction has 28 states and 37 transitions. [2018-11-23 07:39:09,414 INFO L481 AbstractCegarLoop]: Interpolant automaton has 6 states. [2018-11-23 07:39:09,414 INFO L276 IsEmpty]: Start isEmpty. Operand 28 states and 37 transitions. [2018-11-23 07:39:09,414 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 41 [2018-11-23 07:39:09,414 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:09,415 INFO L402 BasicCegarLoop]: trace histogram [5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:09,415 INFO L423 AbstractCegarLoop]: === Iteration 5 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:09,415 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:09,415 INFO L82 PathProgramCache]: Analyzing trace with hash 146085807, now seen corresponding path program 2 times [2018-11-23 07:39:09,415 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:09,415 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:09,416 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,416 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:09,416 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,425 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:09,489 INFO L134 CoverageAnalysis]: Checked inductivity of 47 backedges. 18 proven. 8 refuted. 0 times theorem prover too weak. 21 trivial. 0 not checked. [2018-11-23 07:39:09,489 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:09,489 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:09,503 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 07:39:09,516 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 07:39:09,517 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:09,519 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:09,550 INFO L134 CoverageAnalysis]: Checked inductivity of 47 backedges. 6 proven. 21 refuted. 0 times theorem prover too weak. 20 trivial. 0 not checked. [2018-11-23 07:39:09,574 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:09,574 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 7] total 8 [2018-11-23 07:39:09,574 INFO L459 AbstractCegarLoop]: Interpolant automaton has 8 states [2018-11-23 07:39:09,575 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 8 interpolants. [2018-11-23 07:39:09,575 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=19, Invalid=37, Unknown=0, NotChecked=0, Total=56 [2018-11-23 07:39:09,575 INFO L87 Difference]: Start difference. First operand 28 states and 37 transitions. Second operand 8 states. [2018-11-23 07:39:09,654 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:09,654 INFO L93 Difference]: Finished difference Result 40 states and 60 transitions. [2018-11-23 07:39:09,655 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 8 states. [2018-11-23 07:39:09,655 INFO L78 Accepts]: Start accepts. Automaton has 8 states. Word has length 40 [2018-11-23 07:39:09,655 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:09,656 INFO L225 Difference]: With dead ends: 40 [2018-11-23 07:39:09,656 INFO L226 Difference]: Without dead ends: 36 [2018-11-23 07:39:09,656 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 50 GetRequests, 40 SyntacticMatches, 0 SemanticMatches, 10 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 9 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=47, Invalid=85, Unknown=0, NotChecked=0, Total=132 [2018-11-23 07:39:09,656 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 36 states. [2018-11-23 07:39:09,660 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 36 to 33. [2018-11-23 07:39:09,660 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 33 states. [2018-11-23 07:39:09,661 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 33 states to 33 states and 49 transitions. [2018-11-23 07:39:09,662 INFO L78 Accepts]: Start accepts. Automaton has 33 states and 49 transitions. Word has length 40 [2018-11-23 07:39:09,662 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:09,662 INFO L480 AbstractCegarLoop]: Abstraction has 33 states and 49 transitions. [2018-11-23 07:39:09,662 INFO L481 AbstractCegarLoop]: Interpolant automaton has 8 states. [2018-11-23 07:39:09,662 INFO L276 IsEmpty]: Start isEmpty. Operand 33 states and 49 transitions. [2018-11-23 07:39:09,663 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 97 [2018-11-23 07:39:09,663 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:09,663 INFO L402 BasicCegarLoop]: trace histogram [13, 13, 11, 6, 6, 6, 6, 6, 6, 6, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:09,664 INFO L423 AbstractCegarLoop]: === Iteration 6 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:09,664 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:09,664 INFO L82 PathProgramCache]: Analyzing trace with hash 1474757101, now seen corresponding path program 3 times [2018-11-23 07:39:09,664 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:09,664 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:09,665 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,665 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:09,665 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:09,682 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:09,829 INFO L134 CoverageAnalysis]: Checked inductivity of 427 backedges. 176 proven. 28 refuted. 0 times theorem prover too weak. 223 trivial. 0 not checked. [2018-11-23 07:39:09,829 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:09,830 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:09,840 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 07:39:09,862 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 7 check-sat command(s) [2018-11-23 07:39:09,863 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:09,866 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:09,894 INFO L134 CoverageAnalysis]: Checked inductivity of 427 backedges. 174 proven. 17 refuted. 0 times theorem prover too weak. 236 trivial. 0 not checked. [2018-11-23 07:39:09,908 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:09,908 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 8] total 12 [2018-11-23 07:39:09,909 INFO L459 AbstractCegarLoop]: Interpolant automaton has 12 states [2018-11-23 07:39:09,909 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 12 interpolants. [2018-11-23 07:39:09,909 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=31, Invalid=101, Unknown=0, NotChecked=0, Total=132 [2018-11-23 07:39:09,910 INFO L87 Difference]: Start difference. First operand 33 states and 49 transitions. Second operand 12 states. [2018-11-23 07:39:10,092 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:10,092 INFO L93 Difference]: Finished difference Result 76 states and 143 transitions. [2018-11-23 07:39:10,093 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 07:39:10,093 INFO L78 Accepts]: Start accepts. Automaton has 12 states. Word has length 96 [2018-11-23 07:39:10,093 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:10,094 INFO L225 Difference]: With dead ends: 76 [2018-11-23 07:39:10,094 INFO L226 Difference]: Without dead ends: 49 [2018-11-23 07:39:10,095 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 113 GetRequests, 96 SyntacticMatches, 0 SemanticMatches, 17 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 43 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=101, Invalid=241, Unknown=0, NotChecked=0, Total=342 [2018-11-23 07:39:10,096 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 49 states. [2018-11-23 07:39:10,102 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 49 to 43. [2018-11-23 07:39:10,103 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 43 states. [2018-11-23 07:39:10,104 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 43 states to 43 states and 63 transitions. [2018-11-23 07:39:10,104 INFO L78 Accepts]: Start accepts. Automaton has 43 states and 63 transitions. Word has length 96 [2018-11-23 07:39:10,104 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:10,105 INFO L480 AbstractCegarLoop]: Abstraction has 43 states and 63 transitions. [2018-11-23 07:39:10,105 INFO L481 AbstractCegarLoop]: Interpolant automaton has 12 states. [2018-11-23 07:39:10,105 INFO L276 IsEmpty]: Start isEmpty. Operand 43 states and 63 transitions. [2018-11-23 07:39:10,106 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 83 [2018-11-23 07:39:10,106 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:10,107 INFO L402 BasicCegarLoop]: trace histogram [11, 11, 9, 5, 5, 5, 5, 5, 5, 5, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:10,107 INFO L423 AbstractCegarLoop]: === Iteration 7 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:10,107 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:10,107 INFO L82 PathProgramCache]: Analyzing trace with hash -1986920854, now seen corresponding path program 4 times [2018-11-23 07:39:10,107 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:10,108 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:10,108 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:10,109 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:10,109 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:10,119 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:10,217 INFO L134 CoverageAnalysis]: Checked inductivity of 296 backedges. 23 proven. 69 refuted. 0 times theorem prover too weak. 204 trivial. 0 not checked. [2018-11-23 07:39:10,217 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:10,218 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:10,231 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 07:39:10,246 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 07:39:10,246 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:10,249 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:10,305 INFO L134 CoverageAnalysis]: Checked inductivity of 296 backedges. 22 proven. 127 refuted. 0 times theorem prover too weak. 147 trivial. 0 not checked. [2018-11-23 07:39:10,320 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:10,320 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [13, 8] total 19 [2018-11-23 07:39:10,320 INFO L459 AbstractCegarLoop]: Interpolant automaton has 19 states [2018-11-23 07:39:10,320 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 19 interpolants. [2018-11-23 07:39:10,320 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=51, Invalid=291, Unknown=0, NotChecked=0, Total=342 [2018-11-23 07:39:10,321 INFO L87 Difference]: Start difference. First operand 43 states and 63 transitions. Second operand 19 states. [2018-11-23 07:39:10,774 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:10,775 INFO L93 Difference]: Finished difference Result 75 states and 150 transitions. [2018-11-23 07:39:10,775 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 26 states. [2018-11-23 07:39:10,775 INFO L78 Accepts]: Start accepts. Automaton has 19 states. Word has length 82 [2018-11-23 07:39:10,775 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:10,777 INFO L225 Difference]: With dead ends: 75 [2018-11-23 07:39:10,777 INFO L226 Difference]: Without dead ends: 71 [2018-11-23 07:39:10,777 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 128 GetRequests, 89 SyntacticMatches, 0 SemanticMatches, 39 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 324 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=336, Invalid=1304, Unknown=0, NotChecked=0, Total=1640 [2018-11-23 07:39:10,778 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 71 states. [2018-11-23 07:39:10,787 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 71 to 48. [2018-11-23 07:39:10,787 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 48 states. [2018-11-23 07:39:10,788 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 48 states to 48 states and 77 transitions. [2018-11-23 07:39:10,788 INFO L78 Accepts]: Start accepts. Automaton has 48 states and 77 transitions. Word has length 82 [2018-11-23 07:39:10,788 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:10,788 INFO L480 AbstractCegarLoop]: Abstraction has 48 states and 77 transitions. [2018-11-23 07:39:10,789 INFO L481 AbstractCegarLoop]: Interpolant automaton has 19 states. [2018-11-23 07:39:10,789 INFO L276 IsEmpty]: Start isEmpty. Operand 48 states and 77 transitions. [2018-11-23 07:39:10,791 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 165 [2018-11-23 07:39:10,791 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:10,791 INFO L402 BasicCegarLoop]: trace histogram [23, 23, 19, 11, 11, 11, 11, 11, 11, 11, 8, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:10,791 INFO L423 AbstractCegarLoop]: === Iteration 8 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:10,791 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:10,791 INFO L82 PathProgramCache]: Analyzing trace with hash 1548772748, now seen corresponding path program 5 times [2018-11-23 07:39:10,792 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:10,792 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:10,792 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:10,792 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:10,793 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:10,812 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:10,887 INFO L134 CoverageAnalysis]: Checked inductivity of 1403 backedges. 93 proven. 312 refuted. 0 times theorem prover too weak. 998 trivial. 0 not checked. [2018-11-23 07:39:10,888 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:10,888 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:10,895 INFO L103 rtionOrderModulation]: Keeping assertion order INSIDE_LOOP_FIRST1 [2018-11-23 07:39:10,918 INFO L249 tOrderPrioritization]: Assert order INSIDE_LOOP_FIRST1 issued 10 check-sat command(s) [2018-11-23 07:39:10,919 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:10,923 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:10,977 INFO L134 CoverageAnalysis]: Checked inductivity of 1403 backedges. 822 proven. 67 refuted. 0 times theorem prover too weak. 514 trivial. 0 not checked. [2018-11-23 07:39:10,992 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:10,992 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [8, 9] total 12 [2018-11-23 07:39:10,993 INFO L459 AbstractCegarLoop]: Interpolant automaton has 12 states [2018-11-23 07:39:10,993 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 12 interpolants. [2018-11-23 07:39:10,993 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=28, Invalid=104, Unknown=0, NotChecked=0, Total=132 [2018-11-23 07:39:10,993 INFO L87 Difference]: Start difference. First operand 48 states and 77 transitions. Second operand 12 states. [2018-11-23 07:39:11,220 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:11,220 INFO L93 Difference]: Finished difference Result 125 states and 254 transitions. [2018-11-23 07:39:11,221 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 19 states. [2018-11-23 07:39:11,221 INFO L78 Accepts]: Start accepts. Automaton has 12 states. Word has length 164 [2018-11-23 07:39:11,221 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:11,222 INFO L225 Difference]: With dead ends: 125 [2018-11-23 07:39:11,222 INFO L226 Difference]: Without dead ends: 79 [2018-11-23 07:39:11,223 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 186 GetRequests, 164 SyntacticMatches, 0 SemanticMatches, 22 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 73 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=156, Invalid=396, Unknown=0, NotChecked=0, Total=552 [2018-11-23 07:39:11,223 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 79 states. [2018-11-23 07:39:11,231 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 79 to 64. [2018-11-23 07:39:11,231 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 64 states. [2018-11-23 07:39:11,231 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 64 states to 64 states and 83 transitions. [2018-11-23 07:39:11,232 INFO L78 Accepts]: Start accepts. Automaton has 64 states and 83 transitions. Word has length 164 [2018-11-23 07:39:11,232 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:11,232 INFO L480 AbstractCegarLoop]: Abstraction has 64 states and 83 transitions. [2018-11-23 07:39:11,232 INFO L481 AbstractCegarLoop]: Interpolant automaton has 12 states. [2018-11-23 07:39:11,232 INFO L276 IsEmpty]: Start isEmpty. Operand 64 states and 83 transitions. [2018-11-23 07:39:11,233 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 137 [2018-11-23 07:39:11,233 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:11,234 INFO L402 BasicCegarLoop]: trace histogram [19, 19, 15, 9, 9, 9, 9, 9, 9, 9, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:11,234 INFO L423 AbstractCegarLoop]: === Iteration 9 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:11,234 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:11,234 INFO L82 PathProgramCache]: Analyzing trace with hash 713359980, now seen corresponding path program 6 times [2018-11-23 07:39:11,234 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:11,234 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:11,235 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:11,235 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:11,235 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:11,244 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:11,279 INFO L134 CoverageAnalysis]: Checked inductivity of 933 backedges. 162 proven. 102 refuted. 0 times theorem prover too weak. 669 trivial. 0 not checked. [2018-11-23 07:39:11,279 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:11,279 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:11,293 INFO L103 rtionOrderModulation]: Keeping assertion order MIX_INSIDE_OUTSIDE [2018-11-23 07:39:11,323 INFO L249 tOrderPrioritization]: Assert order MIX_INSIDE_OUTSIDE issued 8 check-sat command(s) [2018-11-23 07:39:11,323 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:11,326 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:11,369 INFO L134 CoverageAnalysis]: Checked inductivity of 933 backedges. 495 proven. 39 refuted. 0 times theorem prover too weak. 399 trivial. 0 not checked. [2018-11-23 07:39:11,383 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:11,383 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 9] total 11 [2018-11-23 07:39:11,383 INFO L459 AbstractCegarLoop]: Interpolant automaton has 11 states [2018-11-23 07:39:11,384 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 11 interpolants. [2018-11-23 07:39:11,384 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=24, Invalid=86, Unknown=0, NotChecked=0, Total=110 [2018-11-23 07:39:11,384 INFO L87 Difference]: Start difference. First operand 64 states and 83 transitions. Second operand 11 states. [2018-11-23 07:39:11,485 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:11,485 INFO L93 Difference]: Finished difference Result 121 states and 169 transitions. [2018-11-23 07:39:11,486 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 07:39:11,486 INFO L78 Accepts]: Start accepts. Automaton has 11 states. Word has length 136 [2018-11-23 07:39:11,486 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:11,487 INFO L225 Difference]: With dead ends: 121 [2018-11-23 07:39:11,488 INFO L226 Difference]: Without dead ends: 67 [2018-11-23 07:39:11,488 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 149 GetRequests, 133 SyntacticMatches, 0 SemanticMatches, 16 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 19 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=91, Invalid=215, Unknown=0, NotChecked=0, Total=306 [2018-11-23 07:39:11,489 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 67 states. [2018-11-23 07:39:11,495 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 67 to 62. [2018-11-23 07:39:11,495 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 62 states. [2018-11-23 07:39:11,496 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 62 states to 62 states and 78 transitions. [2018-11-23 07:39:11,496 INFO L78 Accepts]: Start accepts. Automaton has 62 states and 78 transitions. Word has length 136 [2018-11-23 07:39:11,496 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:11,496 INFO L480 AbstractCegarLoop]: Abstraction has 62 states and 78 transitions. [2018-11-23 07:39:11,496 INFO L481 AbstractCegarLoop]: Interpolant automaton has 11 states. [2018-11-23 07:39:11,496 INFO L276 IsEmpty]: Start isEmpty. Operand 62 states and 78 transitions. [2018-11-23 07:39:11,499 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 219 [2018-11-23 07:39:11,499 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:11,499 INFO L402 BasicCegarLoop]: trace histogram [31, 31, 25, 15, 15, 15, 15, 15, 15, 15, 10, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:11,499 INFO L423 AbstractCegarLoop]: === Iteration 10 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:11,499 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:11,499 INFO L82 PathProgramCache]: Analyzing trace with hash 706081956, now seen corresponding path program 7 times [2018-11-23 07:39:11,499 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:11,499 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:11,500 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:11,500 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:11,500 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:11,511 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:11,568 INFO L134 CoverageAnalysis]: Checked inductivity of 2580 backedges. 137 proven. 567 refuted. 0 times theorem prover too weak. 1876 trivial. 0 not checked. [2018-11-23 07:39:11,568 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:11,568 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:11,577 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:11,610 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:11,614 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:11,674 INFO L134 CoverageAnalysis]: Checked inductivity of 2580 backedges. 108 proven. 716 refuted. 0 times theorem prover too weak. 1756 trivial. 0 not checked. [2018-11-23 07:39:11,690 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:11,690 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 10] total 10 [2018-11-23 07:39:11,690 INFO L459 AbstractCegarLoop]: Interpolant automaton has 10 states [2018-11-23 07:39:11,691 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 10 interpolants. [2018-11-23 07:39:11,691 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=32, Invalid=58, Unknown=0, NotChecked=0, Total=90 [2018-11-23 07:39:11,691 INFO L87 Difference]: Start difference. First operand 62 states and 78 transitions. Second operand 10 states. [2018-11-23 07:39:11,787 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:11,788 INFO L93 Difference]: Finished difference Result 79 states and 118 transitions. [2018-11-23 07:39:11,788 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 07:39:11,788 INFO L78 Accepts]: Start accepts. Automaton has 10 states. Word has length 218 [2018-11-23 07:39:11,789 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:11,789 INFO L225 Difference]: With dead ends: 79 [2018-11-23 07:39:11,789 INFO L226 Difference]: Without dead ends: 75 [2018-11-23 07:39:11,790 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 236 GetRequests, 222 SyntacticMatches, 0 SemanticMatches, 14 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 24 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=86, Invalid=154, Unknown=0, NotChecked=0, Total=240 [2018-11-23 07:39:11,790 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 75 states. [2018-11-23 07:39:11,797 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 75 to 72. [2018-11-23 07:39:11,797 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 72 states. [2018-11-23 07:39:11,798 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 72 states to 72 states and 104 transitions. [2018-11-23 07:39:11,798 INFO L78 Accepts]: Start accepts. Automaton has 72 states and 104 transitions. Word has length 218 [2018-11-23 07:39:11,798 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:11,799 INFO L480 AbstractCegarLoop]: Abstraction has 72 states and 104 transitions. [2018-11-23 07:39:11,799 INFO L481 AbstractCegarLoop]: Interpolant automaton has 10 states. [2018-11-23 07:39:11,799 INFO L276 IsEmpty]: Start isEmpty. Operand 72 states and 104 transitions. [2018-11-23 07:39:11,803 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 355 [2018-11-23 07:39:11,803 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:11,803 INFO L402 BasicCegarLoop]: trace histogram [51, 51, 41, 25, 25, 25, 25, 25, 25, 25, 16, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:11,803 INFO L423 AbstractCegarLoop]: === Iteration 11 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:11,803 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:11,803 INFO L82 PathProgramCache]: Analyzing trace with hash 223191898, now seen corresponding path program 8 times [2018-11-23 07:39:11,804 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:11,804 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:11,804 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:11,804 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 07:39:11,804 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:11,820 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:11,920 INFO L134 CoverageAnalysis]: Checked inductivity of 7120 backedges. 248 proven. 1232 refuted. 0 times theorem prover too weak. 5640 trivial. 0 not checked. [2018-11-23 07:39:11,921 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:11,921 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:11,927 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 07:39:11,987 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 07:39:11,987 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:11,991 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:12,085 INFO L134 CoverageAnalysis]: Checked inductivity of 7120 backedges. 214 proven. 1491 refuted. 0 times theorem prover too weak. 5415 trivial. 0 not checked. [2018-11-23 07:39:12,100 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:12,100 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [10, 11] total 11 [2018-11-23 07:39:12,101 INFO L459 AbstractCegarLoop]: Interpolant automaton has 11 states [2018-11-23 07:39:12,101 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 11 interpolants. [2018-11-23 07:39:12,101 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=40, Invalid=70, Unknown=0, NotChecked=0, Total=110 [2018-11-23 07:39:12,101 INFO L87 Difference]: Start difference. First operand 72 states and 104 transitions. Second operand 11 states. [2018-11-23 07:39:12,236 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:12,236 INFO L93 Difference]: Finished difference Result 81 states and 125 transitions. [2018-11-23 07:39:12,237 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 07:39:12,237 INFO L78 Accepts]: Start accepts. Automaton has 11 states. Word has length 354 [2018-11-23 07:39:12,238 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:12,239 INFO L225 Difference]: With dead ends: 81 [2018-11-23 07:39:12,239 INFO L226 Difference]: Without dead ends: 77 [2018-11-23 07:39:12,239 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 375 GetRequests, 359 SyntacticMatches, 0 SemanticMatches, 16 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 33 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=110, Invalid=196, Unknown=0, NotChecked=0, Total=306 [2018-11-23 07:39:12,240 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 77 states. [2018-11-23 07:39:12,248 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 77 to 77. [2018-11-23 07:39:12,248 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 77 states. [2018-11-23 07:39:12,249 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 77 states to 77 states and 120 transitions. [2018-11-23 07:39:12,249 INFO L78 Accepts]: Start accepts. Automaton has 77 states and 120 transitions. Word has length 354 [2018-11-23 07:39:12,250 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:12,250 INFO L480 AbstractCegarLoop]: Abstraction has 77 states and 120 transitions. [2018-11-23 07:39:12,250 INFO L481 AbstractCegarLoop]: Interpolant automaton has 11 states. [2018-11-23 07:39:12,250 INFO L276 IsEmpty]: Start isEmpty. Operand 77 states and 120 transitions. [2018-11-23 07:39:12,253 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 587 [2018-11-23 07:39:12,253 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:12,253 INFO L402 BasicCegarLoop]: trace histogram [85, 85, 69, 42, 42, 42, 42, 42, 42, 42, 27, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:12,253 INFO L423 AbstractCegarLoop]: === Iteration 12 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:12,253 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:12,254 INFO L82 PathProgramCache]: Analyzing trace with hash -1394495983, now seen corresponding path program 9 times [2018-11-23 07:39:12,254 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:12,254 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:12,254 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:12,254 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:12,255 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:12,276 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:12,489 INFO L134 CoverageAnalysis]: Checked inductivity of 20070 backedges. 2033 proven. 1718 refuted. 0 times theorem prover too weak. 16319 trivial. 0 not checked. [2018-11-23 07:39:12,490 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:12,490 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:12,497 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 07:39:12,563 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 32 check-sat command(s) [2018-11-23 07:39:12,563 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:12,571 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:12,762 INFO L134 CoverageAnalysis]: Checked inductivity of 20070 backedges. 469 proven. 2966 refuted. 0 times theorem prover too weak. 16635 trivial. 0 not checked. [2018-11-23 07:39:12,776 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:12,777 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [15, 12] total 21 [2018-11-23 07:39:12,777 INFO L459 AbstractCegarLoop]: Interpolant automaton has 21 states [2018-11-23 07:39:12,777 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 21 interpolants. [2018-11-23 07:39:12,777 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=79, Invalid=341, Unknown=0, NotChecked=0, Total=420 [2018-11-23 07:39:12,778 INFO L87 Difference]: Start difference. First operand 77 states and 120 transitions. Second operand 21 states. [2018-11-23 07:39:13,373 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:13,373 INFO L93 Difference]: Finished difference Result 207 states and 433 transitions. [2018-11-23 07:39:13,374 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 45 states. [2018-11-23 07:39:13,374 INFO L78 Accepts]: Start accepts. Automaton has 21 states. Word has length 586 [2018-11-23 07:39:13,374 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:13,376 INFO L225 Difference]: With dead ends: 207 [2018-11-23 07:39:13,376 INFO L226 Difference]: Without dead ends: 140 [2018-11-23 07:39:13,377 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 639 GetRequests, 585 SyntacticMatches, 0 SemanticMatches, 54 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 733 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=660, Invalid=2420, Unknown=0, NotChecked=0, Total=3080 [2018-11-23 07:39:13,377 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 140 states. [2018-11-23 07:39:13,388 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 140 to 120. [2018-11-23 07:39:13,388 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 120 states. [2018-11-23 07:39:13,390 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 120 states to 120 states and 174 transitions. [2018-11-23 07:39:13,390 INFO L78 Accepts]: Start accepts. Automaton has 120 states and 174 transitions. Word has length 586 [2018-11-23 07:39:13,390 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:13,391 INFO L480 AbstractCegarLoop]: Abstraction has 120 states and 174 transitions. [2018-11-23 07:39:13,391 INFO L481 AbstractCegarLoop]: Interpolant automaton has 21 states. [2018-11-23 07:39:13,391 INFO L276 IsEmpty]: Start isEmpty. Operand 120 states and 174 transitions. [2018-11-23 07:39:13,397 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 859 [2018-11-23 07:39:13,397 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:13,398 INFO L402 BasicCegarLoop]: trace histogram [125, 125, 101, 62, 62, 62, 62, 62, 62, 62, 39, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:13,398 INFO L423 AbstractCegarLoop]: === Iteration 13 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:13,398 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:13,398 INFO L82 PathProgramCache]: Analyzing trace with hash -840680129, now seen corresponding path program 10 times [2018-11-23 07:39:13,398 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:13,398 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:13,399 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:13,399 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:13,399 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:13,436 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:13,738 INFO L134 CoverageAnalysis]: Checked inductivity of 43614 backedges. 743 proven. 4468 refuted. 0 times theorem prover too weak. 38403 trivial. 0 not checked. [2018-11-23 07:39:13,738 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:13,738 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:13,749 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 07:39:13,855 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 07:39:13,856 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:13,867 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:14,106 INFO L134 CoverageAnalysis]: Checked inductivity of 43614 backedges. 699 proven. 5145 refuted. 0 times theorem prover too weak. 37770 trivial. 0 not checked. [2018-11-23 07:39:14,131 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:14,132 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [12, 13] total 13 [2018-11-23 07:39:14,132 INFO L459 AbstractCegarLoop]: Interpolant automaton has 13 states [2018-11-23 07:39:14,132 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 13 interpolants. [2018-11-23 07:39:14,132 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=59, Invalid=97, Unknown=0, NotChecked=0, Total=156 [2018-11-23 07:39:14,133 INFO L87 Difference]: Start difference. First operand 120 states and 174 transitions. Second operand 13 states. [2018-11-23 07:39:14,230 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:14,230 INFO L93 Difference]: Finished difference Result 129 states and 194 transitions. [2018-11-23 07:39:14,230 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 13 states. [2018-11-23 07:39:14,230 INFO L78 Accepts]: Start accepts. Automaton has 13 states. Word has length 858 [2018-11-23 07:39:14,231 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:14,232 INFO L225 Difference]: With dead ends: 129 [2018-11-23 07:39:14,232 INFO L226 Difference]: Without dead ends: 125 [2018-11-23 07:39:14,232 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 885 GetRequests, 865 SyntacticMatches, 0 SemanticMatches, 20 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 54 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=167, Invalid=295, Unknown=0, NotChecked=0, Total=462 [2018-11-23 07:39:14,233 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 125 states. [2018-11-23 07:39:14,237 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 125 to 125. [2018-11-23 07:39:14,237 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 125 states. [2018-11-23 07:39:14,238 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 125 states to 125 states and 189 transitions. [2018-11-23 07:39:14,238 INFO L78 Accepts]: Start accepts. Automaton has 125 states and 189 transitions. Word has length 858 [2018-11-23 07:39:14,239 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:14,239 INFO L480 AbstractCegarLoop]: Abstraction has 125 states and 189 transitions. [2018-11-23 07:39:14,239 INFO L481 AbstractCegarLoop]: Interpolant automaton has 13 states. [2018-11-23 07:39:14,239 INFO L276 IsEmpty]: Start isEmpty. Operand 125 states and 189 transitions. [2018-11-23 07:39:14,246 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1458 [2018-11-23 07:39:14,246 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:14,246 INFO L402 BasicCegarLoop]: trace histogram [213, 213, 172, 106, 106, 106, 106, 106, 106, 106, 66, 41, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:14,246 INFO L423 AbstractCegarLoop]: === Iteration 14 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:14,246 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:14,246 INFO L82 PathProgramCache]: Analyzing trace with hash -697183449, now seen corresponding path program 11 times [2018-11-23 07:39:14,246 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:14,246 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:14,247 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:14,247 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:14,247 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:14,316 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 07:39:15,111 INFO L134 CoverageAnalysis]: Checked inductivity of 127278 backedges. 6481 proven. 4190 refuted. 0 times theorem prover too weak. 116607 trivial. 0 not checked. [2018-11-23 07:39:15,111 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 07:39:15,111 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/z3 Starting monitored process 13 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 13 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 07:39:15,125 INFO L103 rtionOrderModulation]: Keeping assertion order INSIDE_LOOP_FIRST1 [2018-11-23 07:39:16,099 INFO L249 tOrderPrioritization]: Assert order INSIDE_LOOP_FIRST1 issued 185 check-sat command(s) [2018-11-23 07:39:16,099 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 07:39:16,122 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 07:39:16,913 INFO L134 CoverageAnalysis]: Checked inductivity of 127278 backedges. 10643 proven. 3884 refuted. 0 times theorem prover too weak. 112751 trivial. 0 not checked. [2018-11-23 07:39:16,930 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 07:39:16,931 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [16, 17] total 23 [2018-11-23 07:39:16,932 INFO L459 AbstractCegarLoop]: Interpolant automaton has 23 states [2018-11-23 07:39:16,932 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 23 interpolants. [2018-11-23 07:39:16,932 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=101, Invalid=405, Unknown=0, NotChecked=0, Total=506 [2018-11-23 07:39:16,932 INFO L87 Difference]: Start difference. First operand 125 states and 189 transitions. Second operand 23 states. [2018-11-23 07:39:17,511 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 07:39:17,511 INFO L93 Difference]: Finished difference Result 302 states and 626 transitions. [2018-11-23 07:39:17,512 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 36 states. [2018-11-23 07:39:17,512 INFO L78 Accepts]: Start accepts. Automaton has 23 states. Word has length 1457 [2018-11-23 07:39:17,514 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 07:39:17,516 INFO L225 Difference]: With dead ends: 302 [2018-11-23 07:39:17,516 INFO L226 Difference]: Without dead ends: 159 [2018-11-23 07:39:17,518 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1502 GetRequests, 1458 SyntacticMatches, 0 SemanticMatches, 44 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 455 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=466, Invalid=1604, Unknown=0, NotChecked=0, Total=2070 [2018-11-23 07:39:17,518 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 159 states. [2018-11-23 07:39:17,526 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 159 to 123. [2018-11-23 07:39:17,526 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 123 states. [2018-11-23 07:39:17,527 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 123 states to 123 states and 158 transitions. [2018-11-23 07:39:17,528 INFO L78 Accepts]: Start accepts. Automaton has 123 states and 158 transitions. Word has length 1457 [2018-11-23 07:39:17,530 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 07:39:17,530 INFO L480 AbstractCegarLoop]: Abstraction has 123 states and 158 transitions. [2018-11-23 07:39:17,530 INFO L481 AbstractCegarLoop]: Interpolant automaton has 23 states. [2018-11-23 07:39:17,530 INFO L276 IsEmpty]: Start isEmpty. Operand 123 states and 158 transitions. [2018-11-23 07:39:17,538 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1213 [2018-11-23 07:39:17,538 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 07:39:17,538 INFO L402 BasicCegarLoop]: trace histogram [177, 177, 143, 88, 88, 88, 88, 88, 88, 88, 55, 34, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 07:39:17,538 INFO L423 AbstractCegarLoop]: === Iteration 15 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 07:39:17,539 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 07:39:17,539 INFO L82 PathProgramCache]: Analyzing trace with hash 452920407, now seen corresponding path program 12 times [2018-11-23 07:39:17,539 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 07:39:17,539 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 07:39:17,540 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:17,540 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 07:39:17,540 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 07:39:17,599 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 07:39:17,671 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 07:39:17,720 INFO L469 BasicCegarLoop]: Counterexample might be feasible ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #33#return; [?] CALL call #t~ret3 := main(); [?] ~x~0 := 10; VAL [main_~x~0=10] [?] CALL call #t~ret2 := fibo(~x~0); VAL [|fibo_#in~n|=10] [?] ~n := #in~n; VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(~n < 1); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(1 == ~n); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=9] [?] ~n := #in~n; VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(~n < 1); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(1 == ~n); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #39#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #41#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21, |fibo_#t~ret1|=13] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] assume true; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] RET #39#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #41#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34, |fibo_#t~ret1|=21] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] assume true; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] RET #37#return; VAL [main_~x~0=10, |main_#t~ret2|=55] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647;~result~0 := #t~ret2;havoc #t~ret2; VAL [main_~result~0=55, main_~x~0=10] [?] assume 55 == ~result~0; VAL [main_~result~0=55, main_~x~0=10] [?] assume !false; VAL [main_~result~0=55, main_~x~0=10] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [L24] int x = 10; VAL [x=10] [L25] CALL, EXPR fibo(x) VAL [\old(n)=10] [L6] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L8] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=9] [L6] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L8] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=9, fibo(n-1)=21, n=9] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=9, fibo(n-1)=21, fibo(n-2)=13, n=9] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=10, fibo(n-1)=34, n=10] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=10, fibo(n-1)=34, fibo(n-2)=21, n=10] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=55, x=10] [L25] int result = fibo(x); [L26] COND TRUE result == 55 VAL [result=55, x=10] [L27] __VERIFIER_error() VAL [result=55, x=10] ----- [2018-11-23 07:39:27,160 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction CFG 23.11 07:39:27 BoogieIcfgContainer [2018-11-23 07:39:27,160 INFO L132 PluginConnector]: ------------------------ END TraceAbstraction---------------------------- [2018-11-23 07:39:27,161 INFO L113 PluginConnector]: ------------------------Witness Printer---------------------------- [2018-11-23 07:39:27,161 INFO L271 PluginConnector]: Initializing Witness Printer... [2018-11-23 07:39:27,161 INFO L276 PluginConnector]: Witness Printer initialized [2018-11-23 07:39:27,161 INFO L185 PluginConnector]: Executing the observer RCFGCatcher from plugin Witness Printer for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 07:39:08" (3/4) ... [2018-11-23 07:39:27,163 INFO L138 WitnessPrinter]: Generating witness for reachability counterexample ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #33#return; [?] CALL call #t~ret3 := main(); [?] ~x~0 := 10; VAL [main_~x~0=10] [?] CALL call #t~ret2 := fibo(~x~0); VAL [|fibo_#in~n|=10] [?] ~n := #in~n; VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(~n < 1); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(1 == ~n); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=9] [?] ~n := #in~n; VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(~n < 1); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(1 == ~n); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #39#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #41#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21, |fibo_#t~ret1|=13] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] assume true; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] RET #39#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #41#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34, |fibo_#t~ret1|=21] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] assume true; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] RET #37#return; VAL [main_~x~0=10, |main_#t~ret2|=55] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647;~result~0 := #t~ret2;havoc #t~ret2; VAL [main_~result~0=55, main_~x~0=10] [?] assume 55 == ~result~0; VAL [main_~result~0=55, main_~x~0=10] [?] assume !false; VAL [main_~result~0=55, main_~x~0=10] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [L24] int x = 10; VAL [x=10] [L25] CALL, EXPR fibo(x) VAL [\old(n)=10] [L6] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L8] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=9] [L6] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L8] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=9, fibo(n-1)=21, n=9] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=9, fibo(n-1)=21, fibo(n-2)=13, n=9] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=10, fibo(n-1)=34, n=10] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=10, fibo(n-1)=34, fibo(n-2)=21, n=10] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=55, x=10] [L25] int result = fibo(x); [L26] COND TRUE result == 55 VAL [result=55, x=10] [L27] __VERIFIER_error() VAL [result=55, x=10] ----- [2018-11-23 07:39:55,829 INFO L145 WitnessManager]: Wrote witness to /tmp/vcloud-vcloud-master/worker/working_dir_dd44c24f-770d-489b-ab4f-e4a7cbd4c273/bin-2019/uautomizer/witness.graphml [2018-11-23 07:39:55,830 INFO L132 PluginConnector]: ------------------------ END Witness Printer---------------------------- [2018-11-23 07:39:55,830 INFO L168 Benchmark]: Toolchain (without parser) took 47645.98 ms. Allocated memory was 1.0 GB in the beginning and 2.3 GB in the end (delta: 1.2 GB). Free memory was 960.9 MB in the beginning and 1.6 GB in the end (delta: -648.6 MB). Peak memory consumption was 589.3 MB. Max. memory is 11.5 GB. [2018-11-23 07:39:55,831 INFO L168 Benchmark]: CDTParser took 0.15 ms. Allocated memory is still 1.0 GB. Free memory is still 982.9 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 07:39:55,832 INFO L168 Benchmark]: CACSL2BoogieTranslator took 165.24 ms. Allocated memory is still 1.0 GB. Free memory was 960.9 MB in the beginning and 950.1 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. [2018-11-23 07:39:55,832 INFO L168 Benchmark]: Boogie Procedure Inliner took 16.97 ms. Allocated memory is still 1.0 GB. Free memory is still 950.1 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 07:39:55,832 INFO L168 Benchmark]: Boogie Preprocessor took 15.13 ms. Allocated memory is still 1.0 GB. Free memory was 950.1 MB in the beginning and 944.7 MB in the end (delta: 5.4 MB). Peak memory consumption was 5.4 MB. Max. memory is 11.5 GB. [2018-11-23 07:39:55,832 INFO L168 Benchmark]: RCFGBuilder took 204.97 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 135.3 MB). Free memory was 944.7 MB in the beginning and 1.1 GB in the end (delta: -177.3 MB). Peak memory consumption was 19.6 MB. Max. memory is 11.5 GB. [2018-11-23 07:39:55,832 INFO L168 Benchmark]: TraceAbstraction took 18571.63 ms. Allocated memory was 1.2 GB in the beginning and 2.3 GB in the end (delta: 1.1 GB). Free memory was 1.1 GB in the beginning and 1.7 GB in the end (delta: -556.8 MB). Peak memory consumption was 545.8 MB. Max. memory is 11.5 GB. [2018-11-23 07:39:55,833 INFO L168 Benchmark]: Witness Printer took 28668.71 ms. Allocated memory is still 2.3 GB. Free memory was 1.7 GB in the beginning and 1.6 GB in the end (delta: 69.4 MB). Peak memory consumption was 69.4 MB. Max. memory is 11.5 GB. [2018-11-23 07:39:55,834 INFO L336 ainManager$Toolchain]: ####################### End [Toolchain 1] ####################### --- Results --- * Results from de.uni_freiburg.informatik.ultimate.core: - StatisticsResult: Toolchain Benchmarks Benchmark results are: * CDTParser took 0.15 ms. Allocated memory is still 1.0 GB. Free memory is still 982.9 MB. There was no memory consumed. Max. memory is 11.5 GB. * CACSL2BoogieTranslator took 165.24 ms. Allocated memory is still 1.0 GB. Free memory was 960.9 MB in the beginning and 950.1 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. * Boogie Procedure Inliner took 16.97 ms. Allocated memory is still 1.0 GB. Free memory is still 950.1 MB. There was no memory consumed. Max. memory is 11.5 GB. * Boogie Preprocessor took 15.13 ms. Allocated memory is still 1.0 GB. Free memory was 950.1 MB in the beginning and 944.7 MB in the end (delta: 5.4 MB). Peak memory consumption was 5.4 MB. Max. memory is 11.5 GB. * RCFGBuilder took 204.97 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 135.3 MB). Free memory was 944.7 MB in the beginning and 1.1 GB in the end (delta: -177.3 MB). Peak memory consumption was 19.6 MB. Max. memory is 11.5 GB. * TraceAbstraction took 18571.63 ms. Allocated memory was 1.2 GB in the beginning and 2.3 GB in the end (delta: 1.1 GB). Free memory was 1.1 GB in the beginning and 1.7 GB in the end (delta: -556.8 MB). Peak memory consumption was 545.8 MB. Max. memory is 11.5 GB. * Witness Printer took 28668.71 ms. Allocated memory is still 2.3 GB. Free memory was 1.7 GB in the beginning and 1.6 GB in the end (delta: 69.4 MB). Peak memory consumption was 69.4 MB. Max. memory is 11.5 GB. * Results from de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction: - CounterExampleResult [Line: 27]: a call of __VERIFIER_error() is reachable a call of __VERIFIER_error() is reachable We found a FailurePath: [L24] int x = 10; VAL [x=10] [L25] CALL, EXPR fibo(x) VAL [\old(n)=10] [L6] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L8] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=9] [L6] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L8] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=9, fibo(n-1)=21, n=9] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=9, fibo(n-1)=21, fibo(n-2)=13, n=9] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=10, fibo(n-1)=34, n=10] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=10, fibo(n-1)=34, fibo(n-2)=21, n=10] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=55, x=10] [L25] int result = fibo(x); [L26] COND TRUE result == 55 VAL [result=55, x=10] [L27] __VERIFIER_error() VAL [result=55, x=10] - StatisticsResult: Ultimate Automizer benchmark data CFG has 4 procedures, 24 locations, 1 error locations. UNSAFE Result, 18.5s OverallTime, 15 OverallIterations, 213 TraceHistogramMax, 2.8s AutomataDifference, 0.0s DeadEndRemovalTime, 0.0s HoareAnnotationTime, HoareTripleCheckerStatistics: 289 SDtfs, 602 SDslu, 1230 SDs, 0 SdLazy, 2801 SolverSat, 852 SolverUnsat, 0 SolverUnknown, 0 SolverNotchecked, 1.2s Time, PredicateUnifierStatistics: 0 DeclaredPredicates, 4350 GetRequests, 4073 SyntacticMatches, 1 SemanticMatches, 276 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1777 ImplicationChecksByTransitivity, 2.1s Time, 0.0s BasicInterpolantAutomatonTime, BiggestAbstraction: size=125occurred in iteration=13, traceCheckStatistics: No data available, InterpolantConsolidationStatistics: No data available, PathInvariantsStatistics: No data available, 0/0 InterpolantCoveringCapability, TotalInterpolationStatistics: No data available, 0.0s AbstIntTime, 0 AbstIntIterations, 0 AbstIntStrong, NaN AbsIntWeakeningRatio, NaN AbsIntAvgWeakeningVarsNumRemoved, NaN AbsIntAvgWeakenedConjuncts, 0.0s DumpTime, AutomataMinimizationStatistics: 0.1s AutomataMinimizationTime, 14 MinimizatonAttempts, 113 StatesRemovedByMinimization, 9 NontrivialMinimizations, HoareAnnotationStatistics: No data available, RefinementEngineStatistics: TraceCheckStatistics: 0.1s SsaConstructionTime, 1.4s SatisfiabilityAnalysisTime, 2.8s InterpolantComputationTime, 9327 NumberOfCodeBlocks, 8640 NumberOfCodeBlocksAsserted, 266 NumberOfCheckSat, 8089 ConstructedInterpolants, 0 QuantifiedInterpolants, 7902937 SizeOfPredicates, 75 NumberOfNonLiveVariables, 7366 ConjunctsInSsa, 151 ConjunctsInUnsatCore, 26 InterpolantComputations, 2 PerfectInterpolantSequences, 380398/407586 InterpolantCoveringCapability, InvariantSynthesisStatistics: No data available, InterpolantConsolidationStatistics: No data available, ReuseStatistics: No data available RESULT: Ultimate proved your program to be incorrect! Received shutdown request...