./Ultimate.py --spec ../../sv-benchmarks/c/properties/unreach-call.prp --file ../../sv-benchmarks/c/recursive-simple/fibo_2calls_10_false-unreach-call.c --full-output --architecture 32bit -------------------------------------------------------------------------------- Checking for ERROR reachability Using default analysis Version aa418289 Calling Ultimate with: java -Dosgi.configuration.area=/tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/data/config -Xmx12G -Xms1G -jar /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/plugins/org.eclipse.equinox.launcher_1.3.100.v20150511-1540.jar -data @noDefault -ultimatedata /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/data -tc /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/config/AutomizerReach.xml -i ../../sv-benchmarks/c/recursive-simple/fibo_2calls_10_false-unreach-call.c -s /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf --cacsl2boogietranslator.entry.function main --witnessprinter.witness.directory /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer --witnessprinter.witness.filename witness.graphml --witnessprinter.write.witness.besides.input.file false --witnessprinter.graph.data.specification CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) --witnessprinter.graph.data.producer Automizer --witnessprinter.graph.data.architecture 32bit --witnessprinter.graph.data.programhash 7b225e80ee922ecd6d28f97f9a97339f737a7de4 ...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... Execution finished normally Writing output log to file Ultimate.log Writing human readable error path to file UltimateCounterExample.errorpath Result: FALSE --- Real Ultimate output --- This is Ultimate 0.1.23-aa41828 [2018-11-23 02:30:35,144 INFO L170 SettingsManager]: Resetting all preferences to default values... [2018-11-23 02:30:35,145 INFO L174 SettingsManager]: Resetting UltimateCore preferences to default values [2018-11-23 02:30:35,154 INFO L177 SettingsManager]: Ultimate Commandline Interface provides no preferences, ignoring... [2018-11-23 02:30:35,154 INFO L174 SettingsManager]: Resetting Boogie Preprocessor preferences to default values [2018-11-23 02:30:35,155 INFO L174 SettingsManager]: Resetting Boogie Procedure Inliner preferences to default values [2018-11-23 02:30:35,156 INFO L174 SettingsManager]: Resetting Abstract Interpretation preferences to default values [2018-11-23 02:30:35,157 INFO L174 SettingsManager]: Resetting LassoRanker preferences to default values [2018-11-23 02:30:35,158 INFO L174 SettingsManager]: Resetting Reaching Definitions preferences to default values [2018-11-23 02:30:35,158 INFO L174 SettingsManager]: Resetting SyntaxChecker preferences to default values [2018-11-23 02:30:35,159 INFO L177 SettingsManager]: Büchi Program Product provides no preferences, ignoring... [2018-11-23 02:30:35,159 INFO L174 SettingsManager]: Resetting LTL2Aut preferences to default values [2018-11-23 02:30:35,160 INFO L174 SettingsManager]: Resetting PEA to Boogie preferences to default values [2018-11-23 02:30:35,160 INFO L174 SettingsManager]: Resetting BlockEncodingV2 preferences to default values [2018-11-23 02:30:35,161 INFO L174 SettingsManager]: Resetting ChcToBoogie preferences to default values [2018-11-23 02:30:35,162 INFO L174 SettingsManager]: Resetting AutomataScriptInterpreter preferences to default values [2018-11-23 02:30:35,162 INFO L174 SettingsManager]: Resetting BuchiAutomizer preferences to default values [2018-11-23 02:30:35,163 INFO L174 SettingsManager]: Resetting CACSL2BoogieTranslator preferences to default values [2018-11-23 02:30:35,164 INFO L174 SettingsManager]: Resetting CodeCheck preferences to default values [2018-11-23 02:30:35,165 INFO L174 SettingsManager]: Resetting InvariantSynthesis preferences to default values [2018-11-23 02:30:35,166 INFO L174 SettingsManager]: Resetting RCFGBuilder preferences to default values [2018-11-23 02:30:35,167 INFO L174 SettingsManager]: Resetting TraceAbstraction preferences to default values [2018-11-23 02:30:35,168 INFO L177 SettingsManager]: TraceAbstractionConcurrent provides no preferences, ignoring... [2018-11-23 02:30:35,168 INFO L177 SettingsManager]: TraceAbstractionWithAFAs provides no preferences, ignoring... [2018-11-23 02:30:35,168 INFO L174 SettingsManager]: Resetting TreeAutomizer preferences to default values [2018-11-23 02:30:35,169 INFO L174 SettingsManager]: Resetting IcfgTransformer preferences to default values [2018-11-23 02:30:35,170 INFO L174 SettingsManager]: Resetting Boogie Printer preferences to default values [2018-11-23 02:30:35,170 INFO L174 SettingsManager]: Resetting ReqPrinter preferences to default values [2018-11-23 02:30:35,171 INFO L174 SettingsManager]: Resetting Witness Printer preferences to default values [2018-11-23 02:30:35,171 INFO L177 SettingsManager]: Boogie PL CUP Parser provides no preferences, ignoring... [2018-11-23 02:30:35,172 INFO L174 SettingsManager]: Resetting CDTParser preferences to default values [2018-11-23 02:30:35,172 INFO L177 SettingsManager]: AutomataScriptParser provides no preferences, ignoring... [2018-11-23 02:30:35,172 INFO L177 SettingsManager]: ReqParser provides no preferences, ignoring... [2018-11-23 02:30:35,172 INFO L174 SettingsManager]: Resetting SmtParser preferences to default values [2018-11-23 02:30:35,173 INFO L174 SettingsManager]: Resetting Witness Parser preferences to default values [2018-11-23 02:30:35,173 INFO L181 SettingsManager]: Finished resetting all preferences to default values... [2018-11-23 02:30:35,174 INFO L98 SettingsManager]: Beginning loading settings from /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf [2018-11-23 02:30:35,182 INFO L110 SettingsManager]: Loading preferences was successful [2018-11-23 02:30:35,183 INFO L112 SettingsManager]: Preferences different from defaults after loading the file: [2018-11-23 02:30:35,183 INFO L131 SettingsManager]: Preferences of Boogie Procedure Inliner differ from their defaults: [2018-11-23 02:30:35,183 INFO L133 SettingsManager]: * ... calls to implemented procedures=ONLY_FOR_CONCURRENT_PROGRAMS [2018-11-23 02:30:35,184 INFO L131 SettingsManager]: Preferences of BlockEncodingV2 differ from their defaults: [2018-11-23 02:30:35,184 INFO L133 SettingsManager]: * Create parallel compositions if possible=false [2018-11-23 02:30:35,184 INFO L133 SettingsManager]: * Use SBE=true [2018-11-23 02:30:35,184 INFO L131 SettingsManager]: Preferences of CACSL2BoogieTranslator differ from their defaults: [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * sizeof long=4 [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * Overapproximate operations on floating types=true [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * sizeof POINTER=4 [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * Check division by zero=IGNORE [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * Pointer to allocated memory at dereference=IGNORE [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * If two pointers are subtracted or compared they have the same base address=IGNORE [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * Check array bounds for arrays that are off heap=IGNORE [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * sizeof long double=12 [2018-11-23 02:30:35,185 INFO L133 SettingsManager]: * Check if freed pointer was valid=false [2018-11-23 02:30:35,186 INFO L133 SettingsManager]: * Use constant arrays=true [2018-11-23 02:30:35,186 INFO L133 SettingsManager]: * Pointer base address is valid at dereference=IGNORE [2018-11-23 02:30:35,186 INFO L131 SettingsManager]: Preferences of RCFGBuilder differ from their defaults: [2018-11-23 02:30:35,186 INFO L133 SettingsManager]: * Size of a code block=SequenceOfStatements [2018-11-23 02:30:35,186 INFO L133 SettingsManager]: * To the following directory=./dump/ [2018-11-23 02:30:35,186 INFO L133 SettingsManager]: * SMT solver=External_DefaultMode [2018-11-23 02:30:35,186 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 02:30:35,187 INFO L131 SettingsManager]: Preferences of TraceAbstraction differ from their defaults: [2018-11-23 02:30:35,187 INFO L133 SettingsManager]: * Compute Interpolants along a Counterexample=FPandBP [2018-11-23 02:30:35,187 INFO L133 SettingsManager]: * Positions where we compute the Hoare Annotation=LoopsAndPotentialCycles [2018-11-23 02:30:35,187 INFO L133 SettingsManager]: * Trace refinement strategy=CAMEL [2018-11-23 02:30:35,187 INFO L133 SettingsManager]: * SMT solver=External_ModelsAndUnsatCoreMode [2018-11-23 02:30:35,187 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in [2018-11-23 02:30:35,187 INFO L133 SettingsManager]: * Compute Hoare Annotation of negated interpolant automaton, abstraction and CFG=true Applying setting for plugin de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator: Entry function -> main Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness directory -> /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness filename -> witness.graphml Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Write witness besides input file -> false Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data specification -> CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data producer -> Automizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data architecture -> 32bit Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data programhash -> 7b225e80ee922ecd6d28f97f9a97339f737a7de4 [2018-11-23 02:30:35,209 INFO L81 nceAwareModelManager]: Repository-Root is: /tmp [2018-11-23 02:30:35,219 INFO L258 ainManager$Toolchain]: [Toolchain 1]: Applicable parser(s) successfully (re)initialized [2018-11-23 02:30:35,221 INFO L214 ainManager$Toolchain]: [Toolchain 1]: Toolchain selected. [2018-11-23 02:30:35,222 INFO L271 PluginConnector]: Initializing CDTParser... [2018-11-23 02:30:35,222 INFO L276 PluginConnector]: CDTParser initialized [2018-11-23 02:30:35,223 INFO L418 ainManager$Toolchain]: [Toolchain 1]: Parsing single file: /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/../../sv-benchmarks/c/recursive-simple/fibo_2calls_10_false-unreach-call.c [2018-11-23 02:30:35,268 INFO L221 CDTParser]: Created temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/data/c1a1d569e/366e9765d1c24170b901d6e0679e9974/FLAG7723116bc [2018-11-23 02:30:35,666 INFO L307 CDTParser]: Found 1 translation units. [2018-11-23 02:30:35,666 INFO L161 CDTParser]: Scanning /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/sv-benchmarks/c/recursive-simple/fibo_2calls_10_false-unreach-call.c [2018-11-23 02:30:35,671 INFO L355 CDTParser]: About to delete temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/data/c1a1d569e/366e9765d1c24170b901d6e0679e9974/FLAG7723116bc [2018-11-23 02:30:35,679 INFO L363 CDTParser]: Successfully deleted /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/data/c1a1d569e/366e9765d1c24170b901d6e0679e9974 [2018-11-23 02:30:35,681 INFO L296 ainManager$Toolchain]: ####################### [Toolchain 1] ####################### [2018-11-23 02:30:35,682 INFO L131 ToolchainWalker]: Walking toolchain with 6 elements. [2018-11-23 02:30:35,682 INFO L113 PluginConnector]: ------------------------CACSL2BoogieTranslator---------------------------- [2018-11-23 02:30:35,682 INFO L271 PluginConnector]: Initializing CACSL2BoogieTranslator... [2018-11-23 02:30:35,685 INFO L276 PluginConnector]: CACSL2BoogieTranslator initialized [2018-11-23 02:30:35,685 INFO L185 PluginConnector]: Executing the observer ACSLObjectContainerObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,687 INFO L205 PluginConnector]: Invalid model from CACSL2BoogieTranslator for observer de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.ACSLObjectContainerObserver@a9989bb and model type de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35, skipping insertion in model container [2018-11-23 02:30:35,687 INFO L185 PluginConnector]: Executing the observer CACSL2BoogieTranslatorObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,692 INFO L145 MainTranslator]: Starting translation in SV-COMP mode [2018-11-23 02:30:35,704 INFO L176 MainTranslator]: Built tables and reachable declarations [2018-11-23 02:30:35,801 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 02:30:35,803 INFO L191 MainTranslator]: Completed pre-run [2018-11-23 02:30:35,813 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 02:30:35,821 INFO L195 MainTranslator]: Completed translation [2018-11-23 02:30:35,821 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35 WrapperNode [2018-11-23 02:30:35,821 INFO L132 PluginConnector]: ------------------------ END CACSL2BoogieTranslator---------------------------- [2018-11-23 02:30:35,822 INFO L113 PluginConnector]: ------------------------Boogie Procedure Inliner---------------------------- [2018-11-23 02:30:35,822 INFO L271 PluginConnector]: Initializing Boogie Procedure Inliner... [2018-11-23 02:30:35,822 INFO L276 PluginConnector]: Boogie Procedure Inliner initialized [2018-11-23 02:30:35,829 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,833 INFO L185 PluginConnector]: Executing the observer Inliner from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,839 INFO L132 PluginConnector]: ------------------------ END Boogie Procedure Inliner---------------------------- [2018-11-23 02:30:35,839 INFO L113 PluginConnector]: ------------------------Boogie Preprocessor---------------------------- [2018-11-23 02:30:35,839 INFO L271 PluginConnector]: Initializing Boogie Preprocessor... [2018-11-23 02:30:35,839 INFO L276 PluginConnector]: Boogie Preprocessor initialized [2018-11-23 02:30:35,847 INFO L185 PluginConnector]: Executing the observer EnsureBoogieModelObserver from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,847 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,848 INFO L185 PluginConnector]: Executing the observer ConstExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,848 INFO L185 PluginConnector]: Executing the observer StructExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,851 INFO L185 PluginConnector]: Executing the observer UnstructureCode from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,853 INFO L185 PluginConnector]: Executing the observer FunctionInliner from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,853 INFO L185 PluginConnector]: Executing the observer BoogieSymbolTableConstructor from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... [2018-11-23 02:30:35,855 INFO L132 PluginConnector]: ------------------------ END Boogie Preprocessor---------------------------- [2018-11-23 02:30:35,855 INFO L113 PluginConnector]: ------------------------RCFGBuilder---------------------------- [2018-11-23 02:30:35,855 INFO L271 PluginConnector]: Initializing RCFGBuilder... [2018-11-23 02:30:35,855 INFO L276 PluginConnector]: RCFGBuilder initialized [2018-11-23 02:30:35,856 INFO L185 PluginConnector]: Executing the observer RCFGBuilderObserver from plugin RCFGBuilder for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (1/1) ... No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 02:30:35,939 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.init [2018-11-23 02:30:35,939 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.init [2018-11-23 02:30:35,939 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.start [2018-11-23 02:30:35,939 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.start [2018-11-23 02:30:35,939 INFO L130 BoogieDeclarations]: Found specification of procedure main [2018-11-23 02:30:35,940 INFO L138 BoogieDeclarations]: Found implementation of procedure main [2018-11-23 02:30:35,940 INFO L130 BoogieDeclarations]: Found specification of procedure fibo2 [2018-11-23 02:30:35,940 INFO L138 BoogieDeclarations]: Found implementation of procedure fibo2 [2018-11-23 02:30:35,940 INFO L130 BoogieDeclarations]: Found specification of procedure fibo1 [2018-11-23 02:30:35,940 INFO L138 BoogieDeclarations]: Found implementation of procedure fibo1 [2018-11-23 02:30:36,061 INFO L275 CfgBuilder]: Using the 1 location(s) as analysis (start of procedure ULTIMATE.start) [2018-11-23 02:30:36,061 INFO L280 CfgBuilder]: Removed 0 assue(true) statements. [2018-11-23 02:30:36,061 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 02:30:36 BoogieIcfgContainer [2018-11-23 02:30:36,061 INFO L132 PluginConnector]: ------------------------ END RCFGBuilder---------------------------- [2018-11-23 02:30:36,062 INFO L113 PluginConnector]: ------------------------TraceAbstraction---------------------------- [2018-11-23 02:30:36,062 INFO L271 PluginConnector]: Initializing TraceAbstraction... [2018-11-23 02:30:36,064 INFO L276 PluginConnector]: TraceAbstraction initialized [2018-11-23 02:30:36,064 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "CDTParser AST 23.11 02:30:35" (1/3) ... [2018-11-23 02:30:36,065 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@22b5bbb6 and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 02:30:36, skipping insertion in model container [2018-11-23 02:30:36,065 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 02:30:35" (2/3) ... [2018-11-23 02:30:36,065 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@22b5bbb6 and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 02:30:36, skipping insertion in model container [2018-11-23 02:30:36,065 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 02:30:36" (3/3) ... [2018-11-23 02:30:36,067 INFO L112 eAbstractionObserver]: Analyzing ICFG fibo_2calls_10_false-unreach-call.c [2018-11-23 02:30:36,075 INFO L156 ceAbstractionStarter]: Automizer settings: Hoare:true NWA Interpolation:FPandBP Determinization: PREDICATE_ABSTRACTION [2018-11-23 02:30:36,080 INFO L168 ceAbstractionStarter]: Appying trace abstraction to program that has 1 error locations. [2018-11-23 02:30:36,093 INFO L257 AbstractCegarLoop]: Starting to check reachability of 1 error locations. [2018-11-23 02:30:36,119 INFO L133 ementStrategyFactory]: Using default assertion order modulation [2018-11-23 02:30:36,120 INFO L382 AbstractCegarLoop]: Interprodecural is true [2018-11-23 02:30:36,120 INFO L383 AbstractCegarLoop]: Hoare is true [2018-11-23 02:30:36,120 INFO L384 AbstractCegarLoop]: Compute interpolants for FPandBP [2018-11-23 02:30:36,120 INFO L385 AbstractCegarLoop]: Backedges is STRAIGHT_LINE [2018-11-23 02:30:36,120 INFO L386 AbstractCegarLoop]: Determinization is PREDICATE_ABSTRACTION [2018-11-23 02:30:36,120 INFO L387 AbstractCegarLoop]: Difference is false [2018-11-23 02:30:36,120 INFO L388 AbstractCegarLoop]: Minimize is MINIMIZE_SEVPA [2018-11-23 02:30:36,120 INFO L393 AbstractCegarLoop]: ======== Iteration 0==of CEGAR loop == AllErrorsAtOnce======== [2018-11-23 02:30:36,136 INFO L276 IsEmpty]: Start isEmpty. Operand 33 states. [2018-11-23 02:30:36,140 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 14 [2018-11-23 02:30:36,140 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:36,141 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:36,142 INFO L423 AbstractCegarLoop]: === Iteration 1 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:36,147 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:36,147 INFO L82 PathProgramCache]: Analyzing trace with hash 1464461757, now seen corresponding path program 1 times [2018-11-23 02:30:36,149 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:36,149 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:36,188 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,188 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:36,188 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,216 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:36,273 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 02:30:36,275 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 02:30:36,275 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 02:30:36,277 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 02:30:36,286 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 02:30:36,286 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 02:30:36,287 INFO L87 Difference]: Start difference. First operand 33 states. Second operand 5 states. [2018-11-23 02:30:36,354 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:36,354 INFO L93 Difference]: Finished difference Result 44 states and 53 transitions. [2018-11-23 02:30:36,354 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 02:30:36,355 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 13 [2018-11-23 02:30:36,355 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:36,361 INFO L225 Difference]: With dead ends: 44 [2018-11-23 02:30:36,361 INFO L226 Difference]: Without dead ends: 30 [2018-11-23 02:30:36,363 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 02:30:36,374 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 30 states. [2018-11-23 02:30:36,388 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 30 to 30. [2018-11-23 02:30:36,388 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 30 states. [2018-11-23 02:30:36,389 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 30 states to 30 states and 37 transitions. [2018-11-23 02:30:36,390 INFO L78 Accepts]: Start accepts. Automaton has 30 states and 37 transitions. Word has length 13 [2018-11-23 02:30:36,390 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:36,390 INFO L480 AbstractCegarLoop]: Abstraction has 30 states and 37 transitions. [2018-11-23 02:30:36,391 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 02:30:36,391 INFO L276 IsEmpty]: Start isEmpty. Operand 30 states and 37 transitions. [2018-11-23 02:30:36,392 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 15 [2018-11-23 02:30:36,392 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:36,392 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:36,392 INFO L423 AbstractCegarLoop]: === Iteration 2 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:36,392 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:36,392 INFO L82 PathProgramCache]: Analyzing trace with hash -1134800479, now seen corresponding path program 1 times [2018-11-23 02:30:36,393 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:36,393 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:36,393 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,393 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:36,393 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,397 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:36,428 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 02:30:36,428 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 02:30:36,428 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 02:30:36,429 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 02:30:36,429 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 02:30:36,429 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 02:30:36,429 INFO L87 Difference]: Start difference. First operand 30 states and 37 transitions. Second operand 5 states. [2018-11-23 02:30:36,493 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:36,493 INFO L93 Difference]: Finished difference Result 36 states and 44 transitions. [2018-11-23 02:30:36,494 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 02:30:36,494 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 14 [2018-11-23 02:30:36,494 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:36,495 INFO L225 Difference]: With dead ends: 36 [2018-11-23 02:30:36,495 INFO L226 Difference]: Without dead ends: 32 [2018-11-23 02:30:36,495 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 02:30:36,496 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 32 states. [2018-11-23 02:30:36,499 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 32 to 30. [2018-11-23 02:30:36,499 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 30 states. [2018-11-23 02:30:36,500 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 30 states to 30 states and 37 transitions. [2018-11-23 02:30:36,500 INFO L78 Accepts]: Start accepts. Automaton has 30 states and 37 transitions. Word has length 14 [2018-11-23 02:30:36,500 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:36,500 INFO L480 AbstractCegarLoop]: Abstraction has 30 states and 37 transitions. [2018-11-23 02:30:36,500 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 02:30:36,500 INFO L276 IsEmpty]: Start isEmpty. Operand 30 states and 37 transitions. [2018-11-23 02:30:36,501 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 27 [2018-11-23 02:30:36,501 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:36,501 INFO L402 BasicCegarLoop]: trace histogram [2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:36,501 INFO L423 AbstractCegarLoop]: === Iteration 3 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:36,502 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:36,502 INFO L82 PathProgramCache]: Analyzing trace with hash -1592795560, now seen corresponding path program 1 times [2018-11-23 02:30:36,502 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:36,502 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:36,503 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,503 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:36,503 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,512 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:36,553 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 02:30:36,553 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:36,553 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:36,560 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:36,573 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:36,579 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:36,631 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 02:30:36,647 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:36,647 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 7] total 9 [2018-11-23 02:30:36,647 INFO L459 AbstractCegarLoop]: Interpolant automaton has 9 states [2018-11-23 02:30:36,648 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 9 interpolants. [2018-11-23 02:30:36,648 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=16, Invalid=56, Unknown=0, NotChecked=0, Total=72 [2018-11-23 02:30:36,648 INFO L87 Difference]: Start difference. First operand 30 states and 37 transitions. Second operand 9 states. [2018-11-23 02:30:36,788 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:36,788 INFO L93 Difference]: Finished difference Result 58 states and 78 transitions. [2018-11-23 02:30:36,788 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 02:30:36,788 INFO L78 Accepts]: Start accepts. Automaton has 9 states. Word has length 26 [2018-11-23 02:30:36,788 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:36,789 INFO L225 Difference]: With dead ends: 58 [2018-11-23 02:30:36,789 INFO L226 Difference]: Without dead ends: 34 [2018-11-23 02:30:36,790 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 37 GetRequests, 24 SyntacticMatches, 1 SemanticMatches, 12 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 14 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=41, Invalid=141, Unknown=0, NotChecked=0, Total=182 [2018-11-23 02:30:36,790 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 34 states. [2018-11-23 02:30:36,795 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 34 to 32. [2018-11-23 02:30:36,795 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 32 states. [2018-11-23 02:30:36,796 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 32 states to 32 states and 39 transitions. [2018-11-23 02:30:36,796 INFO L78 Accepts]: Start accepts. Automaton has 32 states and 39 transitions. Word has length 26 [2018-11-23 02:30:36,796 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:36,796 INFO L480 AbstractCegarLoop]: Abstraction has 32 states and 39 transitions. [2018-11-23 02:30:36,797 INFO L481 AbstractCegarLoop]: Interpolant automaton has 9 states. [2018-11-23 02:30:36,797 INFO L276 IsEmpty]: Start isEmpty. Operand 32 states and 39 transitions. [2018-11-23 02:30:36,798 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 28 [2018-11-23 02:30:36,798 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:36,798 INFO L402 BasicCegarLoop]: trace histogram [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:36,798 INFO L423 AbstractCegarLoop]: === Iteration 4 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:36,798 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:36,799 INFO L82 PathProgramCache]: Analyzing trace with hash 746633022, now seen corresponding path program 1 times [2018-11-23 02:30:36,799 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:36,799 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:36,800 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,800 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:36,800 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:36,808 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:36,850 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 02:30:36,850 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:36,850 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:36,866 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:36,873 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:36,874 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:36,884 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 02:30:36,898 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:36,899 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 7] total 7 [2018-11-23 02:30:36,899 INFO L459 AbstractCegarLoop]: Interpolant automaton has 7 states [2018-11-23 02:30:36,899 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 7 interpolants. [2018-11-23 02:30:36,899 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=11, Invalid=31, Unknown=0, NotChecked=0, Total=42 [2018-11-23 02:30:36,899 INFO L87 Difference]: Start difference. First operand 32 states and 39 transitions. Second operand 7 states. [2018-11-23 02:30:37,010 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:37,010 INFO L93 Difference]: Finished difference Result 43 states and 55 transitions. [2018-11-23 02:30:37,011 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 7 states. [2018-11-23 02:30:37,011 INFO L78 Accepts]: Start accepts. Automaton has 7 states. Word has length 27 [2018-11-23 02:30:37,011 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:37,012 INFO L225 Difference]: With dead ends: 43 [2018-11-23 02:30:37,012 INFO L226 Difference]: Without dead ends: 39 [2018-11-23 02:30:37,013 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 36 GetRequests, 29 SyntacticMatches, 0 SemanticMatches, 7 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=19, Invalid=53, Unknown=0, NotChecked=0, Total=72 [2018-11-23 02:30:37,013 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 39 states. [2018-11-23 02:30:37,018 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 39 to 37. [2018-11-23 02:30:37,018 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 37 states. [2018-11-23 02:30:37,019 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 37 states to 37 states and 48 transitions. [2018-11-23 02:30:37,019 INFO L78 Accepts]: Start accepts. Automaton has 37 states and 48 transitions. Word has length 27 [2018-11-23 02:30:37,019 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:37,020 INFO L480 AbstractCegarLoop]: Abstraction has 37 states and 48 transitions. [2018-11-23 02:30:37,020 INFO L481 AbstractCegarLoop]: Interpolant automaton has 7 states. [2018-11-23 02:30:37,020 INFO L276 IsEmpty]: Start isEmpty. Operand 37 states and 48 transitions. [2018-11-23 02:30:37,021 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 40 [2018-11-23 02:30:37,021 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:37,021 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:37,021 INFO L423 AbstractCegarLoop]: === Iteration 5 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:37,022 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:37,022 INFO L82 PathProgramCache]: Analyzing trace with hash 986908919, now seen corresponding path program 1 times [2018-11-23 02:30:37,022 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:37,022 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:37,023 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,023 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:37,023 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,030 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:37,071 INFO L134 CoverageAnalysis]: Checked inductivity of 16 backedges. 5 proven. 5 refuted. 0 times theorem prover too weak. 6 trivial. 0 not checked. [2018-11-23 02:30:37,071 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:37,071 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:37,077 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:37,089 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:37,092 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:37,141 INFO L134 CoverageAnalysis]: Checked inductivity of 16 backedges. 2 proven. 9 refuted. 0 times theorem prover too weak. 5 trivial. 0 not checked. [2018-11-23 02:30:37,156 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:37,156 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 8] total 10 [2018-11-23 02:30:37,157 INFO L459 AbstractCegarLoop]: Interpolant automaton has 10 states [2018-11-23 02:30:37,157 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 10 interpolants. [2018-11-23 02:30:37,157 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=19, Invalid=71, Unknown=0, NotChecked=0, Total=90 [2018-11-23 02:30:37,157 INFO L87 Difference]: Start difference. First operand 37 states and 48 transitions. Second operand 10 states. [2018-11-23 02:30:37,289 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:37,289 INFO L93 Difference]: Finished difference Result 70 states and 100 transitions. [2018-11-23 02:30:37,289 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 02:30:37,290 INFO L78 Accepts]: Start accepts. Automaton has 10 states. Word has length 39 [2018-11-23 02:30:37,290 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:37,291 INFO L225 Difference]: With dead ends: 70 [2018-11-23 02:30:37,291 INFO L226 Difference]: Without dead ends: 39 [2018-11-23 02:30:37,292 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 54 GetRequests, 39 SyntacticMatches, 1 SemanticMatches, 14 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 21 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=50, Invalid=190, Unknown=0, NotChecked=0, Total=240 [2018-11-23 02:30:37,292 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 39 states. [2018-11-23 02:30:37,297 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 39 to 39. [2018-11-23 02:30:37,297 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 39 states. [2018-11-23 02:30:37,298 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 39 states to 39 states and 50 transitions. [2018-11-23 02:30:37,298 INFO L78 Accepts]: Start accepts. Automaton has 39 states and 50 transitions. Word has length 39 [2018-11-23 02:30:37,298 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:37,299 INFO L480 AbstractCegarLoop]: Abstraction has 39 states and 50 transitions. [2018-11-23 02:30:37,299 INFO L481 AbstractCegarLoop]: Interpolant automaton has 10 states. [2018-11-23 02:30:37,299 INFO L276 IsEmpty]: Start isEmpty. Operand 39 states and 50 transitions. [2018-11-23 02:30:37,300 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 41 [2018-11-23 02:30:37,300 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:37,300 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:37,300 INFO L423 AbstractCegarLoop]: === Iteration 6 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:37,301 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:37,301 INFO L82 PathProgramCache]: Analyzing trace with hash -2100495745, now seen corresponding path program 1 times [2018-11-23 02:30:37,301 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:37,301 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:37,302 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,302 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:37,302 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,310 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:37,351 INFO L134 CoverageAnalysis]: Checked inductivity of 17 backedges. 7 proven. 3 refuted. 0 times theorem prover too weak. 7 trivial. 0 not checked. [2018-11-23 02:30:37,351 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:37,351 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:37,357 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:37,367 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:37,369 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:37,410 INFO L134 CoverageAnalysis]: Checked inductivity of 17 backedges. 2 proven. 9 refuted. 0 times theorem prover too weak. 6 trivial. 0 not checked. [2018-11-23 02:30:37,424 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:37,425 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 8] total 10 [2018-11-23 02:30:37,425 INFO L459 AbstractCegarLoop]: Interpolant automaton has 10 states [2018-11-23 02:30:37,425 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 10 interpolants. [2018-11-23 02:30:37,425 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=21, Invalid=69, Unknown=0, NotChecked=0, Total=90 [2018-11-23 02:30:37,425 INFO L87 Difference]: Start difference. First operand 39 states and 50 transitions. Second operand 10 states. [2018-11-23 02:30:37,520 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:37,520 INFO L93 Difference]: Finished difference Result 61 states and 90 transitions. [2018-11-23 02:30:37,520 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 02:30:37,521 INFO L78 Accepts]: Start accepts. Automaton has 10 states. Word has length 40 [2018-11-23 02:30:37,521 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:37,522 INFO L225 Difference]: With dead ends: 61 [2018-11-23 02:30:37,522 INFO L226 Difference]: Without dead ends: 57 [2018-11-23 02:30:37,522 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 54 GetRequests, 41 SyntacticMatches, 0 SemanticMatches, 13 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 16 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=49, Invalid=161, Unknown=0, NotChecked=0, Total=210 [2018-11-23 02:30:37,522 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 57 states. [2018-11-23 02:30:37,528 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 57 to 44. [2018-11-23 02:30:37,528 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 44 states. [2018-11-23 02:30:37,529 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 44 states to 44 states and 60 transitions. [2018-11-23 02:30:37,530 INFO L78 Accepts]: Start accepts. Automaton has 44 states and 60 transitions. Word has length 40 [2018-11-23 02:30:37,530 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:37,530 INFO L480 AbstractCegarLoop]: Abstraction has 44 states and 60 transitions. [2018-11-23 02:30:37,530 INFO L481 AbstractCegarLoop]: Interpolant automaton has 10 states. [2018-11-23 02:30:37,530 INFO L276 IsEmpty]: Start isEmpty. Operand 44 states and 60 transitions. [2018-11-23 02:30:37,531 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 55 [2018-11-23 02:30:37,531 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:37,532 INFO L402 BasicCegarLoop]: trace histogram [4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:37,532 INFO L423 AbstractCegarLoop]: === Iteration 7 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:37,532 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:37,532 INFO L82 PathProgramCache]: Analyzing trace with hash -405677468, now seen corresponding path program 1 times [2018-11-23 02:30:37,532 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:37,532 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:37,533 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,533 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:37,533 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,542 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:37,585 INFO L134 CoverageAnalysis]: Checked inductivity of 44 backedges. 18 proven. 4 refuted. 0 times theorem prover too weak. 22 trivial. 0 not checked. [2018-11-23 02:30:37,586 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:37,586 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:37,601 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:37,618 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:37,621 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:37,651 INFO L134 CoverageAnalysis]: Checked inductivity of 44 backedges. 4 proven. 23 refuted. 0 times theorem prover too weak. 17 trivial. 0 not checked. [2018-11-23 02:30:37,675 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:37,676 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 9] total 10 [2018-11-23 02:30:37,676 INFO L459 AbstractCegarLoop]: Interpolant automaton has 10 states [2018-11-23 02:30:37,676 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 10 interpolants. [2018-11-23 02:30:37,676 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=21, Invalid=69, Unknown=0, NotChecked=0, Total=90 [2018-11-23 02:30:37,676 INFO L87 Difference]: Start difference. First operand 44 states and 60 transitions. Second operand 10 states. [2018-11-23 02:30:37,777 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:37,777 INFO L93 Difference]: Finished difference Result 71 states and 118 transitions. [2018-11-23 02:30:37,777 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 02:30:37,778 INFO L78 Accepts]: Start accepts. Automaton has 10 states. Word has length 54 [2018-11-23 02:30:37,778 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:37,779 INFO L225 Difference]: With dead ends: 71 [2018-11-23 02:30:37,779 INFO L226 Difference]: Without dead ends: 67 [2018-11-23 02:30:37,782 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 66 GetRequests, 53 SyntacticMatches, 0 SemanticMatches, 13 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 16 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=49, Invalid=161, Unknown=0, NotChecked=0, Total=210 [2018-11-23 02:30:37,782 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 67 states. [2018-11-23 02:30:37,791 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 67 to 49. [2018-11-23 02:30:37,791 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 49 states. [2018-11-23 02:30:37,792 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 49 states to 49 states and 71 transitions. [2018-11-23 02:30:37,792 INFO L78 Accepts]: Start accepts. Automaton has 49 states and 71 transitions. Word has length 54 [2018-11-23 02:30:37,793 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:37,793 INFO L480 AbstractCegarLoop]: Abstraction has 49 states and 71 transitions. [2018-11-23 02:30:37,793 INFO L481 AbstractCegarLoop]: Interpolant automaton has 10 states. [2018-11-23 02:30:37,793 INFO L276 IsEmpty]: Start isEmpty. Operand 49 states and 71 transitions. [2018-11-23 02:30:37,794 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 81 [2018-11-23 02:30:37,794 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:37,795 INFO L402 BasicCegarLoop]: trace histogram [7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:37,795 INFO L423 AbstractCegarLoop]: === Iteration 8 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:37,795 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:37,795 INFO L82 PathProgramCache]: Analyzing trace with hash 671849284, now seen corresponding path program 2 times [2018-11-23 02:30:37,795 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:37,795 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:37,796 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,796 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:37,796 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:37,807 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:37,878 INFO L134 CoverageAnalysis]: Checked inductivity of 133 backedges. 27 proven. 25 refuted. 0 times theorem prover too weak. 81 trivial. 0 not checked. [2018-11-23 02:30:37,878 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:37,878 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:37,891 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 02:30:37,907 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 02:30:37,907 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:37,909 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:37,993 INFO L134 CoverageAnalysis]: Checked inductivity of 133 backedges. 12 proven. 63 refuted. 0 times theorem prover too weak. 58 trivial. 0 not checked. [2018-11-23 02:30:38,007 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:38,008 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 10] total 16 [2018-11-23 02:30:38,008 INFO L459 AbstractCegarLoop]: Interpolant automaton has 16 states [2018-11-23 02:30:38,008 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 16 interpolants. [2018-11-23 02:30:38,008 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=39, Invalid=201, Unknown=0, NotChecked=0, Total=240 [2018-11-23 02:30:38,008 INFO L87 Difference]: Start difference. First operand 49 states and 71 transitions. Second operand 16 states. [2018-11-23 02:30:38,334 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:38,334 INFO L93 Difference]: Finished difference Result 146 states and 299 transitions. [2018-11-23 02:30:38,335 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 19 states. [2018-11-23 02:30:38,335 INFO L78 Accepts]: Start accepts. Automaton has 16 states. Word has length 80 [2018-11-23 02:30:38,335 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:38,337 INFO L225 Difference]: With dead ends: 146 [2018-11-23 02:30:38,337 INFO L226 Difference]: Without dead ends: 103 [2018-11-23 02:30:38,338 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 108 GetRequests, 81 SyntacticMatches, 0 SemanticMatches, 27 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 113 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=143, Invalid=669, Unknown=0, NotChecked=0, Total=812 [2018-11-23 02:30:38,338 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 103 states. [2018-11-23 02:30:38,352 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 103 to 87. [2018-11-23 02:30:38,352 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 87 states. [2018-11-23 02:30:38,354 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 87 states to 87 states and 157 transitions. [2018-11-23 02:30:38,354 INFO L78 Accepts]: Start accepts. Automaton has 87 states and 157 transitions. Word has length 80 [2018-11-23 02:30:38,354 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:38,354 INFO L480 AbstractCegarLoop]: Abstraction has 87 states and 157 transitions. [2018-11-23 02:30:38,354 INFO L481 AbstractCegarLoop]: Interpolant automaton has 16 states. [2018-11-23 02:30:38,355 INFO L276 IsEmpty]: Start isEmpty. Operand 87 states and 157 transitions. [2018-11-23 02:30:38,357 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 150 [2018-11-23 02:30:38,357 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:38,357 INFO L402 BasicCegarLoop]: trace histogram [11, 11, 10, 10, 9, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:38,358 INFO L423 AbstractCegarLoop]: === Iteration 9 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:38,359 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:38,359 INFO L82 PathProgramCache]: Analyzing trace with hash -593756845, now seen corresponding path program 1 times [2018-11-23 02:30:38,359 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:38,359 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:38,359 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:38,360 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:38,360 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:38,377 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:38,492 INFO L134 CoverageAnalysis]: Checked inductivity of 537 backedges. 70 proven. 133 refuted. 0 times theorem prover too weak. 334 trivial. 0 not checked. [2018-11-23 02:30:38,493 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:38,493 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:38,501 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:38,537 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:38,541 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:38,647 INFO L134 CoverageAnalysis]: Checked inductivity of 537 backedges. 33 proven. 204 refuted. 0 times theorem prover too weak. 300 trivial. 0 not checked. [2018-11-23 02:30:38,687 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:38,687 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 11] total 18 [2018-11-23 02:30:38,688 INFO L459 AbstractCegarLoop]: Interpolant automaton has 18 states [2018-11-23 02:30:38,688 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 18 interpolants. [2018-11-23 02:30:38,688 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=43, Invalid=263, Unknown=0, NotChecked=0, Total=306 [2018-11-23 02:30:38,689 INFO L87 Difference]: Start difference. First operand 87 states and 157 transitions. Second operand 18 states. [2018-11-23 02:30:39,193 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:39,194 INFO L93 Difference]: Finished difference Result 232 states and 520 transitions. [2018-11-23 02:30:39,194 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 28 states. [2018-11-23 02:30:39,194 INFO L78 Accepts]: Start accepts. Automaton has 18 states. Word has length 149 [2018-11-23 02:30:39,194 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:39,196 INFO L225 Difference]: With dead ends: 232 [2018-11-23 02:30:39,196 INFO L226 Difference]: Without dead ends: 129 [2018-11-23 02:30:39,197 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 178 GetRequests, 143 SyntacticMatches, 0 SemanticMatches, 35 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 211 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=230, Invalid=1102, Unknown=0, NotChecked=0, Total=1332 [2018-11-23 02:30:39,197 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 129 states. [2018-11-23 02:30:39,209 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 129 to 118. [2018-11-23 02:30:39,209 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 118 states. [2018-11-23 02:30:39,211 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 118 states to 118 states and 184 transitions. [2018-11-23 02:30:39,211 INFO L78 Accepts]: Start accepts. Automaton has 118 states and 184 transitions. Word has length 149 [2018-11-23 02:30:39,212 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:39,212 INFO L480 AbstractCegarLoop]: Abstraction has 118 states and 184 transitions. [2018-11-23 02:30:39,212 INFO L481 AbstractCegarLoop]: Interpolant automaton has 18 states. [2018-11-23 02:30:39,212 INFO L276 IsEmpty]: Start isEmpty. Operand 118 states and 184 transitions. [2018-11-23 02:30:39,218 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 459 [2018-11-23 02:30:39,219 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:39,219 INFO L402 BasicCegarLoop]: trace histogram [41, 41, 26, 26, 26, 23, 20, 20, 20, 20, 20, 20, 20, 18, 13, 13, 13, 13, 13, 13, 13, 10, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:39,219 INFO L423 AbstractCegarLoop]: === Iteration 10 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:39,219 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:39,219 INFO L82 PathProgramCache]: Analyzing trace with hash -100353676, now seen corresponding path program 1 times [2018-11-23 02:30:39,219 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:39,219 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:39,220 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:39,220 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:39,220 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:39,260 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:39,476 INFO L134 CoverageAnalysis]: Checked inductivity of 6230 backedges. 179 proven. 708 refuted. 0 times theorem prover too weak. 5343 trivial. 0 not checked. [2018-11-23 02:30:39,476 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:39,476 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:39,484 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:39,556 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:39,563 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:39,755 INFO L134 CoverageAnalysis]: Checked inductivity of 6230 backedges. 133 proven. 1023 refuted. 0 times theorem prover too weak. 5074 trivial. 0 not checked. [2018-11-23 02:30:39,779 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:39,779 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 12] total 18 [2018-11-23 02:30:39,780 INFO L459 AbstractCegarLoop]: Interpolant automaton has 18 states [2018-11-23 02:30:39,780 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 18 interpolants. [2018-11-23 02:30:39,780 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=46, Invalid=260, Unknown=0, NotChecked=0, Total=306 [2018-11-23 02:30:39,780 INFO L87 Difference]: Start difference. First operand 118 states and 184 transitions. Second operand 18 states. [2018-11-23 02:30:40,253 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:40,253 INFO L93 Difference]: Finished difference Result 290 states and 587 transitions. [2018-11-23 02:30:40,253 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 32 states. [2018-11-23 02:30:40,253 INFO L78 Accepts]: Start accepts. Automaton has 18 states. Word has length 458 [2018-11-23 02:30:40,253 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:40,256 INFO L225 Difference]: With dead ends: 290 [2018-11-23 02:30:40,256 INFO L226 Difference]: Without dead ends: 179 [2018-11-23 02:30:40,257 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 487 GetRequests, 451 SyntacticMatches, 0 SemanticMatches, 36 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 185 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=235, Invalid=1171, Unknown=0, NotChecked=0, Total=1406 [2018-11-23 02:30:40,257 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 179 states. [2018-11-23 02:30:40,270 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 179 to 154. [2018-11-23 02:30:40,271 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 154 states. [2018-11-23 02:30:40,272 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 154 states to 154 states and 252 transitions. [2018-11-23 02:30:40,273 INFO L78 Accepts]: Start accepts. Automaton has 154 states and 252 transitions. Word has length 458 [2018-11-23 02:30:40,273 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:40,273 INFO L480 AbstractCegarLoop]: Abstraction has 154 states and 252 transitions. [2018-11-23 02:30:40,273 INFO L481 AbstractCegarLoop]: Interpolant automaton has 18 states. [2018-11-23 02:30:40,273 INFO L276 IsEmpty]: Start isEmpty. Operand 154 states and 252 transitions. [2018-11-23 02:30:40,279 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 451 [2018-11-23 02:30:40,279 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:40,280 INFO L402 BasicCegarLoop]: trace histogram [35, 35, 30, 30, 28, 25, 17, 17, 17, 17, 17, 17, 17, 15, 15, 15, 15, 15, 15, 15, 13, 8, 7, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:40,280 INFO L423 AbstractCegarLoop]: === Iteration 11 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:40,280 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:40,280 INFO L82 PathProgramCache]: Analyzing trace with hash 1913009063, now seen corresponding path program 2 times [2018-11-23 02:30:40,280 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:40,280 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:40,281 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:40,281 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:40,281 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:40,298 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:40,437 INFO L134 CoverageAnalysis]: Checked inductivity of 5762 backedges. 543 proven. 474 refuted. 0 times theorem prover too weak. 4745 trivial. 0 not checked. [2018-11-23 02:30:40,437 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:40,437 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:40,443 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 02:30:40,501 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 02:30:40,501 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:40,508 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:40,702 INFO L134 CoverageAnalysis]: Checked inductivity of 5762 backedges. 176 proven. 1083 refuted. 0 times theorem prover too weak. 4503 trivial. 0 not checked. [2018-11-23 02:30:40,717 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:40,717 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 13] total 21 [2018-11-23 02:30:40,718 INFO L459 AbstractCegarLoop]: Interpolant automaton has 21 states [2018-11-23 02:30:40,718 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 21 interpolants. [2018-11-23 02:30:40,718 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=59, Invalid=361, Unknown=0, NotChecked=0, Total=420 [2018-11-23 02:30:40,718 INFO L87 Difference]: Start difference. First operand 154 states and 252 transitions. Second operand 21 states. [2018-11-23 02:30:41,271 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:41,271 INFO L93 Difference]: Finished difference Result 324 states and 658 transitions. [2018-11-23 02:30:41,271 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 39 states. [2018-11-23 02:30:41,272 INFO L78 Accepts]: Start accepts. Automaton has 21 states. Word has length 450 [2018-11-23 02:30:41,272 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:41,274 INFO L225 Difference]: With dead ends: 324 [2018-11-23 02:30:41,274 INFO L226 Difference]: Without dead ends: 182 [2018-11-23 02:30:41,275 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 486 GetRequests, 441 SyntacticMatches, 0 SemanticMatches, 45 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 380 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=350, Invalid=1812, Unknown=0, NotChecked=0, Total=2162 [2018-11-23 02:30:41,275 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 182 states. [2018-11-23 02:30:41,286 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 182 to 157. [2018-11-23 02:30:41,286 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 157 states. [2018-11-23 02:30:41,287 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 157 states to 157 states and 272 transitions. [2018-11-23 02:30:41,288 INFO L78 Accepts]: Start accepts. Automaton has 157 states and 272 transitions. Word has length 450 [2018-11-23 02:30:41,288 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:41,288 INFO L480 AbstractCegarLoop]: Abstraction has 157 states and 272 transitions. [2018-11-23 02:30:41,288 INFO L481 AbstractCegarLoop]: Interpolant automaton has 21 states. [2018-11-23 02:30:41,288 INFO L276 IsEmpty]: Start isEmpty. Operand 157 states and 272 transitions. [2018-11-23 02:30:41,294 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1005 [2018-11-23 02:30:41,294 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:41,294 INFO L402 BasicCegarLoop]: trace histogram [77, 77, 70, 70, 58, 57, 38, 38, 38, 38, 38, 38, 38, 35, 35, 35, 35, 35, 35, 35, 22, 20, 20, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:41,294 INFO L423 AbstractCegarLoop]: === Iteration 12 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:41,294 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:41,295 INFO L82 PathProgramCache]: Analyzing trace with hash -1321349282, now seen corresponding path program 3 times [2018-11-23 02:30:41,295 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:41,295 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:41,295 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:41,295 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:41,296 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:41,336 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:41,784 INFO L134 CoverageAnalysis]: Checked inductivity of 29805 backedges. 519 proven. 2566 refuted. 0 times theorem prover too weak. 26720 trivial. 0 not checked. [2018-11-23 02:30:41,785 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:41,785 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:41,791 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 02:30:41,841 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 6 check-sat command(s) [2018-11-23 02:30:41,841 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:41,850 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:42,206 INFO L134 CoverageAnalysis]: Checked inductivity of 29805 backedges. 3381 proven. 28 refuted. 0 times theorem prover too weak. 26396 trivial. 0 not checked. [2018-11-23 02:30:42,220 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:42,221 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [15, 12] total 20 [2018-11-23 02:30:42,222 INFO L459 AbstractCegarLoop]: Interpolant automaton has 20 states [2018-11-23 02:30:42,222 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 20 interpolants. [2018-11-23 02:30:42,222 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=51, Invalid=329, Unknown=0, NotChecked=0, Total=380 [2018-11-23 02:30:42,222 INFO L87 Difference]: Start difference. First operand 157 states and 272 transitions. Second operand 20 states. [2018-11-23 02:30:42,542 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:42,542 INFO L93 Difference]: Finished difference Result 347 states and 714 transitions. [2018-11-23 02:30:42,543 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 20 states. [2018-11-23 02:30:42,543 INFO L78 Accepts]: Start accepts. Automaton has 20 states. Word has length 1004 [2018-11-23 02:30:42,543 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:42,545 INFO L225 Difference]: With dead ends: 347 [2018-11-23 02:30:42,545 INFO L226 Difference]: Without dead ends: 202 [2018-11-23 02:30:42,546 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1032 GetRequests, 999 SyntacticMatches, 1 SemanticMatches, 32 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 199 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=178, Invalid=944, Unknown=0, NotChecked=0, Total=1122 [2018-11-23 02:30:42,546 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 202 states. [2018-11-23 02:30:42,555 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 202 to 196. [2018-11-23 02:30:42,555 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 196 states. [2018-11-23 02:30:42,557 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 196 states to 196 states and 322 transitions. [2018-11-23 02:30:42,557 INFO L78 Accepts]: Start accepts. Automaton has 196 states and 322 transitions. Word has length 1004 [2018-11-23 02:30:42,557 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:42,557 INFO L480 AbstractCegarLoop]: Abstraction has 196 states and 322 transitions. [2018-11-23 02:30:42,558 INFO L481 AbstractCegarLoop]: Interpolant automaton has 20 states. [2018-11-23 02:30:42,558 INFO L276 IsEmpty]: Start isEmpty. Operand 196 states and 322 transitions. [2018-11-23 02:30:42,561 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 925 [2018-11-23 02:30:42,562 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:42,562 INFO L402 BasicCegarLoop]: trace histogram [73, 73, 62, 62, 57, 50, 36, 36, 36, 36, 36, 36, 36, 31, 31, 31, 31, 31, 31, 31, 26, 16, 14, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:42,563 INFO L423 AbstractCegarLoop]: === Iteration 13 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:42,563 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:42,563 INFO L82 PathProgramCache]: Analyzing trace with hash 78628478, now seen corresponding path program 4 times [2018-11-23 02:30:42,563 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:42,563 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:42,564 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:42,564 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:42,564 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:42,594 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:42,977 INFO L134 CoverageAnalysis]: Checked inductivity of 25277 backedges. 739 proven. 1247 refuted. 0 times theorem prover too weak. 23291 trivial. 0 not checked. [2018-11-23 02:30:42,978 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:42,978 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:42,985 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 02:30:43,101 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 02:30:43,102 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:43,111 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:43,415 INFO L134 CoverageAnalysis]: Checked inductivity of 25277 backedges. 369 proven. 2803 refuted. 0 times theorem prover too weak. 22105 trivial. 0 not checked. [2018-11-23 02:30:43,431 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:43,431 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 14] total 19 [2018-11-23 02:30:43,432 INFO L459 AbstractCegarLoop]: Interpolant automaton has 19 states [2018-11-23 02:30:43,432 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 19 interpolants. [2018-11-23 02:30:43,432 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=55, Invalid=287, Unknown=0, NotChecked=0, Total=342 [2018-11-23 02:30:43,433 INFO L87 Difference]: Start difference. First operand 196 states and 322 transitions. Second operand 19 states. [2018-11-23 02:30:43,767 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:43,767 INFO L93 Difference]: Finished difference Result 408 states and 774 transitions. [2018-11-23 02:30:43,767 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 23 states. [2018-11-23 02:30:43,767 INFO L78 Accepts]: Start accepts. Automaton has 19 states. Word has length 924 [2018-11-23 02:30:43,768 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:43,770 INFO L225 Difference]: With dead ends: 408 [2018-11-23 02:30:43,770 INFO L226 Difference]: Without dead ends: 222 [2018-11-23 02:30:43,772 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 948 GetRequests, 917 SyntacticMatches, 0 SemanticMatches, 31 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 122 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=195, Invalid=861, Unknown=0, NotChecked=0, Total=1056 [2018-11-23 02:30:43,772 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 222 states. [2018-11-23 02:30:43,785 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 222 to 205. [2018-11-23 02:30:43,785 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 205 states. [2018-11-23 02:30:43,786 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 205 states to 205 states and 353 transitions. [2018-11-23 02:30:43,787 INFO L78 Accepts]: Start accepts. Automaton has 205 states and 353 transitions. Word has length 924 [2018-11-23 02:30:43,787 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:43,787 INFO L480 AbstractCegarLoop]: Abstraction has 205 states and 353 transitions. [2018-11-23 02:30:43,787 INFO L481 AbstractCegarLoop]: Interpolant automaton has 19 states. [2018-11-23 02:30:43,788 INFO L276 IsEmpty]: Start isEmpty. Operand 205 states and 353 transitions. [2018-11-23 02:30:43,800 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1501 [2018-11-23 02:30:43,800 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:43,801 INFO L402 BasicCegarLoop]: trace histogram [113, 113, 106, 106, 93, 86, 56, 56, 56, 56, 56, 56, 56, 53, 53, 53, 53, 53, 53, 53, 40, 30, 20, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:43,801 INFO L423 AbstractCegarLoop]: === Iteration 14 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:43,801 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:43,802 INFO L82 PathProgramCache]: Analyzing trace with hash -1522052770, now seen corresponding path program 5 times [2018-11-23 02:30:43,802 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:43,802 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:43,802 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:43,803 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:43,803 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:43,874 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:44,751 INFO L134 CoverageAnalysis]: Checked inductivity of 67177 backedges. 3283 proven. 2213 refuted. 0 times theorem prover too weak. 61681 trivial. 0 not checked. [2018-11-23 02:30:44,751 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:44,751 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 13 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 13 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:44,758 INFO L103 rtionOrderModulation]: Keeping assertion order INSIDE_LOOP_FIRST1 [2018-11-23 02:30:44,841 INFO L249 tOrderPrioritization]: Assert order INSIDE_LOOP_FIRST1 issued 14 check-sat command(s) [2018-11-23 02:30:44,841 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:44,858 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:45,578 INFO L134 CoverageAnalysis]: Checked inductivity of 67177 backedges. 22289 proven. 176 refuted. 0 times theorem prover too weak. 44712 trivial. 0 not checked. [2018-11-23 02:30:45,602 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:45,602 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [17, 15] total 24 [2018-11-23 02:30:45,603 INFO L459 AbstractCegarLoop]: Interpolant automaton has 24 states [2018-11-23 02:30:45,603 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 24 interpolants. [2018-11-23 02:30:45,604 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=72, Invalid=480, Unknown=0, NotChecked=0, Total=552 [2018-11-23 02:30:45,604 INFO L87 Difference]: Start difference. First operand 205 states and 353 transitions. Second operand 24 states. [2018-11-23 02:30:46,211 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:46,211 INFO L93 Difference]: Finished difference Result 438 states and 835 transitions. [2018-11-23 02:30:46,212 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 31 states. [2018-11-23 02:30:46,212 INFO L78 Accepts]: Start accepts. Automaton has 24 states. Word has length 1500 [2018-11-23 02:30:46,212 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:46,215 INFO L225 Difference]: With dead ends: 438 [2018-11-23 02:30:46,215 INFO L226 Difference]: Without dead ends: 243 [2018-11-23 02:30:46,216 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1542 GetRequests, 1500 SyntacticMatches, 0 SemanticMatches, 42 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 421 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=279, Invalid=1613, Unknown=0, NotChecked=0, Total=1892 [2018-11-23 02:30:46,217 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 243 states. [2018-11-23 02:30:46,230 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 243 to 218. [2018-11-23 02:30:46,230 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 218 states. [2018-11-23 02:30:46,231 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 218 states to 218 states and 349 transitions. [2018-11-23 02:30:46,231 INFO L78 Accepts]: Start accepts. Automaton has 218 states and 349 transitions. Word has length 1500 [2018-11-23 02:30:46,232 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:46,232 INFO L480 AbstractCegarLoop]: Abstraction has 218 states and 349 transitions. [2018-11-23 02:30:46,232 INFO L481 AbstractCegarLoop]: Interpolant automaton has 24 states. [2018-11-23 02:30:46,232 INFO L276 IsEmpty]: Start isEmpty. Operand 218 states and 349 transitions. [2018-11-23 02:30:46,250 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1813 [2018-11-23 02:30:46,250 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:46,250 INFO L402 BasicCegarLoop]: trace histogram [142, 142, 123, 123, 110, 105, 71, 71, 71, 71, 71, 71, 71, 61, 61, 61, 61, 61, 61, 61, 49, 34, 32, 18, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:46,250 INFO L423 AbstractCegarLoop]: === Iteration 15 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:46,251 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:46,251 INFO L82 PathProgramCache]: Analyzing trace with hash -192170339, now seen corresponding path program 6 times [2018-11-23 02:30:46,251 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:46,251 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:46,252 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:46,252 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:46,252 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:46,344 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:47,681 INFO L134 CoverageAnalysis]: Checked inductivity of 98771 backedges. 1925 proven. 5443 refuted. 0 times theorem prover too weak. 91403 trivial. 0 not checked. [2018-11-23 02:30:47,681 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:47,681 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 14 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 14 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:47,687 INFO L103 rtionOrderModulation]: Keeping assertion order MIX_INSIDE_OUTSIDE [2018-11-23 02:30:47,814 INFO L249 tOrderPrioritization]: Assert order MIX_INSIDE_OUTSIDE issued 27 check-sat command(s) [2018-11-23 02:30:47,814 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:47,825 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:48,684 INFO L134 CoverageAnalysis]: Checked inductivity of 98771 backedges. 5172 proven. 157 refuted. 0 times theorem prover too weak. 93442 trivial. 0 not checked. [2018-11-23 02:30:48,699 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:48,700 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [18, 13] total 22 [2018-11-23 02:30:48,701 INFO L459 AbstractCegarLoop]: Interpolant automaton has 22 states [2018-11-23 02:30:48,701 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 22 interpolants. [2018-11-23 02:30:48,701 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=59, Invalid=403, Unknown=0, NotChecked=0, Total=462 [2018-11-23 02:30:48,701 INFO L87 Difference]: Start difference. First operand 218 states and 349 transitions. Second operand 22 states. [2018-11-23 02:30:49,312 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:49,312 INFO L93 Difference]: Finished difference Result 477 states and 860 transitions. [2018-11-23 02:30:49,313 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 41 states. [2018-11-23 02:30:49,313 INFO L78 Accepts]: Start accepts. Automaton has 22 states. Word has length 1812 [2018-11-23 02:30:49,313 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:49,316 INFO L225 Difference]: With dead ends: 477 [2018-11-23 02:30:49,316 INFO L226 Difference]: Without dead ends: 254 [2018-11-23 02:30:49,318 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1864 GetRequests, 1812 SyntacticMatches, 0 SemanticMatches, 52 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 671 ImplicationChecksByTransitivity, 0.5s TimeCoverageRelationStatistics Valid=432, Invalid=2430, Unknown=0, NotChecked=0, Total=2862 [2018-11-23 02:30:49,318 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 254 states. [2018-11-23 02:30:49,333 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 254 to 230. [2018-11-23 02:30:49,334 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 230 states. [2018-11-23 02:30:49,335 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 230 states to 230 states and 358 transitions. [2018-11-23 02:30:49,335 INFO L78 Accepts]: Start accepts. Automaton has 230 states and 358 transitions. Word has length 1812 [2018-11-23 02:30:49,336 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:49,336 INFO L480 AbstractCegarLoop]: Abstraction has 230 states and 358 transitions. [2018-11-23 02:30:49,336 INFO L481 AbstractCegarLoop]: Interpolant automaton has 22 states. [2018-11-23 02:30:49,336 INFO L276 IsEmpty]: Start isEmpty. Operand 230 states and 358 transitions. [2018-11-23 02:30:49,353 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1771 [2018-11-23 02:30:49,353 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:49,354 INFO L402 BasicCegarLoop]: trace histogram [133, 133, 126, 126, 106, 103, 66, 66, 66, 66, 66, 66, 66, 63, 63, 63, 63, 63, 63, 63, 40, 40, 30, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:49,354 INFO L423 AbstractCegarLoop]: === Iteration 16 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:49,354 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:49,355 INFO L82 PathProgramCache]: Analyzing trace with hash -1936583796, now seen corresponding path program 7 times [2018-11-23 02:30:49,355 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:49,355 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:49,355 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:49,356 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:49,356 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:49,442 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:50,497 INFO L134 CoverageAnalysis]: Checked inductivity of 93822 backedges. 3939 proven. 933 refuted. 0 times theorem prover too weak. 88950 trivial. 0 not checked. [2018-11-23 02:30:50,497 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:50,497 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 15 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 15 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:50,503 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:50,736 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:50,752 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:51,597 INFO L134 CoverageAnalysis]: Checked inductivity of 93822 backedges. 1384 proven. 5138 refuted. 0 times theorem prover too weak. 87300 trivial. 0 not checked. [2018-11-23 02:30:51,614 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:51,614 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [12, 15] total 25 [2018-11-23 02:30:51,615 INFO L459 AbstractCegarLoop]: Interpolant automaton has 25 states [2018-11-23 02:30:51,615 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 25 interpolants. [2018-11-23 02:30:51,615 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=73, Invalid=527, Unknown=0, NotChecked=0, Total=600 [2018-11-23 02:30:51,615 INFO L87 Difference]: Start difference. First operand 230 states and 358 transitions. Second operand 25 states. [2018-11-23 02:30:52,598 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:52,598 INFO L93 Difference]: Finished difference Result 576 states and 1247 transitions. [2018-11-23 02:30:52,599 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 48 states. [2018-11-23 02:30:52,599 INFO L78 Accepts]: Start accepts. Automaton has 25 states. Word has length 1770 [2018-11-23 02:30:52,599 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:52,602 INFO L225 Difference]: With dead ends: 576 [2018-11-23 02:30:52,602 INFO L226 Difference]: Without dead ends: 270 [2018-11-23 02:30:52,605 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1821 GetRequests, 1763 SyntacticMatches, 0 SemanticMatches, 58 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 882 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=450, Invalid=3090, Unknown=0, NotChecked=0, Total=3540 [2018-11-23 02:30:52,605 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 270 states. [2018-11-23 02:30:52,621 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 270 to 236. [2018-11-23 02:30:52,621 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 236 states. [2018-11-23 02:30:52,622 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 236 states to 236 states and 322 transitions. [2018-11-23 02:30:52,622 INFO L78 Accepts]: Start accepts. Automaton has 236 states and 322 transitions. Word has length 1770 [2018-11-23 02:30:52,623 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:52,623 INFO L480 AbstractCegarLoop]: Abstraction has 236 states and 322 transitions. [2018-11-23 02:30:52,623 INFO L481 AbstractCegarLoop]: Interpolant automaton has 25 states. [2018-11-23 02:30:52,623 INFO L276 IsEmpty]: Start isEmpty. Operand 236 states and 322 transitions. [2018-11-23 02:30:52,635 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1472 [2018-11-23 02:30:52,635 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:52,636 INFO L402 BasicCegarLoop]: trace histogram [110, 110, 105, 105, 89, 85, 55, 55, 55, 55, 55, 55, 55, 52, 52, 52, 52, 52, 52, 52, 37, 30, 21, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:52,636 INFO L423 AbstractCegarLoop]: === Iteration 17 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:52,636 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:52,636 INFO L82 PathProgramCache]: Analyzing trace with hash -749355034, now seen corresponding path program 8 times [2018-11-23 02:30:52,636 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:52,637 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:52,637 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:52,637 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:30:52,637 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:52,701 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:53,524 INFO L134 CoverageAnalysis]: Checked inductivity of 64550 backedges. 4646 proven. 680 refuted. 0 times theorem prover too weak. 59224 trivial. 0 not checked. [2018-11-23 02:30:53,525 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:53,525 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 16 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 16 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:53,530 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 02:30:53,711 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 02:30:53,711 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:53,724 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:54,444 INFO L134 CoverageAnalysis]: Checked inductivity of 64550 backedges. 1554 proven. 3814 refuted. 0 times theorem prover too weak. 59182 trivial. 0 not checked. [2018-11-23 02:30:54,471 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:54,471 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [17, 15] total 28 [2018-11-23 02:30:54,472 INFO L459 AbstractCegarLoop]: Interpolant automaton has 28 states [2018-11-23 02:30:54,472 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 28 interpolants. [2018-11-23 02:30:54,473 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=97, Invalid=659, Unknown=0, NotChecked=0, Total=756 [2018-11-23 02:30:54,473 INFO L87 Difference]: Start difference. First operand 236 states and 322 transitions. Second operand 28 states. [2018-11-23 02:30:55,495 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:55,495 INFO L93 Difference]: Finished difference Result 535 states and 802 transitions. [2018-11-23 02:30:55,496 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 40 states. [2018-11-23 02:30:55,497 INFO L78 Accepts]: Start accepts. Automaton has 28 states. Word has length 1471 [2018-11-23 02:30:55,498 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:55,500 INFO L225 Difference]: With dead ends: 535 [2018-11-23 02:30:55,501 INFO L226 Difference]: Without dead ends: 274 [2018-11-23 02:30:55,502 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1514 GetRequests, 1463 SyntacticMatches, 0 SemanticMatches, 51 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 643 ImplicationChecksByTransitivity, 0.6s TimeCoverageRelationStatistics Valid=400, Invalid=2356, Unknown=0, NotChecked=0, Total=2756 [2018-11-23 02:30:55,503 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 274 states. [2018-11-23 02:30:55,518 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 274 to 266. [2018-11-23 02:30:55,519 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 266 states. [2018-11-23 02:30:55,520 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 266 states to 266 states and 351 transitions. [2018-11-23 02:30:55,520 INFO L78 Accepts]: Start accepts. Automaton has 266 states and 351 transitions. Word has length 1471 [2018-11-23 02:30:55,521 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:55,521 INFO L480 AbstractCegarLoop]: Abstraction has 266 states and 351 transitions. [2018-11-23 02:30:55,521 INFO L481 AbstractCegarLoop]: Interpolant automaton has 28 states. [2018-11-23 02:30:55,521 INFO L276 IsEmpty]: Start isEmpty. Operand 266 states and 351 transitions. [2018-11-23 02:30:55,531 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1281 [2018-11-23 02:30:55,531 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:55,532 INFO L402 BasicCegarLoop]: trace histogram [94, 94, 93, 93, 76, 75, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 30, 28, 18, 18, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:55,532 INFO L423 AbstractCegarLoop]: === Iteration 18 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:55,532 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:55,532 INFO L82 PathProgramCache]: Analyzing trace with hash 478715724, now seen corresponding path program 9 times [2018-11-23 02:30:55,533 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:55,533 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:55,533 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:55,533 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:55,533 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:55,586 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:56,309 INFO L134 CoverageAnalysis]: Checked inductivity of 48685 backedges. 3594 proven. 1223 refuted. 0 times theorem prover too weak. 43868 trivial. 0 not checked. [2018-11-23 02:30:56,309 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:56,310 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 17 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 17 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:56,315 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 02:30:56,385 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 17 check-sat command(s) [2018-11-23 02:30:56,386 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:56,392 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:56,946 INFO L134 CoverageAnalysis]: Checked inductivity of 48685 backedges. 3916 proven. 146 refuted. 0 times theorem prover too weak. 44623 trivial. 0 not checked. [2018-11-23 02:30:56,961 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:56,962 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [18, 14] total 21 [2018-11-23 02:30:56,962 INFO L459 AbstractCegarLoop]: Interpolant automaton has 21 states [2018-11-23 02:30:56,962 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 21 interpolants. [2018-11-23 02:30:56,963 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=56, Invalid=364, Unknown=0, NotChecked=0, Total=420 [2018-11-23 02:30:56,963 INFO L87 Difference]: Start difference. First operand 266 states and 351 transitions. Second operand 21 states. [2018-11-23 02:30:57,419 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:57,419 INFO L93 Difference]: Finished difference Result 528 states and 710 transitions. [2018-11-23 02:30:57,420 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 28 states. [2018-11-23 02:30:57,420 INFO L78 Accepts]: Start accepts. Automaton has 21 states. Word has length 1280 [2018-11-23 02:30:57,421 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:57,423 INFO L225 Difference]: With dead ends: 528 [2018-11-23 02:30:57,423 INFO L226 Difference]: Without dead ends: 292 [2018-11-23 02:30:57,424 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1319 GetRequests, 1281 SyntacticMatches, 0 SemanticMatches, 38 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 322 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=237, Invalid=1323, Unknown=0, NotChecked=0, Total=1560 [2018-11-23 02:30:57,424 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 292 states. [2018-11-23 02:30:57,442 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 292 to 274. [2018-11-23 02:30:57,442 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 274 states. [2018-11-23 02:30:57,444 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 274 states to 274 states and 361 transitions. [2018-11-23 02:30:57,444 INFO L78 Accepts]: Start accepts. Automaton has 274 states and 361 transitions. Word has length 1280 [2018-11-23 02:30:57,445 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:57,445 INFO L480 AbstractCegarLoop]: Abstraction has 274 states and 361 transitions. [2018-11-23 02:30:57,445 INFO L481 AbstractCegarLoop]: Interpolant automaton has 21 states. [2018-11-23 02:30:57,445 INFO L276 IsEmpty]: Start isEmpty. Operand 274 states and 361 transitions. [2018-11-23 02:30:57,454 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1036 [2018-11-23 02:30:57,454 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:57,454 INFO L402 BasicCegarLoop]: trace histogram [77, 77, 74, 74, 61, 61, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 37, 37, 24, 23, 16, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:57,455 INFO L423 AbstractCegarLoop]: === Iteration 19 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:57,455 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:57,455 INFO L82 PathProgramCache]: Analyzing trace with hash 1162202364, now seen corresponding path program 10 times [2018-11-23 02:30:57,455 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:57,455 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:57,456 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:57,456 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:57,456 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:57,499 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:30:57,974 INFO L134 CoverageAnalysis]: Checked inductivity of 31644 backedges. 986 proven. 3704 refuted. 0 times theorem prover too weak. 26954 trivial. 0 not checked. [2018-11-23 02:30:57,974 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:30:57,974 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 18 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 18 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:30:57,982 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 02:30:58,100 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 02:30:58,100 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:30:58,108 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:30:58,433 INFO L134 CoverageAnalysis]: Checked inductivity of 31644 backedges. 984 proven. 2187 refuted. 0 times theorem prover too weak. 28473 trivial. 0 not checked. [2018-11-23 02:30:58,458 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:30:58,459 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [20, 13] total 26 [2018-11-23 02:30:58,459 INFO L459 AbstractCegarLoop]: Interpolant automaton has 26 states [2018-11-23 02:30:58,460 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 26 interpolants. [2018-11-23 02:30:58,460 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=77, Invalid=573, Unknown=0, NotChecked=0, Total=650 [2018-11-23 02:30:58,460 INFO L87 Difference]: Start difference. First operand 274 states and 361 transitions. Second operand 26 states. [2018-11-23 02:30:59,390 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:30:59,390 INFO L93 Difference]: Finished difference Result 634 states and 868 transitions. [2018-11-23 02:30:59,390 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 58 states. [2018-11-23 02:30:59,390 INFO L78 Accepts]: Start accepts. Automaton has 26 states. Word has length 1035 [2018-11-23 02:30:59,391 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:30:59,392 INFO L225 Difference]: With dead ends: 634 [2018-11-23 02:30:59,392 INFO L226 Difference]: Without dead ends: 385 [2018-11-23 02:30:59,394 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1101 GetRequests, 1035 SyntacticMatches, 0 SemanticMatches, 66 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1229 ImplicationChecksByTransitivity, 0.6s TimeCoverageRelationStatistics Valid=604, Invalid=3952, Unknown=0, NotChecked=0, Total=4556 [2018-11-23 02:30:59,394 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 385 states. [2018-11-23 02:30:59,415 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 385 to 344. [2018-11-23 02:30:59,415 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 344 states. [2018-11-23 02:30:59,416 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 344 states to 344 states and 459 transitions. [2018-11-23 02:30:59,417 INFO L78 Accepts]: Start accepts. Automaton has 344 states and 459 transitions. Word has length 1035 [2018-11-23 02:30:59,417 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:30:59,417 INFO L480 AbstractCegarLoop]: Abstraction has 344 states and 459 transitions. [2018-11-23 02:30:59,417 INFO L481 AbstractCegarLoop]: Interpolant automaton has 26 states. [2018-11-23 02:30:59,417 INFO L276 IsEmpty]: Start isEmpty. Operand 344 states and 459 transitions. [2018-11-23 02:30:59,427 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1281 [2018-11-23 02:30:59,427 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:30:59,427 INFO L402 BasicCegarLoop]: trace histogram [94, 94, 93, 93, 76, 75, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 29, 29, 19, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:30:59,428 INFO L423 AbstractCegarLoop]: === Iteration 20 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:30:59,428 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:30:59,428 INFO L82 PathProgramCache]: Analyzing trace with hash -272037866, now seen corresponding path program 11 times [2018-11-23 02:30:59,428 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:30:59,428 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:30:59,429 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:59,429 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:30:59,429 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:30:59,476 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:31:00,200 INFO L134 CoverageAnalysis]: Checked inductivity of 48685 backedges. 2934 proven. 2870 refuted. 0 times theorem prover too weak. 42881 trivial. 0 not checked. [2018-11-23 02:31:00,200 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:31:00,200 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 19 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 19 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:31:00,208 INFO L103 rtionOrderModulation]: Keeping assertion order INSIDE_LOOP_FIRST1 [2018-11-23 02:31:00,362 INFO L249 tOrderPrioritization]: Assert order INSIDE_LOOP_FIRST1 issued 41 check-sat command(s) [2018-11-23 02:31:00,362 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:31:00,370 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:31:00,811 INFO L134 CoverageAnalysis]: Checked inductivity of 48685 backedges. 25385 proven. 889 refuted. 0 times theorem prover too weak. 22411 trivial. 0 not checked. [2018-11-23 02:31:00,826 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:31:00,826 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [20, 19] total 23 [2018-11-23 02:31:00,827 INFO L459 AbstractCegarLoop]: Interpolant automaton has 23 states [2018-11-23 02:31:00,827 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 23 interpolants. [2018-11-23 02:31:00,827 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=66, Invalid=440, Unknown=0, NotChecked=0, Total=506 [2018-11-23 02:31:00,827 INFO L87 Difference]: Start difference. First operand 344 states and 459 transitions. Second operand 23 states. [2018-11-23 02:31:01,298 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:31:01,298 INFO L93 Difference]: Finished difference Result 645 states and 858 transitions. [2018-11-23 02:31:01,298 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 39 states. [2018-11-23 02:31:01,299 INFO L78 Accepts]: Start accepts. Automaton has 23 states. Word has length 1280 [2018-11-23 02:31:01,299 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:31:01,301 INFO L225 Difference]: With dead ends: 645 [2018-11-23 02:31:01,301 INFO L226 Difference]: Without dead ends: 323 [2018-11-23 02:31:01,302 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1333 GetRequests, 1282 SyntacticMatches, 1 SemanticMatches, 50 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 626 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=401, Invalid=2251, Unknown=0, NotChecked=0, Total=2652 [2018-11-23 02:31:01,303 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 323 states. [2018-11-23 02:31:01,318 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 323 to 286. [2018-11-23 02:31:01,318 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 286 states. [2018-11-23 02:31:01,318 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 286 states to 286 states and 364 transitions. [2018-11-23 02:31:01,319 INFO L78 Accepts]: Start accepts. Automaton has 286 states and 364 transitions. Word has length 1280 [2018-11-23 02:31:01,319 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:31:01,319 INFO L480 AbstractCegarLoop]: Abstraction has 286 states and 364 transitions. [2018-11-23 02:31:01,319 INFO L481 AbstractCegarLoop]: Interpolant automaton has 23 states. [2018-11-23 02:31:01,319 INFO L276 IsEmpty]: Start isEmpty. Operand 286 states and 364 transitions. [2018-11-23 02:31:01,326 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1036 [2018-11-23 02:31:01,326 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:31:01,326 INFO L402 BasicCegarLoop]: trace histogram [76, 76, 75, 75, 61, 61, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 37, 37, 24, 23, 15, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:31:01,326 INFO L423 AbstractCegarLoop]: === Iteration 21 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:31:01,326 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:31:01,327 INFO L82 PathProgramCache]: Analyzing trace with hash 185562266, now seen corresponding path program 12 times [2018-11-23 02:31:01,327 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:31:01,327 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:31:01,327 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:01,328 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:31:01,328 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:01,366 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:31:01,829 INFO L134 CoverageAnalysis]: Checked inductivity of 31636 backedges. 3575 proven. 821 refuted. 0 times theorem prover too weak. 27240 trivial. 0 not checked. [2018-11-23 02:31:01,829 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:31:01,829 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 20 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 20 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:31:01,837 INFO L103 rtionOrderModulation]: Keeping assertion order MIX_INSIDE_OUTSIDE [2018-11-23 02:31:02,064 INFO L249 tOrderPrioritization]: Assert order MIX_INSIDE_OUTSIDE issued 45 check-sat command(s) [2018-11-23 02:31:02,064 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:31:02,071 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:31:02,371 INFO L134 CoverageAnalysis]: Checked inductivity of 31636 backedges. 2826 proven. 249 refuted. 0 times theorem prover too weak. 28561 trivial. 0 not checked. [2018-11-23 02:31:02,387 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:31:02,387 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [20, 14] total 24 [2018-11-23 02:31:02,388 INFO L459 AbstractCegarLoop]: Interpolant automaton has 24 states [2018-11-23 02:31:02,388 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 24 interpolants. [2018-11-23 02:31:02,388 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=71, Invalid=481, Unknown=0, NotChecked=0, Total=552 [2018-11-23 02:31:02,388 INFO L87 Difference]: Start difference. First operand 286 states and 364 transitions. Second operand 24 states. [2018-11-23 02:31:02,885 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:31:02,885 INFO L93 Difference]: Finished difference Result 548 states and 698 transitions. [2018-11-23 02:31:02,886 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 36 states. [2018-11-23 02:31:02,886 INFO L78 Accepts]: Start accepts. Automaton has 24 states. Word has length 1035 [2018-11-23 02:31:02,887 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:31:02,889 INFO L225 Difference]: With dead ends: 548 [2018-11-23 02:31:02,889 INFO L226 Difference]: Without dead ends: 292 [2018-11-23 02:31:02,890 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1084 GetRequests, 1037 SyntacticMatches, 0 SemanticMatches, 47 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 546 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=340, Invalid=2012, Unknown=0, NotChecked=0, Total=2352 [2018-11-23 02:31:02,891 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 292 states. [2018-11-23 02:31:02,907 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 292 to 264. [2018-11-23 02:31:02,907 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 264 states. [2018-11-23 02:31:02,908 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 264 states to 264 states and 325 transitions. [2018-11-23 02:31:02,908 INFO L78 Accepts]: Start accepts. Automaton has 264 states and 325 transitions. Word has length 1035 [2018-11-23 02:31:02,909 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:31:02,909 INFO L480 AbstractCegarLoop]: Abstraction has 264 states and 325 transitions. [2018-11-23 02:31:02,909 INFO L481 AbstractCegarLoop]: Interpolant automaton has 24 states. [2018-11-23 02:31:02,909 INFO L276 IsEmpty]: Start isEmpty. Operand 264 states and 325 transitions. [2018-11-23 02:31:02,916 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1104 [2018-11-23 02:31:02,916 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:31:02,917 INFO L402 BasicCegarLoop]: trace histogram [81, 81, 80, 80, 65, 65, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 25, 25, 16, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:31:02,917 INFO L423 AbstractCegarLoop]: === Iteration 22 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:31:02,917 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:31:02,917 INFO L82 PathProgramCache]: Analyzing trace with hash -1604839333, now seen corresponding path program 13 times [2018-11-23 02:31:02,917 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:31:02,918 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:31:02,918 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:02,918 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:31:02,918 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:02,957 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:31:03,464 INFO L134 CoverageAnalysis]: Checked inductivity of 36000 backedges. 1478 proven. 4114 refuted. 0 times theorem prover too weak. 30408 trivial. 0 not checked. [2018-11-23 02:31:03,464 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:31:03,464 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 21 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 21 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:31:03,470 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:31:03,605 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:31:03,614 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:31:04,085 INFO L134 CoverageAnalysis]: Checked inductivity of 36000 backedges. 1510 proven. 1885 refuted. 0 times theorem prover too weak. 32605 trivial. 0 not checked. [2018-11-23 02:31:04,101 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:31:04,101 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [22, 13] total 27 [2018-11-23 02:31:04,101 INFO L459 AbstractCegarLoop]: Interpolant automaton has 27 states [2018-11-23 02:31:04,102 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 27 interpolants. [2018-11-23 02:31:04,102 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=82, Invalid=620, Unknown=0, NotChecked=0, Total=702 [2018-11-23 02:31:04,102 INFO L87 Difference]: Start difference. First operand 264 states and 325 transitions. Second operand 27 states. [2018-11-23 02:31:04,923 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:31:04,924 INFO L93 Difference]: Finished difference Result 461 states and 559 transitions. [2018-11-23 02:31:04,924 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 65 states. [2018-11-23 02:31:04,924 INFO L78 Accepts]: Start accepts. Automaton has 27 states. Word has length 1103 [2018-11-23 02:31:04,924 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:31:04,925 INFO L225 Difference]: With dead ends: 461 [2018-11-23 02:31:04,925 INFO L226 Difference]: Without dead ends: 278 [2018-11-23 02:31:04,926 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1178 GetRequests, 1106 SyntacticMatches, 0 SemanticMatches, 72 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1548 ImplicationChecksByTransitivity, 0.6s TimeCoverageRelationStatistics Valid=697, Invalid=4705, Unknown=0, NotChecked=0, Total=5402 [2018-11-23 02:31:04,927 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 278 states. [2018-11-23 02:31:04,942 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 278 to 264. [2018-11-23 02:31:04,942 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 264 states. [2018-11-23 02:31:04,943 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 264 states to 264 states and 320 transitions. [2018-11-23 02:31:04,943 INFO L78 Accepts]: Start accepts. Automaton has 264 states and 320 transitions. Word has length 1103 [2018-11-23 02:31:04,943 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:31:04,944 INFO L480 AbstractCegarLoop]: Abstraction has 264 states and 320 transitions. [2018-11-23 02:31:04,944 INFO L481 AbstractCegarLoop]: Interpolant automaton has 27 states. [2018-11-23 02:31:04,944 INFO L276 IsEmpty]: Start isEmpty. Operand 264 states and 320 transitions. [2018-11-23 02:31:04,951 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1390 [2018-11-23 02:31:04,951 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:31:04,951 INFO L402 BasicCegarLoop]: trace histogram [102, 102, 101, 101, 82, 82, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 50, 50, 32, 31, 20, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:31:04,951 INFO L423 AbstractCegarLoop]: === Iteration 23 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:31:04,952 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:31:04,952 INFO L82 PathProgramCache]: Analyzing trace with hash 1927837140, now seen corresponding path program 14 times [2018-11-23 02:31:04,952 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:31:04,952 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:31:04,952 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:04,952 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 02:31:04,952 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:04,984 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 02:31:05,618 INFO L134 CoverageAnalysis]: Checked inductivity of 57446 backedges. 2149 proven. 6053 refuted. 0 times theorem prover too weak. 49244 trivial. 0 not checked. [2018-11-23 02:31:05,619 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 02:31:05,619 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/z3 Starting monitored process 22 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 22 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 02:31:05,625 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 02:31:05,808 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 02:31:05,808 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 02:31:05,818 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 02:31:06,299 INFO L134 CoverageAnalysis]: Checked inductivity of 57446 backedges. 2107 proven. 2950 refuted. 0 times theorem prover too weak. 52389 trivial. 0 not checked. [2018-11-23 02:31:06,315 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 02:31:06,315 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [24, 15] total 28 [2018-11-23 02:31:06,316 INFO L459 AbstractCegarLoop]: Interpolant automaton has 28 states [2018-11-23 02:31:06,316 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 28 interpolants. [2018-11-23 02:31:06,316 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=88, Invalid=668, Unknown=0, NotChecked=0, Total=756 [2018-11-23 02:31:06,316 INFO L87 Difference]: Start difference. First operand 264 states and 320 transitions. Second operand 28 states. [2018-11-23 02:31:07,000 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 02:31:07,000 INFO L93 Difference]: Finished difference Result 472 states and 578 transitions. [2018-11-23 02:31:07,000 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 47 states. [2018-11-23 02:31:07,000 INFO L78 Accepts]: Start accepts. Automaton has 28 states. Word has length 1389 [2018-11-23 02:31:07,001 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 02:31:07,002 INFO L225 Difference]: With dead ends: 472 [2018-11-23 02:31:07,002 INFO L226 Difference]: Without dead ends: 279 [2018-11-23 02:31:07,003 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1457 GetRequests, 1394 SyntacticMatches, 1 SemanticMatches, 62 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1025 ImplicationChecksByTransitivity, 0.5s TimeCoverageRelationStatistics Valid=531, Invalid=3501, Unknown=0, NotChecked=0, Total=4032 [2018-11-23 02:31:07,003 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 279 states. [2018-11-23 02:31:07,012 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 279 to 276. [2018-11-23 02:31:07,012 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 276 states. [2018-11-23 02:31:07,013 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 276 states to 276 states and 331 transitions. [2018-11-23 02:31:07,013 INFO L78 Accepts]: Start accepts. Automaton has 276 states and 331 transitions. Word has length 1389 [2018-11-23 02:31:07,014 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 02:31:07,014 INFO L480 AbstractCegarLoop]: Abstraction has 276 states and 331 transitions. [2018-11-23 02:31:07,014 INFO L481 AbstractCegarLoop]: Interpolant automaton has 28 states. [2018-11-23 02:31:07,014 INFO L276 IsEmpty]: Start isEmpty. Operand 276 states and 331 transitions. [2018-11-23 02:31:07,019 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1213 [2018-11-23 02:31:07,019 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 02:31:07,020 INFO L402 BasicCegarLoop]: trace histogram [89, 89, 88, 88, 72, 71, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 28, 27, 17, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 02:31:07,020 INFO L423 AbstractCegarLoop]: === Iteration 24 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 02:31:07,020 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 02:31:07,020 INFO L82 PathProgramCache]: Analyzing trace with hash 416823031, now seen corresponding path program 15 times [2018-11-23 02:31:07,020 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 02:31:07,020 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 02:31:07,021 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:07,021 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 02:31:07,021 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 02:31:07,052 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 02:31:07,096 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 02:31:07,139 INFO L469 BasicCegarLoop]: Counterexample might be feasible ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #47#return; [?] CALL call #t~ret5 := main(); [?] ~x~0 := 10; VAL [main_~x~0=10] [?] CALL call #t~ret4 := fibo1(~x~0); VAL [|fibo1_#in~n|=10] [?] ~n := #in~n; VAL [fibo1_~n=10, |fibo1_#in~n|=10] [?] assume !(~n < 1); VAL [fibo1_~n=10, |fibo1_#in~n|=10] [?] assume !(1 == ~n); VAL [fibo1_~n=10, |fibo1_#in~n|=10] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=9] [?] ~n := #in~n; VAL [fibo2_~n=9, |fibo2_#in~n|=9] [?] assume !(~n < 1); VAL [fibo2_~n=9, |fibo2_#in~n|=9] [?] assume !(1 == ~n); VAL [fibo2_~n=9, |fibo2_#in~n|=9] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=8] [?] ~n := #in~n; VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(~n < 1); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=7] [?] ~n := #in~n; VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(~n < 1); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=6] [?] ~n := #in~n; VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(~n < 1); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #57#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #59#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5, |fibo1_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] assume true; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] RET #53#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #55#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8, |fibo2_#t~ret3|=5] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] assume true; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] RET #57#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #59#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13, |fibo1_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] assume true; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] RET #53#return; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#t~ret2|=21] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#t~ret2|=21] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=7] [?] ~n := #in~n; VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(~n < 1); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #57#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #59#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8, |fibo1_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] assume true; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] RET #55#return; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#t~ret2|=21, |fibo2_#t~ret3|=13] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#res|=34] [?] assume true; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#res|=34] [?] RET #57#return; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#t~ret0|=34] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#t~ret0|=34] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=8] [?] ~n := #in~n; VAL [fibo2_~n=8, |fibo2_#in~n|=8] [?] assume !(~n < 1); VAL [fibo2_~n=8, |fibo2_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo2_~n=8, |fibo2_#in~n|=8] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=7] [?] ~n := #in~n; VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(~n < 1); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #57#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #59#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8, |fibo1_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] assume true; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] RET #53#return; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#t~ret2|=13] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#t~ret2|=13] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=6] [?] ~n := #in~n; VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(~n < 1); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #57#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #59#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5, |fibo1_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] assume true; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] RET #55#return; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#t~ret2|=13, |fibo2_#t~ret3|=8] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#res|=21] [?] assume true; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#res|=21] [?] RET #59#return; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#t~ret0|=34, |fibo1_#t~ret1|=21] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#res|=55] [?] assume true; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#res|=55] [?] RET #51#return; VAL [main_~x~0=10, |main_#t~ret4|=55] [?] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647;~result~0 := #t~ret4;havoc #t~ret4; VAL [main_~result~0=55, main_~x~0=10] [?] assume 55 == ~result~0; VAL [main_~result~0=55, main_~x~0=10] [?] assume !false; VAL [main_~result~0=55, main_~x~0=10] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8-L14] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L10-L14] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18-L24] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L20-L24] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L5] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18-L24] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L20-L24] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L5] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L4] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38-L40] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8-L14] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L10-L14] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18-L24] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L20-L24] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L5] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18-L24] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L20-L24] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L5] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L4] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38-L40] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] [L36] int x = 10; VAL [x=10] [L37] CALL, EXPR fibo1(x) VAL [\old(n)=10] [L8] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L10] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=9] [L18] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L20] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=8] [L8] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L10] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=7] [L18] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L20] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=7, fibo1(n-1)=8, n=7] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=7, fibo1(n-1)=8, fibo1(n-2)=5, n=7] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=8, fibo2(n-1)=13, n=8] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=8, fibo2(n-1)=13, fibo2(n-2)=8, n=8] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=9, fibo1(n-1)=21, n=9] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=7] [L8] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L10] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=7, fibo2(n-1)=8, n=7] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=7, fibo2(n-1)=8, fibo2(n-2)=5, n=7] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=9, fibo1(n-1)=21, fibo1(n-2)=13, n=9] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=10, fibo2(n-1)=34, n=10] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=8] [L18] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L20] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=7] [L8] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L10] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=7, fibo2(n-1)=8, n=7] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=7, fibo2(n-1)=8, fibo2(n-2)=5, n=7] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=8, fibo1(n-1)=13, n=8] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=8, fibo1(n-1)=13, fibo1(n-2)=8, n=8] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=10, fibo2(n-1)=34, fibo2(n-2)=21, n=10] [L13] return fibo2(n-1) + fibo2(n-2); [L37] RET, EXPR fibo1(x) VAL [fibo1(x)=55, x=10] [L37] int result = fibo1(x); [L38] COND TRUE result == 55 VAL [result=55, x=10] [L39] __VERIFIER_error() VAL [result=55, x=10] ----- [2018-11-23 02:31:18,168 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction CFG 23.11 02:31:18 BoogieIcfgContainer [2018-11-23 02:31:18,168 INFO L132 PluginConnector]: ------------------------ END TraceAbstraction---------------------------- [2018-11-23 02:31:18,168 INFO L113 PluginConnector]: ------------------------Witness Printer---------------------------- [2018-11-23 02:31:18,168 INFO L271 PluginConnector]: Initializing Witness Printer... [2018-11-23 02:31:18,169 INFO L276 PluginConnector]: Witness Printer initialized [2018-11-23 02:31:18,169 INFO L185 PluginConnector]: Executing the observer RCFGCatcher from plugin Witness Printer for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 02:30:36" (3/4) ... [2018-11-23 02:31:18,172 INFO L138 WitnessPrinter]: Generating witness for reachability counterexample ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #47#return; [?] CALL call #t~ret5 := main(); [?] ~x~0 := 10; VAL [main_~x~0=10] [?] CALL call #t~ret4 := fibo1(~x~0); VAL [|fibo1_#in~n|=10] [?] ~n := #in~n; VAL [fibo1_~n=10, |fibo1_#in~n|=10] [?] assume !(~n < 1); VAL [fibo1_~n=10, |fibo1_#in~n|=10] [?] assume !(1 == ~n); VAL [fibo1_~n=10, |fibo1_#in~n|=10] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=9] [?] ~n := #in~n; VAL [fibo2_~n=9, |fibo2_#in~n|=9] [?] assume !(~n < 1); VAL [fibo2_~n=9, |fibo2_#in~n|=9] [?] assume !(1 == ~n); VAL [fibo2_~n=9, |fibo2_#in~n|=9] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=8] [?] ~n := #in~n; VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(~n < 1); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=7] [?] ~n := #in~n; VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(~n < 1); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=6] [?] ~n := #in~n; VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(~n < 1); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #57#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #59#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5, |fibo1_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] assume true; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] RET #53#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #55#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8, |fibo2_#t~ret3|=5] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] assume true; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] RET #57#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #59#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13, |fibo1_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] assume true; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] RET #53#return; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#t~ret2|=21] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#t~ret2|=21] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=7] [?] ~n := #in~n; VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(~n < 1); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #57#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #59#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8, |fibo1_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] assume true; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] RET #55#return; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#t~ret2|=21, |fibo2_#t~ret3|=13] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#res|=34] [?] assume true; VAL [fibo2_~n=9, |fibo2_#in~n|=9, |fibo2_#res|=34] [?] RET #57#return; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#t~ret0|=34] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#t~ret0|=34] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=8] [?] ~n := #in~n; VAL [fibo2_~n=8, |fibo2_#in~n|=8] [?] assume !(~n < 1); VAL [fibo2_~n=8, |fibo2_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo2_~n=8, |fibo2_#in~n|=8] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=7] [?] ~n := #in~n; VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(~n < 1); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo1_~n=7, |fibo1_#in~n|=7] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #57#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #59#return; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#t~ret0|=8, |fibo1_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] assume true; VAL [fibo1_~n=7, |fibo1_#in~n|=7, |fibo1_#res|=13] [?] RET #53#return; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#t~ret2|=13] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#t~ret2|=13] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=6] [?] ~n := #in~n; VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(~n < 1); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #57#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #59#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5, |fibo1_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] assume true; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] RET #55#return; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#t~ret2|=13, |fibo2_#t~ret3|=8] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret3;havoc #t~ret2; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#res|=21] [?] assume true; VAL [fibo2_~n=8, |fibo2_#in~n|=8, |fibo2_#res|=21] [?] RET #59#return; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#t~ret0|=34, |fibo1_#t~ret1|=21] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#res|=55] [?] assume true; VAL [fibo1_~n=10, |fibo1_#in~n|=10, |fibo1_#res|=55] [?] RET #51#return; VAL [main_~x~0=10, |main_#t~ret4|=55] [?] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647;~result~0 := #t~ret4;havoc #t~ret4; VAL [main_~result~0=55, main_~x~0=10] [?] assume 55 == ~result~0; VAL [main_~result~0=55, main_~x~0=10] [?] assume !false; VAL [main_~result~0=55, main_~x~0=10] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8-L14] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L10-L14] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18-L24] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L20-L24] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L5] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18-L24] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L20-L24] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L5] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L4] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38-L40] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8-L14] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L10-L14] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18-L24] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L20-L24] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L5] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18-L24] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L20-L24] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8-L14] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L10-L14] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L4] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L5] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L4] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38-L40] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 10; VAL [~x~0=10] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=10] [L7-L15] ~n := #in~n; VAL [#in~n=10, ~n=10] [L8] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L10] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=9] [L17-L25] ~n := #in~n; VAL [#in~n=9, ~n=9] [L18] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L20] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=9, #t~ret2=21, ~n=9] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=9, #t~ret2=21, #t~ret3=13, ~n=9] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=9, #res=34, ~n=9] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8] [L17-L25] ~n := #in~n; VAL [#in~n=8, ~n=8] [L18] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L20] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7] [L7-L15] ~n := #in~n; VAL [#in~n=7, ~n=7] [L8] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L10] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=8, #t~ret2=13, ~n=8] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=8, #t~ret2=13, #t~ret3=8, ~n=8] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret3; [L23] havoc #t~ret2; VAL [#in~n=8, #res=21, ~n=8] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=55, ~x~0=10] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=55, ~x~0=10] [L38] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L39] assert false; VAL [~result~0=55, ~x~0=10] [L36] int x = 10; VAL [x=10] [L37] CALL, EXPR fibo1(x) VAL [\old(n)=10] [L8] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L10] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=9] [L18] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L20] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=8] [L8] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L10] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=7] [L18] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L20] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=7, fibo1(n-1)=8, n=7] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=7, fibo1(n-1)=8, fibo1(n-2)=5, n=7] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=8, fibo2(n-1)=13, n=8] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=8, fibo2(n-1)=13, fibo2(n-2)=8, n=8] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=9, fibo1(n-1)=21, n=9] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=7] [L8] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L10] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=7, fibo2(n-1)=8, n=7] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=7, fibo2(n-1)=8, fibo2(n-2)=5, n=7] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=9, fibo1(n-1)=21, fibo1(n-2)=13, n=9] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=10, fibo2(n-1)=34, n=10] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=8] [L18] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L20] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=7] [L8] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L10] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=7, fibo2(n-1)=8, n=7] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=7, fibo2(n-1)=8, fibo2(n-2)=5, n=7] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=8, fibo1(n-1)=13, n=8] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=8, fibo1(n-1)=13, fibo1(n-2)=8, n=8] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=10, fibo2(n-1)=34, fibo2(n-2)=21, n=10] [L13] return fibo2(n-1) + fibo2(n-2); [L37] RET, EXPR fibo1(x) VAL [fibo1(x)=55, x=10] [L37] int result = fibo1(x); [L38] COND TRUE result == 55 VAL [result=55, x=10] [L39] __VERIFIER_error() VAL [result=55, x=10] ----- [2018-11-23 02:31:51,840 INFO L145 WitnessManager]: Wrote witness to /tmp/vcloud-vcloud-master/worker/working_dir_e3ce675d-40eb-4e6b-8b5b-e62a3232c172/bin-2019/uautomizer/witness.graphml [2018-11-23 02:31:51,840 INFO L132 PluginConnector]: ------------------------ END Witness Printer---------------------------- [2018-11-23 02:31:51,841 INFO L168 Benchmark]: Toolchain (without parser) took 76159.82 ms. Allocated memory was 1.0 GB in the beginning and 5.0 GB in the end (delta: 4.0 GB). Free memory was 952.7 MB in the beginning and 2.2 GB in the end (delta: -1.2 GB). Peak memory consumption was 2.8 GB. Max. memory is 11.5 GB. [2018-11-23 02:31:51,842 INFO L168 Benchmark]: CDTParser took 0.14 ms. Allocated memory is still 1.0 GB. Free memory is still 985.4 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 02:31:51,843 INFO L168 Benchmark]: CACSL2BoogieTranslator took 139.07 ms. Allocated memory is still 1.0 GB. Free memory was 952.7 MB in the beginning and 941.9 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. [2018-11-23 02:31:51,843 INFO L168 Benchmark]: Boogie Procedure Inliner took 17.16 ms. Allocated memory is still 1.0 GB. Free memory was 941.9 MB in the beginning and 939.3 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. [2018-11-23 02:31:51,843 INFO L168 Benchmark]: Boogie Preprocessor took 15.81 ms. Allocated memory is still 1.0 GB. Free memory is still 939.3 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 02:31:51,843 INFO L168 Benchmark]: RCFGBuilder took 206.30 ms. Allocated memory was 1.0 GB in the beginning and 1.1 GB in the end (delta: 105.4 MB). Free memory was 939.3 MB in the beginning and 1.1 GB in the end (delta: -148.5 MB). Peak memory consumption was 14.6 MB. Max. memory is 11.5 GB. [2018-11-23 02:31:51,843 INFO L168 Benchmark]: TraceAbstraction took 42106.28 ms. Allocated memory was 1.1 GB in the beginning and 5.0 GB in the end (delta: 3.9 GB). Free memory was 1.1 GB in the beginning and 2.3 GB in the end (delta: -1.2 GB). Peak memory consumption was 2.7 GB. Max. memory is 11.5 GB. [2018-11-23 02:31:51,844 INFO L168 Benchmark]: Witness Printer took 33672.23 ms. Allocated memory is still 5.0 GB. Free memory was 2.3 GB in the beginning and 2.2 GB in the end (delta: 82.5 MB). Peak memory consumption was 82.5 MB. Max. memory is 11.5 GB. [2018-11-23 02:31:51,977 INFO L336 ainManager$Toolchain]: ####################### End [Toolchain 1] ####################### --- Results --- * Results from de.uni_freiburg.informatik.ultimate.core: - StatisticsResult: Toolchain Benchmarks Benchmark results are: * CDTParser took 0.14 ms. Allocated memory is still 1.0 GB. Free memory is still 985.4 MB. There was no memory consumed. Max. memory is 11.5 GB. * CACSL2BoogieTranslator took 139.07 ms. Allocated memory is still 1.0 GB. Free memory was 952.7 MB in the beginning and 941.9 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. * Boogie Procedure Inliner took 17.16 ms. Allocated memory is still 1.0 GB. Free memory was 941.9 MB in the beginning and 939.3 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. * Boogie Preprocessor took 15.81 ms. Allocated memory is still 1.0 GB. Free memory is still 939.3 MB. There was no memory consumed. Max. memory is 11.5 GB. * RCFGBuilder took 206.30 ms. Allocated memory was 1.0 GB in the beginning and 1.1 GB in the end (delta: 105.4 MB). Free memory was 939.3 MB in the beginning and 1.1 GB in the end (delta: -148.5 MB). Peak memory consumption was 14.6 MB. Max. memory is 11.5 GB. * TraceAbstraction took 42106.28 ms. Allocated memory was 1.1 GB in the beginning and 5.0 GB in the end (delta: 3.9 GB). Free memory was 1.1 GB in the beginning and 2.3 GB in the end (delta: -1.2 GB). Peak memory consumption was 2.7 GB. Max. memory is 11.5 GB. * Witness Printer took 33672.23 ms. Allocated memory is still 5.0 GB. Free memory was 2.3 GB in the beginning and 2.2 GB in the end (delta: 82.5 MB). Peak memory consumption was 82.5 MB. Max. memory is 11.5 GB. * Results from de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction: - CounterExampleResult [Line: 39]: a call of __VERIFIER_error() is reachable a call of __VERIFIER_error() is reachable We found a FailurePath: [L36] int x = 10; VAL [x=10] [L37] CALL, EXPR fibo1(x) VAL [\old(n)=10] [L8] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L10] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=9] [L18] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L20] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=8] [L8] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L10] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=7] [L18] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L20] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=7, fibo1(n-1)=8, n=7] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=7, fibo1(n-1)=8, fibo1(n-2)=5, n=7] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=8, fibo2(n-1)=13, n=8] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=8, fibo2(n-1)=13, fibo2(n-2)=8, n=8] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=9, fibo1(n-1)=21, n=9] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=7] [L8] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L10] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=7, fibo2(n-1)=8, n=7] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=7, fibo2(n-1)=8, fibo2(n-2)=5, n=7] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=9, fibo1(n-1)=21, fibo1(n-2)=13, n=9] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=10, fibo2(n-1)=34, n=10] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=8] [L18] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L20] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=7] [L8] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L10] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=7, fibo2(n-1)=8, n=7] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=7, fibo2(n-1)=8, fibo2(n-2)=5, n=7] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=8, fibo1(n-1)=13, n=8] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=8, fibo1(n-1)=13, fibo1(n-2)=8, n=8] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=10, fibo2(n-1)=34, fibo2(n-2)=21, n=10] [L13] return fibo2(n-1) + fibo2(n-2); [L37] RET, EXPR fibo1(x) VAL [fibo1(x)=55, x=10] [L37] int result = fibo1(x); [L38] COND TRUE result == 55 VAL [result=55, x=10] [L39] __VERIFIER_error() VAL [result=55, x=10] - StatisticsResult: Ultimate Automizer benchmark data CFG has 5 procedures, 33 locations, 1 error locations. UNSAFE Result, 42.0s OverallTime, 24 OverallIterations, 142 TraceHistogramMax, 10.4s AutomataDifference, 0.0s DeadEndRemovalTime, 0.0s HoareAnnotationTime, HoareTripleCheckerStatistics: 900 SDtfs, 2214 SDslu, 7631 SDs, 0 SdLazy, 13842 SolverSat, 2446 SolverUnsat, 0 SolverUnknown, 0 SolverNotchecked, 4.9s Time, PredicateUnifierStatistics: 0 DeclaredPredicates, 17711 GetRequests, 16895 SyntacticMatches, 5 SemanticMatches, 811 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 9191 ImplicationChecksByTransitivity, 7.3s Time, 0.0s BasicInterpolantAutomatonTime, BiggestAbstraction: size=344occurred in iteration=19, traceCheckStatistics: No data available, InterpolantConsolidationStatistics: No data available, PathInvariantsStatistics: No data available, 0/0 InterpolantCoveringCapability, TotalInterpolationStatistics: No data available, 0.0s AbstIntTime, 0 AbstIntIterations, 0 AbstIntStrong, NaN AbsIntWeakeningRatio, NaN AbsIntAvgWeakeningVarsNumRemoved, NaN AbsIntAvgWeakenedConjuncts, 0.0s DumpTime, AutomataMinimizationStatistics: 0.3s AutomataMinimizationTime, 23 MinimizatonAttempts, 369 StatesRemovedByMinimization, 21 NontrivialMinimizations, HoareAnnotationStatistics: No data available, RefinementEngineStatistics: TraceCheckStatistics: 0.5s SsaConstructionTime, 2.1s SatisfiabilityAnalysisTime, 10.7s InterpolantComputationTime, 35091 NumberOfCodeBlocks, 29351 NumberOfCodeBlocksAsserted, 193 NumberOfCheckSat, 33835 ConstructedInterpolants, 0 QuantifiedInterpolants, 47901003 SizeOfPredicates, 156 NumberOfNonLiveVariables, 24655 ConjunctsInSsa, 317 ConjunctsInUnsatCore, 44 InterpolantComputations, 2 PerfectInterpolantSequences, 1236423/1292490 InterpolantCoveringCapability, InvariantSynthesisStatistics: No data available, InterpolantConsolidationStatistics: No data available, ReuseStatistics: No data available RESULT: Ultimate proved your program to be incorrect! Received shutdown request...