./Ultimate.py --spec ../../sv-benchmarks/c/properties/unreach-call.prp --file ../../sv-benchmarks/c/recursive-simple/fibo_2calls_8_false-unreach-call_true-termination.c --full-output --architecture 32bit -------------------------------------------------------------------------------- Checking for ERROR reachability Using default analysis Version aa418289 Calling Ultimate with: java -Dosgi.configuration.area=/tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/data/config -Xmx12G -Xms1G -jar /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/plugins/org.eclipse.equinox.launcher_1.3.100.v20150511-1540.jar -data @noDefault -ultimatedata /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/data -tc /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/config/AutomizerReach.xml -i ../../sv-benchmarks/c/recursive-simple/fibo_2calls_8_false-unreach-call_true-termination.c -s /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf --cacsl2boogietranslator.entry.function main --witnessprinter.witness.directory /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer --witnessprinter.witness.filename witness.graphml --witnessprinter.write.witness.besides.input.file false --witnessprinter.graph.data.specification CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) --witnessprinter.graph.data.producer Automizer --witnessprinter.graph.data.architecture 32bit --witnessprinter.graph.data.programhash e21c3699338992ddad7e6d15f4351c8cc3315b0b ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... Execution finished normally Writing output log to file Ultimate.log Writing human readable error path to file UltimateCounterExample.errorpath Result: FALSE --- Real Ultimate output --- This is Ultimate 0.1.23-aa41828 [2018-11-23 04:52:27,790 INFO L170 SettingsManager]: Resetting all preferences to default values... [2018-11-23 04:52:27,791 INFO L174 SettingsManager]: Resetting UltimateCore preferences to default values [2018-11-23 04:52:27,797 INFO L177 SettingsManager]: Ultimate Commandline Interface provides no preferences, ignoring... [2018-11-23 04:52:27,798 INFO L174 SettingsManager]: Resetting Boogie Preprocessor preferences to default values [2018-11-23 04:52:27,798 INFO L174 SettingsManager]: Resetting Boogie Procedure Inliner preferences to default values [2018-11-23 04:52:27,799 INFO L174 SettingsManager]: Resetting Abstract Interpretation preferences to default values [2018-11-23 04:52:27,800 INFO L174 SettingsManager]: Resetting LassoRanker preferences to default values [2018-11-23 04:52:27,802 INFO L174 SettingsManager]: Resetting Reaching Definitions preferences to default values [2018-11-23 04:52:27,802 INFO L174 SettingsManager]: Resetting SyntaxChecker preferences to default values [2018-11-23 04:52:27,803 INFO L177 SettingsManager]: Büchi Program Product provides no preferences, ignoring... [2018-11-23 04:52:27,803 INFO L174 SettingsManager]: Resetting LTL2Aut preferences to default values [2018-11-23 04:52:27,804 INFO L174 SettingsManager]: Resetting PEA to Boogie preferences to default values [2018-11-23 04:52:27,805 INFO L174 SettingsManager]: Resetting BlockEncodingV2 preferences to default values [2018-11-23 04:52:27,805 INFO L174 SettingsManager]: Resetting ChcToBoogie preferences to default values [2018-11-23 04:52:27,806 INFO L174 SettingsManager]: Resetting AutomataScriptInterpreter preferences to default values [2018-11-23 04:52:27,807 INFO L174 SettingsManager]: Resetting BuchiAutomizer preferences to default values [2018-11-23 04:52:27,808 INFO L174 SettingsManager]: Resetting CACSL2BoogieTranslator preferences to default values [2018-11-23 04:52:27,809 INFO L174 SettingsManager]: Resetting CodeCheck preferences to default values [2018-11-23 04:52:27,810 INFO L174 SettingsManager]: Resetting InvariantSynthesis preferences to default values [2018-11-23 04:52:27,811 INFO L174 SettingsManager]: Resetting RCFGBuilder preferences to default values [2018-11-23 04:52:27,812 INFO L174 SettingsManager]: Resetting TraceAbstraction preferences to default values [2018-11-23 04:52:27,813 INFO L177 SettingsManager]: TraceAbstractionConcurrent provides no preferences, ignoring... [2018-11-23 04:52:27,814 INFO L177 SettingsManager]: TraceAbstractionWithAFAs provides no preferences, ignoring... [2018-11-23 04:52:27,814 INFO L174 SettingsManager]: Resetting TreeAutomizer preferences to default values [2018-11-23 04:52:27,815 INFO L174 SettingsManager]: Resetting IcfgTransformer preferences to default values [2018-11-23 04:52:27,815 INFO L174 SettingsManager]: Resetting Boogie Printer preferences to default values [2018-11-23 04:52:27,816 INFO L174 SettingsManager]: Resetting ReqPrinter preferences to default values [2018-11-23 04:52:27,816 INFO L174 SettingsManager]: Resetting Witness Printer preferences to default values [2018-11-23 04:52:27,817 INFO L177 SettingsManager]: Boogie PL CUP Parser provides no preferences, ignoring... [2018-11-23 04:52:27,817 INFO L174 SettingsManager]: Resetting CDTParser preferences to default values [2018-11-23 04:52:27,818 INFO L177 SettingsManager]: AutomataScriptParser provides no preferences, ignoring... [2018-11-23 04:52:27,818 INFO L177 SettingsManager]: ReqParser provides no preferences, ignoring... [2018-11-23 04:52:27,818 INFO L174 SettingsManager]: Resetting SmtParser preferences to default values [2018-11-23 04:52:27,819 INFO L174 SettingsManager]: Resetting Witness Parser preferences to default values [2018-11-23 04:52:27,819 INFO L181 SettingsManager]: Finished resetting all preferences to default values... [2018-11-23 04:52:27,819 INFO L98 SettingsManager]: Beginning loading settings from /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf [2018-11-23 04:52:27,829 INFO L110 SettingsManager]: Loading preferences was successful [2018-11-23 04:52:27,829 INFO L112 SettingsManager]: Preferences different from defaults after loading the file: [2018-11-23 04:52:27,830 INFO L131 SettingsManager]: Preferences of Boogie Procedure Inliner differ from their defaults: [2018-11-23 04:52:27,830 INFO L133 SettingsManager]: * ... calls to implemented procedures=ONLY_FOR_CONCURRENT_PROGRAMS [2018-11-23 04:52:27,830 INFO L131 SettingsManager]: Preferences of BlockEncodingV2 differ from their defaults: [2018-11-23 04:52:27,830 INFO L133 SettingsManager]: * Create parallel compositions if possible=false [2018-11-23 04:52:27,831 INFO L133 SettingsManager]: * Use SBE=true [2018-11-23 04:52:27,831 INFO L131 SettingsManager]: Preferences of CACSL2BoogieTranslator differ from their defaults: [2018-11-23 04:52:27,831 INFO L133 SettingsManager]: * sizeof long=4 [2018-11-23 04:52:27,831 INFO L133 SettingsManager]: * Overapproximate operations on floating types=true [2018-11-23 04:52:27,831 INFO L133 SettingsManager]: * sizeof POINTER=4 [2018-11-23 04:52:27,831 INFO L133 SettingsManager]: * Check division by zero=IGNORE [2018-11-23 04:52:27,831 INFO L133 SettingsManager]: * Pointer to allocated memory at dereference=IGNORE [2018-11-23 04:52:27,832 INFO L133 SettingsManager]: * If two pointers are subtracted or compared they have the same base address=IGNORE [2018-11-23 04:52:27,832 INFO L133 SettingsManager]: * Check array bounds for arrays that are off heap=IGNORE [2018-11-23 04:52:27,832 INFO L133 SettingsManager]: * sizeof long double=12 [2018-11-23 04:52:27,832 INFO L133 SettingsManager]: * Check if freed pointer was valid=false [2018-11-23 04:52:27,832 INFO L133 SettingsManager]: * Use constant arrays=true [2018-11-23 04:52:27,832 INFO L133 SettingsManager]: * Pointer base address is valid at dereference=IGNORE [2018-11-23 04:52:27,832 INFO L131 SettingsManager]: Preferences of RCFGBuilder differ from their defaults: [2018-11-23 04:52:27,833 INFO L133 SettingsManager]: * Size of a code block=SequenceOfStatements [2018-11-23 04:52:27,833 INFO L133 SettingsManager]: * To the following directory=./dump/ [2018-11-23 04:52:27,833 INFO L133 SettingsManager]: * SMT solver=External_DefaultMode [2018-11-23 04:52:27,833 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 04:52:27,833 INFO L131 SettingsManager]: Preferences of TraceAbstraction differ from their defaults: [2018-11-23 04:52:27,833 INFO L133 SettingsManager]: * Compute Interpolants along a Counterexample=FPandBP [2018-11-23 04:52:27,833 INFO L133 SettingsManager]: * Positions where we compute the Hoare Annotation=LoopsAndPotentialCycles [2018-11-23 04:52:27,834 INFO L133 SettingsManager]: * Trace refinement strategy=CAMEL [2018-11-23 04:52:27,834 INFO L133 SettingsManager]: * SMT solver=External_ModelsAndUnsatCoreMode [2018-11-23 04:52:27,834 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in [2018-11-23 04:52:27,834 INFO L133 SettingsManager]: * Compute Hoare Annotation of negated interpolant automaton, abstraction and CFG=true Applying setting for plugin de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator: Entry function -> main Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness directory -> /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness filename -> witness.graphml Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Write witness besides input file -> false Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data specification -> CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data producer -> Automizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data architecture -> 32bit Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data programhash -> e21c3699338992ddad7e6d15f4351c8cc3315b0b [2018-11-23 04:52:27,860 INFO L81 nceAwareModelManager]: Repository-Root is: /tmp [2018-11-23 04:52:27,869 INFO L258 ainManager$Toolchain]: [Toolchain 1]: Applicable parser(s) successfully (re)initialized [2018-11-23 04:52:27,872 INFO L214 ainManager$Toolchain]: [Toolchain 1]: Toolchain selected. [2018-11-23 04:52:27,873 INFO L271 PluginConnector]: Initializing CDTParser... [2018-11-23 04:52:27,873 INFO L276 PluginConnector]: CDTParser initialized [2018-11-23 04:52:27,874 INFO L418 ainManager$Toolchain]: [Toolchain 1]: Parsing single file: /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/../../sv-benchmarks/c/recursive-simple/fibo_2calls_8_false-unreach-call_true-termination.c [2018-11-23 04:52:27,915 INFO L221 CDTParser]: Created temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/data/3e0046a48/91f801ea5fce4f8899bca1e96ece77d5/FLAGd66f5be19 [2018-11-23 04:52:28,334 INFO L307 CDTParser]: Found 1 translation units. [2018-11-23 04:52:28,335 INFO L161 CDTParser]: Scanning /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/sv-benchmarks/c/recursive-simple/fibo_2calls_8_false-unreach-call_true-termination.c [2018-11-23 04:52:28,339 INFO L355 CDTParser]: About to delete temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/data/3e0046a48/91f801ea5fce4f8899bca1e96ece77d5/FLAGd66f5be19 [2018-11-23 04:52:28,354 INFO L363 CDTParser]: Successfully deleted /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/data/3e0046a48/91f801ea5fce4f8899bca1e96ece77d5 [2018-11-23 04:52:28,357 INFO L296 ainManager$Toolchain]: ####################### [Toolchain 1] ####################### [2018-11-23 04:52:28,358 INFO L131 ToolchainWalker]: Walking toolchain with 6 elements. [2018-11-23 04:52:28,359 INFO L113 PluginConnector]: ------------------------CACSL2BoogieTranslator---------------------------- [2018-11-23 04:52:28,359 INFO L271 PluginConnector]: Initializing CACSL2BoogieTranslator... [2018-11-23 04:52:28,361 INFO L276 PluginConnector]: CACSL2BoogieTranslator initialized [2018-11-23 04:52:28,362 INFO L185 PluginConnector]: Executing the observer ACSLObjectContainerObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,364 INFO L205 PluginConnector]: Invalid model from CACSL2BoogieTranslator for observer de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.ACSLObjectContainerObserver@6905c071 and model type de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28, skipping insertion in model container [2018-11-23 04:52:28,364 INFO L185 PluginConnector]: Executing the observer CACSL2BoogieTranslatorObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,373 INFO L145 MainTranslator]: Starting translation in SV-COMP mode [2018-11-23 04:52:28,387 INFO L176 MainTranslator]: Built tables and reachable declarations [2018-11-23 04:52:28,494 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 04:52:28,496 INFO L191 MainTranslator]: Completed pre-run [2018-11-23 04:52:28,505 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 04:52:28,514 INFO L195 MainTranslator]: Completed translation [2018-11-23 04:52:28,514 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28 WrapperNode [2018-11-23 04:52:28,514 INFO L132 PluginConnector]: ------------------------ END CACSL2BoogieTranslator---------------------------- [2018-11-23 04:52:28,514 INFO L113 PluginConnector]: ------------------------Boogie Procedure Inliner---------------------------- [2018-11-23 04:52:28,514 INFO L271 PluginConnector]: Initializing Boogie Procedure Inliner... [2018-11-23 04:52:28,514 INFO L276 PluginConnector]: Boogie Procedure Inliner initialized [2018-11-23 04:52:28,519 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,523 INFO L185 PluginConnector]: Executing the observer Inliner from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,528 INFO L132 PluginConnector]: ------------------------ END Boogie Procedure Inliner---------------------------- [2018-11-23 04:52:28,528 INFO L113 PluginConnector]: ------------------------Boogie Preprocessor---------------------------- [2018-11-23 04:52:28,528 INFO L271 PluginConnector]: Initializing Boogie Preprocessor... [2018-11-23 04:52:28,528 INFO L276 PluginConnector]: Boogie Preprocessor initialized [2018-11-23 04:52:28,534 INFO L185 PluginConnector]: Executing the observer EnsureBoogieModelObserver from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,534 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,534 INFO L185 PluginConnector]: Executing the observer ConstExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,534 INFO L185 PluginConnector]: Executing the observer StructExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,536 INFO L185 PluginConnector]: Executing the observer UnstructureCode from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,537 INFO L185 PluginConnector]: Executing the observer FunctionInliner from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,538 INFO L185 PluginConnector]: Executing the observer BoogieSymbolTableConstructor from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... [2018-11-23 04:52:28,539 INFO L132 PluginConnector]: ------------------------ END Boogie Preprocessor---------------------------- [2018-11-23 04:52:28,539 INFO L113 PluginConnector]: ------------------------RCFGBuilder---------------------------- [2018-11-23 04:52:28,539 INFO L271 PluginConnector]: Initializing RCFGBuilder... [2018-11-23 04:52:28,539 INFO L276 PluginConnector]: RCFGBuilder initialized [2018-11-23 04:52:28,539 INFO L185 PluginConnector]: Executing the observer RCFGBuilderObserver from plugin RCFGBuilder for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (1/1) ... No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 04:52:28,617 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.init [2018-11-23 04:52:28,617 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.init [2018-11-23 04:52:28,617 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.start [2018-11-23 04:52:28,617 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.start [2018-11-23 04:52:28,617 INFO L130 BoogieDeclarations]: Found specification of procedure main [2018-11-23 04:52:28,617 INFO L138 BoogieDeclarations]: Found implementation of procedure main [2018-11-23 04:52:28,617 INFO L130 BoogieDeclarations]: Found specification of procedure fibo2 [2018-11-23 04:52:28,617 INFO L138 BoogieDeclarations]: Found implementation of procedure fibo2 [2018-11-23 04:52:28,617 INFO L130 BoogieDeclarations]: Found specification of procedure fibo1 [2018-11-23 04:52:28,617 INFO L138 BoogieDeclarations]: Found implementation of procedure fibo1 [2018-11-23 04:52:28,719 INFO L275 CfgBuilder]: Using the 1 location(s) as analysis (start of procedure ULTIMATE.start) [2018-11-23 04:52:28,719 INFO L280 CfgBuilder]: Removed 0 assue(true) statements. [2018-11-23 04:52:28,719 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 04:52:28 BoogieIcfgContainer [2018-11-23 04:52:28,719 INFO L132 PluginConnector]: ------------------------ END RCFGBuilder---------------------------- [2018-11-23 04:52:28,720 INFO L113 PluginConnector]: ------------------------TraceAbstraction---------------------------- [2018-11-23 04:52:28,720 INFO L271 PluginConnector]: Initializing TraceAbstraction... [2018-11-23 04:52:28,723 INFO L276 PluginConnector]: TraceAbstraction initialized [2018-11-23 04:52:28,723 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "CDTParser AST 23.11 04:52:28" (1/3) ... [2018-11-23 04:52:28,724 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@29f5021f and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 04:52:28, skipping insertion in model container [2018-11-23 04:52:28,724 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 04:52:28" (2/3) ... [2018-11-23 04:52:28,724 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@29f5021f and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 04:52:28, skipping insertion in model container [2018-11-23 04:52:28,724 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 04:52:28" (3/3) ... [2018-11-23 04:52:28,726 INFO L112 eAbstractionObserver]: Analyzing ICFG fibo_2calls_8_false-unreach-call_true-termination.c [2018-11-23 04:52:28,732 INFO L156 ceAbstractionStarter]: Automizer settings: Hoare:true NWA Interpolation:FPandBP Determinization: PREDICATE_ABSTRACTION [2018-11-23 04:52:28,737 INFO L168 ceAbstractionStarter]: Appying trace abstraction to program that has 1 error locations. [2018-11-23 04:52:28,746 INFO L257 AbstractCegarLoop]: Starting to check reachability of 1 error locations. [2018-11-23 04:52:28,764 INFO L133 ementStrategyFactory]: Using default assertion order modulation [2018-11-23 04:52:28,764 INFO L382 AbstractCegarLoop]: Interprodecural is true [2018-11-23 04:52:28,765 INFO L383 AbstractCegarLoop]: Hoare is true [2018-11-23 04:52:28,765 INFO L384 AbstractCegarLoop]: Compute interpolants for FPandBP [2018-11-23 04:52:28,765 INFO L385 AbstractCegarLoop]: Backedges is STRAIGHT_LINE [2018-11-23 04:52:28,765 INFO L386 AbstractCegarLoop]: Determinization is PREDICATE_ABSTRACTION [2018-11-23 04:52:28,765 INFO L387 AbstractCegarLoop]: Difference is false [2018-11-23 04:52:28,765 INFO L388 AbstractCegarLoop]: Minimize is MINIMIZE_SEVPA [2018-11-23 04:52:28,765 INFO L393 AbstractCegarLoop]: ======== Iteration 0==of CEGAR loop == AllErrorsAtOnce======== [2018-11-23 04:52:28,780 INFO L276 IsEmpty]: Start isEmpty. Operand 33 states. [2018-11-23 04:52:28,785 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 14 [2018-11-23 04:52:28,785 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:28,785 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:28,787 INFO L423 AbstractCegarLoop]: === Iteration 1 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:28,790 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:28,790 INFO L82 PathProgramCache]: Analyzing trace with hash 1464461757, now seen corresponding path program 1 times [2018-11-23 04:52:28,791 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:28,791 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:28,829 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:28,829 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:28,829 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:28,851 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:28,906 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 04:52:28,908 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 04:52:28,908 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 04:52:28,911 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 04:52:28,918 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 04:52:28,918 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 04:52:28,920 INFO L87 Difference]: Start difference. First operand 33 states. Second operand 5 states. [2018-11-23 04:52:28,991 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:28,992 INFO L93 Difference]: Finished difference Result 44 states and 53 transitions. [2018-11-23 04:52:28,992 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 04:52:28,993 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 13 [2018-11-23 04:52:28,993 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:28,999 INFO L225 Difference]: With dead ends: 44 [2018-11-23 04:52:28,999 INFO L226 Difference]: Without dead ends: 30 [2018-11-23 04:52:29,001 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 04:52:29,011 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 30 states. [2018-11-23 04:52:29,026 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 30 to 30. [2018-11-23 04:52:29,027 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 30 states. [2018-11-23 04:52:29,028 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 30 states to 30 states and 37 transitions. [2018-11-23 04:52:29,029 INFO L78 Accepts]: Start accepts. Automaton has 30 states and 37 transitions. Word has length 13 [2018-11-23 04:52:29,029 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:29,029 INFO L480 AbstractCegarLoop]: Abstraction has 30 states and 37 transitions. [2018-11-23 04:52:29,029 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 04:52:29,029 INFO L276 IsEmpty]: Start isEmpty. Operand 30 states and 37 transitions. [2018-11-23 04:52:29,030 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 15 [2018-11-23 04:52:29,030 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:29,030 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:29,031 INFO L423 AbstractCegarLoop]: === Iteration 2 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:29,031 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:29,031 INFO L82 PathProgramCache]: Analyzing trace with hash -1134800479, now seen corresponding path program 1 times [2018-11-23 04:52:29,031 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:29,031 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:29,032 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,032 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,032 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,037 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:29,082 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 04:52:29,082 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 04:52:29,083 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 04:52:29,084 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 04:52:29,084 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 04:52:29,084 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 04:52:29,084 INFO L87 Difference]: Start difference. First operand 30 states and 37 transitions. Second operand 5 states. [2018-11-23 04:52:29,151 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:29,151 INFO L93 Difference]: Finished difference Result 36 states and 44 transitions. [2018-11-23 04:52:29,152 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 04:52:29,152 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 14 [2018-11-23 04:52:29,152 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:29,153 INFO L225 Difference]: With dead ends: 36 [2018-11-23 04:52:29,153 INFO L226 Difference]: Without dead ends: 32 [2018-11-23 04:52:29,154 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 04:52:29,154 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 32 states. [2018-11-23 04:52:29,159 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 32 to 30. [2018-11-23 04:52:29,159 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 30 states. [2018-11-23 04:52:29,160 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 30 states to 30 states and 37 transitions. [2018-11-23 04:52:29,160 INFO L78 Accepts]: Start accepts. Automaton has 30 states and 37 transitions. Word has length 14 [2018-11-23 04:52:29,160 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:29,160 INFO L480 AbstractCegarLoop]: Abstraction has 30 states and 37 transitions. [2018-11-23 04:52:29,161 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 04:52:29,161 INFO L276 IsEmpty]: Start isEmpty. Operand 30 states and 37 transitions. [2018-11-23 04:52:29,161 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 27 [2018-11-23 04:52:29,161 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:29,162 INFO L402 BasicCegarLoop]: trace histogram [2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:29,162 INFO L423 AbstractCegarLoop]: === Iteration 3 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:29,162 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:29,162 INFO L82 PathProgramCache]: Analyzing trace with hash -1592795560, now seen corresponding path program 1 times [2018-11-23 04:52:29,162 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:29,162 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:29,163 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,163 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,163 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,171 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:29,226 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 04:52:29,226 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:29,226 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:29,233 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,246 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:29,251 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:29,308 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 04:52:29,324 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:29,325 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 7] total 9 [2018-11-23 04:52:29,325 INFO L459 AbstractCegarLoop]: Interpolant automaton has 9 states [2018-11-23 04:52:29,325 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 9 interpolants. [2018-11-23 04:52:29,325 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=16, Invalid=56, Unknown=0, NotChecked=0, Total=72 [2018-11-23 04:52:29,325 INFO L87 Difference]: Start difference. First operand 30 states and 37 transitions. Second operand 9 states. [2018-11-23 04:52:29,469 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:29,469 INFO L93 Difference]: Finished difference Result 58 states and 78 transitions. [2018-11-23 04:52:29,470 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 04:52:29,470 INFO L78 Accepts]: Start accepts. Automaton has 9 states. Word has length 26 [2018-11-23 04:52:29,470 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:29,471 INFO L225 Difference]: With dead ends: 58 [2018-11-23 04:52:29,471 INFO L226 Difference]: Without dead ends: 34 [2018-11-23 04:52:29,472 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 37 GetRequests, 24 SyntacticMatches, 1 SemanticMatches, 12 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 14 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=41, Invalid=141, Unknown=0, NotChecked=0, Total=182 [2018-11-23 04:52:29,472 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 34 states. [2018-11-23 04:52:29,477 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 34 to 32. [2018-11-23 04:52:29,477 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 32 states. [2018-11-23 04:52:29,478 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 32 states to 32 states and 39 transitions. [2018-11-23 04:52:29,478 INFO L78 Accepts]: Start accepts. Automaton has 32 states and 39 transitions. Word has length 26 [2018-11-23 04:52:29,478 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:29,479 INFO L480 AbstractCegarLoop]: Abstraction has 32 states and 39 transitions. [2018-11-23 04:52:29,479 INFO L481 AbstractCegarLoop]: Interpolant automaton has 9 states. [2018-11-23 04:52:29,479 INFO L276 IsEmpty]: Start isEmpty. Operand 32 states and 39 transitions. [2018-11-23 04:52:29,480 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 28 [2018-11-23 04:52:29,480 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:29,480 INFO L402 BasicCegarLoop]: trace histogram [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:29,480 INFO L423 AbstractCegarLoop]: === Iteration 4 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:29,481 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:29,481 INFO L82 PathProgramCache]: Analyzing trace with hash 746633022, now seen corresponding path program 1 times [2018-11-23 04:52:29,481 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:29,481 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:29,482 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,482 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,482 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,491 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:29,525 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 04:52:29,525 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:29,526 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:29,539 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,547 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:29,549 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:29,557 INFO L134 CoverageAnalysis]: Checked inductivity of 4 backedges. 0 proven. 3 refuted. 0 times theorem prover too weak. 1 trivial. 0 not checked. [2018-11-23 04:52:29,581 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:29,581 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 7] total 7 [2018-11-23 04:52:29,581 INFO L459 AbstractCegarLoop]: Interpolant automaton has 7 states [2018-11-23 04:52:29,582 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 7 interpolants. [2018-11-23 04:52:29,582 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=11, Invalid=31, Unknown=0, NotChecked=0, Total=42 [2018-11-23 04:52:29,582 INFO L87 Difference]: Start difference. First operand 32 states and 39 transitions. Second operand 7 states. [2018-11-23 04:52:29,647 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:29,647 INFO L93 Difference]: Finished difference Result 43 states and 55 transitions. [2018-11-23 04:52:29,647 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 7 states. [2018-11-23 04:52:29,647 INFO L78 Accepts]: Start accepts. Automaton has 7 states. Word has length 27 [2018-11-23 04:52:29,647 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:29,648 INFO L225 Difference]: With dead ends: 43 [2018-11-23 04:52:29,649 INFO L226 Difference]: Without dead ends: 39 [2018-11-23 04:52:29,649 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 36 GetRequests, 29 SyntacticMatches, 0 SemanticMatches, 7 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=19, Invalid=53, Unknown=0, NotChecked=0, Total=72 [2018-11-23 04:52:29,649 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 39 states. [2018-11-23 04:52:29,654 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 39 to 37. [2018-11-23 04:52:29,654 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 37 states. [2018-11-23 04:52:29,655 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 37 states to 37 states and 48 transitions. [2018-11-23 04:52:29,656 INFO L78 Accepts]: Start accepts. Automaton has 37 states and 48 transitions. Word has length 27 [2018-11-23 04:52:29,656 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:29,656 INFO L480 AbstractCegarLoop]: Abstraction has 37 states and 48 transitions. [2018-11-23 04:52:29,656 INFO L481 AbstractCegarLoop]: Interpolant automaton has 7 states. [2018-11-23 04:52:29,656 INFO L276 IsEmpty]: Start isEmpty. Operand 37 states and 48 transitions. [2018-11-23 04:52:29,657 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 40 [2018-11-23 04:52:29,657 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:29,657 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:29,657 INFO L423 AbstractCegarLoop]: === Iteration 5 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:29,657 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:29,658 INFO L82 PathProgramCache]: Analyzing trace with hash 986908919, now seen corresponding path program 1 times [2018-11-23 04:52:29,658 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:29,658 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:29,658 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,659 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,659 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,667 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:29,723 INFO L134 CoverageAnalysis]: Checked inductivity of 16 backedges. 5 proven. 5 refuted. 0 times theorem prover too weak. 6 trivial. 0 not checked. [2018-11-23 04:52:29,723 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:29,723 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:29,730 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,739 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:29,742 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:29,778 INFO L134 CoverageAnalysis]: Checked inductivity of 16 backedges. 2 proven. 9 refuted. 0 times theorem prover too weak. 5 trivial. 0 not checked. [2018-11-23 04:52:29,803 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:29,803 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 8] total 10 [2018-11-23 04:52:29,803 INFO L459 AbstractCegarLoop]: Interpolant automaton has 10 states [2018-11-23 04:52:29,804 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 10 interpolants. [2018-11-23 04:52:29,804 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=19, Invalid=71, Unknown=0, NotChecked=0, Total=90 [2018-11-23 04:52:29,804 INFO L87 Difference]: Start difference. First operand 37 states and 48 transitions. Second operand 10 states. [2018-11-23 04:52:29,952 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:29,952 INFO L93 Difference]: Finished difference Result 70 states and 100 transitions. [2018-11-23 04:52:29,952 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 04:52:29,952 INFO L78 Accepts]: Start accepts. Automaton has 10 states. Word has length 39 [2018-11-23 04:52:29,952 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:29,953 INFO L225 Difference]: With dead ends: 70 [2018-11-23 04:52:29,953 INFO L226 Difference]: Without dead ends: 39 [2018-11-23 04:52:29,954 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 54 GetRequests, 39 SyntacticMatches, 1 SemanticMatches, 14 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 21 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=50, Invalid=190, Unknown=0, NotChecked=0, Total=240 [2018-11-23 04:52:29,954 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 39 states. [2018-11-23 04:52:29,959 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 39 to 39. [2018-11-23 04:52:29,959 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 39 states. [2018-11-23 04:52:29,960 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 39 states to 39 states and 50 transitions. [2018-11-23 04:52:29,960 INFO L78 Accepts]: Start accepts. Automaton has 39 states and 50 transitions. Word has length 39 [2018-11-23 04:52:29,960 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:29,960 INFO L480 AbstractCegarLoop]: Abstraction has 39 states and 50 transitions. [2018-11-23 04:52:29,960 INFO L481 AbstractCegarLoop]: Interpolant automaton has 10 states. [2018-11-23 04:52:29,961 INFO L276 IsEmpty]: Start isEmpty. Operand 39 states and 50 transitions. [2018-11-23 04:52:29,961 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 41 [2018-11-23 04:52:29,961 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:29,961 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:29,961 INFO L423 AbstractCegarLoop]: === Iteration 6 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:29,962 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:29,962 INFO L82 PathProgramCache]: Analyzing trace with hash -2100495745, now seen corresponding path program 1 times [2018-11-23 04:52:29,962 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:29,962 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:29,962 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,962 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:29,963 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:29,970 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:30,003 INFO L134 CoverageAnalysis]: Checked inductivity of 17 backedges. 7 proven. 3 refuted. 0 times theorem prover too weak. 7 trivial. 0 not checked. [2018-11-23 04:52:30,003 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:30,003 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:30,009 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:30,018 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:30,020 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:30,078 INFO L134 CoverageAnalysis]: Checked inductivity of 17 backedges. 2 proven. 9 refuted. 0 times theorem prover too weak. 6 trivial. 0 not checked. [2018-11-23 04:52:30,093 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:30,093 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 8] total 10 [2018-11-23 04:52:30,093 INFO L459 AbstractCegarLoop]: Interpolant automaton has 10 states [2018-11-23 04:52:30,093 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 10 interpolants. [2018-11-23 04:52:30,094 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=21, Invalid=69, Unknown=0, NotChecked=0, Total=90 [2018-11-23 04:52:30,094 INFO L87 Difference]: Start difference. First operand 39 states and 50 transitions. Second operand 10 states. [2018-11-23 04:52:30,178 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:30,178 INFO L93 Difference]: Finished difference Result 61 states and 90 transitions. [2018-11-23 04:52:30,179 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 04:52:30,179 INFO L78 Accepts]: Start accepts. Automaton has 10 states. Word has length 40 [2018-11-23 04:52:30,179 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:30,180 INFO L225 Difference]: With dead ends: 61 [2018-11-23 04:52:30,180 INFO L226 Difference]: Without dead ends: 57 [2018-11-23 04:52:30,181 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 54 GetRequests, 41 SyntacticMatches, 0 SemanticMatches, 13 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 16 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=49, Invalid=161, Unknown=0, NotChecked=0, Total=210 [2018-11-23 04:52:30,181 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 57 states. [2018-11-23 04:52:30,187 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 57 to 44. [2018-11-23 04:52:30,187 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 44 states. [2018-11-23 04:52:30,188 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 44 states to 44 states and 60 transitions. [2018-11-23 04:52:30,188 INFO L78 Accepts]: Start accepts. Automaton has 44 states and 60 transitions. Word has length 40 [2018-11-23 04:52:30,188 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:30,188 INFO L480 AbstractCegarLoop]: Abstraction has 44 states and 60 transitions. [2018-11-23 04:52:30,188 INFO L481 AbstractCegarLoop]: Interpolant automaton has 10 states. [2018-11-23 04:52:30,188 INFO L276 IsEmpty]: Start isEmpty. Operand 44 states and 60 transitions. [2018-11-23 04:52:30,189 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 55 [2018-11-23 04:52:30,189 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:30,189 INFO L402 BasicCegarLoop]: trace histogram [4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:30,190 INFO L423 AbstractCegarLoop]: === Iteration 7 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:30,190 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:30,190 INFO L82 PathProgramCache]: Analyzing trace with hash -405677468, now seen corresponding path program 1 times [2018-11-23 04:52:30,190 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:30,190 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:30,191 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:30,191 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:30,191 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:30,197 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:30,275 INFO L134 CoverageAnalysis]: Checked inductivity of 44 backedges. 18 proven. 4 refuted. 0 times theorem prover too weak. 22 trivial. 0 not checked. [2018-11-23 04:52:30,275 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:30,276 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:30,293 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:30,313 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:30,316 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:30,353 INFO L134 CoverageAnalysis]: Checked inductivity of 44 backedges. 4 proven. 23 refuted. 0 times theorem prover too weak. 17 trivial. 0 not checked. [2018-11-23 04:52:30,368 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:30,368 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 9] total 10 [2018-11-23 04:52:30,368 INFO L459 AbstractCegarLoop]: Interpolant automaton has 10 states [2018-11-23 04:52:30,368 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 10 interpolants. [2018-11-23 04:52:30,368 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=21, Invalid=69, Unknown=0, NotChecked=0, Total=90 [2018-11-23 04:52:30,369 INFO L87 Difference]: Start difference. First operand 44 states and 60 transitions. Second operand 10 states. [2018-11-23 04:52:30,466 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:30,466 INFO L93 Difference]: Finished difference Result 71 states and 118 transitions. [2018-11-23 04:52:30,467 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 04:52:30,467 INFO L78 Accepts]: Start accepts. Automaton has 10 states. Word has length 54 [2018-11-23 04:52:30,467 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:30,468 INFO L225 Difference]: With dead ends: 71 [2018-11-23 04:52:30,469 INFO L226 Difference]: Without dead ends: 67 [2018-11-23 04:52:30,469 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 66 GetRequests, 53 SyntacticMatches, 0 SemanticMatches, 13 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 16 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=49, Invalid=161, Unknown=0, NotChecked=0, Total=210 [2018-11-23 04:52:30,469 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 67 states. [2018-11-23 04:52:30,478 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 67 to 49. [2018-11-23 04:52:30,478 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 49 states. [2018-11-23 04:52:30,478 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 49 states to 49 states and 71 transitions. [2018-11-23 04:52:30,479 INFO L78 Accepts]: Start accepts. Automaton has 49 states and 71 transitions. Word has length 54 [2018-11-23 04:52:30,479 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:30,479 INFO L480 AbstractCegarLoop]: Abstraction has 49 states and 71 transitions. [2018-11-23 04:52:30,479 INFO L481 AbstractCegarLoop]: Interpolant automaton has 10 states. [2018-11-23 04:52:30,479 INFO L276 IsEmpty]: Start isEmpty. Operand 49 states and 71 transitions. [2018-11-23 04:52:30,480 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 81 [2018-11-23 04:52:30,481 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:30,481 INFO L402 BasicCegarLoop]: trace histogram [7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:30,481 INFO L423 AbstractCegarLoop]: === Iteration 8 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:30,481 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:30,481 INFO L82 PathProgramCache]: Analyzing trace with hash 671849284, now seen corresponding path program 2 times [2018-11-23 04:52:30,481 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:30,481 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:30,482 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:30,482 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:30,482 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:30,494 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:30,561 INFO L134 CoverageAnalysis]: Checked inductivity of 133 backedges. 27 proven. 25 refuted. 0 times theorem prover too weak. 81 trivial. 0 not checked. [2018-11-23 04:52:30,562 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:30,562 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:30,571 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 04:52:30,585 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 04:52:30,585 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:30,587 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:30,651 INFO L134 CoverageAnalysis]: Checked inductivity of 133 backedges. 12 proven. 63 refuted. 0 times theorem prover too weak. 58 trivial. 0 not checked. [2018-11-23 04:52:30,670 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:30,670 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 10] total 16 [2018-11-23 04:52:30,670 INFO L459 AbstractCegarLoop]: Interpolant automaton has 16 states [2018-11-23 04:52:30,670 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 16 interpolants. [2018-11-23 04:52:30,671 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=39, Invalid=201, Unknown=0, NotChecked=0, Total=240 [2018-11-23 04:52:30,671 INFO L87 Difference]: Start difference. First operand 49 states and 71 transitions. Second operand 16 states. [2018-11-23 04:52:30,998 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:30,998 INFO L93 Difference]: Finished difference Result 146 states and 299 transitions. [2018-11-23 04:52:30,999 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 19 states. [2018-11-23 04:52:30,999 INFO L78 Accepts]: Start accepts. Automaton has 16 states. Word has length 80 [2018-11-23 04:52:30,999 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:31,001 INFO L225 Difference]: With dead ends: 146 [2018-11-23 04:52:31,001 INFO L226 Difference]: Without dead ends: 103 [2018-11-23 04:52:31,002 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 108 GetRequests, 81 SyntacticMatches, 0 SemanticMatches, 27 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 113 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=143, Invalid=669, Unknown=0, NotChecked=0, Total=812 [2018-11-23 04:52:31,003 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 103 states. [2018-11-23 04:52:31,017 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 103 to 87. [2018-11-23 04:52:31,017 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 87 states. [2018-11-23 04:52:31,018 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 87 states to 87 states and 157 transitions. [2018-11-23 04:52:31,018 INFO L78 Accepts]: Start accepts. Automaton has 87 states and 157 transitions. Word has length 80 [2018-11-23 04:52:31,020 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:31,020 INFO L480 AbstractCegarLoop]: Abstraction has 87 states and 157 transitions. [2018-11-23 04:52:31,020 INFO L481 AbstractCegarLoop]: Interpolant automaton has 16 states. [2018-11-23 04:52:31,020 INFO L276 IsEmpty]: Start isEmpty. Operand 87 states and 157 transitions. [2018-11-23 04:52:31,023 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 136 [2018-11-23 04:52:31,023 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:31,023 INFO L402 BasicCegarLoop]: trace histogram [10, 10, 9, 9, 8, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:31,024 INFO L423 AbstractCegarLoop]: === Iteration 9 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:31,024 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:31,024 INFO L82 PathProgramCache]: Analyzing trace with hash 2059253460, now seen corresponding path program 1 times [2018-11-23 04:52:31,024 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:31,024 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:31,025 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:31,025 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:31,025 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:31,040 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:31,130 INFO L134 CoverageAnalysis]: Checked inductivity of 431 backedges. 66 proven. 113 refuted. 0 times theorem prover too weak. 252 trivial. 0 not checked. [2018-11-23 04:52:31,130 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:31,130 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:31,137 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:31,163 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:31,167 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:31,254 INFO L134 CoverageAnalysis]: Checked inductivity of 431 backedges. 29 proven. 176 refuted. 0 times theorem prover too weak. 226 trivial. 0 not checked. [2018-11-23 04:52:31,278 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:31,278 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 11] total 18 [2018-11-23 04:52:31,278 INFO L459 AbstractCegarLoop]: Interpolant automaton has 18 states [2018-11-23 04:52:31,278 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 18 interpolants. [2018-11-23 04:52:31,279 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=43, Invalid=263, Unknown=0, NotChecked=0, Total=306 [2018-11-23 04:52:31,279 INFO L87 Difference]: Start difference. First operand 87 states and 157 transitions. Second operand 18 states. [2018-11-23 04:52:31,780 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:31,780 INFO L93 Difference]: Finished difference Result 232 states and 520 transitions. [2018-11-23 04:52:31,781 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 28 states. [2018-11-23 04:52:31,781 INFO L78 Accepts]: Start accepts. Automaton has 18 states. Word has length 135 [2018-11-23 04:52:31,781 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:31,782 INFO L225 Difference]: With dead ends: 232 [2018-11-23 04:52:31,783 INFO L226 Difference]: Without dead ends: 129 [2018-11-23 04:52:31,784 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 164 GetRequests, 129 SyntacticMatches, 0 SemanticMatches, 35 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 211 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=230, Invalid=1102, Unknown=0, NotChecked=0, Total=1332 [2018-11-23 04:52:31,784 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 129 states. [2018-11-23 04:52:31,797 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 129 to 118. [2018-11-23 04:52:31,797 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 118 states. [2018-11-23 04:52:31,798 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 118 states to 118 states and 184 transitions. [2018-11-23 04:52:31,799 INFO L78 Accepts]: Start accepts. Automaton has 118 states and 184 transitions. Word has length 135 [2018-11-23 04:52:31,799 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:31,799 INFO L480 AbstractCegarLoop]: Abstraction has 118 states and 184 transitions. [2018-11-23 04:52:31,799 INFO L481 AbstractCegarLoop]: Interpolant automaton has 18 states. [2018-11-23 04:52:31,799 INFO L276 IsEmpty]: Start isEmpty. Operand 118 states and 184 transitions. [2018-11-23 04:52:31,803 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 324 [2018-11-23 04:52:31,803 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:31,804 INFO L402 BasicCegarLoop]: trace histogram [29, 29, 18, 18, 18, 16, 14, 14, 14, 14, 14, 14, 14, 13, 9, 9, 9, 9, 9, 9, 9, 7, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:31,804 INFO L423 AbstractCegarLoop]: === Iteration 10 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:31,804 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:31,804 INFO L82 PathProgramCache]: Analyzing trace with hash -2064464880, now seen corresponding path program 1 times [2018-11-23 04:52:31,804 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:31,804 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:31,805 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:31,805 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:31,805 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:31,835 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:31,936 INFO L134 CoverageAnalysis]: Checked inductivity of 3017 backedges. 151 proven. 445 refuted. 0 times theorem prover too weak. 2421 trivial. 0 not checked. [2018-11-23 04:52:31,937 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:31,937 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:31,944 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:32,003 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:32,011 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:32,143 INFO L134 CoverageAnalysis]: Checked inductivity of 3017 backedges. 105 proven. 663 refuted. 0 times theorem prover too weak. 2249 trivial. 0 not checked. [2018-11-23 04:52:32,159 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:32,159 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 12] total 18 [2018-11-23 04:52:32,159 INFO L459 AbstractCegarLoop]: Interpolant automaton has 18 states [2018-11-23 04:52:32,159 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 18 interpolants. [2018-11-23 04:52:32,160 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=46, Invalid=260, Unknown=0, NotChecked=0, Total=306 [2018-11-23 04:52:32,160 INFO L87 Difference]: Start difference. First operand 118 states and 184 transitions. Second operand 18 states. [2018-11-23 04:52:32,598 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:32,598 INFO L93 Difference]: Finished difference Result 290 states and 587 transitions. [2018-11-23 04:52:32,598 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 32 states. [2018-11-23 04:52:32,599 INFO L78 Accepts]: Start accepts. Automaton has 18 states. Word has length 323 [2018-11-23 04:52:32,599 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:32,601 INFO L225 Difference]: With dead ends: 290 [2018-11-23 04:52:32,601 INFO L226 Difference]: Without dead ends: 179 [2018-11-23 04:52:32,603 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 352 GetRequests, 316 SyntacticMatches, 0 SemanticMatches, 36 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 185 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=235, Invalid=1171, Unknown=0, NotChecked=0, Total=1406 [2018-11-23 04:52:32,603 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 179 states. [2018-11-23 04:52:32,616 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 179 to 154. [2018-11-23 04:52:32,616 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 154 states. [2018-11-23 04:52:32,619 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 154 states to 154 states and 252 transitions. [2018-11-23 04:52:32,619 INFO L78 Accepts]: Start accepts. Automaton has 154 states and 252 transitions. Word has length 323 [2018-11-23 04:52:32,619 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:32,619 INFO L480 AbstractCegarLoop]: Abstraction has 154 states and 252 transitions. [2018-11-23 04:52:32,619 INFO L481 AbstractCegarLoop]: Interpolant automaton has 18 states. [2018-11-23 04:52:32,620 INFO L276 IsEmpty]: Start isEmpty. Operand 154 states and 252 transitions. [2018-11-23 04:52:32,628 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 465 [2018-11-23 04:52:32,628 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:32,628 INFO L402 BasicCegarLoop]: trace histogram [37, 37, 30, 30, 29, 26, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 14, 8, 8, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:32,628 INFO L423 AbstractCegarLoop]: === Iteration 11 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:32,628 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:32,629 INFO L82 PathProgramCache]: Analyzing trace with hash -1400582904, now seen corresponding path program 2 times [2018-11-23 04:52:32,629 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:32,629 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:32,629 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:32,630 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:32,630 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:32,655 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:32,833 INFO L134 CoverageAnalysis]: Checked inductivity of 6167 backedges. 346 proven. 540 refuted. 0 times theorem prover too weak. 5281 trivial. 0 not checked. [2018-11-23 04:52:32,833 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:32,833 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:32,840 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 04:52:32,901 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 04:52:32,901 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:32,907 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:33,085 INFO L134 CoverageAnalysis]: Checked inductivity of 6167 backedges. 241 proven. 751 refuted. 0 times theorem prover too weak. 5175 trivial. 0 not checked. [2018-11-23 04:52:33,101 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:33,102 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 11] total 19 [2018-11-23 04:52:33,102 INFO L459 AbstractCegarLoop]: Interpolant automaton has 19 states [2018-11-23 04:52:33,102 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 19 interpolants. [2018-11-23 04:52:33,103 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=48, Invalid=294, Unknown=0, NotChecked=0, Total=342 [2018-11-23 04:52:33,103 INFO L87 Difference]: Start difference. First operand 154 states and 252 transitions. Second operand 19 states. [2018-11-23 04:52:33,644 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:33,645 INFO L93 Difference]: Finished difference Result 415 states and 873 transitions. [2018-11-23 04:52:33,645 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 31 states. [2018-11-23 04:52:33,645 INFO L78 Accepts]: Start accepts. Automaton has 19 states. Word has length 464 [2018-11-23 04:52:33,646 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:33,649 INFO L225 Difference]: With dead ends: 415 [2018-11-23 04:52:33,650 INFO L226 Difference]: Without dead ends: 260 [2018-11-23 04:52:33,652 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 495 GetRequests, 457 SyntacticMatches, 0 SemanticMatches, 38 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 254 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=261, Invalid=1299, Unknown=0, NotChecked=0, Total=1560 [2018-11-23 04:52:33,652 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 260 states. [2018-11-23 04:52:33,669 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 260 to 201. [2018-11-23 04:52:33,669 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 201 states. [2018-11-23 04:52:33,672 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 201 states to 201 states and 378 transitions. [2018-11-23 04:52:33,672 INFO L78 Accepts]: Start accepts. Automaton has 201 states and 378 transitions. Word has length 464 [2018-11-23 04:52:33,672 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:33,672 INFO L480 AbstractCegarLoop]: Abstraction has 201 states and 378 transitions. [2018-11-23 04:52:33,672 INFO L481 AbstractCegarLoop]: Interpolant automaton has 19 states. [2018-11-23 04:52:33,673 INFO L276 IsEmpty]: Start isEmpty. Operand 201 states and 378 transitions. [2018-11-23 04:52:33,677 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 505 [2018-11-23 04:52:33,677 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:33,677 INFO L402 BasicCegarLoop]: trace histogram [41, 41, 32, 32, 30, 29, 20, 20, 20, 20, 20, 20, 20, 16, 16, 16, 16, 16, 16, 16, 13, 12, 10, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:33,677 INFO L423 AbstractCegarLoop]: === Iteration 12 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:33,678 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:33,678 INFO L82 PathProgramCache]: Analyzing trace with hash -1373787663, now seen corresponding path program 3 times [2018-11-23 04:52:33,678 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:33,678 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:33,679 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:33,679 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:33,679 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:33,707 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:33,984 INFO L134 CoverageAnalysis]: Checked inductivity of 7345 backedges. 460 proven. 678 refuted. 0 times theorem prover too weak. 6207 trivial. 0 not checked. [2018-11-23 04:52:33,984 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:33,984 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:33,991 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 04:52:34,035 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 7 check-sat command(s) [2018-11-23 04:52:34,035 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:34,041 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:34,198 INFO L134 CoverageAnalysis]: Checked inductivity of 7345 backedges. 2308 proven. 31 refuted. 0 times theorem prover too weak. 5006 trivial. 0 not checked. [2018-11-23 04:52:34,222 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:34,222 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [13, 11] total 15 [2018-11-23 04:52:34,223 INFO L459 AbstractCegarLoop]: Interpolant automaton has 15 states [2018-11-23 04:52:34,223 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 15 interpolants. [2018-11-23 04:52:34,223 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=35, Invalid=175, Unknown=0, NotChecked=0, Total=210 [2018-11-23 04:52:34,224 INFO L87 Difference]: Start difference. First operand 201 states and 378 transitions. Second operand 15 states. [2018-11-23 04:52:34,482 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:34,483 INFO L93 Difference]: Finished difference Result 431 states and 907 transitions. [2018-11-23 04:52:34,483 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 16 states. [2018-11-23 04:52:34,483 INFO L78 Accepts]: Start accepts. Automaton has 15 states. Word has length 504 [2018-11-23 04:52:34,484 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:34,487 INFO L225 Difference]: With dead ends: 431 [2018-11-23 04:52:34,488 INFO L226 Difference]: Without dead ends: 238 [2018-11-23 04:52:34,490 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 527 GetRequests, 503 SyntacticMatches, 0 SemanticMatches, 24 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 66 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=122, Invalid=528, Unknown=0, NotChecked=0, Total=650 [2018-11-23 04:52:34,490 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 238 states. [2018-11-23 04:52:34,509 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 238 to 225. [2018-11-23 04:52:34,510 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 225 states. [2018-11-23 04:52:34,512 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 225 states to 225 states and 432 transitions. [2018-11-23 04:52:34,512 INFO L78 Accepts]: Start accepts. Automaton has 225 states and 432 transitions. Word has length 504 [2018-11-23 04:52:34,513 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:34,513 INFO L480 AbstractCegarLoop]: Abstraction has 225 states and 432 transitions. [2018-11-23 04:52:34,513 INFO L481 AbstractCegarLoop]: Interpolant automaton has 15 states. [2018-11-23 04:52:34,513 INFO L276 IsEmpty]: Start isEmpty. Operand 225 states and 432 transitions. [2018-11-23 04:52:34,517 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 504 [2018-11-23 04:52:34,517 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:34,517 INFO L402 BasicCegarLoop]: trace histogram [39, 39, 34, 34, 30, 28, 19, 19, 19, 19, 19, 19, 19, 17, 17, 17, 17, 17, 17, 17, 13, 9, 9, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:34,517 INFO L423 AbstractCegarLoop]: === Iteration 13 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:34,518 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:34,518 INFO L82 PathProgramCache]: Analyzing trace with hash -707053937, now seen corresponding path program 4 times [2018-11-23 04:52:34,518 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:34,518 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:34,519 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:34,519 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:34,519 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:34,546 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:34,823 INFO L134 CoverageAnalysis]: Checked inductivity of 7249 backedges. 534 proven. 787 refuted. 0 times theorem prover too weak. 5928 trivial. 0 not checked. [2018-11-23 04:52:34,824 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:34,824 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:34,836 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 04:52:34,914 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 04:52:34,914 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:34,923 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:35,085 INFO L134 CoverageAnalysis]: Checked inductivity of 7249 backedges. 442 proven. 887 refuted. 0 times theorem prover too weak. 5920 trivial. 0 not checked. [2018-11-23 04:52:35,100 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:35,100 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [15, 13] total 21 [2018-11-23 04:52:35,101 INFO L459 AbstractCegarLoop]: Interpolant automaton has 21 states [2018-11-23 04:52:35,101 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 21 interpolants. [2018-11-23 04:52:35,101 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=58, Invalid=362, Unknown=0, NotChecked=0, Total=420 [2018-11-23 04:52:35,101 INFO L87 Difference]: Start difference. First operand 225 states and 432 transitions. Second operand 21 states. [2018-11-23 04:52:35,478 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:35,478 INFO L93 Difference]: Finished difference Result 444 states and 924 transitions. [2018-11-23 04:52:35,478 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 22 states. [2018-11-23 04:52:35,478 INFO L78 Accepts]: Start accepts. Automaton has 21 states. Word has length 503 [2018-11-23 04:52:35,479 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:35,481 INFO L225 Difference]: With dead ends: 444 [2018-11-23 04:52:35,481 INFO L226 Difference]: Without dead ends: 207 [2018-11-23 04:52:35,484 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 531 GetRequests, 497 SyntacticMatches, 1 SemanticMatches, 33 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 216 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=196, Invalid=994, Unknown=0, NotChecked=0, Total=1190 [2018-11-23 04:52:35,484 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 207 states. [2018-11-23 04:52:35,501 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 207 to 204. [2018-11-23 04:52:35,501 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 204 states. [2018-11-23 04:52:35,502 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 204 states to 204 states and 331 transitions. [2018-11-23 04:52:35,503 INFO L78 Accepts]: Start accepts. Automaton has 204 states and 331 transitions. Word has length 503 [2018-11-23 04:52:35,503 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:35,503 INFO L480 AbstractCegarLoop]: Abstraction has 204 states and 331 transitions. [2018-11-23 04:52:35,503 INFO L481 AbstractCegarLoop]: Interpolant automaton has 21 states. [2018-11-23 04:52:35,503 INFO L276 IsEmpty]: Start isEmpty. Operand 204 states and 331 transitions. [2018-11-23 04:52:35,508 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 505 [2018-11-23 04:52:35,508 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:35,508 INFO L402 BasicCegarLoop]: trace histogram [39, 39, 34, 34, 30, 29, 19, 19, 19, 19, 19, 19, 19, 17, 17, 17, 17, 17, 17, 17, 13, 10, 9, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:35,508 INFO L423 AbstractCegarLoop]: === Iteration 14 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:35,508 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:35,509 INFO L82 PathProgramCache]: Analyzing trace with hash -782344927, now seen corresponding path program 5 times [2018-11-23 04:52:35,509 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:35,509 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:35,510 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:35,510 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:35,510 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:35,538 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:35,777 INFO L134 CoverageAnalysis]: Checked inductivity of 7277 backedges. 994 proven. 341 refuted. 0 times theorem prover too weak. 5942 trivial. 0 not checked. [2018-11-23 04:52:35,777 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:35,777 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 13 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 13 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:35,784 INFO L103 rtionOrderModulation]: Keeping assertion order INSIDE_LOOP_FIRST1 [2018-11-23 04:52:35,862 INFO L249 tOrderPrioritization]: Assert order INSIDE_LOOP_FIRST1 issued 14 check-sat command(s) [2018-11-23 04:52:35,862 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:35,869 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:36,070 INFO L134 CoverageAnalysis]: Checked inductivity of 7277 backedges. 4146 proven. 68 refuted. 0 times theorem prover too weak. 3063 trivial. 0 not checked. [2018-11-23 04:52:36,085 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:36,085 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [15, 13] total 24 [2018-11-23 04:52:36,086 INFO L459 AbstractCegarLoop]: Interpolant automaton has 24 states [2018-11-23 04:52:36,086 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 24 interpolants. [2018-11-23 04:52:36,086 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=77, Invalid=475, Unknown=0, NotChecked=0, Total=552 [2018-11-23 04:52:36,086 INFO L87 Difference]: Start difference. First operand 204 states and 331 transitions. Second operand 24 states. [2018-11-23 04:52:36,645 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:36,645 INFO L93 Difference]: Finished difference Result 453 states and 846 transitions. [2018-11-23 04:52:36,645 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 29 states. [2018-11-23 04:52:36,646 INFO L78 Accepts]: Start accepts. Automaton has 24 states. Word has length 504 [2018-11-23 04:52:36,646 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:36,648 INFO L225 Difference]: With dead ends: 453 [2018-11-23 04:52:36,648 INFO L226 Difference]: Without dead ends: 250 [2018-11-23 04:52:36,649 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 540 GetRequests, 500 SyntacticMatches, 0 SemanticMatches, 40 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 386 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=273, Invalid=1449, Unknown=0, NotChecked=0, Total=1722 [2018-11-23 04:52:36,649 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 250 states. [2018-11-23 04:52:36,659 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 250 to 242. [2018-11-23 04:52:36,660 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 242 states. [2018-11-23 04:52:36,661 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 242 states to 242 states and 349 transitions. [2018-11-23 04:52:36,661 INFO L78 Accepts]: Start accepts. Automaton has 242 states and 349 transitions. Word has length 504 [2018-11-23 04:52:36,661 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:36,661 INFO L480 AbstractCegarLoop]: Abstraction has 242 states and 349 transitions. [2018-11-23 04:52:36,661 INFO L481 AbstractCegarLoop]: Interpolant automaton has 24 states. [2018-11-23 04:52:36,661 INFO L276 IsEmpty]: Start isEmpty. Operand 242 states and 349 transitions. [2018-11-23 04:52:36,664 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 617 [2018-11-23 04:52:36,664 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:36,664 INFO L402 BasicCegarLoop]: trace histogram [46, 46, 43, 43, 40, 35, 23, 23, 23, 23, 23, 23, 23, 21, 21, 21, 21, 21, 21, 21, 19, 12, 8, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:36,664 INFO L423 AbstractCegarLoop]: === Iteration 15 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:36,665 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:36,665 INFO L82 PathProgramCache]: Analyzing trace with hash 1418868417, now seen corresponding path program 6 times [2018-11-23 04:52:36,665 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:36,665 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:36,666 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:36,666 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:36,666 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:36,683 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:36,842 INFO L134 CoverageAnalysis]: Checked inductivity of 10979 backedges. 760 proven. 567 refuted. 0 times theorem prover too weak. 9652 trivial. 0 not checked. [2018-11-23 04:52:36,842 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:36,842 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 14 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 14 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:36,849 INFO L103 rtionOrderModulation]: Keeping assertion order MIX_INSIDE_OUTSIDE [2018-11-23 04:52:36,890 INFO L249 tOrderPrioritization]: Assert order MIX_INSIDE_OUTSIDE issued 9 check-sat command(s) [2018-11-23 04:52:36,890 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:36,897 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:37,051 INFO L134 CoverageAnalysis]: Checked inductivity of 10979 backedges. 2182 proven. 4 refuted. 0 times theorem prover too weak. 8793 trivial. 0 not checked. [2018-11-23 04:52:37,075 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:37,075 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 7] total 12 [2018-11-23 04:52:37,076 INFO L459 AbstractCegarLoop]: Interpolant automaton has 12 states [2018-11-23 04:52:37,076 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 12 interpolants. [2018-11-23 04:52:37,076 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=21, Invalid=111, Unknown=0, NotChecked=0, Total=132 [2018-11-23 04:52:37,076 INFO L87 Difference]: Start difference. First operand 242 states and 349 transitions. Second operand 12 states. [2018-11-23 04:52:37,252 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:37,252 INFO L93 Difference]: Finished difference Result 471 states and 720 transitions. [2018-11-23 04:52:37,253 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 13 states. [2018-11-23 04:52:37,253 INFO L78 Accepts]: Start accepts. Automaton has 12 states. Word has length 616 [2018-11-23 04:52:37,253 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:37,255 INFO L225 Difference]: With dead ends: 471 [2018-11-23 04:52:37,255 INFO L226 Difference]: Without dead ends: 241 [2018-11-23 04:52:37,256 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 633 GetRequests, 614 SyntacticMatches, 0 SemanticMatches, 19 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 26 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=78, Invalid=342, Unknown=0, NotChecked=0, Total=420 [2018-11-23 04:52:37,256 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 241 states. [2018-11-23 04:52:37,268 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 241 to 241. [2018-11-23 04:52:37,268 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 241 states. [2018-11-23 04:52:37,269 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 241 states to 241 states and 342 transitions. [2018-11-23 04:52:37,269 INFO L78 Accepts]: Start accepts. Automaton has 241 states and 342 transitions. Word has length 616 [2018-11-23 04:52:37,270 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:37,270 INFO L480 AbstractCegarLoop]: Abstraction has 241 states and 342 transitions. [2018-11-23 04:52:37,270 INFO L481 AbstractCegarLoop]: Interpolant automaton has 12 states. [2018-11-23 04:52:37,270 INFO L276 IsEmpty]: Start isEmpty. Operand 241 states and 342 transitions. [2018-11-23 04:52:37,273 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 665 [2018-11-23 04:52:37,273 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:37,274 INFO L402 BasicCegarLoop]: trace histogram [57, 57, 40, 40, 40, 35, 28, 28, 28, 28, 28, 28, 28, 20, 20, 20, 20, 20, 20, 20, 20, 17, 7, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:37,274 INFO L423 AbstractCegarLoop]: === Iteration 16 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:37,274 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:37,274 INFO L82 PathProgramCache]: Analyzing trace with hash -913163441, now seen corresponding path program 7 times [2018-11-23 04:52:37,274 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:37,274 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:37,275 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:37,275 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:37,275 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:37,294 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:37,544 INFO L134 CoverageAnalysis]: Checked inductivity of 13151 backedges. 420 proven. 1014 refuted. 0 times theorem prover too weak. 11717 trivial. 0 not checked. [2018-11-23 04:52:37,544 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:37,545 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 15 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 15 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:37,553 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:37,676 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:37,687 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:37,975 INFO L134 CoverageAnalysis]: Checked inductivity of 13151 backedges. 389 proven. 1175 refuted. 0 times theorem prover too weak. 11587 trivial. 0 not checked. [2018-11-23 04:52:38,001 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:38,001 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 12] total 20 [2018-11-23 04:52:38,002 INFO L459 AbstractCegarLoop]: Interpolant automaton has 20 states [2018-11-23 04:52:38,002 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 20 interpolants. [2018-11-23 04:52:38,002 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=53, Invalid=327, Unknown=0, NotChecked=0, Total=380 [2018-11-23 04:52:38,003 INFO L87 Difference]: Start difference. First operand 241 states and 342 transitions. Second operand 20 states. [2018-11-23 04:52:38,429 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:38,429 INFO L93 Difference]: Finished difference Result 493 states and 745 transitions. [2018-11-23 04:52:38,430 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 22 states. [2018-11-23 04:52:38,430 INFO L78 Accepts]: Start accepts. Automaton has 20 states. Word has length 664 [2018-11-23 04:52:38,430 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:38,431 INFO L225 Difference]: With dead ends: 493 [2018-11-23 04:52:38,431 INFO L226 Difference]: Without dead ends: 178 [2018-11-23 04:52:38,433 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 688 GetRequests, 655 SyntacticMatches, 1 SemanticMatches, 32 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 191 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=180, Invalid=942, Unknown=0, NotChecked=0, Total=1122 [2018-11-23 04:52:38,433 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 178 states. [2018-11-23 04:52:38,442 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 178 to 170. [2018-11-23 04:52:38,442 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 170 states. [2018-11-23 04:52:38,443 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 170 states to 170 states and 214 transitions. [2018-11-23 04:52:38,443 INFO L78 Accepts]: Start accepts. Automaton has 170 states and 214 transitions. Word has length 664 [2018-11-23 04:52:38,443 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:38,443 INFO L480 AbstractCegarLoop]: Abstraction has 170 states and 214 transitions. [2018-11-23 04:52:38,443 INFO L481 AbstractCegarLoop]: Interpolant automaton has 20 states. [2018-11-23 04:52:38,443 INFO L276 IsEmpty]: Start isEmpty. Operand 170 states and 214 transitions. [2018-11-23 04:52:38,446 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 505 [2018-11-23 04:52:38,446 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:38,446 INFO L402 BasicCegarLoop]: trace histogram [37, 37, 36, 36, 30, 29, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 12, 11, 8, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:38,446 INFO L423 AbstractCegarLoop]: === Iteration 17 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:38,446 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:38,447 INFO L82 PathProgramCache]: Analyzing trace with hash -1501643823, now seen corresponding path program 8 times [2018-11-23 04:52:38,447 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:38,447 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:38,447 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:38,447 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 04:52:38,448 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:38,469 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:38,734 INFO L134 CoverageAnalysis]: Checked inductivity of 7249 backedges. 1317 proven. 156 refuted. 0 times theorem prover too weak. 5776 trivial. 0 not checked. [2018-11-23 04:52:38,734 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:38,735 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 16 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 16 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:38,743 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 04:52:38,827 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 04:52:38,828 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:38,833 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:39,015 INFO L134 CoverageAnalysis]: Checked inductivity of 7249 backedges. 616 proven. 713 refuted. 0 times theorem prover too weak. 5920 trivial. 0 not checked. [2018-11-23 04:52:39,031 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:39,032 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [17, 13] total 26 [2018-11-23 04:52:39,032 INFO L459 AbstractCegarLoop]: Interpolant automaton has 26 states [2018-11-23 04:52:39,032 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 26 interpolants. [2018-11-23 04:52:39,033 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=82, Invalid=568, Unknown=0, NotChecked=0, Total=650 [2018-11-23 04:52:39,033 INFO L87 Difference]: Start difference. First operand 170 states and 214 transitions. Second operand 26 states. [2018-11-23 04:52:39,660 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:39,660 INFO L93 Difference]: Finished difference Result 342 states and 441 transitions. [2018-11-23 04:52:39,661 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 35 states. [2018-11-23 04:52:39,661 INFO L78 Accepts]: Start accepts. Automaton has 26 states. Word has length 504 [2018-11-23 04:52:39,662 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:39,662 INFO L225 Difference]: With dead ends: 342 [2018-11-23 04:52:39,662 INFO L226 Difference]: Without dead ends: 162 [2018-11-23 04:52:39,663 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 545 GetRequests, 498 SyntacticMatches, 0 SemanticMatches, 47 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 518 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=343, Invalid=2009, Unknown=0, NotChecked=0, Total=2352 [2018-11-23 04:52:39,664 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 162 states. [2018-11-23 04:52:39,668 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 162 to 154. [2018-11-23 04:52:39,668 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 154 states. [2018-11-23 04:52:39,669 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 154 states to 154 states and 182 transitions. [2018-11-23 04:52:39,669 INFO L78 Accepts]: Start accepts. Automaton has 154 states and 182 transitions. Word has length 504 [2018-11-23 04:52:39,670 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:39,670 INFO L480 AbstractCegarLoop]: Abstraction has 154 states and 182 transitions. [2018-11-23 04:52:39,670 INFO L481 AbstractCegarLoop]: Interpolant automaton has 26 states. [2018-11-23 04:52:39,670 INFO L276 IsEmpty]: Start isEmpty. Operand 154 states and 182 transitions. [2018-11-23 04:52:39,671 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 355 [2018-11-23 04:52:39,671 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:39,671 INFO L402 BasicCegarLoop]: trace histogram [27, 27, 24, 24, 21, 20, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 9, 7, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:39,671 INFO L423 AbstractCegarLoop]: === Iteration 18 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:39,671 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:39,671 INFO L82 PathProgramCache]: Analyzing trace with hash 1572493120, now seen corresponding path program 9 times [2018-11-23 04:52:39,672 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:39,672 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:39,672 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:39,672 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:39,672 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:39,683 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:39,754 INFO L134 CoverageAnalysis]: Checked inductivity of 3484 backedges. 475 proven. 145 refuted. 0 times theorem prover too weak. 2864 trivial. 0 not checked. [2018-11-23 04:52:39,754 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:39,754 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 17 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 17 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:39,762 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 04:52:39,805 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 7 check-sat command(s) [2018-11-23 04:52:39,805 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:39,808 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:39,864 INFO L134 CoverageAnalysis]: Checked inductivity of 3484 backedges. 531 proven. 89 refuted. 0 times theorem prover too weak. 2864 trivial. 0 not checked. [2018-11-23 04:52:39,880 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:39,880 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [10, 10] total 12 [2018-11-23 04:52:39,880 INFO L459 AbstractCegarLoop]: Interpolant automaton has 12 states [2018-11-23 04:52:39,880 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 12 interpolants. [2018-11-23 04:52:39,881 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=30, Invalid=102, Unknown=0, NotChecked=0, Total=132 [2018-11-23 04:52:39,881 INFO L87 Difference]: Start difference. First operand 154 states and 182 transitions. Second operand 12 states. [2018-11-23 04:52:39,997 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:39,997 INFO L93 Difference]: Finished difference Result 161 states and 188 transitions. [2018-11-23 04:52:39,998 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 12 states. [2018-11-23 04:52:39,998 INFO L78 Accepts]: Start accepts. Automaton has 12 states. Word has length 354 [2018-11-23 04:52:39,999 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:39,999 INFO L225 Difference]: With dead ends: 161 [2018-11-23 04:52:39,999 INFO L226 Difference]: Without dead ends: 154 [2018-11-23 04:52:40,000 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 373 GetRequests, 356 SyntacticMatches, 0 SemanticMatches, 17 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 39 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=76, Invalid=266, Unknown=0, NotChecked=0, Total=342 [2018-11-23 04:52:40,000 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 154 states. [2018-11-23 04:52:40,005 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 154 to 154. [2018-11-23 04:52:40,005 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 154 states. [2018-11-23 04:52:40,005 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 154 states to 154 states and 178 transitions. [2018-11-23 04:52:40,006 INFO L78 Accepts]: Start accepts. Automaton has 154 states and 178 transitions. Word has length 354 [2018-11-23 04:52:40,006 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:40,006 INFO L480 AbstractCegarLoop]: Abstraction has 154 states and 178 transitions. [2018-11-23 04:52:40,006 INFO L481 AbstractCegarLoop]: Interpolant automaton has 12 states. [2018-11-23 04:52:40,006 INFO L276 IsEmpty]: Start isEmpty. Operand 154 states and 178 transitions. [2018-11-23 04:52:40,008 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 423 [2018-11-23 04:52:40,008 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:40,008 INFO L402 BasicCegarLoop]: trace histogram [31, 31, 30, 30, 25, 24, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 10, 9, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:40,008 INFO L423 AbstractCegarLoop]: === Iteration 19 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:40,008 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:40,008 INFO L82 PathProgramCache]: Analyzing trace with hash -515597281, now seen corresponding path program 10 times [2018-11-23 04:52:40,008 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:40,008 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:40,009 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:40,009 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:40,009 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:40,022 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 04:52:40,182 INFO L134 CoverageAnalysis]: Checked inductivity of 5016 backedges. 385 proven. 976 refuted. 0 times theorem prover too weak. 3655 trivial. 0 not checked. [2018-11-23 04:52:40,182 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 04:52:40,182 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/z3 Starting monitored process 18 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 18 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 04:52:40,190 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 04:52:40,242 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 04:52:40,242 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 04:52:40,246 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 04:52:40,357 INFO L134 CoverageAnalysis]: Checked inductivity of 5016 backedges. 397 proven. 499 refuted. 0 times theorem prover too weak. 4120 trivial. 0 not checked. [2018-11-23 04:52:40,373 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 04:52:40,373 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [18, 11] total 23 [2018-11-23 04:52:40,374 INFO L459 AbstractCegarLoop]: Interpolant automaton has 23 states [2018-11-23 04:52:40,374 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 23 interpolants. [2018-11-23 04:52:40,374 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=62, Invalid=444, Unknown=0, NotChecked=0, Total=506 [2018-11-23 04:52:40,374 INFO L87 Difference]: Start difference. First operand 154 states and 178 transitions. Second operand 23 states. [2018-11-23 04:52:41,128 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 04:52:41,128 INFO L93 Difference]: Finished difference Result 339 states and 412 transitions. [2018-11-23 04:52:41,129 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 47 states. [2018-11-23 04:52:41,129 INFO L78 Accepts]: Start accepts. Automaton has 23 states. Word has length 422 [2018-11-23 04:52:41,130 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 04:52:41,131 INFO L225 Difference]: With dead ends: 339 [2018-11-23 04:52:41,131 INFO L226 Difference]: Without dead ends: 198 [2018-11-23 04:52:41,132 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 474 GetRequests, 421 SyntacticMatches, 0 SemanticMatches, 53 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 740 ImplicationChecksByTransitivity, 0.5s TimeCoverageRelationStatistics Valid=432, Invalid=2538, Unknown=0, NotChecked=0, Total=2970 [2018-11-23 04:52:41,132 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 198 states. [2018-11-23 04:52:41,141 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 198 to 163. [2018-11-23 04:52:41,141 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 163 states. [2018-11-23 04:52:41,142 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 163 states to 163 states and 184 transitions. [2018-11-23 04:52:41,142 INFO L78 Accepts]: Start accepts. Automaton has 163 states and 184 transitions. Word has length 422 [2018-11-23 04:52:41,142 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 04:52:41,143 INFO L480 AbstractCegarLoop]: Abstraction has 163 states and 184 transitions. [2018-11-23 04:52:41,143 INFO L481 AbstractCegarLoop]: Interpolant automaton has 23 states. [2018-11-23 04:52:41,143 INFO L276 IsEmpty]: Start isEmpty. Operand 163 states and 184 transitions. [2018-11-23 04:52:41,144 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 464 [2018-11-23 04:52:41,145 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 04:52:41,145 INFO L402 BasicCegarLoop]: trace histogram [34, 34, 33, 33, 27, 27, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 11, 10, 7, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 04:52:41,145 INFO L423 AbstractCegarLoop]: === Iteration 20 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 04:52:41,145 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 04:52:41,145 INFO L82 PathProgramCache]: Analyzing trace with hash 1326629730, now seen corresponding path program 11 times [2018-11-23 04:52:41,146 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 04:52:41,146 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 04:52:41,146 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:41,146 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 04:52:41,146 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 04:52:41,170 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 04:52:41,199 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 04:52:41,226 INFO L469 BasicCegarLoop]: Counterexample might be feasible ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #47#return; [?] CALL call #t~ret5 := main(); [?] ~x~0 := 8; VAL [main_~x~0=8] [?] CALL call #t~ret4 := fibo1(~x~0); VAL [|fibo1_#in~n|=8] [?] ~n := #in~n; VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(~n < 1); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=7] [?] ~n := #in~n; VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(~n < 1); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=6] [?] ~n := #in~n; VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(~n < 1); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #57#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #59#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5, |fibo1_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] assume true; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] RET #53#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #55#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8, |fibo2_#t~ret3|=5] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] assume true; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] RET #57#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #59#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13, |fibo1_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] assume true; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] RET #51#return; VAL [main_~x~0=8, |main_#t~ret4|=21] [?] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647;~result~0 := #t~ret4;havoc #t~ret4; VAL [main_~result~0=21, main_~x~0=8] [?] assume 21 == ~result~0; VAL [main_~result~0=21, main_~x~0=8] [?] assume !false; VAL [main_~result~0=21, main_~x~0=8] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38-L40] assume 21 == ~result~0; VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38-L40] assume 21 == ~result~0; VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] [L36] int x = 8; VAL [x=8] [L37] CALL, EXPR fibo1(x) VAL [\old(n)=8] [L8] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L10] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=7] [L18] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L20] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=7, fibo1(n-1)=8, n=7] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=7, fibo1(n-1)=8, fibo1(n-2)=5, n=7] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=8, fibo2(n-1)=13, n=8] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=8, fibo2(n-1)=13, fibo2(n-2)=8, n=8] [L13] return fibo2(n-1) + fibo2(n-2); [L37] RET, EXPR fibo1(x) VAL [fibo1(x)=21, x=8] [L37] int result = fibo1(x); [L38] COND TRUE result == 21 VAL [result=21, x=8] [L39] __VERIFIER_error() VAL [result=21, x=8] ----- [2018-11-23 04:52:42,837 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction CFG 23.11 04:52:42 BoogieIcfgContainer [2018-11-23 04:52:42,837 INFO L132 PluginConnector]: ------------------------ END TraceAbstraction---------------------------- [2018-11-23 04:52:42,838 INFO L113 PluginConnector]: ------------------------Witness Printer---------------------------- [2018-11-23 04:52:42,838 INFO L271 PluginConnector]: Initializing Witness Printer... [2018-11-23 04:52:42,838 INFO L276 PluginConnector]: Witness Printer initialized [2018-11-23 04:52:42,838 INFO L185 PluginConnector]: Executing the observer RCFGCatcher from plugin Witness Printer for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 04:52:28" (3/4) ... [2018-11-23 04:52:42,840 INFO L138 WitnessPrinter]: Generating witness for reachability counterexample ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #47#return; [?] CALL call #t~ret5 := main(); [?] ~x~0 := 8; VAL [main_~x~0=8] [?] CALL call #t~ret4 := fibo1(~x~0); VAL [|fibo1_#in~n|=8] [?] ~n := #in~n; VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(~n < 1); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo1_~n=8, |fibo1_#in~n|=8] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=7] [?] ~n := #in~n; VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(~n < 1); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo2_~n=7, |fibo2_#in~n|=7] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=6] [?] ~n := #in~n; VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(~n < 1); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo1_~n=6, |fibo1_#in~n|=6] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=5] [?] ~n := #in~n; VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(~n < 1); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo2_~n=5, |fibo2_#in~n|=5] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #53#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #55#return; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#t~ret2|=3, |fibo2_#t~ret3|=2] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] assume true; VAL [fibo2_~n=5, |fibo2_#in~n|=5, |fibo2_#res|=5] [?] RET #57#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #59#return; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#t~ret0|=5, |fibo1_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] assume true; VAL [fibo1_~n=6, |fibo1_#in~n|=6, |fibo1_#res|=8] [?] RET #53#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #55#return; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#t~ret2|=8, |fibo2_#t~ret3|=5] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] assume true; VAL [fibo2_~n=7, |fibo2_#in~n|=7, |fibo2_#res|=13] [?] RET #57#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=6] [?] ~n := #in~n; VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(~n < 1); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo2_~n=6, |fibo2_#in~n|=6] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=5] [?] ~n := #in~n; VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(~n < 1); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo1_~n=5, |fibo1_#in~n|=5] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=4] [?] ~n := #in~n; VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(~n < 1); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo2_~n=4, |fibo2_#in~n|=4] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=3] [?] ~n := #in~n; VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(~n < 1); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo1_~n=3, |fibo1_#in~n|=3] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] assume true; VAL [fibo1_~n=3, |fibo1_#in~n|=3, |fibo1_#res|=2] [?] RET #53#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#t~ret2|=2, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] assume true; VAL [fibo2_~n=4, |fibo2_#in~n|=4, |fibo2_#res|=3] [?] RET #57#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #59#return; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#t~ret0|=3, |fibo1_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] assume true; VAL [fibo1_~n=5, |fibo1_#in~n|=5, |fibo1_#res|=5] [?] RET #53#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=4] [?] ~n := #in~n; VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(~n < 1); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo1_~n=4, |fibo1_#in~n|=4] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=3] [?] ~n := #in~n; VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(~n < 1); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo2_~n=3, |fibo2_#in~n|=3] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=2] [?] ~n := #in~n; VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(~n < 1); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo1_~n=2, |fibo1_#in~n|=2] [?] CALL call #t~ret0 := fibo2(~n - 1); VAL [|fibo2_#in~n|=1] [?] ~n := #in~n; VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume !(~n < 1); VAL [fibo2_~n=1, |fibo2_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=1, |fibo2_#in~n|=1, |fibo2_#res|=1] [?] RET #57#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=0] [?] ~n := #in~n; VAL [fibo2_~n=0, |fibo2_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] assume true; VAL [fibo2_~n=0, |fibo2_#in~n|=0, |fibo2_#res|=0] [?] RET #59#return; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#t~ret0|=1, |fibo1_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=2, |fibo1_#in~n|=2, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #55#return; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=1] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] assume true; VAL [fibo2_~n=3, |fibo2_#in~n|=3, |fibo2_#res|=2] [?] RET #57#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2] [?] CALL call #t~ret1 := fibo2(~n - 2); VAL [|fibo2_#in~n|=2] [?] ~n := #in~n; VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(~n < 1); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo2_~n=2, |fibo2_#in~n|=2] [?] CALL call #t~ret2 := fibo1(~n - 1); VAL [|fibo1_#in~n|=1] [?] ~n := #in~n; VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume !(~n < 1); VAL [fibo1_~n=1, |fibo1_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] assume true; VAL [fibo1_~n=1, |fibo1_#in~n|=1, |fibo1_#res|=1] [?] RET #53#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1] [?] CALL call #t~ret3 := fibo1(~n - 2); VAL [|fibo1_#in~n|=0] [?] ~n := #in~n; VAL [fibo1_~n=0, |fibo1_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] assume true; VAL [fibo1_~n=0, |fibo1_#in~n|=0, |fibo1_#res|=0] [?] RET #55#return; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#t~ret2|=1, |fibo2_#t~ret3|=0] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] assume true; VAL [fibo2_~n=2, |fibo2_#in~n|=2, |fibo2_#res|=1] [?] RET #59#return; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#t~ret0|=2, |fibo1_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] assume true; VAL [fibo1_~n=4, |fibo1_#in~n|=4, |fibo1_#res|=3] [?] RET #55#return; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#t~ret2|=5, |fibo2_#t~ret3|=3] [?] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647;#res := #t~ret2 + #t~ret3;havoc #t~ret2;havoc #t~ret3; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] assume true; VAL [fibo2_~n=6, |fibo2_#in~n|=6, |fibo2_#res|=8] [?] RET #59#return; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#t~ret0|=13, |fibo1_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] assume true; VAL [fibo1_~n=8, |fibo1_#in~n|=8, |fibo1_#res|=21] [?] RET #51#return; VAL [main_~x~0=8, |main_#t~ret4|=21] [?] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647;~result~0 := #t~ret4;havoc #t~ret4; VAL [main_~result~0=21, main_~x~0=8] [?] assume 21 == ~result~0; VAL [main_~result~0=21, main_~x~0=8] [?] assume !false; VAL [main_~result~0=21, main_~x~0=8] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38-L40] assume 21 == ~result~0; VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8-L14] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L10-L14] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18-L24] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L20-L24] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8-L14] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L10-L14] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18-L24] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L20-L24] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L5] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L4] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L5] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18-L24] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L20-L24] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8-L14] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L10-L14] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18-L24] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L20-L24] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8-L14] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L10-L14] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L4] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L5] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L4] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8-L14] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L10-L14] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18-L24] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L20-L24] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8-L14] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L10-L14] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18-L24] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L20-L24] assume 1 == ~n; [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18-L24] assume ~n < 1; [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L4] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L5] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18-L24] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L20-L24] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8-L14] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L10-L14] assume 1 == ~n; [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L4] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8-L14] assume ~n < 1; [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L4] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L5] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L4] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L5] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L4] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38-L40] assume 21 == ~result~0; VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret5 := main(); [L36] ~x~0 := 8; VAL [~x~0=8] [L37] CALL call #t~ret4 := fibo1(~x~0); VAL [#in~n=8] [L7-L15] ~n := #in~n; VAL [#in~n=8, ~n=8] [L8] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L10] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=7] [L17-L25] ~n := #in~n; VAL [#in~n=7, ~n=7] [L18] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L20] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6] [L7-L15] ~n := #in~n; VAL [#in~n=6, ~n=6] [L8] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L10] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5] [L17-L25] ~n := #in~n; VAL [#in~n=5, ~n=5] [L18] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L20] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=5, #t~ret2=3, ~n=5] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5, #t~ret2=3, #t~ret3=2, ~n=5] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=5, #res=5, ~n=5] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=7, #t~ret2=8, ~n=7] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=7, #t~ret2=8, #t~ret3=5, ~n=7] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=7, #res=13, ~n=7] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=6] [L17-L25] ~n := #in~n; VAL [#in~n=6, ~n=6] [L18] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L20] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=5] [L7-L15] ~n := #in~n; VAL [#in~n=5, ~n=5] [L8] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L10] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4] [L17-L25] ~n := #in~n; VAL [#in~n=4, ~n=4] [L18] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L20] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3] [L7-L15] ~n := #in~n; VAL [#in~n=3, ~n=3] [L8] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L10] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=4, #t~ret2=2, ~n=4] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4, #t~ret2=2, #t~ret3=1, ~n=4] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=4, #res=3, ~n=4] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=6, #t~ret2=5, ~n=6] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=4] [L7-L15] ~n := #in~n; VAL [#in~n=4, ~n=4] [L8] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L10] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=3] [L17-L25] ~n := #in~n; VAL [#in~n=3, ~n=3] [L18] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L20] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2] [L7-L15] ~n := #in~n; VAL [#in~n=2, ~n=2] [L8] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L10] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L13] CALL call #t~ret0 := fibo2(~n - 1); VAL [#in~n=1] [L17-L25] ~n := #in~n; VAL [#in~n=1, ~n=1] [L18] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L20] COND TRUE 1 == ~n [L21] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=0] [L17-L25] ~n := #in~n; VAL [#in~n=0, ~n=0] [L18] COND TRUE ~n < 1 [L19] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=3, #t~ret2=1, ~n=3] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=3, #t~ret2=1, #t~ret3=1, ~n=3] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=3, #res=2, ~n=3] [L13] RET call #t~ret0 := fibo2(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L13] CALL call #t~ret1 := fibo2(~n - 2); VAL [#in~n=2] [L17-L25] ~n := #in~n; VAL [#in~n=2, ~n=2] [L18] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L20] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L23] CALL call #t~ret2 := fibo1(~n - 1); VAL [#in~n=1] [L7-L15] ~n := #in~n; VAL [#in~n=1, ~n=1] [L8] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L10] COND TRUE 1 == ~n [L11] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L23] RET call #t~ret2 := fibo1(~n - 1); VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; VAL [#in~n=2, #t~ret2=1, ~n=2] [L23] CALL call #t~ret3 := fibo1(~n - 2); VAL [#in~n=0] [L7-L15] ~n := #in~n; VAL [#in~n=0, ~n=0] [L8] COND TRUE ~n < 1 [L9] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=2, #t~ret2=1, #t~ret3=0, ~n=2] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=2, #res=1, ~n=2] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L23] RET call #t~ret3 := fibo1(~n - 2); VAL [#in~n=6, #t~ret2=5, #t~ret3=3, ~n=6] [L23] assume -2147483648 <= #t~ret3 && #t~ret3 <= 2147483647; [L23] #res := #t~ret2 + #t~ret3; [L23] havoc #t~ret2; [L23] havoc #t~ret3; VAL [#in~n=6, #res=8, ~n=6] [L13] RET call #t~ret1 := fibo2(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L13] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L13] #res := #t~ret0 + #t~ret1; [L13] havoc #t~ret0; [L13] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L37] RET call #t~ret4 := fibo1(~x~0); VAL [#t~ret4=21, ~x~0=8] [L37] assume -2147483648 <= #t~ret4 && #t~ret4 <= 2147483647; [L37] ~result~0 := #t~ret4; [L37] havoc #t~ret4; VAL [~result~0=21, ~x~0=8] [L38] COND TRUE 21 == ~result~0 VAL [~result~0=21, ~x~0=8] [L39] assert false; VAL [~result~0=21, ~x~0=8] [L36] int x = 8; VAL [x=8] [L37] CALL, EXPR fibo1(x) VAL [\old(n)=8] [L8] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L10] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=7] [L18] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L20] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=7, fibo1(n-1)=8, n=7] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=7, fibo1(n-1)=8, fibo1(n-2)=5, n=7] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=8, fibo2(n-1)=13, n=8] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=8, fibo2(n-1)=13, fibo2(n-2)=8, n=8] [L13] return fibo2(n-1) + fibo2(n-2); [L37] RET, EXPR fibo1(x) VAL [fibo1(x)=21, x=8] [L37] int result = fibo1(x); [L38] COND TRUE result == 21 VAL [result=21, x=8] [L39] __VERIFIER_error() VAL [result=21, x=8] ----- [2018-11-23 04:52:47,142 INFO L145 WitnessManager]: Wrote witness to /tmp/vcloud-vcloud-master/worker/working_dir_c3269f35-e2a8-4f44-9f54-b4ab770cb1c9/bin-2019/uautomizer/witness.graphml [2018-11-23 04:52:47,143 INFO L132 PluginConnector]: ------------------------ END Witness Printer---------------------------- [2018-11-23 04:52:47,143 INFO L168 Benchmark]: Toolchain (without parser) took 18785.81 ms. Allocated memory was 1.0 GB in the beginning and 2.0 GB in the end (delta: 967.3 MB). Free memory was 959.2 MB in the beginning and 1.8 GB in the end (delta: -862.9 MB). Peak memory consumption was 104.4 MB. Max. memory is 11.5 GB. [2018-11-23 04:52:47,144 INFO L168 Benchmark]: CDTParser took 0.15 ms. Allocated memory is still 1.0 GB. Free memory is still 985.6 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 04:52:47,145 INFO L168 Benchmark]: CACSL2BoogieTranslator took 155.37 ms. Allocated memory is still 1.0 GB. Free memory was 959.2 MB in the beginning and 948.5 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. [2018-11-23 04:52:47,146 INFO L168 Benchmark]: Boogie Procedure Inliner took 13.55 ms. Allocated memory is still 1.0 GB. Free memory was 948.5 MB in the beginning and 945.8 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. [2018-11-23 04:52:47,147 INFO L168 Benchmark]: Boogie Preprocessor took 10.65 ms. Allocated memory is still 1.0 GB. Free memory is still 945.8 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 04:52:47,147 INFO L168 Benchmark]: RCFGBuilder took 180.62 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 133.7 MB). Free memory was 945.8 MB in the beginning and 1.1 GB in the end (delta: -173.6 MB). Peak memory consumption was 14.5 MB. Max. memory is 11.5 GB. [2018-11-23 04:52:47,147 INFO L168 Benchmark]: TraceAbstraction took 14117.14 ms. Allocated memory was 1.2 GB in the beginning and 2.0 GB in the end (delta: 833.6 MB). Free memory was 1.1 GB in the beginning and 1.9 GB in the end (delta: -739.8 MB). Peak memory consumption was 93.8 MB. Max. memory is 11.5 GB. [2018-11-23 04:52:47,147 INFO L168 Benchmark]: Witness Printer took 4305.10 ms. Allocated memory is still 2.0 GB. Free memory was 1.9 GB in the beginning and 1.8 GB in the end (delta: 37.1 MB). Peak memory consumption was 37.1 MB. Max. memory is 11.5 GB. [2018-11-23 04:52:47,149 INFO L336 ainManager$Toolchain]: ####################### End [Toolchain 1] ####################### --- Results --- * Results from de.uni_freiburg.informatik.ultimate.core: - StatisticsResult: Toolchain Benchmarks Benchmark results are: * CDTParser took 0.15 ms. Allocated memory is still 1.0 GB. Free memory is still 985.6 MB. There was no memory consumed. Max. memory is 11.5 GB. * CACSL2BoogieTranslator took 155.37 ms. Allocated memory is still 1.0 GB. Free memory was 959.2 MB in the beginning and 948.5 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. * Boogie Procedure Inliner took 13.55 ms. Allocated memory is still 1.0 GB. Free memory was 948.5 MB in the beginning and 945.8 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. * Boogie Preprocessor took 10.65 ms. Allocated memory is still 1.0 GB. Free memory is still 945.8 MB. There was no memory consumed. Max. memory is 11.5 GB. * RCFGBuilder took 180.62 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 133.7 MB). Free memory was 945.8 MB in the beginning and 1.1 GB in the end (delta: -173.6 MB). Peak memory consumption was 14.5 MB. Max. memory is 11.5 GB. * TraceAbstraction took 14117.14 ms. Allocated memory was 1.2 GB in the beginning and 2.0 GB in the end (delta: 833.6 MB). Free memory was 1.1 GB in the beginning and 1.9 GB in the end (delta: -739.8 MB). Peak memory consumption was 93.8 MB. Max. memory is 11.5 GB. * Witness Printer took 4305.10 ms. Allocated memory is still 2.0 GB. Free memory was 1.9 GB in the beginning and 1.8 GB in the end (delta: 37.1 MB). Peak memory consumption was 37.1 MB. Max. memory is 11.5 GB. * Results from de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction: - CounterExampleResult [Line: 39]: a call of __VERIFIER_error() is reachable a call of __VERIFIER_error() is reachable We found a FailurePath: [L36] int x = 8; VAL [x=8] [L37] CALL, EXPR fibo1(x) VAL [\old(n)=8] [L8] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L10] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=7] [L18] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L20] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=6] [L8] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L10] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=5] [L18] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L20] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=5, fibo1(n-1)=3, n=5] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=5, fibo1(n-1)=3, fibo1(n-2)=2, n=5] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=6, fibo2(n-1)=5, n=6] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=6, fibo2(n-1)=5, fibo2(n-2)=3, n=6] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=7, fibo1(n-1)=8, n=7] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=7, fibo1(n-1)=8, fibo1(n-2)=5, n=7] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=8, fibo2(n-1)=13, n=8] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=6] [L18] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L20] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=5] [L8] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L10] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=4] [L18] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L20] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=3] [L8] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L10] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=3, fibo2(n-1)=1, n=3] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=3, fibo2(n-1)=1, fibo2(n-2)=1, n=3] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=4, fibo1(n-1)=2, n=4] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=4, fibo1(n-1)=2, fibo1(n-2)=1, n=4] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=5, fibo2(n-1)=3, n=5] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=5, fibo2(n-1)=3, fibo2(n-2)=2, n=5] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=6, fibo1(n-1)=5, n=6] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=4] [L8] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L10] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=3] [L18] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L20] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=2] [L8] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L10] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L13] CALL, EXPR fibo2(n-1) VAL [\old(n)=1] [L18] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L20] COND TRUE n == 1 [L21] return 1; VAL [\old(n)=1, \result=1, n=1] [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=2, fibo2(n-1)=1, n=2] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=0] [L18] COND TRUE n < 1 [L19] return 0; VAL [\old(n)=0, \result=0, n=0] [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=2, fibo2(n-1)=1, fibo2(n-2)=0, n=2] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=3, fibo1(n-1)=1, n=3] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=3, fibo1(n-1)=1, fibo1(n-2)=1, n=3] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-1) VAL [\old(n)=4, fibo2(n-1)=2, n=4] [L13] CALL, EXPR fibo2(n-2) VAL [\old(n)=2] [L18] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L20] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L23] CALL, EXPR fibo1(n-1) VAL [\old(n)=1] [L8] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L10] COND TRUE n == 1 [L11] return 1; VAL [\old(n)=1, \result=1, n=1] [L23] RET, EXPR fibo1(n-1) VAL [\old(n)=2, fibo1(n-1)=1, n=2] [L23] CALL, EXPR fibo1(n-2) VAL [\old(n)=0] [L8] COND TRUE n < 1 [L9] return 0; VAL [\old(n)=0, \result=0, n=0] [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=2, fibo1(n-1)=1, fibo1(n-2)=0, n=2] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=4, fibo2(n-1)=2, fibo2(n-2)=1, n=4] [L13] return fibo2(n-1) + fibo2(n-2); [L23] RET, EXPR fibo1(n-2) VAL [\old(n)=6, fibo1(n-1)=5, fibo1(n-2)=3, n=6] [L23] return fibo1(n-1) + fibo1(n-2); [L13] RET, EXPR fibo2(n-2) VAL [\old(n)=8, fibo2(n-1)=13, fibo2(n-2)=8, n=8] [L13] return fibo2(n-1) + fibo2(n-2); [L37] RET, EXPR fibo1(x) VAL [fibo1(x)=21, x=8] [L37] int result = fibo1(x); [L38] COND TRUE result == 21 VAL [result=21, x=8] [L39] __VERIFIER_error() VAL [result=21, x=8] - StatisticsResult: Ultimate Automizer benchmark data CFG has 5 procedures, 33 locations, 1 error locations. UNSAFE Result, 14.0s OverallTime, 20 OverallIterations, 57 TraceHistogramMax, 5.8s AutomataDifference, 0.0s DeadEndRemovalTime, 0.0s HoareAnnotationTime, HoareTripleCheckerStatistics: 647 SDtfs, 1161 SDslu, 4779 SDs, 0 SdLazy, 7364 SolverSat, 1274 SolverUnsat, 0 SolverUnknown, 0 SolverNotchecked, 2.8s Time, PredicateUnifierStatistics: 0 DeclaredPredicates, 5689 GetRequests, 5217 SyntacticMatches, 4 SemanticMatches, 468 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 3013 ImplicationChecksByTransitivity, 4.0s Time, 0.0s BasicInterpolantAutomatonTime, BiggestAbstraction: size=242occurred in iteration=14, traceCheckStatistics: No data available, InterpolantConsolidationStatistics: No data available, PathInvariantsStatistics: No data available, 0/0 InterpolantCoveringCapability, TotalInterpolationStatistics: No data available, 0.0s AbstIntTime, 0 AbstIntIterations, 0 AbstIntStrong, NaN AbsIntWeakeningRatio, NaN AbsIntAvgWeakeningVarsNumRemoved, NaN AbsIntAvgWeakenedConjuncts, 0.0s DumpTime, AutomataMinimizationStatistics: 0.2s AutomataMinimizationTime, 19 MinimizatonAttempts, 223 StatesRemovedByMinimization, 15 NontrivialMinimizations, HoareAnnotationStatistics: No data available, RefinementEngineStatistics: TraceCheckStatistics: 0.2s SsaConstructionTime, 0.8s SatisfiabilityAnalysisTime, 3.7s InterpolantComputationTime, 11008 NumberOfCodeBlocks, 9532 NumberOfCodeBlocksAsserted, 73 NumberOfCheckSat, 10509 ConstructedInterpolants, 0 QuantifiedInterpolants, 5838297 SizeOfPredicates, 98 NumberOfNonLiveVariables, 8334 ConjunctsInSsa, 199 ConjunctsInUnsatCore, 36 InterpolantComputations, 2 PerfectInterpolantSequences, 132195/143166 InterpolantCoveringCapability, InvariantSynthesisStatistics: No data available, InterpolantConsolidationStatistics: No data available, ReuseStatistics: No data available RESULT: Ultimate proved your program to be incorrect! Received shutdown request...