./Ultimate.py --spec ../../sv-benchmarks/c/properties/unreach-call.prp --file ../../sv-benchmarks/c/recursive-simple/fibo_7_false-unreach-call_true-termination.c --full-output --architecture 32bit -------------------------------------------------------------------------------- Checking for ERROR reachability Using default analysis Version aa418289 Calling Ultimate with: java -Dosgi.configuration.area=/tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/data/config -Xmx12G -Xms1G -jar /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/plugins/org.eclipse.equinox.launcher_1.3.100.v20150511-1540.jar -data @noDefault -ultimatedata /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/data -tc /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/config/AutomizerReach.xml -i ../../sv-benchmarks/c/recursive-simple/fibo_7_false-unreach-call_true-termination.c -s /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf --cacsl2boogietranslator.entry.function main --witnessprinter.witness.directory /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer --witnessprinter.witness.filename witness.graphml --witnessprinter.write.witness.besides.input.file false --witnessprinter.graph.data.specification CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) --witnessprinter.graph.data.producer Automizer --witnessprinter.graph.data.architecture 32bit --witnessprinter.graph.data.programhash 16ceff9c26892934dc007d0ff3b64a1ad7cbb0e9 ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ Execution finished normally Writing output log to file Ultimate.log Writing human readable error path to file UltimateCounterExample.errorpath Result: FALSE --- Real Ultimate output --- This is Ultimate 0.1.23-aa41828 [2018-11-23 00:10:36,778 INFO L170 SettingsManager]: Resetting all preferences to default values... [2018-11-23 00:10:36,779 INFO L174 SettingsManager]: Resetting UltimateCore preferences to default values [2018-11-23 00:10:36,786 INFO L177 SettingsManager]: Ultimate Commandline Interface provides no preferences, ignoring... [2018-11-23 00:10:36,786 INFO L174 SettingsManager]: Resetting Boogie Preprocessor preferences to default values [2018-11-23 00:10:36,787 INFO L174 SettingsManager]: Resetting Boogie Procedure Inliner preferences to default values [2018-11-23 00:10:36,788 INFO L174 SettingsManager]: Resetting Abstract Interpretation preferences to default values [2018-11-23 00:10:36,789 INFO L174 SettingsManager]: Resetting LassoRanker preferences to default values [2018-11-23 00:10:36,790 INFO L174 SettingsManager]: Resetting Reaching Definitions preferences to default values [2018-11-23 00:10:36,791 INFO L174 SettingsManager]: Resetting SyntaxChecker preferences to default values [2018-11-23 00:10:36,791 INFO L177 SettingsManager]: Büchi Program Product provides no preferences, ignoring... [2018-11-23 00:10:36,792 INFO L174 SettingsManager]: Resetting LTL2Aut preferences to default values [2018-11-23 00:10:36,792 INFO L174 SettingsManager]: Resetting PEA to Boogie preferences to default values [2018-11-23 00:10:36,794 INFO L174 SettingsManager]: Resetting BlockEncodingV2 preferences to default values [2018-11-23 00:10:36,794 INFO L174 SettingsManager]: Resetting ChcToBoogie preferences to default values [2018-11-23 00:10:36,795 INFO L174 SettingsManager]: Resetting AutomataScriptInterpreter preferences to default values [2018-11-23 00:10:36,795 INFO L174 SettingsManager]: Resetting BuchiAutomizer preferences to default values [2018-11-23 00:10:36,797 INFO L174 SettingsManager]: Resetting CACSL2BoogieTranslator preferences to default values [2018-11-23 00:10:36,798 INFO L174 SettingsManager]: Resetting CodeCheck preferences to default values [2018-11-23 00:10:36,799 INFO L174 SettingsManager]: Resetting InvariantSynthesis preferences to default values [2018-11-23 00:10:36,800 INFO L174 SettingsManager]: Resetting RCFGBuilder preferences to default values [2018-11-23 00:10:36,801 INFO L174 SettingsManager]: Resetting TraceAbstraction preferences to default values [2018-11-23 00:10:36,803 INFO L177 SettingsManager]: TraceAbstractionConcurrent provides no preferences, ignoring... [2018-11-23 00:10:36,803 INFO L177 SettingsManager]: TraceAbstractionWithAFAs provides no preferences, ignoring... [2018-11-23 00:10:36,803 INFO L174 SettingsManager]: Resetting TreeAutomizer preferences to default values [2018-11-23 00:10:36,804 INFO L174 SettingsManager]: Resetting IcfgTransformer preferences to default values [2018-11-23 00:10:36,805 INFO L174 SettingsManager]: Resetting Boogie Printer preferences to default values [2018-11-23 00:10:36,806 INFO L174 SettingsManager]: Resetting ReqPrinter preferences to default values [2018-11-23 00:10:36,806 INFO L174 SettingsManager]: Resetting Witness Printer preferences to default values [2018-11-23 00:10:36,807 INFO L177 SettingsManager]: Boogie PL CUP Parser provides no preferences, ignoring... [2018-11-23 00:10:36,807 INFO L174 SettingsManager]: Resetting CDTParser preferences to default values [2018-11-23 00:10:36,807 INFO L177 SettingsManager]: AutomataScriptParser provides no preferences, ignoring... [2018-11-23 00:10:36,807 INFO L177 SettingsManager]: ReqParser provides no preferences, ignoring... [2018-11-23 00:10:36,808 INFO L174 SettingsManager]: Resetting SmtParser preferences to default values [2018-11-23 00:10:36,809 INFO L174 SettingsManager]: Resetting Witness Parser preferences to default values [2018-11-23 00:10:36,810 INFO L181 SettingsManager]: Finished resetting all preferences to default values... [2018-11-23 00:10:36,810 INFO L98 SettingsManager]: Beginning loading settings from /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/config/svcomp-Reach-32bit-Automizer_Default.epf [2018-11-23 00:10:36,822 INFO L110 SettingsManager]: Loading preferences was successful [2018-11-23 00:10:36,822 INFO L112 SettingsManager]: Preferences different from defaults after loading the file: [2018-11-23 00:10:36,822 INFO L131 SettingsManager]: Preferences of Boogie Procedure Inliner differ from their defaults: [2018-11-23 00:10:36,823 INFO L133 SettingsManager]: * ... calls to implemented procedures=ONLY_FOR_CONCURRENT_PROGRAMS [2018-11-23 00:10:36,823 INFO L131 SettingsManager]: Preferences of BlockEncodingV2 differ from their defaults: [2018-11-23 00:10:36,823 INFO L133 SettingsManager]: * Create parallel compositions if possible=false [2018-11-23 00:10:36,823 INFO L133 SettingsManager]: * Use SBE=true [2018-11-23 00:10:36,823 INFO L131 SettingsManager]: Preferences of CACSL2BoogieTranslator differ from their defaults: [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * sizeof long=4 [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * Overapproximate operations on floating types=true [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * sizeof POINTER=4 [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * Check division by zero=IGNORE [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * Pointer to allocated memory at dereference=IGNORE [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * If two pointers are subtracted or compared they have the same base address=IGNORE [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * Check array bounds for arrays that are off heap=IGNORE [2018-11-23 00:10:36,824 INFO L133 SettingsManager]: * sizeof long double=12 [2018-11-23 00:10:36,825 INFO L133 SettingsManager]: * Check if freed pointer was valid=false [2018-11-23 00:10:36,826 INFO L133 SettingsManager]: * Use constant arrays=true [2018-11-23 00:10:36,826 INFO L133 SettingsManager]: * Pointer base address is valid at dereference=IGNORE [2018-11-23 00:10:36,826 INFO L131 SettingsManager]: Preferences of RCFGBuilder differ from their defaults: [2018-11-23 00:10:36,826 INFO L133 SettingsManager]: * Size of a code block=SequenceOfStatements [2018-11-23 00:10:36,826 INFO L133 SettingsManager]: * To the following directory=./dump/ [2018-11-23 00:10:36,827 INFO L133 SettingsManager]: * SMT solver=External_DefaultMode [2018-11-23 00:10:36,827 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 00:10:36,827 INFO L131 SettingsManager]: Preferences of TraceAbstraction differ from their defaults: [2018-11-23 00:10:36,827 INFO L133 SettingsManager]: * Compute Interpolants along a Counterexample=FPandBP [2018-11-23 00:10:36,827 INFO L133 SettingsManager]: * Positions where we compute the Hoare Annotation=LoopsAndPotentialCycles [2018-11-23 00:10:36,827 INFO L133 SettingsManager]: * Trace refinement strategy=CAMEL [2018-11-23 00:10:36,827 INFO L133 SettingsManager]: * SMT solver=External_ModelsAndUnsatCoreMode [2018-11-23 00:10:36,827 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in [2018-11-23 00:10:36,828 INFO L133 SettingsManager]: * Compute Hoare Annotation of negated interpolant automaton, abstraction and CFG=true Applying setting for plugin de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator: Entry function -> main Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness directory -> /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness filename -> witness.graphml Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Write witness besides input file -> false Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data specification -> CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data producer -> Automizer Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data architecture -> 32bit Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data programhash -> 16ceff9c26892934dc007d0ff3b64a1ad7cbb0e9 [2018-11-23 00:10:36,850 INFO L81 nceAwareModelManager]: Repository-Root is: /tmp [2018-11-23 00:10:36,860 INFO L258 ainManager$Toolchain]: [Toolchain 1]: Applicable parser(s) successfully (re)initialized [2018-11-23 00:10:36,862 INFO L214 ainManager$Toolchain]: [Toolchain 1]: Toolchain selected. [2018-11-23 00:10:36,863 INFO L271 PluginConnector]: Initializing CDTParser... [2018-11-23 00:10:36,864 INFO L276 PluginConnector]: CDTParser initialized [2018-11-23 00:10:36,864 INFO L418 ainManager$Toolchain]: [Toolchain 1]: Parsing single file: /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/../../sv-benchmarks/c/recursive-simple/fibo_7_false-unreach-call_true-termination.c [2018-11-23 00:10:36,906 INFO L221 CDTParser]: Created temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/data/7abe012c4/1c860b02649f4d90bb660422745f75c4/FLAG3f2dd0984 [2018-11-23 00:10:37,303 INFO L307 CDTParser]: Found 1 translation units. [2018-11-23 00:10:37,304 INFO L161 CDTParser]: Scanning /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/sv-benchmarks/c/recursive-simple/fibo_7_false-unreach-call_true-termination.c [2018-11-23 00:10:37,308 INFO L355 CDTParser]: About to delete temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/data/7abe012c4/1c860b02649f4d90bb660422745f75c4/FLAG3f2dd0984 [2018-11-23 00:10:37,317 INFO L363 CDTParser]: Successfully deleted /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/data/7abe012c4/1c860b02649f4d90bb660422745f75c4 [2018-11-23 00:10:37,319 INFO L296 ainManager$Toolchain]: ####################### [Toolchain 1] ####################### [2018-11-23 00:10:37,320 INFO L131 ToolchainWalker]: Walking toolchain with 6 elements. [2018-11-23 00:10:37,320 INFO L113 PluginConnector]: ------------------------CACSL2BoogieTranslator---------------------------- [2018-11-23 00:10:37,320 INFO L271 PluginConnector]: Initializing CACSL2BoogieTranslator... [2018-11-23 00:10:37,322 INFO L276 PluginConnector]: CACSL2BoogieTranslator initialized [2018-11-23 00:10:37,323 INFO L185 PluginConnector]: Executing the observer ACSLObjectContainerObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,324 INFO L205 PluginConnector]: Invalid model from CACSL2BoogieTranslator for observer de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.ACSLObjectContainerObserver@a9989bb and model type de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37, skipping insertion in model container [2018-11-23 00:10:37,325 INFO L185 PluginConnector]: Executing the observer CACSL2BoogieTranslatorObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,330 INFO L145 MainTranslator]: Starting translation in SV-COMP mode [2018-11-23 00:10:37,340 INFO L176 MainTranslator]: Built tables and reachable declarations [2018-11-23 00:10:37,445 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 00:10:37,447 INFO L191 MainTranslator]: Completed pre-run [2018-11-23 00:10:37,455 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 00:10:37,463 INFO L195 MainTranslator]: Completed translation [2018-11-23 00:10:37,463 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37 WrapperNode [2018-11-23 00:10:37,463 INFO L132 PluginConnector]: ------------------------ END CACSL2BoogieTranslator---------------------------- [2018-11-23 00:10:37,463 INFO L113 PluginConnector]: ------------------------Boogie Procedure Inliner---------------------------- [2018-11-23 00:10:37,464 INFO L271 PluginConnector]: Initializing Boogie Procedure Inliner... [2018-11-23 00:10:37,464 INFO L276 PluginConnector]: Boogie Procedure Inliner initialized [2018-11-23 00:10:37,468 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,471 INFO L185 PluginConnector]: Executing the observer Inliner from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,475 INFO L132 PluginConnector]: ------------------------ END Boogie Procedure Inliner---------------------------- [2018-11-23 00:10:37,475 INFO L113 PluginConnector]: ------------------------Boogie Preprocessor---------------------------- [2018-11-23 00:10:37,475 INFO L271 PluginConnector]: Initializing Boogie Preprocessor... [2018-11-23 00:10:37,475 INFO L276 PluginConnector]: Boogie Preprocessor initialized [2018-11-23 00:10:37,480 INFO L185 PluginConnector]: Executing the observer EnsureBoogieModelObserver from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,480 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,481 INFO L185 PluginConnector]: Executing the observer ConstExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,481 INFO L185 PluginConnector]: Executing the observer StructExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,483 INFO L185 PluginConnector]: Executing the observer UnstructureCode from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,484 INFO L185 PluginConnector]: Executing the observer FunctionInliner from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,485 INFO L185 PluginConnector]: Executing the observer BoogieSymbolTableConstructor from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... [2018-11-23 00:10:37,486 INFO L132 PluginConnector]: ------------------------ END Boogie Preprocessor---------------------------- [2018-11-23 00:10:37,487 INFO L113 PluginConnector]: ------------------------RCFGBuilder---------------------------- [2018-11-23 00:10:37,487 INFO L271 PluginConnector]: Initializing RCFGBuilder... [2018-11-23 00:10:37,487 INFO L276 PluginConnector]: RCFGBuilder initialized [2018-11-23 00:10:37,487 INFO L185 PluginConnector]: Executing the observer RCFGBuilderObserver from plugin RCFGBuilder for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (1/1) ... No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 00:10:37,555 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.init [2018-11-23 00:10:37,555 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.init [2018-11-23 00:10:37,555 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.start [2018-11-23 00:10:37,556 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.start [2018-11-23 00:10:37,556 INFO L130 BoogieDeclarations]: Found specification of procedure main [2018-11-23 00:10:37,556 INFO L138 BoogieDeclarations]: Found implementation of procedure main [2018-11-23 00:10:37,556 INFO L130 BoogieDeclarations]: Found specification of procedure fibo [2018-11-23 00:10:37,556 INFO L138 BoogieDeclarations]: Found implementation of procedure fibo [2018-11-23 00:10:37,645 INFO L275 CfgBuilder]: Using the 1 location(s) as analysis (start of procedure ULTIMATE.start) [2018-11-23 00:10:37,645 INFO L280 CfgBuilder]: Removed 0 assue(true) statements. [2018-11-23 00:10:37,645 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 12:10:37 BoogieIcfgContainer [2018-11-23 00:10:37,645 INFO L132 PluginConnector]: ------------------------ END RCFGBuilder---------------------------- [2018-11-23 00:10:37,646 INFO L113 PluginConnector]: ------------------------TraceAbstraction---------------------------- [2018-11-23 00:10:37,646 INFO L271 PluginConnector]: Initializing TraceAbstraction... [2018-11-23 00:10:37,648 INFO L276 PluginConnector]: TraceAbstraction initialized [2018-11-23 00:10:37,648 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "CDTParser AST 23.11 12:10:37" (1/3) ... [2018-11-23 00:10:37,648 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@5a55029d and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 12:10:37, skipping insertion in model container [2018-11-23 00:10:37,648 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 12:10:37" (2/3) ... [2018-11-23 00:10:37,649 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@5a55029d and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 12:10:37, skipping insertion in model container [2018-11-23 00:10:37,649 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 12:10:37" (3/3) ... [2018-11-23 00:10:37,650 INFO L112 eAbstractionObserver]: Analyzing ICFG fibo_7_false-unreach-call_true-termination.c [2018-11-23 00:10:37,655 INFO L156 ceAbstractionStarter]: Automizer settings: Hoare:true NWA Interpolation:FPandBP Determinization: PREDICATE_ABSTRACTION [2018-11-23 00:10:37,660 INFO L168 ceAbstractionStarter]: Appying trace abstraction to program that has 1 error locations. [2018-11-23 00:10:37,669 INFO L257 AbstractCegarLoop]: Starting to check reachability of 1 error locations. [2018-11-23 00:10:37,685 INFO L133 ementStrategyFactory]: Using default assertion order modulation [2018-11-23 00:10:37,686 INFO L382 AbstractCegarLoop]: Interprodecural is true [2018-11-23 00:10:37,686 INFO L383 AbstractCegarLoop]: Hoare is true [2018-11-23 00:10:37,686 INFO L384 AbstractCegarLoop]: Compute interpolants for FPandBP [2018-11-23 00:10:37,686 INFO L385 AbstractCegarLoop]: Backedges is STRAIGHT_LINE [2018-11-23 00:10:37,686 INFO L386 AbstractCegarLoop]: Determinization is PREDICATE_ABSTRACTION [2018-11-23 00:10:37,686 INFO L387 AbstractCegarLoop]: Difference is false [2018-11-23 00:10:37,686 INFO L388 AbstractCegarLoop]: Minimize is MINIMIZE_SEVPA [2018-11-23 00:10:37,686 INFO L393 AbstractCegarLoop]: ======== Iteration 0==of CEGAR loop == AllErrorsAtOnce======== [2018-11-23 00:10:37,698 INFO L276 IsEmpty]: Start isEmpty. Operand 24 states. [2018-11-23 00:10:37,701 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 14 [2018-11-23 00:10:37,701 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:37,702 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:37,703 INFO L423 AbstractCegarLoop]: === Iteration 1 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:37,707 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:37,708 INFO L82 PathProgramCache]: Analyzing trace with hash 537028541, now seen corresponding path program 1 times [2018-11-23 00:10:37,709 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:37,709 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:37,744 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:37,744 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:37,745 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:37,768 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:37,824 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 00:10:37,825 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 00:10:37,826 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 00:10:37,828 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 00:10:37,835 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 00:10:37,836 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 00:10:37,837 INFO L87 Difference]: Start difference. First operand 24 states. Second operand 5 states. [2018-11-23 00:10:37,912 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:37,912 INFO L93 Difference]: Finished difference Result 35 states and 41 transitions. [2018-11-23 00:10:37,912 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 00:10:37,913 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 13 [2018-11-23 00:10:37,913 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:37,919 INFO L225 Difference]: With dead ends: 35 [2018-11-23 00:10:37,919 INFO L226 Difference]: Without dead ends: 21 [2018-11-23 00:10:37,921 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 00:10:37,931 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 21 states. [2018-11-23 00:10:37,946 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 21 to 21. [2018-11-23 00:10:37,947 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 21 states. [2018-11-23 00:10:37,948 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 21 states to 21 states and 25 transitions. [2018-11-23 00:10:37,949 INFO L78 Accepts]: Start accepts. Automaton has 21 states and 25 transitions. Word has length 13 [2018-11-23 00:10:37,949 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:37,949 INFO L480 AbstractCegarLoop]: Abstraction has 21 states and 25 transitions. [2018-11-23 00:10:37,949 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 00:10:37,949 INFO L276 IsEmpty]: Start isEmpty. Operand 21 states and 25 transitions. [2018-11-23 00:10:37,950 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 15 [2018-11-23 00:10:37,951 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:37,951 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:37,951 INFO L423 AbstractCegarLoop]: === Iteration 2 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:37,951 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:37,951 INFO L82 PathProgramCache]: Analyzing trace with hash 179123823, now seen corresponding path program 1 times [2018-11-23 00:10:37,951 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:37,952 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:37,952 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:37,952 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:37,954 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:37,958 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:37,991 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 00:10:37,992 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 00:10:37,992 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 00:10:37,993 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 00:10:37,994 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 00:10:37,994 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 00:10:37,994 INFO L87 Difference]: Start difference. First operand 21 states and 25 transitions. Second operand 5 states. [2018-11-23 00:10:38,069 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:38,069 INFO L93 Difference]: Finished difference Result 27 states and 32 transitions. [2018-11-23 00:10:38,070 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 00:10:38,070 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 14 [2018-11-23 00:10:38,070 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:38,071 INFO L225 Difference]: With dead ends: 27 [2018-11-23 00:10:38,071 INFO L226 Difference]: Without dead ends: 23 [2018-11-23 00:10:38,072 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 00:10:38,072 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 23 states. [2018-11-23 00:10:38,076 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 23 to 21. [2018-11-23 00:10:38,076 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 21 states. [2018-11-23 00:10:38,077 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 21 states to 21 states and 25 transitions. [2018-11-23 00:10:38,077 INFO L78 Accepts]: Start accepts. Automaton has 21 states and 25 transitions. Word has length 14 [2018-11-23 00:10:38,077 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:38,078 INFO L480 AbstractCegarLoop]: Abstraction has 21 states and 25 transitions. [2018-11-23 00:10:38,078 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 00:10:38,078 INFO L276 IsEmpty]: Start isEmpty. Operand 21 states and 25 transitions. [2018-11-23 00:10:38,078 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 27 [2018-11-23 00:10:38,079 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:38,079 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:38,079 INFO L423 AbstractCegarLoop]: === Iteration 3 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:38,079 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:38,079 INFO L82 PathProgramCache]: Analyzing trace with hash 806022394, now seen corresponding path program 1 times [2018-11-23 00:10:38,079 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:38,079 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:38,080 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,081 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:38,081 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,090 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:38,163 INFO L134 CoverageAnalysis]: Checked inductivity of 12 backedges. 5 proven. 3 refuted. 0 times theorem prover too weak. 4 trivial. 0 not checked. [2018-11-23 00:10:38,164 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:38,164 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:38,182 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:38,197 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:38,202 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:38,243 INFO L134 CoverageAnalysis]: Checked inductivity of 12 backedges. 2 proven. 6 refuted. 0 times theorem prover too weak. 4 trivial. 0 not checked. [2018-11-23 00:10:38,259 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:38,259 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 6] total 8 [2018-11-23 00:10:38,260 INFO L459 AbstractCegarLoop]: Interpolant automaton has 8 states [2018-11-23 00:10:38,260 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 8 interpolants. [2018-11-23 00:10:38,260 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=15, Invalid=41, Unknown=0, NotChecked=0, Total=56 [2018-11-23 00:10:38,260 INFO L87 Difference]: Start difference. First operand 21 states and 25 transitions. Second operand 8 states. [2018-11-23 00:10:38,349 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:38,349 INFO L93 Difference]: Finished difference Result 38 states and 49 transitions. [2018-11-23 00:10:38,350 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 8 states. [2018-11-23 00:10:38,350 INFO L78 Accepts]: Start accepts. Automaton has 8 states. Word has length 26 [2018-11-23 00:10:38,350 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:38,351 INFO L225 Difference]: With dead ends: 38 [2018-11-23 00:10:38,351 INFO L226 Difference]: Without dead ends: 23 [2018-11-23 00:10:38,351 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 38 GetRequests, 27 SyntacticMatches, 1 SemanticMatches, 10 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 9 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=36, Invalid=96, Unknown=0, NotChecked=0, Total=132 [2018-11-23 00:10:38,352 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 23 states. [2018-11-23 00:10:38,355 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 23 to 23. [2018-11-23 00:10:38,355 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 23 states. [2018-11-23 00:10:38,356 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 23 states to 23 states and 27 transitions. [2018-11-23 00:10:38,356 INFO L78 Accepts]: Start accepts. Automaton has 23 states and 27 transitions. Word has length 26 [2018-11-23 00:10:38,357 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:38,357 INFO L480 AbstractCegarLoop]: Abstraction has 23 states and 27 transitions. [2018-11-23 00:10:38,357 INFO L481 AbstractCegarLoop]: Interpolant automaton has 8 states. [2018-11-23 00:10:38,357 INFO L276 IsEmpty]: Start isEmpty. Operand 23 states and 27 transitions. [2018-11-23 00:10:38,357 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 28 [2018-11-23 00:10:38,358 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:38,358 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:38,358 INFO L423 AbstractCegarLoop]: === Iteration 4 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:38,358 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:38,358 INFO L82 PathProgramCache]: Analyzing trace with hash -983862936, now seen corresponding path program 1 times [2018-11-23 00:10:38,358 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:38,358 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:38,359 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,359 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:38,359 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,367 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:38,416 INFO L134 CoverageAnalysis]: Checked inductivity of 13 backedges. 2 proven. 6 refuted. 0 times theorem prover too weak. 5 trivial. 0 not checked. [2018-11-23 00:10:38,416 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:38,416 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:38,424 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:38,431 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:38,433 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:38,442 INFO L134 CoverageAnalysis]: Checked inductivity of 13 backedges. 2 proven. 6 refuted. 0 times theorem prover too weak. 5 trivial. 0 not checked. [2018-11-23 00:10:38,463 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:38,463 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 6] total 6 [2018-11-23 00:10:38,464 INFO L459 AbstractCegarLoop]: Interpolant automaton has 6 states [2018-11-23 00:10:38,464 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 6 interpolants. [2018-11-23 00:10:38,464 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=10, Invalid=20, Unknown=0, NotChecked=0, Total=30 [2018-11-23 00:10:38,464 INFO L87 Difference]: Start difference. First operand 23 states and 27 transitions. Second operand 6 states. [2018-11-23 00:10:38,505 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:38,505 INFO L93 Difference]: Finished difference Result 32 states and 41 transitions. [2018-11-23 00:10:38,505 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 6 states. [2018-11-23 00:10:38,505 INFO L78 Accepts]: Start accepts. Automaton has 6 states. Word has length 27 [2018-11-23 00:10:38,506 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:38,507 INFO L225 Difference]: With dead ends: 32 [2018-11-23 00:10:38,507 INFO L226 Difference]: Without dead ends: 28 [2018-11-23 00:10:38,507 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 37 GetRequests, 31 SyntacticMatches, 0 SemanticMatches, 6 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 1 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=20, Invalid=36, Unknown=0, NotChecked=0, Total=56 [2018-11-23 00:10:38,507 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 28 states. [2018-11-23 00:10:38,511 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 28 to 28. [2018-11-23 00:10:38,512 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 28 states. [2018-11-23 00:10:38,512 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 28 states to 28 states and 37 transitions. [2018-11-23 00:10:38,512 INFO L78 Accepts]: Start accepts. Automaton has 28 states and 37 transitions. Word has length 27 [2018-11-23 00:10:38,513 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:38,513 INFO L480 AbstractCegarLoop]: Abstraction has 28 states and 37 transitions. [2018-11-23 00:10:38,513 INFO L481 AbstractCegarLoop]: Interpolant automaton has 6 states. [2018-11-23 00:10:38,513 INFO L276 IsEmpty]: Start isEmpty. Operand 28 states and 37 transitions. [2018-11-23 00:10:38,514 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 41 [2018-11-23 00:10:38,514 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:38,514 INFO L402 BasicCegarLoop]: trace histogram [5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:38,514 INFO L423 AbstractCegarLoop]: === Iteration 5 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:38,514 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:38,514 INFO L82 PathProgramCache]: Analyzing trace with hash 146085807, now seen corresponding path program 2 times [2018-11-23 00:10:38,514 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:38,515 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:38,515 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,515 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:38,515 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,525 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:38,566 INFO L134 CoverageAnalysis]: Checked inductivity of 47 backedges. 18 proven. 8 refuted. 0 times theorem prover too weak. 21 trivial. 0 not checked. [2018-11-23 00:10:38,566 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:38,566 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:38,579 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST1 [2018-11-23 00:10:38,593 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST1 issued 2 check-sat command(s) [2018-11-23 00:10:38,593 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 00:10:38,594 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:38,620 INFO L134 CoverageAnalysis]: Checked inductivity of 47 backedges. 6 proven. 21 refuted. 0 times theorem prover too weak. 20 trivial. 0 not checked. [2018-11-23 00:10:38,643 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:38,643 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [6, 7] total 8 [2018-11-23 00:10:38,643 INFO L459 AbstractCegarLoop]: Interpolant automaton has 8 states [2018-11-23 00:10:38,643 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 8 interpolants. [2018-11-23 00:10:38,644 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=19, Invalid=37, Unknown=0, NotChecked=0, Total=56 [2018-11-23 00:10:38,644 INFO L87 Difference]: Start difference. First operand 28 states and 37 transitions. Second operand 8 states. [2018-11-23 00:10:38,740 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:38,740 INFO L93 Difference]: Finished difference Result 40 states and 60 transitions. [2018-11-23 00:10:38,740 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 8 states. [2018-11-23 00:10:38,741 INFO L78 Accepts]: Start accepts. Automaton has 8 states. Word has length 40 [2018-11-23 00:10:38,741 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:38,742 INFO L225 Difference]: With dead ends: 40 [2018-11-23 00:10:38,742 INFO L226 Difference]: Without dead ends: 36 [2018-11-23 00:10:38,742 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 50 GetRequests, 40 SyntacticMatches, 0 SemanticMatches, 10 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 9 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=47, Invalid=85, Unknown=0, NotChecked=0, Total=132 [2018-11-23 00:10:38,743 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 36 states. [2018-11-23 00:10:38,748 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 36 to 33. [2018-11-23 00:10:38,748 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 33 states. [2018-11-23 00:10:38,749 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 33 states to 33 states and 49 transitions. [2018-11-23 00:10:38,750 INFO L78 Accepts]: Start accepts. Automaton has 33 states and 49 transitions. Word has length 40 [2018-11-23 00:10:38,750 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:38,750 INFO L480 AbstractCegarLoop]: Abstraction has 33 states and 49 transitions. [2018-11-23 00:10:38,750 INFO L481 AbstractCegarLoop]: Interpolant automaton has 8 states. [2018-11-23 00:10:38,750 INFO L276 IsEmpty]: Start isEmpty. Operand 33 states and 49 transitions. [2018-11-23 00:10:38,752 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 97 [2018-11-23 00:10:38,752 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:38,752 INFO L402 BasicCegarLoop]: trace histogram [13, 13, 11, 6, 6, 6, 6, 6, 6, 6, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:38,752 INFO L423 AbstractCegarLoop]: === Iteration 6 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:38,752 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:38,752 INFO L82 PathProgramCache]: Analyzing trace with hash 1474757101, now seen corresponding path program 3 times [2018-11-23 00:10:38,752 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:38,752 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:38,753 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,753 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 00:10:38,753 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:38,773 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:38,895 INFO L134 CoverageAnalysis]: Checked inductivity of 427 backedges. 176 proven. 28 refuted. 0 times theorem prover too weak. 223 trivial. 0 not checked. [2018-11-23 00:10:38,895 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:38,895 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:38,906 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 00:10:38,926 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 7 check-sat command(s) [2018-11-23 00:10:38,927 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 00:10:38,930 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:38,959 INFO L134 CoverageAnalysis]: Checked inductivity of 427 backedges. 174 proven. 17 refuted. 0 times theorem prover too weak. 236 trivial. 0 not checked. [2018-11-23 00:10:38,973 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:38,973 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 8] total 12 [2018-11-23 00:10:38,974 INFO L459 AbstractCegarLoop]: Interpolant automaton has 12 states [2018-11-23 00:10:38,974 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 12 interpolants. [2018-11-23 00:10:38,974 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=31, Invalid=101, Unknown=0, NotChecked=0, Total=132 [2018-11-23 00:10:38,974 INFO L87 Difference]: Start difference. First operand 33 states and 49 transitions. Second operand 12 states. [2018-11-23 00:10:39,151 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:39,151 INFO L93 Difference]: Finished difference Result 76 states and 143 transitions. [2018-11-23 00:10:39,151 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 00:10:39,152 INFO L78 Accepts]: Start accepts. Automaton has 12 states. Word has length 96 [2018-11-23 00:10:39,152 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:39,153 INFO L225 Difference]: With dead ends: 76 [2018-11-23 00:10:39,153 INFO L226 Difference]: Without dead ends: 49 [2018-11-23 00:10:39,154 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 113 GetRequests, 96 SyntacticMatches, 0 SemanticMatches, 17 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 43 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=101, Invalid=241, Unknown=0, NotChecked=0, Total=342 [2018-11-23 00:10:39,154 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 49 states. [2018-11-23 00:10:39,159 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 49 to 43. [2018-11-23 00:10:39,159 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 43 states. [2018-11-23 00:10:39,160 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 43 states to 43 states and 63 transitions. [2018-11-23 00:10:39,160 INFO L78 Accepts]: Start accepts. Automaton has 43 states and 63 transitions. Word has length 96 [2018-11-23 00:10:39,161 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:39,161 INFO L480 AbstractCegarLoop]: Abstraction has 43 states and 63 transitions. [2018-11-23 00:10:39,161 INFO L481 AbstractCegarLoop]: Interpolant automaton has 12 states. [2018-11-23 00:10:39,161 INFO L276 IsEmpty]: Start isEmpty. Operand 43 states and 63 transitions. [2018-11-23 00:10:39,162 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 69 [2018-11-23 00:10:39,162 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:39,162 INFO L402 BasicCegarLoop]: trace histogram [9, 9, 7, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:39,162 INFO L423 AbstractCegarLoop]: === Iteration 7 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:39,162 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:39,163 INFO L82 PathProgramCache]: Analyzing trace with hash 2001184551, now seen corresponding path program 4 times [2018-11-23 00:10:39,163 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:39,163 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:39,163 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:39,163 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 00:10:39,164 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:39,171 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:39,213 INFO L134 CoverageAnalysis]: Checked inductivity of 189 backedges. 66 proven. 25 refuted. 0 times theorem prover too weak. 98 trivial. 0 not checked. [2018-11-23 00:10:39,213 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:39,213 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:39,222 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 00:10:39,232 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 00:10:39,232 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 00:10:39,234 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:39,275 INFO L134 CoverageAnalysis]: Checked inductivity of 189 backedges. 17 proven. 88 refuted. 0 times theorem prover too weak. 84 trivial. 0 not checked. [2018-11-23 00:10:39,289 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:39,289 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 8] total 8 [2018-11-23 00:10:39,289 INFO L459 AbstractCegarLoop]: Interpolant automaton has 8 states [2018-11-23 00:10:39,289 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 8 interpolants. [2018-11-23 00:10:39,290 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=19, Invalid=37, Unknown=0, NotChecked=0, Total=56 [2018-11-23 00:10:39,290 INFO L87 Difference]: Start difference. First operand 43 states and 63 transitions. Second operand 8 states. [2018-11-23 00:10:39,359 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:39,359 INFO L93 Difference]: Finished difference Result 52 states and 81 transitions. [2018-11-23 00:10:39,360 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 8 states. [2018-11-23 00:10:39,360 INFO L78 Accepts]: Start accepts. Automaton has 8 states. Word has length 68 [2018-11-23 00:10:39,360 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:39,361 INFO L225 Difference]: With dead ends: 52 [2018-11-23 00:10:39,361 INFO L226 Difference]: Without dead ends: 48 [2018-11-23 00:10:39,362 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 80 GetRequests, 70 SyntacticMatches, 0 SemanticMatches, 10 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 6 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=47, Invalid=85, Unknown=0, NotChecked=0, Total=132 [2018-11-23 00:10:39,362 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 48 states. [2018-11-23 00:10:39,368 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 48 to 48. [2018-11-23 00:10:39,368 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 48 states. [2018-11-23 00:10:39,369 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 48 states to 48 states and 77 transitions. [2018-11-23 00:10:39,369 INFO L78 Accepts]: Start accepts. Automaton has 48 states and 77 transitions. Word has length 68 [2018-11-23 00:10:39,370 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:39,370 INFO L480 AbstractCegarLoop]: Abstraction has 48 states and 77 transitions. [2018-11-23 00:10:39,370 INFO L481 AbstractCegarLoop]: Interpolant automaton has 8 states. [2018-11-23 00:10:39,370 INFO L276 IsEmpty]: Start isEmpty. Operand 48 states and 77 transitions. [2018-11-23 00:10:39,373 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 124 [2018-11-23 00:10:39,373 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:39,373 INFO L402 BasicCegarLoop]: trace histogram [17, 17, 14, 8, 8, 8, 8, 8, 8, 8, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:39,374 INFO L423 AbstractCegarLoop]: === Iteration 8 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:39,374 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:39,374 INFO L82 PathProgramCache]: Analyzing trace with hash 702878917, now seen corresponding path program 5 times [2018-11-23 00:10:39,374 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:39,374 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:39,375 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:39,375 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 00:10:39,375 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:39,390 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:39,451 INFO L134 CoverageAnalysis]: Checked inductivity of 747 backedges. 213 proven. 64 refuted. 0 times theorem prover too weak. 470 trivial. 0 not checked. [2018-11-23 00:10:39,451 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:39,451 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:39,464 INFO L103 rtionOrderModulation]: Keeping assertion order INSIDE_LOOP_FIRST1 [2018-11-23 00:10:39,482 INFO L249 tOrderPrioritization]: Assert order INSIDE_LOOP_FIRST1 issued 6 check-sat command(s) [2018-11-23 00:10:39,483 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 00:10:39,485 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:39,532 INFO L134 CoverageAnalysis]: Checked inductivity of 747 backedges. 422 proven. 118 refuted. 0 times theorem prover too weak. 207 trivial. 0 not checked. [2018-11-23 00:10:39,546 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:39,547 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [8, 11] total 13 [2018-11-23 00:10:39,547 INFO L459 AbstractCegarLoop]: Interpolant automaton has 13 states [2018-11-23 00:10:39,547 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 13 interpolants. [2018-11-23 00:10:39,547 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=31, Invalid=125, Unknown=0, NotChecked=0, Total=156 [2018-11-23 00:10:39,548 INFO L87 Difference]: Start difference. First operand 48 states and 77 transitions. Second operand 13 states. [2018-11-23 00:10:39,786 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:39,786 INFO L93 Difference]: Finished difference Result 111 states and 206 transitions. [2018-11-23 00:10:39,787 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 23 states. [2018-11-23 00:10:39,787 INFO L78 Accepts]: Start accepts. Automaton has 13 states. Word has length 123 [2018-11-23 00:10:39,787 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:39,788 INFO L225 Difference]: With dead ends: 111 [2018-11-23 00:10:39,788 INFO L226 Difference]: Without dead ends: 69 [2018-11-23 00:10:39,789 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 148 GetRequests, 122 SyntacticMatches, 0 SemanticMatches, 26 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 112 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=208, Invalid=548, Unknown=0, NotChecked=0, Total=756 [2018-11-23 00:10:39,789 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 69 states. [2018-11-23 00:10:39,793 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 69 to 66. [2018-11-23 00:10:39,793 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 66 states. [2018-11-23 00:10:39,794 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 66 states to 66 states and 83 transitions. [2018-11-23 00:10:39,794 INFO L78 Accepts]: Start accepts. Automaton has 66 states and 83 transitions. Word has length 123 [2018-11-23 00:10:39,794 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:39,794 INFO L480 AbstractCegarLoop]: Abstraction has 66 states and 83 transitions. [2018-11-23 00:10:39,794 INFO L481 AbstractCegarLoop]: Interpolant automaton has 13 states. [2018-11-23 00:10:39,794 INFO L276 IsEmpty]: Start isEmpty. Operand 66 states and 83 transitions. [2018-11-23 00:10:39,795 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 178 [2018-11-23 00:10:39,796 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:39,796 INFO L402 BasicCegarLoop]: trace histogram [25, 25, 20, 12, 12, 12, 12, 12, 12, 12, 8, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:39,796 INFO L423 AbstractCegarLoop]: === Iteration 9 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:39,796 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:39,796 INFO L82 PathProgramCache]: Analyzing trace with hash 259499213, now seen corresponding path program 6 times [2018-11-23 00:10:39,796 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:39,796 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:39,797 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:39,797 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 00:10:39,797 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:39,808 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:39,886 INFO L134 CoverageAnalysis]: Checked inductivity of 1654 backedges. 328 proven. 115 refuted. 0 times theorem prover too weak. 1211 trivial. 0 not checked. [2018-11-23 00:10:39,887 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:39,887 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:39,893 INFO L103 rtionOrderModulation]: Keeping assertion order MIX_INSIDE_OUTSIDE [2018-11-23 00:10:39,934 INFO L249 tOrderPrioritization]: Assert order MIX_INSIDE_OUTSIDE issued 17 check-sat command(s) [2018-11-23 00:10:39,934 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 00:10:39,939 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:39,988 INFO L134 CoverageAnalysis]: Checked inductivity of 1654 backedges. 202 proven. 241 refuted. 0 times theorem prover too weak. 1211 trivial. 0 not checked. [2018-11-23 00:10:40,002 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:40,003 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [8, 8] total 9 [2018-11-23 00:10:40,003 INFO L459 AbstractCegarLoop]: Interpolant automaton has 9 states [2018-11-23 00:10:40,003 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 9 interpolants. [2018-11-23 00:10:40,003 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=25, Invalid=47, Unknown=0, NotChecked=0, Total=72 [2018-11-23 00:10:40,004 INFO L87 Difference]: Start difference. First operand 66 states and 83 transitions. Second operand 9 states. [2018-11-23 00:10:40,075 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:40,075 INFO L93 Difference]: Finished difference Result 80 states and 109 transitions. [2018-11-23 00:10:40,075 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 9 states. [2018-11-23 00:10:40,076 INFO L78 Accepts]: Start accepts. Automaton has 9 states. Word has length 177 [2018-11-23 00:10:40,076 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:40,077 INFO L225 Difference]: With dead ends: 80 [2018-11-23 00:10:40,077 INFO L226 Difference]: Without dead ends: 76 [2018-11-23 00:10:40,077 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 192 GetRequests, 180 SyntacticMatches, 0 SemanticMatches, 12 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 10 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=65, Invalid=117, Unknown=0, NotChecked=0, Total=182 [2018-11-23 00:10:40,077 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 76 states. [2018-11-23 00:10:40,082 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 76 to 74. [2018-11-23 00:10:40,082 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 74 states. [2018-11-23 00:10:40,082 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 74 states to 74 states and 100 transitions. [2018-11-23 00:10:40,082 INFO L78 Accepts]: Start accepts. Automaton has 74 states and 100 transitions. Word has length 177 [2018-11-23 00:10:40,083 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:40,083 INFO L480 AbstractCegarLoop]: Abstraction has 74 states and 100 transitions. [2018-11-23 00:10:40,083 INFO L481 AbstractCegarLoop]: Interpolant automaton has 9 states. [2018-11-23 00:10:40,083 INFO L276 IsEmpty]: Start isEmpty. Operand 74 states and 100 transitions. [2018-11-23 00:10:40,086 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 369 [2018-11-23 00:10:40,087 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:40,087 INFO L402 BasicCegarLoop]: trace histogram [53, 53, 43, 26, 26, 26, 26, 26, 26, 26, 17, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:40,087 INFO L423 AbstractCegarLoop]: === Iteration 10 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:40,087 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:40,087 INFO L82 PathProgramCache]: Analyzing trace with hash 1341952681, now seen corresponding path program 7 times [2018-11-23 00:10:40,087 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:40,087 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:40,088 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:40,088 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 00:10:40,088 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:40,117 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:40,315 INFO L134 CoverageAnalysis]: Checked inductivity of 7715 backedges. 1191 proven. 447 refuted. 0 times theorem prover too weak. 6077 trivial. 0 not checked. [2018-11-23 00:10:40,315 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 00:10:40,315 INFO L223 ckRefinementStrategy]: Switched to mode Z3_FP No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/z3 Starting monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 00:10:40,321 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:40,393 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 00:10:40,401 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 00:10:40,517 INFO L134 CoverageAnalysis]: Checked inductivity of 7715 backedges. 670 proven. 963 refuted. 0 times theorem prover too weak. 6082 trivial. 0 not checked. [2018-11-23 00:10:40,532 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 2 imperfect interpolant sequences. [2018-11-23 00:10:40,533 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [13, 11] total 15 [2018-11-23 00:10:40,533 INFO L459 AbstractCegarLoop]: Interpolant automaton has 15 states [2018-11-23 00:10:40,533 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 15 interpolants. [2018-11-23 00:10:40,533 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=58, Invalid=152, Unknown=0, NotChecked=0, Total=210 [2018-11-23 00:10:40,534 INFO L87 Difference]: Start difference. First operand 74 states and 100 transitions. Second operand 15 states. [2018-11-23 00:10:40,661 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 00:10:40,661 INFO L93 Difference]: Finished difference Result 117 states and 218 transitions. [2018-11-23 00:10:40,661 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 12 states. [2018-11-23 00:10:40,662 INFO L78 Accepts]: Start accepts. Automaton has 15 states. Word has length 368 [2018-11-23 00:10:40,662 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 00:10:40,663 INFO L225 Difference]: With dead ends: 117 [2018-11-23 00:10:40,663 INFO L226 Difference]: Without dead ends: 74 [2018-11-23 00:10:40,664 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 390 GetRequests, 370 SyntacticMatches, 1 SemanticMatches, 19 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 57 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=142, Invalid=278, Unknown=0, NotChecked=0, Total=420 [2018-11-23 00:10:40,664 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 74 states. [2018-11-23 00:10:40,669 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 74 to 74. [2018-11-23 00:10:40,669 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 74 states. [2018-11-23 00:10:40,670 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 74 states to 74 states and 85 transitions. [2018-11-23 00:10:40,670 INFO L78 Accepts]: Start accepts. Automaton has 74 states and 85 transitions. Word has length 368 [2018-11-23 00:10:40,671 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 00:10:40,671 INFO L480 AbstractCegarLoop]: Abstraction has 74 states and 85 transitions. [2018-11-23 00:10:40,671 INFO L481 AbstractCegarLoop]: Interpolant automaton has 15 states. [2018-11-23 00:10:40,671 INFO L276 IsEmpty]: Start isEmpty. Operand 74 states and 85 transitions. [2018-11-23 00:10:40,673 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 287 [2018-11-23 00:10:40,674 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 00:10:40,674 INFO L402 BasicCegarLoop]: trace histogram [41, 41, 33, 20, 20, 20, 20, 20, 20, 20, 13, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 00:10:40,674 INFO L423 AbstractCegarLoop]: === Iteration 11 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 00:10:40,674 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 00:10:40,674 INFO L82 PathProgramCache]: Analyzing trace with hash -1425621089, now seen corresponding path program 8 times [2018-11-23 00:10:40,674 INFO L223 ckRefinementStrategy]: Switched to mode SMTINTERPOL_TREE_INTERPOLANTS [2018-11-23 00:10:40,674 INFO L69 tionRefinementEngine]: Using refinement strategy CamelRefinementStrategy [2018-11-23 00:10:40,675 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:40,675 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 00:10:40,675 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 00:10:40,696 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 00:10:40,719 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 00:10:40,742 INFO L469 BasicCegarLoop]: Counterexample might be feasible ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #33#return; [?] CALL call #t~ret3 := main(); [?] ~x~0 := 7; VAL [main_~x~0=7] [?] CALL call #t~ret2 := fibo(~x~0); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #37#return; VAL [main_~x~0=7, |main_#t~ret2|=13] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647;~result~0 := #t~ret2;havoc #t~ret2; VAL [main_~result~0=13, main_~x~0=7] [?] assume 13 == ~result~0; VAL [main_~result~0=13, main_~x~0=7] [?] assume !false; VAL [main_~result~0=13, main_~x~0=7] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26-L28] assume 13 == ~result~0; VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26-L28] assume 13 == ~result~0; VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] [L24] int x = 7; VAL [x=7] [L25] CALL, EXPR fibo(x) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=13, x=7] [L25] int result = fibo(x); [L26] COND TRUE result == 13 VAL [result=13, x=7] [L27] __VERIFIER_error() VAL [result=13, x=7] ----- [2018-11-23 00:10:41,287 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction CFG 23.11 12:10:41 BoogieIcfgContainer [2018-11-23 00:10:41,287 INFO L132 PluginConnector]: ------------------------ END TraceAbstraction---------------------------- [2018-11-23 00:10:41,287 INFO L113 PluginConnector]: ------------------------Witness Printer---------------------------- [2018-11-23 00:10:41,287 INFO L271 PluginConnector]: Initializing Witness Printer... [2018-11-23 00:10:41,287 INFO L276 PluginConnector]: Witness Printer initialized [2018-11-23 00:10:41,288 INFO L185 PluginConnector]: Executing the observer RCFGCatcher from plugin Witness Printer for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 12:10:37" (3/4) ... [2018-11-23 00:10:41,290 INFO L138 WitnessPrinter]: Generating witness for reachability counterexample ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #33#return; [?] CALL call #t~ret3 := main(); [?] ~x~0 := 7; VAL [main_~x~0=7] [?] CALL call #t~ret2 := fibo(~x~0); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #37#return; VAL [main_~x~0=7, |main_#t~ret2|=13] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647;~result~0 := #t~ret2;havoc #t~ret2; VAL [main_~result~0=13, main_~x~0=7] [?] assume 13 == ~result~0; VAL [main_~result~0=13, main_~x~0=7] [?] assume !false; VAL [main_~result~0=13, main_~x~0=7] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26-L28] assume 13 == ~result~0; VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26-L28] assume 13 == ~result~0; VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 7; VAL [~x~0=7] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=13, ~x~0=7] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=13, ~x~0=7] [L26] COND TRUE 13 == ~result~0 VAL [~result~0=13, ~x~0=7] [L27] assert false; VAL [~result~0=13, ~x~0=7] [L24] int x = 7; VAL [x=7] [L25] CALL, EXPR fibo(x) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=13, x=7] [L25] int result = fibo(x); [L26] COND TRUE result == 13 VAL [result=13, x=7] [L27] __VERIFIER_error() VAL [result=13, x=7] ----- [2018-11-23 00:10:42,727 INFO L145 WitnessManager]: Wrote witness to /tmp/vcloud-vcloud-master/worker/working_dir_1f2a7ea7-f25f-4058-af15-49deb9d2c66e/bin-2019/uautomizer/witness.graphml [2018-11-23 00:10:42,727 INFO L132 PluginConnector]: ------------------------ END Witness Printer---------------------------- [2018-11-23 00:10:42,727 INFO L168 Benchmark]: Toolchain (without parser) took 5408.26 ms. Allocated memory was 1.0 GB in the beginning and 1.3 GB in the end (delta: 299.4 MB). Free memory was 958.0 MB in the beginning and 959.9 MB in the end (delta: -1.8 MB). Peak memory consumption was 297.5 MB. Max. memory is 11.5 GB. [2018-11-23 00:10:42,728 INFO L168 Benchmark]: CDTParser took 0.14 ms. Allocated memory is still 1.0 GB. Free memory is still 985.4 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 00:10:42,728 INFO L168 Benchmark]: CACSL2BoogieTranslator took 142.84 ms. Allocated memory is still 1.0 GB. Free memory was 958.0 MB in the beginning and 947.2 MB in the end (delta: 10.8 MB). Peak memory consumption was 10.8 MB. Max. memory is 11.5 GB. [2018-11-23 00:10:42,728 INFO L168 Benchmark]: Boogie Procedure Inliner took 11.44 ms. Allocated memory is still 1.0 GB. Free memory is still 947.2 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 00:10:42,729 INFO L168 Benchmark]: Boogie Preprocessor took 11.27 ms. Allocated memory is still 1.0 GB. Free memory was 947.2 MB in the beginning and 944.6 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. [2018-11-23 00:10:42,729 INFO L168 Benchmark]: RCFGBuilder took 158.68 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 156.2 MB). Free memory was 944.6 MB in the beginning and 1.1 GB in the end (delta: -198.2 MB). Peak memory consumption was 19.7 MB. Max. memory is 11.5 GB. [2018-11-23 00:10:42,729 INFO L168 Benchmark]: TraceAbstraction took 3641.14 ms. Allocated memory was 1.2 GB in the beginning and 1.3 GB in the end (delta: 143.1 MB). Free memory was 1.1 GB in the beginning and 980.8 MB in the end (delta: 161.9 MB). Peak memory consumption was 305.0 MB. Max. memory is 11.5 GB. [2018-11-23 00:10:42,729 INFO L168 Benchmark]: Witness Printer took 1439.91 ms. Allocated memory is still 1.3 GB. Free memory was 980.8 MB in the beginning and 959.9 MB in the end (delta: 20.9 MB). Peak memory consumption was 20.9 MB. Max. memory is 11.5 GB. [2018-11-23 00:10:42,731 INFO L336 ainManager$Toolchain]: ####################### End [Toolchain 1] ####################### --- Results --- * Results from de.uni_freiburg.informatik.ultimate.core: - StatisticsResult: Toolchain Benchmarks Benchmark results are: * CDTParser took 0.14 ms. Allocated memory is still 1.0 GB. Free memory is still 985.4 MB. There was no memory consumed. Max. memory is 11.5 GB. * CACSL2BoogieTranslator took 142.84 ms. Allocated memory is still 1.0 GB. Free memory was 958.0 MB in the beginning and 947.2 MB in the end (delta: 10.8 MB). Peak memory consumption was 10.8 MB. Max. memory is 11.5 GB. * Boogie Procedure Inliner took 11.44 ms. Allocated memory is still 1.0 GB. Free memory is still 947.2 MB. There was no memory consumed. Max. memory is 11.5 GB. * Boogie Preprocessor took 11.27 ms. Allocated memory is still 1.0 GB. Free memory was 947.2 MB in the beginning and 944.6 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. * RCFGBuilder took 158.68 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 156.2 MB). Free memory was 944.6 MB in the beginning and 1.1 GB in the end (delta: -198.2 MB). Peak memory consumption was 19.7 MB. Max. memory is 11.5 GB. * TraceAbstraction took 3641.14 ms. Allocated memory was 1.2 GB in the beginning and 1.3 GB in the end (delta: 143.1 MB). Free memory was 1.1 GB in the beginning and 980.8 MB in the end (delta: 161.9 MB). Peak memory consumption was 305.0 MB. Max. memory is 11.5 GB. * Witness Printer took 1439.91 ms. Allocated memory is still 1.3 GB. Free memory was 980.8 MB in the beginning and 959.9 MB in the end (delta: 20.9 MB). Peak memory consumption was 20.9 MB. Max. memory is 11.5 GB. * Results from de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction: - CounterExampleResult [Line: 27]: a call of __VERIFIER_error() is reachable a call of __VERIFIER_error() is reachable We found a FailurePath: [L24] int x = 7; VAL [x=7] [L25] CALL, EXPR fibo(x) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=13, x=7] [L25] int result = fibo(x); [L26] COND TRUE result == 13 VAL [result=13, x=7] [L27] __VERIFIER_error() VAL [result=13, x=7] - StatisticsResult: Ultimate Automizer benchmark data CFG has 4 procedures, 24 locations, 1 error locations. UNSAFE Result, 3.6s OverallTime, 11 OverallIterations, 53 TraceHistogramMax, 1.1s AutomataDifference, 0.0s DeadEndRemovalTime, 0.0s HoareAnnotationTime, HoareTripleCheckerStatistics: 195 SDtfs, 233 SDslu, 576 SDs, 0 SdLazy, 771 SolverSat, 243 SolverUnsat, 0 SolverUnknown, 0 SolverNotchecked, 0.4s Time, PredicateUnifierStatistics: 0 DeclaredPredicates, 1060 GetRequests, 940 SyntacticMatches, 2 SemanticMatches, 118 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 247 ImplicationChecksByTransitivity, 0.9s Time, 0.0s BasicInterpolantAutomatonTime, BiggestAbstraction: size=74occurred in iteration=9, traceCheckStatistics: No data available, InterpolantConsolidationStatistics: No data available, PathInvariantsStatistics: No data available, 0/0 InterpolantCoveringCapability, TotalInterpolationStatistics: No data available, 0.0s AbstIntTime, 0 AbstIntIterations, 0 AbstIntStrong, NaN AbsIntWeakeningRatio, NaN AbsIntAvgWeakeningVarsNumRemoved, NaN AbsIntAvgWeakenedConjuncts, 0.0s DumpTime, AutomataMinimizationStatistics: 0.0s AutomataMinimizationTime, 10 MinimizatonAttempts, 16 StatesRemovedByMinimization, 5 NontrivialMinimizations, HoareAnnotationStatistics: No data available, RefinementEngineStatistics: TraceCheckStatistics: 0.0s SsaConstructionTime, 0.2s SatisfiabilityAnalysisTime, 1.0s InterpolantComputationTime, 2163 NumberOfCodeBlocks, 2057 NumberOfCodeBlocksAsserted, 47 NumberOfCheckSat, 1859 ConstructedInterpolants, 0 QuantifiedInterpolants, 535125 SizeOfPredicates, 37 NumberOfNonLiveVariables, 1827 ConjunctsInSsa, 76 ConjunctsInUnsatCore, 18 InterpolantComputations, 2 PerfectInterpolantSequences, 19452/21608 InterpolantCoveringCapability, InvariantSynthesisStatistics: No data available, InterpolantConsolidationStatistics: No data available, ReuseStatistics: No data available RESULT: Ultimate proved your program to be incorrect! Received shutdown request...