./Ultimate.py --spec ../../sv-benchmarks/c/properties/unreach-call.prp --file ../../sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c --full-output --architecture 32bit -------------------------------------------------------------------------------- Checking for ERROR reachability Using default analysis Version aa418289 Calling Ultimate with: java -Dosgi.configuration.area=/tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/data/config -Xmx12G -Xms1G -jar /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/plugins/org.eclipse.equinox.launcher_1.3.100.v20150511-1540.jar -data @noDefault -ultimatedata /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/data -tc /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/config/TaipanReach.xml -i ../../sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c -s /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/config/svcomp-Reach-32bit-Taipan_Default.epf --cacsl2boogietranslator.entry.function main --witnessprinter.witness.directory /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan --witnessprinter.witness.filename witness.graphml --witnessprinter.write.witness.besides.input.file false --witnessprinter.graph.data.specification CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) --witnessprinter.graph.data.producer Taipan --witnessprinter.graph.data.architecture 32bit --witnessprinter.graph.data.programhash 1ca069cb8d4103e8fb4700634948424bd87542bc ...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... Execution finished normally Writing output log to file Ultimate.log Writing human readable error path to file UltimateCounterExample.errorpath Result: FALSE --- Real Ultimate output --- This is Ultimate 0.1.23-aa41828 [2018-11-23 03:30:38,766 INFO L170 SettingsManager]: Resetting all preferences to default values... [2018-11-23 03:30:38,767 INFO L174 SettingsManager]: Resetting UltimateCore preferences to default values [2018-11-23 03:30:38,774 INFO L177 SettingsManager]: Ultimate Commandline Interface provides no preferences, ignoring... [2018-11-23 03:30:38,774 INFO L174 SettingsManager]: Resetting Boogie Preprocessor preferences to default values [2018-11-23 03:30:38,775 INFO L174 SettingsManager]: Resetting Boogie Procedure Inliner preferences to default values [2018-11-23 03:30:38,775 INFO L174 SettingsManager]: Resetting Abstract Interpretation preferences to default values [2018-11-23 03:30:38,776 INFO L174 SettingsManager]: Resetting LassoRanker preferences to default values [2018-11-23 03:30:38,777 INFO L174 SettingsManager]: Resetting Reaching Definitions preferences to default values [2018-11-23 03:30:38,778 INFO L174 SettingsManager]: Resetting SyntaxChecker preferences to default values [2018-11-23 03:30:38,779 INFO L177 SettingsManager]: Büchi Program Product provides no preferences, ignoring... [2018-11-23 03:30:38,779 INFO L174 SettingsManager]: Resetting LTL2Aut preferences to default values [2018-11-23 03:30:38,780 INFO L174 SettingsManager]: Resetting PEA to Boogie preferences to default values [2018-11-23 03:30:38,780 INFO L174 SettingsManager]: Resetting BlockEncodingV2 preferences to default values [2018-11-23 03:30:38,781 INFO L174 SettingsManager]: Resetting ChcToBoogie preferences to default values [2018-11-23 03:30:38,781 INFO L174 SettingsManager]: Resetting AutomataScriptInterpreter preferences to default values [2018-11-23 03:30:38,782 INFO L174 SettingsManager]: Resetting BuchiAutomizer preferences to default values [2018-11-23 03:30:38,783 INFO L174 SettingsManager]: Resetting CACSL2BoogieTranslator preferences to default values [2018-11-23 03:30:38,784 INFO L174 SettingsManager]: Resetting CodeCheck preferences to default values [2018-11-23 03:30:38,785 INFO L174 SettingsManager]: Resetting InvariantSynthesis preferences to default values [2018-11-23 03:30:38,786 INFO L174 SettingsManager]: Resetting RCFGBuilder preferences to default values [2018-11-23 03:30:38,787 INFO L174 SettingsManager]: Resetting TraceAbstraction preferences to default values [2018-11-23 03:30:38,789 INFO L177 SettingsManager]: TraceAbstractionConcurrent provides no preferences, ignoring... [2018-11-23 03:30:38,789 INFO L177 SettingsManager]: TraceAbstractionWithAFAs provides no preferences, ignoring... [2018-11-23 03:30:38,789 INFO L174 SettingsManager]: Resetting TreeAutomizer preferences to default values [2018-11-23 03:30:38,789 INFO L174 SettingsManager]: Resetting IcfgTransformer preferences to default values [2018-11-23 03:30:38,790 INFO L174 SettingsManager]: Resetting Boogie Printer preferences to default values [2018-11-23 03:30:38,791 INFO L174 SettingsManager]: Resetting ReqPrinter preferences to default values [2018-11-23 03:30:38,792 INFO L174 SettingsManager]: Resetting Witness Printer preferences to default values [2018-11-23 03:30:38,792 INFO L177 SettingsManager]: Boogie PL CUP Parser provides no preferences, ignoring... [2018-11-23 03:30:38,792 INFO L174 SettingsManager]: Resetting CDTParser preferences to default values [2018-11-23 03:30:38,793 INFO L177 SettingsManager]: AutomataScriptParser provides no preferences, ignoring... [2018-11-23 03:30:38,793 INFO L177 SettingsManager]: ReqParser provides no preferences, ignoring... [2018-11-23 03:30:38,793 INFO L174 SettingsManager]: Resetting SmtParser preferences to default values [2018-11-23 03:30:38,794 INFO L174 SettingsManager]: Resetting Witness Parser preferences to default values [2018-11-23 03:30:38,795 INFO L181 SettingsManager]: Finished resetting all preferences to default values... [2018-11-23 03:30:38,795 INFO L98 SettingsManager]: Beginning loading settings from /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/config/svcomp-Reach-32bit-Taipan_Default.epf [2018-11-23 03:30:38,804 INFO L110 SettingsManager]: Loading preferences was successful [2018-11-23 03:30:38,804 INFO L112 SettingsManager]: Preferences different from defaults after loading the file: [2018-11-23 03:30:38,805 INFO L131 SettingsManager]: Preferences of Boogie Procedure Inliner differ from their defaults: [2018-11-23 03:30:38,805 INFO L133 SettingsManager]: * ... calls to implemented procedures=ONLY_FOR_CONCURRENT_PROGRAMS [2018-11-23 03:30:38,805 INFO L133 SettingsManager]: * User list type=DISABLED [2018-11-23 03:30:38,805 INFO L131 SettingsManager]: Preferences of Abstract Interpretation differ from their defaults: [2018-11-23 03:30:38,805 INFO L133 SettingsManager]: * Explicit value domain=true [2018-11-23 03:30:38,805 INFO L133 SettingsManager]: * Abstract domain for RCFG-of-the-future=PoormanAbstractDomain [2018-11-23 03:30:38,805 INFO L133 SettingsManager]: * Octagon Domain=false [2018-11-23 03:30:38,806 INFO L133 SettingsManager]: * Abstract domain=CompoundDomain [2018-11-23 03:30:38,806 INFO L133 SettingsManager]: * Check feasibility of abstract posts with an SMT solver=true [2018-11-23 03:30:38,806 INFO L133 SettingsManager]: * Use the RCFG-of-the-future interface=true [2018-11-23 03:30:38,806 INFO L133 SettingsManager]: * Interval Domain=false [2018-11-23 03:30:38,806 INFO L131 SettingsManager]: Preferences of CACSL2BoogieTranslator differ from their defaults: [2018-11-23 03:30:38,807 INFO L133 SettingsManager]: * sizeof long=4 [2018-11-23 03:30:38,807 INFO L133 SettingsManager]: * Overapproximate operations on floating types=true [2018-11-23 03:30:38,807 INFO L133 SettingsManager]: * sizeof POINTER=4 [2018-11-23 03:30:38,807 INFO L133 SettingsManager]: * Check division by zero=IGNORE [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * Pointer to allocated memory at dereference=IGNORE [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * If two pointers are subtracted or compared they have the same base address=IGNORE [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * Check array bounds for arrays that are off heap=IGNORE [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * sizeof long double=12 [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * Check if freed pointer was valid=false [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * Use constant arrays=true [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * Pointer base address is valid at dereference=IGNORE [2018-11-23 03:30:38,808 INFO L131 SettingsManager]: Preferences of RCFGBuilder differ from their defaults: [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * Size of a code block=SequenceOfStatements [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * To the following directory=./dump/ [2018-11-23 03:30:38,808 INFO L133 SettingsManager]: * SMT solver=External_DefaultMode [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 03:30:38,809 INFO L131 SettingsManager]: Preferences of TraceAbstraction differ from their defaults: [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * Compute Interpolants along a Counterexample=FPandBP [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * Positions where we compute the Hoare Annotation=LoopsAndPotentialCycles [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * Trace refinement strategy=TAIPAN [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * SMT solver=External_ModelsAndUnsatCoreMode [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * Command for external solver=z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * Compute Hoare Annotation of negated interpolant automaton, abstraction and CFG=true [2018-11-23 03:30:38,809 INFO L133 SettingsManager]: * Abstract interpretation Mode=USE_PREDICATES Applying setting for plugin de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator: Entry function -> main Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness directory -> /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Witness filename -> witness.graphml Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Write witness besides input file -> false Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data specification -> CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) ) Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data producer -> Taipan Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data architecture -> 32bit Applying setting for plugin de.uni_freiburg.informatik.ultimate.witnessprinter: Graph data programhash -> 1ca069cb8d4103e8fb4700634948424bd87542bc [2018-11-23 03:30:38,833 INFO L81 nceAwareModelManager]: Repository-Root is: /tmp [2018-11-23 03:30:38,842 INFO L258 ainManager$Toolchain]: [Toolchain 1]: Applicable parser(s) successfully (re)initialized [2018-11-23 03:30:38,844 INFO L214 ainManager$Toolchain]: [Toolchain 1]: Toolchain selected. [2018-11-23 03:30:38,845 INFO L271 PluginConnector]: Initializing CDTParser... [2018-11-23 03:30:38,845 INFO L276 PluginConnector]: CDTParser initialized [2018-11-23 03:30:38,845 INFO L418 ainManager$Toolchain]: [Toolchain 1]: Parsing single file: /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/../../sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c [2018-11-23 03:30:38,880 INFO L221 CDTParser]: Created temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/data/e63962c9d/ebb8fe0426ee408ebd06b21f11cee40e/FLAG540fdd419 [2018-11-23 03:30:39,276 INFO L307 CDTParser]: Found 1 translation units. [2018-11-23 03:30:39,277 INFO L161 CDTParser]: Scanning /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/sv-benchmarks/c/recursive-simple/fibo_10_false-unreach-call_true-termination.c [2018-11-23 03:30:39,280 INFO L355 CDTParser]: About to delete temporary CDT project at /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/data/e63962c9d/ebb8fe0426ee408ebd06b21f11cee40e/FLAG540fdd419 [2018-11-23 03:30:39,289 INFO L363 CDTParser]: Successfully deleted /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/data/e63962c9d/ebb8fe0426ee408ebd06b21f11cee40e [2018-11-23 03:30:39,290 INFO L296 ainManager$Toolchain]: ####################### [Toolchain 1] ####################### [2018-11-23 03:30:39,292 INFO L131 ToolchainWalker]: Walking toolchain with 6 elements. [2018-11-23 03:30:39,292 INFO L113 PluginConnector]: ------------------------CACSL2BoogieTranslator---------------------------- [2018-11-23 03:30:39,292 INFO L271 PluginConnector]: Initializing CACSL2BoogieTranslator... [2018-11-23 03:30:39,294 INFO L276 PluginConnector]: CACSL2BoogieTranslator initialized [2018-11-23 03:30:39,295 INFO L185 PluginConnector]: Executing the observer ACSLObjectContainerObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,297 INFO L205 PluginConnector]: Invalid model from CACSL2BoogieTranslator for observer de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.ACSLObjectContainerObserver@7cc0002c and model type de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39, skipping insertion in model container [2018-11-23 03:30:39,297 INFO L185 PluginConnector]: Executing the observer CACSL2BoogieTranslatorObserver from plugin CACSL2BoogieTranslator for "CDTParser AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,303 INFO L145 MainTranslator]: Starting translation in SV-COMP mode [2018-11-23 03:30:39,315 INFO L176 MainTranslator]: Built tables and reachable declarations [2018-11-23 03:30:39,421 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 03:30:39,423 INFO L191 MainTranslator]: Completed pre-run [2018-11-23 03:30:39,432 INFO L201 PostProcessor]: Analyzing one entry point: main [2018-11-23 03:30:39,443 INFO L195 MainTranslator]: Completed translation [2018-11-23 03:30:39,444 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39 WrapperNode [2018-11-23 03:30:39,444 INFO L132 PluginConnector]: ------------------------ END CACSL2BoogieTranslator---------------------------- [2018-11-23 03:30:39,444 INFO L113 PluginConnector]: ------------------------Boogie Procedure Inliner---------------------------- [2018-11-23 03:30:39,444 INFO L271 PluginConnector]: Initializing Boogie Procedure Inliner... [2018-11-23 03:30:39,444 INFO L276 PluginConnector]: Boogie Procedure Inliner initialized [2018-11-23 03:30:39,450 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,453 INFO L185 PluginConnector]: Executing the observer Inliner from plugin Boogie Procedure Inliner for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,456 INFO L132 PluginConnector]: ------------------------ END Boogie Procedure Inliner---------------------------- [2018-11-23 03:30:39,457 INFO L113 PluginConnector]: ------------------------Boogie Preprocessor---------------------------- [2018-11-23 03:30:39,457 INFO L271 PluginConnector]: Initializing Boogie Preprocessor... [2018-11-23 03:30:39,457 INFO L276 PluginConnector]: Boogie Preprocessor initialized [2018-11-23 03:30:39,463 INFO L185 PluginConnector]: Executing the observer EnsureBoogieModelObserver from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,463 INFO L185 PluginConnector]: Executing the observer TypeChecker from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,463 INFO L185 PluginConnector]: Executing the observer ConstExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,463 INFO L185 PluginConnector]: Executing the observer StructExpander from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,465 INFO L185 PluginConnector]: Executing the observer UnstructureCode from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,467 INFO L185 PluginConnector]: Executing the observer FunctionInliner from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,467 INFO L185 PluginConnector]: Executing the observer BoogieSymbolTableConstructor from plugin Boogie Preprocessor for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... [2018-11-23 03:30:39,468 INFO L132 PluginConnector]: ------------------------ END Boogie Preprocessor---------------------------- [2018-11-23 03:30:39,468 INFO L113 PluginConnector]: ------------------------RCFGBuilder---------------------------- [2018-11-23 03:30:39,469 INFO L271 PluginConnector]: Initializing RCFGBuilder... [2018-11-23 03:30:39,469 INFO L276 PluginConnector]: RCFGBuilder initialized [2018-11-23 03:30:39,469 INFO L185 PluginConnector]: Executing the observer RCFGBuilderObserver from plugin RCFGBuilder for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (1/1) ... No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 1 with z3 SMTLIB2_COMPLIANT=true -memory:2024 -smt2 -in -t:2000 [2018-11-23 03:30:39,554 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.init [2018-11-23 03:30:39,554 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.init [2018-11-23 03:30:39,554 INFO L130 BoogieDeclarations]: Found specification of procedure ULTIMATE.start [2018-11-23 03:30:39,554 INFO L138 BoogieDeclarations]: Found implementation of procedure ULTIMATE.start [2018-11-23 03:30:39,554 INFO L130 BoogieDeclarations]: Found specification of procedure main [2018-11-23 03:30:39,555 INFO L138 BoogieDeclarations]: Found implementation of procedure main [2018-11-23 03:30:39,555 INFO L130 BoogieDeclarations]: Found specification of procedure fibo [2018-11-23 03:30:39,555 INFO L138 BoogieDeclarations]: Found implementation of procedure fibo [2018-11-23 03:30:39,642 INFO L275 CfgBuilder]: Using the 1 location(s) as analysis (start of procedure ULTIMATE.start) [2018-11-23 03:30:39,642 INFO L280 CfgBuilder]: Removed 0 assue(true) statements. [2018-11-23 03:30:39,642 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 03:30:39 BoogieIcfgContainer [2018-11-23 03:30:39,643 INFO L132 PluginConnector]: ------------------------ END RCFGBuilder---------------------------- [2018-11-23 03:30:39,643 INFO L113 PluginConnector]: ------------------------TraceAbstraction---------------------------- [2018-11-23 03:30:39,643 INFO L271 PluginConnector]: Initializing TraceAbstraction... [2018-11-23 03:30:39,645 INFO L276 PluginConnector]: TraceAbstraction initialized [2018-11-23 03:30:39,645 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "CDTParser AST 23.11 03:30:39" (1/3) ... [2018-11-23 03:30:39,646 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@5c35546d and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 03:30:39, skipping insertion in model container [2018-11-23 03:30:39,646 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator AST 23.11 03:30:39" (2/3) ... [2018-11-23 03:30:39,646 INFO L205 PluginConnector]: Invalid model from TraceAbstraction for observer de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction.TraceAbstractionObserver@5c35546d and model type de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction AST 23.11 03:30:39, skipping insertion in model container [2018-11-23 03:30:39,646 INFO L185 PluginConnector]: Executing the observer TraceAbstractionObserver from plugin TraceAbstraction for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 03:30:39" (3/3) ... [2018-11-23 03:30:39,647 INFO L112 eAbstractionObserver]: Analyzing ICFG fibo_10_false-unreach-call_true-termination.c [2018-11-23 03:30:39,653 INFO L156 ceAbstractionStarter]: Automizer settings: Hoare:true NWA Interpolation:FPandBP Determinization: PREDICATE_ABSTRACTION [2018-11-23 03:30:39,658 INFO L168 ceAbstractionStarter]: Appying trace abstraction to program that has 1 error locations. [2018-11-23 03:30:39,668 INFO L257 AbstractCegarLoop]: Starting to check reachability of 1 error locations. [2018-11-23 03:30:39,694 INFO L382 AbstractCegarLoop]: Interprodecural is true [2018-11-23 03:30:39,695 INFO L383 AbstractCegarLoop]: Hoare is true [2018-11-23 03:30:39,695 INFO L384 AbstractCegarLoop]: Compute interpolants for FPandBP [2018-11-23 03:30:39,695 INFO L385 AbstractCegarLoop]: Backedges is STRAIGHT_LINE [2018-11-23 03:30:39,695 INFO L386 AbstractCegarLoop]: Determinization is PREDICATE_ABSTRACTION [2018-11-23 03:30:39,695 INFO L387 AbstractCegarLoop]: Difference is false [2018-11-23 03:30:39,695 INFO L388 AbstractCegarLoop]: Minimize is MINIMIZE_SEVPA [2018-11-23 03:30:39,695 INFO L393 AbstractCegarLoop]: ======== Iteration 0==of CEGAR loop == AllErrorsAtOnce======== [2018-11-23 03:30:39,708 INFO L276 IsEmpty]: Start isEmpty. Operand 24 states. [2018-11-23 03:30:39,712 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 14 [2018-11-23 03:30:39,712 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:30:39,712 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:30:39,713 INFO L423 AbstractCegarLoop]: === Iteration 1 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:30:39,717 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:30:39,717 INFO L82 PathProgramCache]: Analyzing trace with hash 537028541, now seen corresponding path program 1 times [2018-11-23 03:30:39,718 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:30:39,749 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:39,749 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:30:39,749 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:39,750 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:30:39,771 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:30:39,829 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 03:30:39,830 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 03:30:39,830 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 03:30:39,830 INFO L256 anRefinementStrategy]: Using the first perfect interpolant sequence [2018-11-23 03:30:39,833 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 03:30:39,840 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 03:30:39,841 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 03:30:39,842 INFO L87 Difference]: Start difference. First operand 24 states. Second operand 5 states. [2018-11-23 03:30:39,907 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:30:39,908 INFO L93 Difference]: Finished difference Result 35 states and 41 transitions. [2018-11-23 03:30:39,908 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 03:30:39,909 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 13 [2018-11-23 03:30:39,909 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:30:39,917 INFO L225 Difference]: With dead ends: 35 [2018-11-23 03:30:39,918 INFO L226 Difference]: Without dead ends: 21 [2018-11-23 03:30:39,920 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 03:30:39,933 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 21 states. [2018-11-23 03:30:39,947 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 21 to 21. [2018-11-23 03:30:39,947 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 21 states. [2018-11-23 03:30:39,948 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 21 states to 21 states and 25 transitions. [2018-11-23 03:30:39,949 INFO L78 Accepts]: Start accepts. Automaton has 21 states and 25 transitions. Word has length 13 [2018-11-23 03:30:39,949 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:30:39,950 INFO L480 AbstractCegarLoop]: Abstraction has 21 states and 25 transitions. [2018-11-23 03:30:39,950 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 03:30:39,950 INFO L276 IsEmpty]: Start isEmpty. Operand 21 states and 25 transitions. [2018-11-23 03:30:39,951 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 15 [2018-11-23 03:30:39,951 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:30:39,951 INFO L402 BasicCegarLoop]: trace histogram [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:30:39,951 INFO L423 AbstractCegarLoop]: === Iteration 2 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:30:39,951 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:30:39,951 INFO L82 PathProgramCache]: Analyzing trace with hash 179123823, now seen corresponding path program 1 times [2018-11-23 03:30:39,951 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:30:39,952 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:39,952 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:30:39,952 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:39,952 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:30:39,955 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:30:39,971 INFO L134 CoverageAnalysis]: Checked inductivity of 0 backedges. 0 proven. 0 refuted. 0 times theorem prover too weak. 0 trivial. 0 not checked. [2018-11-23 03:30:39,971 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 0 imperfect interpolant sequences. [2018-11-23 03:30:39,972 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [5] imperfect sequences [] total 5 [2018-11-23 03:30:39,972 INFO L256 anRefinementStrategy]: Using the first perfect interpolant sequence [2018-11-23 03:30:39,974 INFO L459 AbstractCegarLoop]: Interpolant automaton has 5 states [2018-11-23 03:30:39,974 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 5 interpolants. [2018-11-23 03:30:39,974 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=7, Invalid=13, Unknown=0, NotChecked=0, Total=20 [2018-11-23 03:30:39,974 INFO L87 Difference]: Start difference. First operand 21 states and 25 transitions. Second operand 5 states. [2018-11-23 03:30:40,025 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:30:40,025 INFO L93 Difference]: Finished difference Result 27 states and 32 transitions. [2018-11-23 03:30:40,026 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 5 states. [2018-11-23 03:30:40,026 INFO L78 Accepts]: Start accepts. Automaton has 5 states. Word has length 14 [2018-11-23 03:30:40,026 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:30:40,027 INFO L225 Difference]: With dead ends: 27 [2018-11-23 03:30:40,027 INFO L226 Difference]: Without dead ends: 23 [2018-11-23 03:30:40,028 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 6 GetRequests, 2 SyntacticMatches, 0 SemanticMatches, 4 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 0 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=11, Invalid=19, Unknown=0, NotChecked=0, Total=30 [2018-11-23 03:30:40,028 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 23 states. [2018-11-23 03:30:40,032 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 23 to 21. [2018-11-23 03:30:40,032 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 21 states. [2018-11-23 03:30:40,033 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 21 states to 21 states and 25 transitions. [2018-11-23 03:30:40,034 INFO L78 Accepts]: Start accepts. Automaton has 21 states and 25 transitions. Word has length 14 [2018-11-23 03:30:40,034 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:30:40,034 INFO L480 AbstractCegarLoop]: Abstraction has 21 states and 25 transitions. [2018-11-23 03:30:40,034 INFO L481 AbstractCegarLoop]: Interpolant automaton has 5 states. [2018-11-23 03:30:40,034 INFO L276 IsEmpty]: Start isEmpty. Operand 21 states and 25 transitions. [2018-11-23 03:30:40,035 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 27 [2018-11-23 03:30:40,035 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:30:40,035 INFO L402 BasicCegarLoop]: trace histogram [3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:30:40,035 INFO L423 AbstractCegarLoop]: === Iteration 3 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:30:40,035 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:30:40,035 INFO L82 PathProgramCache]: Analyzing trace with hash 806022394, now seen corresponding path program 1 times [2018-11-23 03:30:40,036 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:30:40,036 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:40,036 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:30:40,037 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:40,037 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:30:40,047 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:30:40,107 INFO L134 CoverageAnalysis]: Checked inductivity of 12 backedges. 5 proven. 3 refuted. 0 times theorem prover too weak. 4 trivial. 0 not checked. [2018-11-23 03:30:40,107 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:30:40,107 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:30:40,108 INFO L200 CegarAbsIntRunner]: Running AI on error trace of length 27 with the following transitions: [2018-11-23 03:30:40,109 INFO L202 CegarAbsIntRunner]: [0], [4], [6], [9], [11], [18], [21], [22], [26], [28], [30], [31], [32], [33], [34], [36], [37], [38], [39], [40], [41] [2018-11-23 03:30:40,137 INFO L148 AbstractInterpreter]: Using domain PoormanAbstractDomain with backing domain CompoundDomain [CongruenceDomain, ExplicitValueDomain] [2018-11-23 03:30:40,138 INFO L101 FixpointEngine]: Starting fixpoint engine with domain PoormanAbstractDomain (maxUnwinding=3, maxParallelStates=2) [2018-11-23 03:30:40,792 INFO L266 AbstractInterpreter]: Error location(s) were unreachable [2018-11-23 03:30:40,793 INFO L272 AbstractInterpreter]: Visited 20 different actions 2219 times. Never merged. Widened at 2 different actions 200 times. Performed 4733 root evaluator evaluations with a maximum evaluation depth of 4. Performed 4733 inverse root evaluator evaluations with a maximum inverse evaluation depth of 4. Found 220 fixpoints after 3 different actions. Largest state had 5 variables. [2018-11-23 03:30:40,799 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:30:40,799 INFO L398 sIntCurrentIteration]: Generating AbsInt predicates [2018-11-23 03:30:40,839 INFO L227 lantSequenceWeakener]: Weakened 16 states. On average, predicates are now at 50% of their original sizes. [2018-11-23 03:30:40,839 INFO L413 sIntCurrentIteration]: Unifying AI predicates [2018-11-23 03:30:41,039 INFO L415 sIntCurrentIteration]: We unified 25 AI predicates to 25 [2018-11-23 03:30:41,039 INFO L424 sIntCurrentIteration]: Finished generation of AbsInt predicates [2018-11-23 03:30:41,040 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 1 imperfect interpolant sequences. [2018-11-23 03:30:41,040 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [15] imperfect sequences [6] total 19 [2018-11-23 03:30:41,040 INFO L256 anRefinementStrategy]: Using the first perfect interpolant sequence [2018-11-23 03:30:41,040 INFO L459 AbstractCegarLoop]: Interpolant automaton has 15 states [2018-11-23 03:30:41,040 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 15 interpolants. [2018-11-23 03:30:41,041 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=30, Invalid=180, Unknown=0, NotChecked=0, Total=210 [2018-11-23 03:30:41,041 INFO L87 Difference]: Start difference. First operand 21 states and 25 transitions. Second operand 15 states. [2018-11-23 03:30:41,494 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:30:41,495 INFO L93 Difference]: Finished difference Result 65 states and 93 transitions. [2018-11-23 03:30:41,495 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 10 states. [2018-11-23 03:30:41,495 INFO L78 Accepts]: Start accepts. Automaton has 15 states. Word has length 26 [2018-11-23 03:30:41,495 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:30:41,496 INFO L225 Difference]: With dead ends: 65 [2018-11-23 03:30:41,496 INFO L226 Difference]: Without dead ends: 50 [2018-11-23 03:30:41,497 INFO L631 BasicCegarLoop]: 2 DeclaredPredicates, 28 GetRequests, 12 SyntacticMatches, 0 SemanticMatches, 16 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 23 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=42, Invalid=264, Unknown=0, NotChecked=0, Total=306 [2018-11-23 03:30:41,497 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 50 states. [2018-11-23 03:30:41,505 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 50 to 46. [2018-11-23 03:30:41,505 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 46 states. [2018-11-23 03:30:41,506 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 46 states to 46 states and 52 transitions. [2018-11-23 03:30:41,506 INFO L78 Accepts]: Start accepts. Automaton has 46 states and 52 transitions. Word has length 26 [2018-11-23 03:30:41,507 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:30:41,507 INFO L480 AbstractCegarLoop]: Abstraction has 46 states and 52 transitions. [2018-11-23 03:30:41,507 INFO L481 AbstractCegarLoop]: Interpolant automaton has 15 states. [2018-11-23 03:30:41,507 INFO L276 IsEmpty]: Start isEmpty. Operand 46 states and 52 transitions. [2018-11-23 03:30:41,509 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 66 [2018-11-23 03:30:41,509 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:30:41,509 INFO L402 BasicCegarLoop]: trace histogram [9, 9, 5, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:30:41,511 INFO L423 AbstractCegarLoop]: === Iteration 4 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:30:41,511 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:30:41,511 INFO L82 PathProgramCache]: Analyzing trace with hash -767819153, now seen corresponding path program 2 times [2018-11-23 03:30:41,511 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:30:41,512 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:41,512 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:30:41,512 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:41,512 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:30:41,530 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:30:41,598 INFO L134 CoverageAnalysis]: Checked inductivity of 174 backedges. 30 proven. 39 refuted. 0 times theorem prover too weak. 105 trivial. 0 not checked. [2018-11-23 03:30:41,599 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:30:41,599 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:30:41,599 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:30:41,600 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:30:41,600 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:30:41,600 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 2 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:30:41,608 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 03:30:41,608 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder OUTSIDE_LOOP_FIRST2 (IT: FPandBP) [2018-11-23 03:30:41,635 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 4 check-sat command(s) [2018-11-23 03:30:41,635 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 03:30:41,644 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:30:41,675 INFO L134 CoverageAnalysis]: Checked inductivity of 174 backedges. 85 proven. 0 refuted. 0 times theorem prover too weak. 89 trivial. 0 not checked. [2018-11-23 03:30:41,675 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:30:41,827 INFO L134 CoverageAnalysis]: Checked inductivity of 174 backedges. 61 proven. 3 refuted. 0 times theorem prover too weak. 110 trivial. 0 not checked. [2018-11-23 03:30:41,843 INFO L312 seRefinementStrategy]: Constructing automaton from 1 perfect and 2 imperfect interpolant sequences. [2018-11-23 03:30:41,843 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [6] imperfect sequences [6, 6] total 7 [2018-11-23 03:30:41,844 INFO L256 anRefinementStrategy]: Using the first perfect interpolant sequence [2018-11-23 03:30:41,844 INFO L459 AbstractCegarLoop]: Interpolant automaton has 6 states [2018-11-23 03:30:41,844 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 6 interpolants. [2018-11-23 03:30:41,844 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=16, Invalid=26, Unknown=0, NotChecked=0, Total=42 [2018-11-23 03:30:41,845 INFO L87 Difference]: Start difference. First operand 46 states and 52 transitions. Second operand 6 states. [2018-11-23 03:30:41,893 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:30:41,894 INFO L93 Difference]: Finished difference Result 82 states and 108 transitions. [2018-11-23 03:30:41,894 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 6 states. [2018-11-23 03:30:41,894 INFO L78 Accepts]: Start accepts. Automaton has 6 states. Word has length 65 [2018-11-23 03:30:41,894 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:30:41,895 INFO L225 Difference]: With dead ends: 82 [2018-11-23 03:30:41,895 INFO L226 Difference]: Without dead ends: 50 [2018-11-23 03:30:41,896 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 140 GetRequests, 127 SyntacticMatches, 5 SemanticMatches, 8 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 10 ImplicationChecksByTransitivity, 0.0s TimeCoverageRelationStatistics Valid=33, Invalid=57, Unknown=0, NotChecked=0, Total=90 [2018-11-23 03:30:41,896 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 50 states. [2018-11-23 03:30:41,903 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 50 to 48. [2018-11-23 03:30:41,903 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 48 states. [2018-11-23 03:30:41,904 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 48 states to 48 states and 56 transitions. [2018-11-23 03:30:41,905 INFO L78 Accepts]: Start accepts. Automaton has 48 states and 56 transitions. Word has length 65 [2018-11-23 03:30:41,905 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:30:41,905 INFO L480 AbstractCegarLoop]: Abstraction has 48 states and 56 transitions. [2018-11-23 03:30:41,905 INFO L481 AbstractCegarLoop]: Interpolant automaton has 6 states. [2018-11-23 03:30:41,905 INFO L276 IsEmpty]: Start isEmpty. Operand 48 states and 56 transitions. [2018-11-23 03:30:41,906 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 68 [2018-11-23 03:30:41,906 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:30:41,907 INFO L402 BasicCegarLoop]: trace histogram [9, 9, 6, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:30:41,907 INFO L423 AbstractCegarLoop]: === Iteration 5 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:30:41,907 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:30:41,907 INFO L82 PathProgramCache]: Analyzing trace with hash 1437629917, now seen corresponding path program 1 times [2018-11-23 03:30:41,907 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:30:41,908 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:41,909 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 03:30:41,909 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:30:41,909 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:30:41,923 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:30:42,016 INFO L134 CoverageAnalysis]: Checked inductivity of 183 backedges. 47 proven. 43 refuted. 0 times theorem prover too weak. 93 trivial. 0 not checked. [2018-11-23 03:30:42,017 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:30:42,017 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:30:42,017 INFO L200 CegarAbsIntRunner]: Running AI on error trace of length 68 with the following transitions: [2018-11-23 03:30:42,018 INFO L202 CegarAbsIntRunner]: [0], [4], [6], [9], [11], [18], [21], [22], [25], [26], [28], [30], [31], [32], [33], [34], [36], [37], [38], [39], [40], [41] [2018-11-23 03:30:42,019 INFO L148 AbstractInterpreter]: Using domain PoormanAbstractDomain with backing domain CompoundDomain [CongruenceDomain, ExplicitValueDomain] [2018-11-23 03:30:42,019 INFO L101 FixpointEngine]: Starting fixpoint engine with domain PoormanAbstractDomain (maxUnwinding=3, maxParallelStates=2) [2018-11-23 03:31:13,195 INFO L263 AbstractInterpreter]: Some error location(s) were reachable [2018-11-23 03:31:13,195 INFO L272 AbstractInterpreter]: Visited 22 different actions 325248 times. Merged at 8 different actions 104998 times. Widened at 2 different actions 20972 times. Performed 826407 root evaluator evaluations with a maximum evaluation depth of 4. Performed 826407 inverse root evaluator evaluations with a maximum inverse evaluation depth of 4. Found 44468 fixpoints after 5 different actions. Largest state had 5 variables. [2018-11-23 03:31:13,207 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:13,207 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: Unknown [2018-11-23 03:31:13,207 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:13,207 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 3 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:13,214 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:13,214 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: FPandBP) [2018-11-23 03:31:13,226 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:13,228 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:13,312 INFO L134 CoverageAnalysis]: Checked inductivity of 183 backedges. 17 proven. 84 refuted. 0 times theorem prover too weak. 82 trivial. 0 not checked. [2018-11-23 03:31:13,312 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:13,630 INFO L134 CoverageAnalysis]: Checked inductivity of 183 backedges. 17 proven. 99 refuted. 0 times theorem prover too weak. 67 trivial. 0 not checked. [2018-11-23 03:31:13,645 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:13,645 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 8, 11] total 19 [2018-11-23 03:31:13,645 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:13,646 INFO L459 AbstractCegarLoop]: Interpolant automaton has 14 states [2018-11-23 03:31:13,646 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 14 interpolants. [2018-11-23 03:31:13,646 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=71, Invalid=271, Unknown=0, NotChecked=0, Total=342 [2018-11-23 03:31:13,646 INFO L87 Difference]: Start difference. First operand 48 states and 56 transitions. Second operand 14 states. [2018-11-23 03:31:13,881 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:13,881 INFO L93 Difference]: Finished difference Result 145 states and 224 transitions. [2018-11-23 03:31:13,881 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 20 states. [2018-11-23 03:31:13,881 INFO L78 Accepts]: Start accepts. Automaton has 14 states. Word has length 67 [2018-11-23 03:31:13,882 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:13,884 INFO L225 Difference]: With dead ends: 145 [2018-11-23 03:31:13,884 INFO L226 Difference]: Without dead ends: 92 [2018-11-23 03:31:13,885 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 155 GetRequests, 117 SyntacticMatches, 8 SemanticMatches, 30 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 159 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=268, Invalid=724, Unknown=0, NotChecked=0, Total=992 [2018-11-23 03:31:13,885 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 92 states. [2018-11-23 03:31:13,897 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 92 to 81. [2018-11-23 03:31:13,897 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 81 states. [2018-11-23 03:31:13,898 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 81 states to 81 states and 110 transitions. [2018-11-23 03:31:13,898 INFO L78 Accepts]: Start accepts. Automaton has 81 states and 110 transitions. Word has length 67 [2018-11-23 03:31:13,899 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:13,899 INFO L480 AbstractCegarLoop]: Abstraction has 81 states and 110 transitions. [2018-11-23 03:31:13,899 INFO L481 AbstractCegarLoop]: Interpolant automaton has 14 states. [2018-11-23 03:31:13,899 INFO L276 IsEmpty]: Start isEmpty. Operand 81 states and 110 transitions. [2018-11-23 03:31:13,902 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 124 [2018-11-23 03:31:13,902 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:13,902 INFO L402 BasicCegarLoop]: trace histogram [17, 17, 14, 8, 8, 8, 8, 8, 8, 8, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:13,903 INFO L423 AbstractCegarLoop]: === Iteration 6 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:13,903 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:13,903 INFO L82 PathProgramCache]: Analyzing trace with hash -19418837, now seen corresponding path program 2 times [2018-11-23 03:31:13,903 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:13,904 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:13,904 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:13,904 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:13,904 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:13,925 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:14,010 INFO L134 CoverageAnalysis]: Checked inductivity of 747 backedges. 261 proven. 28 refuted. 0 times theorem prover too weak. 458 trivial. 0 not checked. [2018-11-23 03:31:14,011 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:14,011 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:14,011 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:14,011 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:14,011 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:14,011 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 4 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:14,019 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 03:31:14,019 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder OUTSIDE_LOOP_FIRST2 (IT: FPandBP) [2018-11-23 03:31:14,038 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 7 check-sat command(s) [2018-11-23 03:31:14,038 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 03:31:14,043 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:14,061 INFO L134 CoverageAnalysis]: Checked inductivity of 747 backedges. 251 proven. 17 refuted. 0 times theorem prover too weak. 479 trivial. 0 not checked. [2018-11-23 03:31:14,061 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:14,360 INFO L134 CoverageAnalysis]: Checked inductivity of 747 backedges. 251 proven. 18 refuted. 0 times theorem prover too weak. 478 trivial. 0 not checked. [2018-11-23 03:31:14,375 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:14,375 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 8, 9] total 15 [2018-11-23 03:31:14,375 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:14,376 INFO L459 AbstractCegarLoop]: Interpolant automaton has 12 states [2018-11-23 03:31:14,376 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 12 interpolants. [2018-11-23 03:31:14,376 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=51, Invalid=159, Unknown=0, NotChecked=0, Total=210 [2018-11-23 03:31:14,376 INFO L87 Difference]: Start difference. First operand 81 states and 110 transitions. Second operand 12 states. [2018-11-23 03:31:14,514 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:14,515 INFO L93 Difference]: Finished difference Result 166 states and 248 transitions. [2018-11-23 03:31:14,515 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 03:31:14,515 INFO L78 Accepts]: Start accepts. Automaton has 12 states. Word has length 123 [2018-11-23 03:31:14,516 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:14,516 INFO L225 Difference]: With dead ends: 166 [2018-11-23 03:31:14,516 INFO L226 Difference]: Without dead ends: 92 [2018-11-23 03:31:14,518 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 263 GetRequests, 236 SyntacticMatches, 7 SemanticMatches, 20 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 89 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=142, Invalid=320, Unknown=0, NotChecked=0, Total=462 [2018-11-23 03:31:14,518 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 92 states. [2018-11-23 03:31:14,524 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 92 to 89. [2018-11-23 03:31:14,524 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 89 states. [2018-11-23 03:31:14,525 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 89 states to 89 states and 115 transitions. [2018-11-23 03:31:14,525 INFO L78 Accepts]: Start accepts. Automaton has 89 states and 115 transitions. Word has length 123 [2018-11-23 03:31:14,525 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:14,525 INFO L480 AbstractCegarLoop]: Abstraction has 89 states and 115 transitions. [2018-11-23 03:31:14,525 INFO L481 AbstractCegarLoop]: Interpolant automaton has 12 states. [2018-11-23 03:31:14,526 INFO L276 IsEmpty]: Start isEmpty. Operand 89 states and 115 transitions. [2018-11-23 03:31:14,527 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 110 [2018-11-23 03:31:14,527 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:14,527 INFO L402 BasicCegarLoop]: trace histogram [15, 15, 12, 7, 7, 7, 7, 7, 7, 7, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:14,528 INFO L423 AbstractCegarLoop]: === Iteration 7 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:14,528 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:14,528 INFO L82 PathProgramCache]: Analyzing trace with hash 1200034344, now seen corresponding path program 3 times [2018-11-23 03:31:14,528 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:14,529 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:14,529 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 03:31:14,529 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:14,529 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:14,542 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:14,592 INFO L134 CoverageAnalysis]: Checked inductivity of 570 backedges. 174 proven. 59 refuted. 0 times theorem prover too weak. 337 trivial. 0 not checked. [2018-11-23 03:31:14,592 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:14,593 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:14,593 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:14,593 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:14,593 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:14,593 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 5 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:14,599 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 03:31:14,599 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder TERMS_WITH_SMALL_CONSTANTS_FIRST (IT: FPandBP) [2018-11-23 03:31:14,616 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 03:31:14,616 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 03:31:14,618 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:14,645 INFO L134 CoverageAnalysis]: Checked inductivity of 570 backedges. 42 proven. 229 refuted. 0 times theorem prover too weak. 299 trivial. 0 not checked. [2018-11-23 03:31:14,645 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:15,071 INFO L134 CoverageAnalysis]: Checked inductivity of 570 backedges. 42 proven. 255 refuted. 0 times theorem prover too weak. 273 trivial. 0 not checked. [2018-11-23 03:31:15,086 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:15,086 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [8, 9, 13] total 15 [2018-11-23 03:31:15,086 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:15,086 INFO L459 AbstractCegarLoop]: Interpolant automaton has 9 states [2018-11-23 03:31:15,086 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 9 interpolants. [2018-11-23 03:31:15,087 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=58, Invalid=152, Unknown=0, NotChecked=0, Total=210 [2018-11-23 03:31:15,087 INFO L87 Difference]: Start difference. First operand 89 states and 115 transitions. Second operand 9 states. [2018-11-23 03:31:15,154 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:15,154 INFO L93 Difference]: Finished difference Result 122 states and 179 transitions. [2018-11-23 03:31:15,155 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 9 states. [2018-11-23 03:31:15,155 INFO L78 Accepts]: Start accepts. Automaton has 9 states. Word has length 109 [2018-11-23 03:31:15,155 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:15,156 INFO L225 Difference]: With dead ends: 122 [2018-11-23 03:31:15,156 INFO L226 Difference]: Without dead ends: 103 [2018-11-23 03:31:15,157 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 233 GetRequests, 205 SyntacticMatches, 10 SemanticMatches, 18 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 76 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=123, Invalid=257, Unknown=0, NotChecked=0, Total=380 [2018-11-23 03:31:15,157 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 103 states. [2018-11-23 03:31:15,167 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 103 to 82. [2018-11-23 03:31:15,167 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 82 states. [2018-11-23 03:31:15,168 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 82 states to 82 states and 101 transitions. [2018-11-23 03:31:15,168 INFO L78 Accepts]: Start accepts. Automaton has 82 states and 101 transitions. Word has length 109 [2018-11-23 03:31:15,168 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:15,168 INFO L480 AbstractCegarLoop]: Abstraction has 82 states and 101 transitions. [2018-11-23 03:31:15,168 INFO L481 AbstractCegarLoop]: Interpolant automaton has 9 states. [2018-11-23 03:31:15,169 INFO L276 IsEmpty]: Start isEmpty. Operand 82 states and 101 transitions. [2018-11-23 03:31:15,172 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 208 [2018-11-23 03:31:15,172 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:15,172 INFO L402 BasicCegarLoop]: trace histogram [29, 29, 26, 14, 14, 14, 14, 14, 14, 14, 12, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:15,173 INFO L423 AbstractCegarLoop]: === Iteration 8 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:15,173 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:15,173 INFO L82 PathProgramCache]: Analyzing trace with hash 1205638853, now seen corresponding path program 4 times [2018-11-23 03:31:15,173 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:15,174 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:15,174 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 03:31:15,174 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:15,174 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:15,192 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:15,249 INFO L134 CoverageAnalysis]: Checked inductivity of 2313 backedges. 214 proven. 294 refuted. 0 times theorem prover too weak. 1805 trivial. 0 not checked. [2018-11-23 03:31:15,249 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:15,249 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:15,249 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:15,249 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:15,249 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:15,249 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 6 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:15,255 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:15,255 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: FPandBP) [2018-11-23 03:31:15,284 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:15,287 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:15,367 INFO L134 CoverageAnalysis]: Checked inductivity of 2313 backedges. 117 proven. 657 refuted. 0 times theorem prover too weak. 1539 trivial. 0 not checked. [2018-11-23 03:31:15,367 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:16,051 INFO L134 CoverageAnalysis]: Checked inductivity of 2313 backedges. 117 proven. 697 refuted. 0 times theorem prover too weak. 1499 trivial. 0 not checked. [2018-11-23 03:31:16,066 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:16,066 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [7, 10, 15] total 20 [2018-11-23 03:31:16,066 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:16,067 INFO L459 AbstractCegarLoop]: Interpolant automaton has 13 states [2018-11-23 03:31:16,067 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 13 interpolants. [2018-11-23 03:31:16,067 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=80, Invalid=300, Unknown=0, NotChecked=0, Total=380 [2018-11-23 03:31:16,067 INFO L87 Difference]: Start difference. First operand 82 states and 101 transitions. Second operand 13 states. [2018-11-23 03:31:16,251 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:16,251 INFO L93 Difference]: Finished difference Result 210 states and 312 transitions. [2018-11-23 03:31:16,251 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 20 states. [2018-11-23 03:31:16,251 INFO L78 Accepts]: Start accepts. Automaton has 13 states. Word has length 207 [2018-11-23 03:31:16,251 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:16,252 INFO L225 Difference]: With dead ends: 210 [2018-11-23 03:31:16,252 INFO L226 Difference]: Without dead ends: 120 [2018-11-23 03:31:16,253 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 432 GetRequests, 390 SyntacticMatches, 12 SemanticMatches, 30 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 142 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=298, Invalid=694, Unknown=0, NotChecked=0, Total=992 [2018-11-23 03:31:16,253 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 120 states. [2018-11-23 03:31:16,261 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 120 to 107. [2018-11-23 03:31:16,261 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 107 states. [2018-11-23 03:31:16,262 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 107 states to 107 states and 143 transitions. [2018-11-23 03:31:16,262 INFO L78 Accepts]: Start accepts. Automaton has 107 states and 143 transitions. Word has length 207 [2018-11-23 03:31:16,262 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:16,262 INFO L480 AbstractCegarLoop]: Abstraction has 107 states and 143 transitions. [2018-11-23 03:31:16,262 INFO L481 AbstractCegarLoop]: Interpolant automaton has 13 states. [2018-11-23 03:31:16,263 INFO L276 IsEmpty]: Start isEmpty. Operand 107 states and 143 transitions. [2018-11-23 03:31:16,266 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 287 [2018-11-23 03:31:16,266 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:16,266 INFO L402 BasicCegarLoop]: trace histogram [41, 41, 33, 20, 20, 20, 20, 20, 20, 20, 13, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:16,266 INFO L423 AbstractCegarLoop]: === Iteration 9 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:16,266 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:16,266 INFO L82 PathProgramCache]: Analyzing trace with hash -1425621089, now seen corresponding path program 5 times [2018-11-23 03:31:16,266 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:16,267 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:16,267 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:16,267 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:16,267 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:16,288 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:16,397 INFO L134 CoverageAnalysis]: Checked inductivity of 4568 backedges. 702 proven. 270 refuted. 0 times theorem prover too weak. 3596 trivial. 0 not checked. [2018-11-23 03:31:16,397 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:16,397 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:16,397 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:16,397 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:16,397 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:16,397 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 7 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:16,651 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 03:31:16,651 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder OUTSIDE_LOOP_FIRST2 (IT: FPandBP) [2018-11-23 03:31:16,685 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 18 check-sat command(s) [2018-11-23 03:31:16,685 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 03:31:16,688 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:16,718 INFO L134 CoverageAnalysis]: Checked inductivity of 4568 backedges. 637 proven. 142 refuted. 0 times theorem prover too weak. 3789 trivial. 0 not checked. [2018-11-23 03:31:16,718 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:17,186 INFO L134 CoverageAnalysis]: Checked inductivity of 4568 backedges. 637 proven. 163 refuted. 0 times theorem prover too weak. 3768 trivial. 0 not checked. [2018-11-23 03:31:17,202 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:17,202 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [9, 8, 11] total 14 [2018-11-23 03:31:17,202 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:17,202 INFO L459 AbstractCegarLoop]: Interpolant automaton has 9 states [2018-11-23 03:31:17,202 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 9 interpolants. [2018-11-23 03:31:17,202 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=52, Invalid=130, Unknown=0, NotChecked=0, Total=182 [2018-11-23 03:31:17,203 INFO L87 Difference]: Start difference. First operand 107 states and 143 transitions. Second operand 9 states. [2018-11-23 03:31:17,255 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:17,255 INFO L93 Difference]: Finished difference Result 130 states and 177 transitions. [2018-11-23 03:31:17,255 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 9 states. [2018-11-23 03:31:17,255 INFO L78 Accepts]: Start accepts. Automaton has 9 states. Word has length 286 [2018-11-23 03:31:17,256 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:17,257 INFO L225 Difference]: With dead ends: 130 [2018-11-23 03:31:17,257 INFO L226 Difference]: Without dead ends: 123 [2018-11-23 03:31:17,257 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 589 GetRequests, 564 SyntacticMatches, 8 SemanticMatches, 17 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 53 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=112, Invalid=230, Unknown=0, NotChecked=0, Total=342 [2018-11-23 03:31:17,257 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 123 states. [2018-11-23 03:31:17,265 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 123 to 110. [2018-11-23 03:31:17,265 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 110 states. [2018-11-23 03:31:17,266 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 110 states to 110 states and 149 transitions. [2018-11-23 03:31:17,266 INFO L78 Accepts]: Start accepts. Automaton has 110 states and 149 transitions. Word has length 286 [2018-11-23 03:31:17,266 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:17,267 INFO L480 AbstractCegarLoop]: Abstraction has 110 states and 149 transitions. [2018-11-23 03:31:17,267 INFO L481 AbstractCegarLoop]: Interpolant automaton has 9 states. [2018-11-23 03:31:17,267 INFO L276 IsEmpty]: Start isEmpty. Operand 110 states and 149 transitions. [2018-11-23 03:31:17,271 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 355 [2018-11-23 03:31:17,271 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:17,272 INFO L402 BasicCegarLoop]: trace histogram [51, 51, 41, 25, 25, 25, 25, 25, 25, 25, 16, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:17,272 INFO L423 AbstractCegarLoop]: === Iteration 10 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:17,272 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:17,272 INFO L82 PathProgramCache]: Analyzing trace with hash 223191898, now seen corresponding path program 6 times [2018-11-23 03:31:17,272 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:17,273 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:17,273 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 03:31:17,273 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:17,273 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:17,294 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:17,427 INFO L134 CoverageAnalysis]: Checked inductivity of 7120 backedges. 248 proven. 1232 refuted. 0 times theorem prover too weak. 5640 trivial. 0 not checked. [2018-11-23 03:31:17,427 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:17,427 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:17,428 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:17,428 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:17,428 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:17,428 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 8 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:17,435 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 03:31:17,435 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder TERMS_WITH_SMALL_CONSTANTS_FIRST (IT: FPandBP) [2018-11-23 03:31:17,474 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 03:31:17,474 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 03:31:17,478 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:17,524 INFO L134 CoverageAnalysis]: Checked inductivity of 7120 backedges. 214 proven. 1491 refuted. 0 times theorem prover too weak. 5415 trivial. 0 not checked. [2018-11-23 03:31:17,524 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:18,642 INFO L134 CoverageAnalysis]: Checked inductivity of 7120 backedges. 214 proven. 1548 refuted. 0 times theorem prover too weak. 5358 trivial. 0 not checked. [2018-11-23 03:31:18,657 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:18,657 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [10, 11, 17] total 19 [2018-11-23 03:31:18,657 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:18,657 INFO L459 AbstractCegarLoop]: Interpolant automaton has 11 states [2018-11-23 03:31:18,657 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 11 interpolants. [2018-11-23 03:31:18,658 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=92, Invalid=250, Unknown=0, NotChecked=0, Total=342 [2018-11-23 03:31:18,658 INFO L87 Difference]: Start difference. First operand 110 states and 149 transitions. Second operand 11 states. [2018-11-23 03:31:18,758 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:18,758 INFO L93 Difference]: Finished difference Result 143 states and 215 transitions. [2018-11-23 03:31:18,758 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 11 states. [2018-11-23 03:31:18,758 INFO L78 Accepts]: Start accepts. Automaton has 11 states. Word has length 354 [2018-11-23 03:31:18,759 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:18,759 INFO L225 Difference]: With dead ends: 143 [2018-11-23 03:31:18,760 INFO L226 Difference]: Without dead ends: 124 [2018-11-23 03:31:18,760 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 729 GetRequests, 691 SyntacticMatches, 14 SemanticMatches, 24 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 176 ImplicationChecksByTransitivity, 0.1s TimeCoverageRelationStatistics Valid=211, Invalid=439, Unknown=0, NotChecked=0, Total=650 [2018-11-23 03:31:18,760 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 124 states. [2018-11-23 03:31:18,765 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 124 to 103. [2018-11-23 03:31:18,765 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 103 states. [2018-11-23 03:31:18,766 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 103 states to 103 states and 134 transitions. [2018-11-23 03:31:18,766 INFO L78 Accepts]: Start accepts. Automaton has 103 states and 134 transitions. Word has length 354 [2018-11-23 03:31:18,766 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:18,766 INFO L480 AbstractCegarLoop]: Abstraction has 103 states and 134 transitions. [2018-11-23 03:31:18,766 INFO L481 AbstractCegarLoop]: Interpolant automaton has 11 states. [2018-11-23 03:31:18,766 INFO L276 IsEmpty]: Start isEmpty. Operand 103 states and 134 transitions. [2018-11-23 03:31:18,768 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 532 [2018-11-23 03:31:18,768 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:18,768 INFO L402 BasicCegarLoop]: trace histogram [77, 77, 62, 38, 38, 38, 38, 38, 38, 38, 24, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:18,768 INFO L423 AbstractCegarLoop]: === Iteration 11 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:18,768 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:18,769 INFO L82 PathProgramCache]: Analyzing trace with hash -1339067037, now seen corresponding path program 7 times [2018-11-23 03:31:18,769 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:18,769 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:18,769 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 03:31:18,769 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:18,770 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:18,788 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:18,942 INFO L134 CoverageAnalysis]: Checked inductivity of 16407 backedges. 425 proven. 2285 refuted. 0 times theorem prover too weak. 13697 trivial. 0 not checked. [2018-11-23 03:31:18,943 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:18,943 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:18,943 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:18,943 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:18,943 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:18,943 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 9 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:18,951 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:18,951 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: FPandBP) [2018-11-23 03:31:19,028 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:19,034 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:19,174 INFO L134 CoverageAnalysis]: Checked inductivity of 16407 backedges. 386 proven. 2689 refuted. 0 times theorem prover too weak. 13332 trivial. 0 not checked. [2018-11-23 03:31:19,175 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:20,668 INFO L134 CoverageAnalysis]: Checked inductivity of 16407 backedges. 386 proven. 2766 refuted. 0 times theorem prover too weak. 13255 trivial. 0 not checked. [2018-11-23 03:31:20,693 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:20,693 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 12, 19] total 21 [2018-11-23 03:31:20,693 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:20,694 INFO L459 AbstractCegarLoop]: Interpolant automaton has 12 states [2018-11-23 03:31:20,694 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 12 interpolants. [2018-11-23 03:31:20,694 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=112, Invalid=308, Unknown=0, NotChecked=0, Total=420 [2018-11-23 03:31:20,695 INFO L87 Difference]: Start difference. First operand 103 states and 134 transitions. Second operand 12 states. [2018-11-23 03:31:20,843 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:20,844 INFO L93 Difference]: Finished difference Result 148 states and 239 transitions. [2018-11-23 03:31:20,844 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 12 states. [2018-11-23 03:31:20,844 INFO L78 Accepts]: Start accepts. Automaton has 12 states. Word has length 531 [2018-11-23 03:31:20,845 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:20,847 INFO L225 Difference]: With dead ends: 148 [2018-11-23 03:31:20,847 INFO L226 Difference]: Without dead ends: 129 [2018-11-23 03:31:20,848 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1086 GetRequests, 1043 SyntacticMatches, 16 SemanticMatches, 27 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 228 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=264, Invalid=548, Unknown=0, NotChecked=0, Total=812 [2018-11-23 03:31:20,849 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 129 states. [2018-11-23 03:31:20,857 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 129 to 101. [2018-11-23 03:31:20,857 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 101 states. [2018-11-23 03:31:20,859 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 101 states to 101 states and 127 transitions. [2018-11-23 03:31:20,859 INFO L78 Accepts]: Start accepts. Automaton has 101 states and 127 transitions. Word has length 531 [2018-11-23 03:31:20,860 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:20,860 INFO L480 AbstractCegarLoop]: Abstraction has 101 states and 127 transitions. [2018-11-23 03:31:20,860 INFO L481 AbstractCegarLoop]: Interpolant automaton has 12 states. [2018-11-23 03:31:20,860 INFO L276 IsEmpty]: Start isEmpty. Operand 101 states and 127 transitions. [2018-11-23 03:31:20,866 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 750 [2018-11-23 03:31:20,866 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:20,866 INFO L402 BasicCegarLoop]: trace histogram [109, 109, 88, 54, 54, 54, 54, 54, 54, 54, 34, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:20,866 INFO L423 AbstractCegarLoop]: === Iteration 12 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:20,866 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:20,867 INFO L82 PathProgramCache]: Analyzing trace with hash -127293739, now seen corresponding path program 8 times [2018-11-23 03:31:20,867 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:20,867 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:20,867 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:20,867 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:20,868 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:20,897 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:21,259 INFO L134 CoverageAnalysis]: Checked inductivity of 33096 backedges. 2731 proven. 1215 refuted. 0 times theorem prover too weak. 29150 trivial. 0 not checked. [2018-11-23 03:31:21,259 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:21,259 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:21,259 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:21,259 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:21,259 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:21,260 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 10 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:21,271 INFO L103 rtionOrderModulation]: Keeping assertion order OUTSIDE_LOOP_FIRST2 [2018-11-23 03:31:21,272 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder OUTSIDE_LOOP_FIRST2 (IT: FPandBP) [2018-11-23 03:31:21,386 INFO L249 tOrderPrioritization]: Assert order OUTSIDE_LOOP_FIRST2 issued 36 check-sat command(s) [2018-11-23 03:31:21,386 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 03:31:21,394 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:21,589 INFO L134 CoverageAnalysis]: Checked inductivity of 33096 backedges. 659 proven. 4380 refuted. 0 times theorem prover too weak. 28057 trivial. 0 not checked. [2018-11-23 03:31:21,589 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:23,737 INFO L134 CoverageAnalysis]: Checked inductivity of 33096 backedges. 659 proven. 4480 refuted. 0 times theorem prover too weak. 27957 trivial. 0 not checked. [2018-11-23 03:31:23,752 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:23,752 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [11, 13, 21] total 22 [2018-11-23 03:31:23,753 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:23,753 INFO L459 AbstractCegarLoop]: Interpolant automaton has 13 states [2018-11-23 03:31:23,753 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 13 interpolants. [2018-11-23 03:31:23,753 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=131, Invalid=331, Unknown=0, NotChecked=0, Total=462 [2018-11-23 03:31:23,753 INFO L87 Difference]: Start difference. First operand 101 states and 127 transitions. Second operand 13 states. [2018-11-23 03:31:23,891 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:23,892 INFO L93 Difference]: Finished difference Result 153 states and 259 transitions. [2018-11-23 03:31:23,892 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 13 states. [2018-11-23 03:31:23,892 INFO L78 Accepts]: Start accepts. Automaton has 13 states. Word has length 749 [2018-11-23 03:31:23,893 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:23,894 INFO L225 Difference]: With dead ends: 153 [2018-11-23 03:31:23,894 INFO L226 Difference]: Without dead ends: 134 [2018-11-23 03:31:23,895 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 1523 GetRequests, 1475 SyntacticMatches, 19 SemanticMatches, 29 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 268 ImplicationChecksByTransitivity, 0.2s TimeCoverageRelationStatistics Valid=320, Invalid=610, Unknown=0, NotChecked=0, Total=930 [2018-11-23 03:31:23,895 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 134 states. [2018-11-23 03:31:23,902 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 134 to 104. [2018-11-23 03:31:23,902 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 104 states. [2018-11-23 03:31:23,903 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 104 states to 104 states and 131 transitions. [2018-11-23 03:31:23,904 INFO L78 Accepts]: Start accepts. Automaton has 104 states and 131 transitions. Word has length 749 [2018-11-23 03:31:23,904 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:23,904 INFO L480 AbstractCegarLoop]: Abstraction has 104 states and 131 transitions. [2018-11-23 03:31:23,904 INFO L481 AbstractCegarLoop]: Interpolant automaton has 13 states. [2018-11-23 03:31:23,904 INFO L276 IsEmpty]: Start isEmpty. Operand 104 states and 131 transitions. [2018-11-23 03:31:23,911 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1336 [2018-11-23 03:31:23,911 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:23,911 INFO L402 BasicCegarLoop]: trace histogram [195, 195, 158, 97, 97, 97, 97, 97, 97, 97, 61, 37, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:23,911 INFO L423 AbstractCegarLoop]: === Iteration 13 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:23,911 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:23,912 INFO L82 PathProgramCache]: Analyzing trace with hash -1195644188, now seen corresponding path program 9 times [2018-11-23 03:31:23,912 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:23,912 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:23,912 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 03:31:23,912 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:23,912 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:23,982 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:24,763 INFO L134 CoverageAnalysis]: Checked inductivity of 106687 backedges. 2716 proven. 7563 refuted. 0 times theorem prover too weak. 96408 trivial. 0 not checked. [2018-11-23 03:31:24,763 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:24,763 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:24,763 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:24,763 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:24,764 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:24,764 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 11 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:24,770 INFO L103 rtionOrderModulation]: Keeping assertion order TERMS_WITH_SMALL_CONSTANTS_FIRST [2018-11-23 03:31:24,770 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder TERMS_WITH_SMALL_CONSTANTS_FIRST (IT: FPandBP) [2018-11-23 03:31:24,926 INFO L249 tOrderPrioritization]: Assert order TERMS_WITH_SMALL_CONSTANTS_FIRST issued 0 check-sat command(s) [2018-11-23 03:31:24,926 INFO L250 tOrderPrioritization]: Conjunction of SSA is unsat [2018-11-23 03:31:24,938 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:25,418 INFO L134 CoverageAnalysis]: Checked inductivity of 106687 backedges. 2198 proven. 7529 refuted. 0 times theorem prover too weak. 96960 trivial. 0 not checked. [2018-11-23 03:31:25,418 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:28,658 INFO L134 CoverageAnalysis]: Checked inductivity of 106687 backedges. 2196 proven. 7623 refuted. 0 times theorem prover too weak. 96868 trivial. 0 not checked. [2018-11-23 03:31:28,673 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:28,674 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [15, 14, 22] total 32 [2018-11-23 03:31:28,674 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:28,675 INFO L459 AbstractCegarLoop]: Interpolant automaton has 22 states [2018-11-23 03:31:28,675 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 22 interpolants. [2018-11-23 03:31:28,675 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=213, Invalid=779, Unknown=0, NotChecked=0, Total=992 [2018-11-23 03:31:28,675 INFO L87 Difference]: Start difference. First operand 104 states and 131 transitions. Second operand 22 states. [2018-11-23 03:31:29,100 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:29,100 INFO L93 Difference]: Finished difference Result 287 states and 562 transitions. [2018-11-23 03:31:29,100 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 26 states. [2018-11-23 03:31:29,100 INFO L78 Accepts]: Start accepts. Automaton has 22 states. Word has length 1335 [2018-11-23 03:31:29,101 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:29,102 INFO L225 Difference]: With dead ends: 287 [2018-11-23 03:31:29,102 INFO L226 Difference]: Without dead ends: 132 [2018-11-23 03:31:29,104 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 2703 GetRequests, 2638 SyntacticMatches, 20 SemanticMatches, 45 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 604 ImplicationChecksByTransitivity, 0.4s TimeCoverageRelationStatistics Valid=601, Invalid=1561, Unknown=0, NotChecked=0, Total=2162 [2018-11-23 03:31:29,105 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 132 states. [2018-11-23 03:31:29,112 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 132 to 117. [2018-11-23 03:31:29,112 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 117 states. [2018-11-23 03:31:29,113 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 117 states to 117 states and 152 transitions. [2018-11-23 03:31:29,113 INFO L78 Accepts]: Start accepts. Automaton has 117 states and 152 transitions. Word has length 1335 [2018-11-23 03:31:29,114 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:29,114 INFO L480 AbstractCegarLoop]: Abstraction has 117 states and 152 transitions. [2018-11-23 03:31:29,114 INFO L481 AbstractCegarLoop]: Interpolant automaton has 22 states. [2018-11-23 03:31:29,114 INFO L276 IsEmpty]: Start isEmpty. Operand 117 states and 152 transitions. [2018-11-23 03:31:29,135 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 2085 [2018-11-23 03:31:29,136 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:29,136 INFO L402 BasicCegarLoop]: trace histogram [305, 305, 247, 152, 152, 152, 152, 152, 152, 152, 95, 58, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:29,136 INFO L423 AbstractCegarLoop]: === Iteration 14 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:29,136 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:29,137 INFO L82 PathProgramCache]: Analyzing trace with hash 1425875065, now seen corresponding path program 10 times [2018-11-23 03:31:29,137 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:29,137 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:29,138 INFO L101 rtionOrderModulation]: Changing assertion order to NOT_INCREMENTALLY [2018-11-23 03:31:29,138 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:29,138 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:29,232 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:30,557 INFO L134 CoverageAnalysis]: Checked inductivity of 261725 backedges. 9313 proven. 6173 refuted. 0 times theorem prover too weak. 246239 trivial. 0 not checked. [2018-11-23 03:31:30,557 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:30,557 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode ABSTRACT_INTERPRETATION [2018-11-23 03:31:30,557 INFO L184 CegarAbsIntRunner]: Skipping current iteration for AI because we have already analyzed this path program [2018-11-23 03:31:30,558 INFO L422 seRefinementStrategy]: Interpolation failed due to KNOWN_IGNORE: AbsInt can only provide a hoare triple checker if it generated fixpoints [2018-11-23 03:31:30,558 INFO L300 seRefinementStrategy]: The current sequences of interpolants are not accepted, trying to find more. [2018-11-23 03:31:30,558 INFO L192 anRefinementStrategy]: Switched to InterpolantGenerator mode Z3_IG No working directory specified, using /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/z3 Starting monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 (exit command is (exit), workingDir is null) Waiting until toolchain timeout for monitored process 12 with z3 -smt2 -in SMTLIB2_COMPLIANT=true -t:12000 [2018-11-23 03:31:30,563 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:30,564 INFO L286 anRefinementStrategy]: Using traceCheck mode Z3_IG with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: FPandBP) [2018-11-23 03:31:30,920 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is unsat [2018-11-23 03:31:30,948 INFO L273 TraceCheckSpWp]: Computing forward predicates... [2018-11-23 03:31:31,976 INFO L134 CoverageAnalysis]: Checked inductivity of 261725 backedges. 3326 proven. 12152 refuted. 0 times theorem prover too weak. 246247 trivial. 0 not checked. [2018-11-23 03:31:31,976 INFO L316 TraceCheckSpWp]: Computing backward predicates... [2018-11-23 03:31:36,480 INFO L134 CoverageAnalysis]: Checked inductivity of 261725 backedges. 3322 proven. 12248 refuted. 0 times theorem prover too weak. 246155 trivial. 0 not checked. [2018-11-23 03:31:36,496 INFO L312 seRefinementStrategy]: Constructing automaton from 0 perfect and 3 imperfect interpolant sequences. [2018-11-23 03:31:36,497 INFO L327 seRefinementStrategy]: Number of different interpolants: perfect sequences [] imperfect sequences [16, 14, 22] total 28 [2018-11-23 03:31:36,497 INFO L249 anRefinementStrategy]: Using the first two imperfect interpolant sequences [2018-11-23 03:31:36,498 INFO L459 AbstractCegarLoop]: Interpolant automaton has 18 states [2018-11-23 03:31:36,498 INFO L142 InterpolantAutomaton]: Constructing interpolant automaton starting with 18 interpolants. [2018-11-23 03:31:36,498 INFO L144 InterpolantAutomaton]: CoverageRelationStatistics Valid=218, Invalid=538, Unknown=0, NotChecked=0, Total=756 [2018-11-23 03:31:36,499 INFO L87 Difference]: Start difference. First operand 117 states and 152 transitions. Second operand 18 states. [2018-11-23 03:31:36,646 INFO L144 Difference]: Subtrahend was deterministic. Have not used determinization. [2018-11-23 03:31:36,646 INFO L93 Difference]: Finished difference Result 192 states and 383 transitions. [2018-11-23 03:31:36,646 INFO L142 InterpolantAutomaton]: Switched to read-only mode: deterministic interpolant automaton has 15 states. [2018-11-23 03:31:36,646 INFO L78 Accepts]: Start accepts. Automaton has 18 states. Word has length 2084 [2018-11-23 03:31:36,649 INFO L84 Accepts]: Finished accepts. some prefix is accepted. [2018-11-23 03:31:36,651 INFO L225 Difference]: With dead ends: 192 [2018-11-23 03:31:36,651 INFO L226 Difference]: Without dead ends: 117 [2018-11-23 03:31:36,652 INFO L631 BasicCegarLoop]: 0 DeclaredPredicates, 4199 GetRequests, 4144 SyntacticMatches, 20 SemanticMatches, 35 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 433 ImplicationChecksByTransitivity, 0.3s TimeCoverageRelationStatistics Valid=461, Invalid=871, Unknown=0, NotChecked=0, Total=1332 [2018-11-23 03:31:36,652 INFO L82 GeneralOperation]: Start minimizeSevpa. Operand 117 states. [2018-11-23 03:31:36,658 INFO L88 GeneralOperation]: Finished minimizeSevpa. Reduced states from 117 to 117. [2018-11-23 03:31:36,659 INFO L82 GeneralOperation]: Start removeUnreachable. Operand 117 states. [2018-11-23 03:31:36,659 INFO L88 GeneralOperation]: Finished removeUnreachable. Reduced from 117 states to 117 states and 140 transitions. [2018-11-23 03:31:36,660 INFO L78 Accepts]: Start accepts. Automaton has 117 states and 140 transitions. Word has length 2084 [2018-11-23 03:31:36,660 INFO L84 Accepts]: Finished accepts. word is rejected. [2018-11-23 03:31:36,660 INFO L480 AbstractCegarLoop]: Abstraction has 117 states and 140 transitions. [2018-11-23 03:31:36,660 INFO L481 AbstractCegarLoop]: Interpolant automaton has 18 states. [2018-11-23 03:31:36,661 INFO L276 IsEmpty]: Start isEmpty. Operand 117 states and 140 transitions. [2018-11-23 03:31:36,669 INFO L282 IsEmpty]: Finished isEmpty. Found accepting run of length 1213 [2018-11-23 03:31:36,669 INFO L394 BasicCegarLoop]: Found error trace [2018-11-23 03:31:36,669 INFO L402 BasicCegarLoop]: trace histogram [177, 177, 143, 88, 88, 88, 88, 88, 88, 88, 55, 34, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [2018-11-23 03:31:36,669 INFO L423 AbstractCegarLoop]: === Iteration 15 === [mainErr0ASSERT_VIOLATIONERROR_FUNCTION]=== [2018-11-23 03:31:36,670 INFO L141 PredicateUnifier]: Initialized classic predicate unifier [2018-11-23 03:31:36,670 INFO L82 PathProgramCache]: Analyzing trace with hash 452920407, now seen corresponding path program 11 times [2018-11-23 03:31:36,670 INFO L69 tionRefinementEngine]: Using refinement strategy TaipanRefinementStrategy [2018-11-23 03:31:36,671 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:36,671 INFO L103 rtionOrderModulation]: Keeping assertion order NOT_INCREMENTALLY [2018-11-23 03:31:36,671 INFO L119 rtionOrderModulation]: Craig_TreeInterpolation forces the order to NOT_INCREMENTALLY [2018-11-23 03:31:36,671 INFO L286 anRefinementStrategy]: Using traceCheck mode SMTINTERPOL with AssertCodeBlockOrder NOT_INCREMENTALLY (IT: Craig_TreeInterpolation) [2018-11-23 03:31:36,725 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 03:31:36,792 INFO L136 AnnotateAndAsserter]: Conjunction of SSA is sat [2018-11-23 03:31:36,841 INFO L469 BasicCegarLoop]: Counterexample might be feasible ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #33#return; [?] CALL call #t~ret3 := main(); [?] ~x~0 := 10; VAL [main_~x~0=10] [?] CALL call #t~ret2 := fibo(~x~0); VAL [|fibo_#in~n|=10] [?] ~n := #in~n; VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(~n < 1); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(1 == ~n); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=9] [?] ~n := #in~n; VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(~n < 1); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(1 == ~n); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #39#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #41#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21, |fibo_#t~ret1|=13] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] assume true; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] RET #39#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #41#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34, |fibo_#t~ret1|=21] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] assume true; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] RET #37#return; VAL [main_~x~0=10, |main_#t~ret2|=55] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647;~result~0 := #t~ret2;havoc #t~ret2; VAL [main_~result~0=55, main_~x~0=10] [?] assume 55 == ~result~0; VAL [main_~result~0=55, main_~x~0=10] [?] assume !false; VAL [main_~result~0=55, main_~x~0=10] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [L24] int x = 10; VAL [x=10] [L25] CALL, EXPR fibo(x) VAL [\old(n)=10] [L6] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L8] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=9] [L6] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L8] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=9, fibo(n-1)=21, n=9] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=9, fibo(n-1)=21, fibo(n-2)=13, n=9] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=10, fibo(n-1)=34, n=10] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=10, fibo(n-1)=34, fibo(n-2)=21, n=10] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=55, x=10] [L25] int result = fibo(x); [L26] COND TRUE result == 55 VAL [result=55, x=10] [L27] __VERIFIER_error() VAL [result=55, x=10] ----- [2018-11-23 03:31:45,689 INFO L202 PluginConnector]: Adding new model de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction CFG 23.11 03:31:45 BoogieIcfgContainer [2018-11-23 03:31:45,689 INFO L132 PluginConnector]: ------------------------ END TraceAbstraction---------------------------- [2018-11-23 03:31:45,689 INFO L113 PluginConnector]: ------------------------Witness Printer---------------------------- [2018-11-23 03:31:45,690 INFO L271 PluginConnector]: Initializing Witness Printer... [2018-11-23 03:31:45,690 INFO L276 PluginConnector]: Witness Printer initialized [2018-11-23 03:31:45,690 INFO L185 PluginConnector]: Executing the observer RCFGCatcher from plugin Witness Printer for "de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder CFG 23.11 03:30:39" (3/4) ... [2018-11-23 03:31:45,692 INFO L138 WitnessPrinter]: Generating witness for reachability counterexample ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.rcfgbuilder.RCFGBacktranslator [?] CALL call ULTIMATE.init(); [?] assume true; [?] RET #33#return; [?] CALL call #t~ret3 := main(); [?] ~x~0 := 10; VAL [main_~x~0=10] [?] CALL call #t~ret2 := fibo(~x~0); VAL [|fibo_#in~n|=10] [?] ~n := #in~n; VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(~n < 1); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] assume !(1 == ~n); VAL [fibo_~n=10, |fibo_#in~n|=10] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=9] [?] ~n := #in~n; VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(~n < 1); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] assume !(1 == ~n); VAL [fibo_~n=9, |fibo_#in~n|=9] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #39#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #41#return; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#t~ret0|=21, |fibo_#t~ret1|=13] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] assume true; VAL [fibo_~n=9, |fibo_#in~n|=9, |fibo_#res|=34] [?] RET #39#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=8] [?] ~n := #in~n; VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(~n < 1); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] assume !(1 == ~n); VAL [fibo_~n=8, |fibo_#in~n|=8] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=7] [?] ~n := #in~n; VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(~n < 1); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] assume !(1 == ~n); VAL [fibo_~n=7, |fibo_#in~n|=7] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #39#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #41#return; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#t~ret0|=8, |fibo_#t~ret1|=5] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] assume true; VAL [fibo_~n=7, |fibo_#in~n|=7, |fibo_#res|=13] [?] RET #39#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=6] [?] ~n := #in~n; VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(~n < 1); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] assume !(1 == ~n); VAL [fibo_~n=6, |fibo_#in~n|=6] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=5] [?] ~n := #in~n; VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(~n < 1); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] assume !(1 == ~n); VAL [fibo_~n=5, |fibo_#in~n|=5] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #39#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #41#return; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#t~ret0|=3, |fibo_#t~ret1|=2] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] assume true; VAL [fibo_~n=5, |fibo_#in~n|=5, |fibo_#res|=5] [?] RET #39#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=4] [?] ~n := #in~n; VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(~n < 1); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] assume !(1 == ~n); VAL [fibo_~n=4, |fibo_#in~n|=4] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=3] [?] ~n := #in~n; VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(~n < 1); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] assume !(1 == ~n); VAL [fibo_~n=3, |fibo_#in~n|=3] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#t~ret0|=1, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] assume true; VAL [fibo_~n=3, |fibo_#in~n|=3, |fibo_#res|=2] [?] RET #39#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=2] [?] ~n := #in~n; VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(~n < 1); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] assume !(1 == ~n); VAL [fibo_~n=2, |fibo_#in~n|=2] [?] CALL call #t~ret0 := fibo(~n - 1); VAL [|fibo_#in~n|=1] [?] ~n := #in~n; VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume !(~n < 1); VAL [fibo_~n=1, |fibo_#in~n|=1] [?] assume 1 == ~n;#res := 1; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=1, |fibo_#in~n|=1, |fibo_#res|=1] [?] RET #39#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1] [?] CALL call #t~ret1 := fibo(~n - 2); VAL [|fibo_#in~n|=0] [?] ~n := #in~n; VAL [fibo_~n=0, |fibo_#in~n|=0] [?] assume ~n < 1;#res := 0; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] assume true; VAL [fibo_~n=0, |fibo_#in~n|=0, |fibo_#res|=0] [?] RET #41#return; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#t~ret0|=1, |fibo_#t~ret1|=0] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] assume true; VAL [fibo_~n=2, |fibo_#in~n|=2, |fibo_#res|=1] [?] RET #41#return; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#t~ret0|=2, |fibo_#t~ret1|=1] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] assume true; VAL [fibo_~n=4, |fibo_#in~n|=4, |fibo_#res|=3] [?] RET #41#return; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#t~ret0|=5, |fibo_#t~ret1|=3] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] assume true; VAL [fibo_~n=6, |fibo_#in~n|=6, |fibo_#res|=8] [?] RET #41#return; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#t~ret0|=13, |fibo_#t~ret1|=8] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] assume true; VAL [fibo_~n=8, |fibo_#in~n|=8, |fibo_#res|=21] [?] RET #41#return; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#t~ret0|=34, |fibo_#t~ret1|=21] [?] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647;#res := #t~ret0 + #t~ret1;havoc #t~ret0;havoc #t~ret1; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] assume true; VAL [fibo_~n=10, |fibo_#in~n|=10, |fibo_#res|=55] [?] RET #37#return; VAL [main_~x~0=10, |main_#t~ret2|=55] [?] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647;~result~0 := #t~ret2;havoc #t~ret2; VAL [main_~result~0=55, main_~x~0=10] [?] assume 55 == ~result~0; VAL [main_~result~0=55, main_~x~0=10] [?] assume !false; VAL [main_~result~0=55, main_~x~0=10] [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.preprocessor.BoogiePreprocessorBacktranslator [?] CALL call ULTIMATE.init(); [?] ensures true; [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6-L12] assume !(~n < 1); VAL [#in~n=10, ~n=10] [L8-L12] assume !(1 == ~n); VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6-L12] assume !(~n < 1); VAL [#in~n=9, ~n=9] [L8-L12] assume !(1 == ~n); VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L5-L13] ensures true; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6-L12] assume !(~n < 1); VAL [#in~n=8, ~n=8] [L8-L12] assume !(1 == ~n); VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6-L12] assume !(~n < 1); VAL [#in~n=7, ~n=7] [L8-L12] assume !(1 == ~n); VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L5-L13] ensures true; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6-L12] assume !(~n < 1); VAL [#in~n=6, ~n=6] [L8-L12] assume !(1 == ~n); VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6-L12] assume !(~n < 1); VAL [#in~n=5, ~n=5] [L8-L12] assume !(1 == ~n); VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L5-L13] ensures true; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6-L12] assume !(~n < 1); VAL [#in~n=4, ~n=4] [L8-L12] assume !(1 == ~n); VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6-L12] assume !(~n < 1); VAL [#in~n=3, ~n=3] [L8-L12] assume !(1 == ~n); VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L5-L13] ensures true; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6-L12] assume !(~n < 1); VAL [#in~n=2, ~n=2] [L8-L12] assume !(1 == ~n); VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6-L12] assume !(~n < 1); VAL [#in~n=1, ~n=1] [L8-L12] assume 1 == ~n; [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L5-L13] ensures true; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6-L12] assume ~n < 1; [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L5-L13] ensures true; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L5-L13] ensures true; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L5-L13] ensures true; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L5-L13] ensures true; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L5-L13] ensures true; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L5-L13] ensures true; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26-L28] assume 55 == ~result~0; VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.boogie.procedureinliner.backtranslation.InlinerBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] ----- ----- class de.uni_freiburg.informatik.ultimate.plugins.generator.cacsl2boogietranslator.CACSL2BoogieBacktranslator [?] CALL call ULTIMATE.init(); [?] RET call ULTIMATE.init(); [?] CALL call #t~ret3 := main(); [L24] ~x~0 := 10; VAL [~x~0=10] [L25] CALL call #t~ret2 := fibo(~x~0); VAL [#in~n=10] [L5-L13] ~n := #in~n; VAL [#in~n=10, ~n=10] [L6] COND FALSE !(~n < 1) VAL [#in~n=10, ~n=10] [L8] COND FALSE !(1 == ~n) VAL [#in~n=10, ~n=10] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=9] [L5-L13] ~n := #in~n; VAL [#in~n=9, ~n=9] [L6] COND FALSE !(~n < 1) VAL [#in~n=9, ~n=9] [L8] COND FALSE !(1 == ~n) VAL [#in~n=9, ~n=9] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=9, #t~ret0=21, ~n=9] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=9, #t~ret0=21, #t~ret1=13, ~n=9] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=9, #res=34, ~n=9] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=10, #t~ret0=34, ~n=10] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=8] [L5-L13] ~n := #in~n; VAL [#in~n=8, ~n=8] [L6] COND FALSE !(~n < 1) VAL [#in~n=8, ~n=8] [L8] COND FALSE !(1 == ~n) VAL [#in~n=8, ~n=8] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=7] [L5-L13] ~n := #in~n; VAL [#in~n=7, ~n=7] [L6] COND FALSE !(~n < 1) VAL [#in~n=7, ~n=7] [L8] COND FALSE !(1 == ~n) VAL [#in~n=7, ~n=7] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=7, #t~ret0=8, ~n=7] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=7, #t~ret0=8, #t~ret1=5, ~n=7] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=7, #res=13, ~n=7] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=8, #t~ret0=13, ~n=8] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=6] [L5-L13] ~n := #in~n; VAL [#in~n=6, ~n=6] [L6] COND FALSE !(~n < 1) VAL [#in~n=6, ~n=6] [L8] COND FALSE !(1 == ~n) VAL [#in~n=6, ~n=6] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=5] [L5-L13] ~n := #in~n; VAL [#in~n=5, ~n=5] [L6] COND FALSE !(~n < 1) VAL [#in~n=5, ~n=5] [L8] COND FALSE !(1 == ~n) VAL [#in~n=5, ~n=5] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=5, #t~ret0=3, ~n=5] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=5, #t~ret0=3, #t~ret1=2, ~n=5] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=5, #res=5, ~n=5] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=6, #t~ret0=5, ~n=6] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=4] [L5-L13] ~n := #in~n; VAL [#in~n=4, ~n=4] [L6] COND FALSE !(~n < 1) VAL [#in~n=4, ~n=4] [L8] COND FALSE !(1 == ~n) VAL [#in~n=4, ~n=4] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=3] [L5-L13] ~n := #in~n; VAL [#in~n=3, ~n=3] [L6] COND FALSE !(~n < 1) VAL [#in~n=3, ~n=3] [L8] COND FALSE !(1 == ~n) VAL [#in~n=3, ~n=3] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=3, #t~ret0=1, ~n=3] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=3, #t~ret0=1, #t~ret1=1, ~n=3] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=3, #res=2, ~n=3] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=4, #t~ret0=2, ~n=4] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=2] [L5-L13] ~n := #in~n; VAL [#in~n=2, ~n=2] [L6] COND FALSE !(~n < 1) VAL [#in~n=2, ~n=2] [L8] COND FALSE !(1 == ~n) VAL [#in~n=2, ~n=2] [L11] CALL call #t~ret0 := fibo(~n - 1); VAL [#in~n=1] [L5-L13] ~n := #in~n; VAL [#in~n=1, ~n=1] [L6] COND FALSE !(~n < 1) VAL [#in~n=1, ~n=1] [L8] COND TRUE 1 == ~n [L9] #res := 1; VAL [#in~n=1, #res=1, ~n=1] [L11] RET call #t~ret0 := fibo(~n - 1); VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] assume -2147483648 <= #t~ret0 && #t~ret0 <= 2147483647; VAL [#in~n=2, #t~ret0=1, ~n=2] [L11] CALL call #t~ret1 := fibo(~n - 2); VAL [#in~n=0] [L5-L13] ~n := #in~n; VAL [#in~n=0, ~n=0] [L6] COND TRUE ~n < 1 [L7] #res := 0; VAL [#in~n=0, #res=0, ~n=0] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=2, #t~ret0=1, #t~ret1=0, ~n=2] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=2, #res=1, ~n=2] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=4, #t~ret0=2, #t~ret1=1, ~n=4] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=4, #res=3, ~n=4] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=6, #t~ret0=5, #t~ret1=3, ~n=6] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=6, #res=8, ~n=6] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=8, #t~ret0=13, #t~ret1=8, ~n=8] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=8, #res=21, ~n=8] [L11] RET call #t~ret1 := fibo(~n - 2); VAL [#in~n=10, #t~ret0=34, #t~ret1=21, ~n=10] [L11] assume -2147483648 <= #t~ret1 && #t~ret1 <= 2147483647; [L11] #res := #t~ret0 + #t~ret1; [L11] havoc #t~ret0; [L11] havoc #t~ret1; VAL [#in~n=10, #res=55, ~n=10] [L25] RET call #t~ret2 := fibo(~x~0); VAL [#t~ret2=55, ~x~0=10] [L25] assume -2147483648 <= #t~ret2 && #t~ret2 <= 2147483647; [L25] ~result~0 := #t~ret2; [L25] havoc #t~ret2; VAL [~result~0=55, ~x~0=10] [L26] COND TRUE 55 == ~result~0 VAL [~result~0=55, ~x~0=10] [L27] assert false; VAL [~result~0=55, ~x~0=10] [L24] int x = 10; VAL [x=10] [L25] CALL, EXPR fibo(x) VAL [\old(n)=10] [L6] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L8] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=9] [L6] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L8] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=9, fibo(n-1)=21, n=9] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=9, fibo(n-1)=21, fibo(n-2)=13, n=9] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=10, fibo(n-1)=34, n=10] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=10, fibo(n-1)=34, fibo(n-2)=21, n=10] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=55, x=10] [L25] int result = fibo(x); [L26] COND TRUE result == 55 VAL [result=55, x=10] [L27] __VERIFIER_error() VAL [result=55, x=10] ----- [2018-11-23 03:32:13,630 INFO L145 WitnessManager]: Wrote witness to /tmp/vcloud-vcloud-master/worker/working_dir_6dd4a9c9-7063-4f31-8691-01c000f12b90/bin-2019/utaipan/witness.graphml [2018-11-23 03:32:13,630 INFO L132 PluginConnector]: ------------------------ END Witness Printer---------------------------- [2018-11-23 03:32:13,631 INFO L168 Benchmark]: Toolchain (without parser) took 94340.27 ms. Allocated memory was 1.0 GB in the beginning and 6.1 GB in the end (delta: 5.0 GB). Free memory was 959.1 MB in the beginning and 2.4 GB in the end (delta: -1.4 GB). Peak memory consumption was 3.6 GB. Max. memory is 11.5 GB. [2018-11-23 03:32:13,632 INFO L168 Benchmark]: CDTParser took 0.13 ms. Allocated memory is still 1.0 GB. Free memory is still 985.4 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 03:32:13,632 INFO L168 Benchmark]: CACSL2BoogieTranslator took 151.89 ms. Allocated memory is still 1.0 GB. Free memory was 959.1 MB in the beginning and 948.4 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. [2018-11-23 03:32:13,633 INFO L168 Benchmark]: Boogie Procedure Inliner took 12.28 ms. Allocated memory is still 1.0 GB. Free memory is still 948.4 MB. There was no memory consumed. Max. memory is 11.5 GB. [2018-11-23 03:32:13,633 INFO L168 Benchmark]: Boogie Preprocessor took 11.61 ms. Allocated memory is still 1.0 GB. Free memory was 948.4 MB in the beginning and 945.7 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. [2018-11-23 03:32:13,633 INFO L168 Benchmark]: RCFGBuilder took 174.18 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 153.1 MB). Free memory was 945.7 MB in the beginning and 1.1 GB in the end (delta: -191.4 MB). Peak memory consumption was 14.4 MB. Max. memory is 11.5 GB. [2018-11-23 03:32:13,633 INFO L168 Benchmark]: TraceAbstraction took 66046.16 ms. Allocated memory was 1.2 GB in the beginning and 6.1 GB in the end (delta: 4.9 GB). Free memory was 1.1 GB in the beginning and 2.5 GB in the end (delta: -1.3 GB). Peak memory consumption was 3.6 GB. Max. memory is 11.5 GB. [2018-11-23 03:32:13,634 INFO L168 Benchmark]: Witness Printer took 27940.91 ms. Allocated memory is still 6.1 GB. Free memory was 2.5 GB in the beginning and 2.4 GB in the end (delta: 74.5 MB). Peak memory consumption was 74.5 MB. Max. memory is 11.5 GB. [2018-11-23 03:32:13,635 INFO L336 ainManager$Toolchain]: ####################### End [Toolchain 1] ####################### --- Results --- * Results from de.uni_freiburg.informatik.ultimate.core: - StatisticsResult: Toolchain Benchmarks Benchmark results are: * CDTParser took 0.13 ms. Allocated memory is still 1.0 GB. Free memory is still 985.4 MB. There was no memory consumed. Max. memory is 11.5 GB. * CACSL2BoogieTranslator took 151.89 ms. Allocated memory is still 1.0 GB. Free memory was 959.1 MB in the beginning and 948.4 MB in the end (delta: 10.7 MB). Peak memory consumption was 10.7 MB. Max. memory is 11.5 GB. * Boogie Procedure Inliner took 12.28 ms. Allocated memory is still 1.0 GB. Free memory is still 948.4 MB. There was no memory consumed. Max. memory is 11.5 GB. * Boogie Preprocessor took 11.61 ms. Allocated memory is still 1.0 GB. Free memory was 948.4 MB in the beginning and 945.7 MB in the end (delta: 2.7 MB). Peak memory consumption was 2.7 MB. Max. memory is 11.5 GB. * RCFGBuilder took 174.18 ms. Allocated memory was 1.0 GB in the beginning and 1.2 GB in the end (delta: 153.1 MB). Free memory was 945.7 MB in the beginning and 1.1 GB in the end (delta: -191.4 MB). Peak memory consumption was 14.4 MB. Max. memory is 11.5 GB. * TraceAbstraction took 66046.16 ms. Allocated memory was 1.2 GB in the beginning and 6.1 GB in the end (delta: 4.9 GB). Free memory was 1.1 GB in the beginning and 2.5 GB in the end (delta: -1.3 GB). Peak memory consumption was 3.6 GB. Max. memory is 11.5 GB. * Witness Printer took 27940.91 ms. Allocated memory is still 6.1 GB. Free memory was 2.5 GB in the beginning and 2.4 GB in the end (delta: 74.5 MB). Peak memory consumption was 74.5 MB. Max. memory is 11.5 GB. * Results from de.uni_freiburg.informatik.ultimate.plugins.generator.traceabstraction: - CounterExampleResult [Line: 27]: a call of __VERIFIER_error() is reachable a call of __VERIFIER_error() is reachable We found a FailurePath: [L24] int x = 10; VAL [x=10] [L25] CALL, EXPR fibo(x) VAL [\old(n)=10] [L6] COND FALSE !(n < 1) VAL [\old(n)=10, n=10] [L8] COND FALSE !(n == 1) VAL [\old(n)=10, n=10] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=9] [L6] COND FALSE !(n < 1) VAL [\old(n)=9, n=9] [L8] COND FALSE !(n == 1) VAL [\old(n)=9, n=9] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=9, fibo(n-1)=21, n=9] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=9, fibo(n-1)=21, fibo(n-2)=13, n=9] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=10, fibo(n-1)=34, n=10] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=8] [L6] COND FALSE !(n < 1) VAL [\old(n)=8, n=8] [L8] COND FALSE !(n == 1) VAL [\old(n)=8, n=8] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=7] [L6] COND FALSE !(n < 1) VAL [\old(n)=7, n=7] [L8] COND FALSE !(n == 1) VAL [\old(n)=7, n=7] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=7, fibo(n-1)=8, n=7] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=7, fibo(n-1)=8, fibo(n-2)=5, n=7] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=8, fibo(n-1)=13, n=8] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=6] [L6] COND FALSE !(n < 1) VAL [\old(n)=6, n=6] [L8] COND FALSE !(n == 1) VAL [\old(n)=6, n=6] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=5] [L6] COND FALSE !(n < 1) VAL [\old(n)=5, n=5] [L8] COND FALSE !(n == 1) VAL [\old(n)=5, n=5] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=5, fibo(n-1)=3, n=5] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=5, fibo(n-1)=3, fibo(n-2)=2, n=5] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=6, fibo(n-1)=5, n=6] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=4] [L6] COND FALSE !(n < 1) VAL [\old(n)=4, n=4] [L8] COND FALSE !(n == 1) VAL [\old(n)=4, n=4] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=3] [L6] COND FALSE !(n < 1) VAL [\old(n)=3, n=3] [L8] COND FALSE !(n == 1) VAL [\old(n)=3, n=3] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=3, fibo(n-1)=1, n=3] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=3, fibo(n-1)=1, fibo(n-2)=1, n=3] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-1) VAL [\old(n)=4, fibo(n-1)=2, n=4] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=2] [L6] COND FALSE !(n < 1) VAL [\old(n)=2, n=2] [L8] COND FALSE !(n == 1) VAL [\old(n)=2, n=2] [L11] CALL, EXPR fibo(n-1) VAL [\old(n)=1] [L6] COND FALSE !(n < 1) VAL [\old(n)=1, n=1] [L8] COND TRUE n == 1 [L9] return 1; VAL [\old(n)=1, \result=1, n=1] [L11] RET, EXPR fibo(n-1) VAL [\old(n)=2, fibo(n-1)=1, n=2] [L11] CALL, EXPR fibo(n-2) VAL [\old(n)=0] [L6] COND TRUE n < 1 [L7] return 0; VAL [\old(n)=0, \result=0, n=0] [L11] RET, EXPR fibo(n-2) VAL [\old(n)=2, fibo(n-1)=1, fibo(n-2)=0, n=2] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=4, fibo(n-1)=2, fibo(n-2)=1, n=4] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=6, fibo(n-1)=5, fibo(n-2)=3, n=6] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=8, fibo(n-1)=13, fibo(n-2)=8, n=8] [L11] return fibo(n-1) + fibo(n-2); [L11] RET, EXPR fibo(n-2) VAL [\old(n)=10, fibo(n-1)=34, fibo(n-2)=21, n=10] [L11] return fibo(n-1) + fibo(n-2); [L25] RET, EXPR fibo(x) VAL [fibo(x)=55, x=10] [L25] int result = fibo(x); [L26] COND TRUE result == 55 VAL [result=55, x=10] [L27] __VERIFIER_error() VAL [result=55, x=10] - StatisticsResult: Ultimate Automizer benchmark data CFG has 4 procedures, 24 locations, 1 error locations. UNSAFE Result, 66.0s OverallTime, 15 OverallIterations, 305 TraceHistogramMax, 2.3s AutomataDifference, 0.0s DeadEndRemovalTime, 0.0s HoareAnnotationTime, HoareTripleCheckerStatistics: 314 SDtfs, 505 SDslu, 1189 SDs, 0 SdLazy, 1852 SolverSat, 623 SolverUnsat, 0 SolverUnknown, 0 SolverNotchecked, 0.9s Time, PredicateUnifierStatistics: 2 DeclaredPredicates, 12092 GetRequests, 11646 SyntacticMatches, 139 SemanticMatches, 307 ConstructedPredicates, 0 IntricatePredicates, 0 DeprecatedPredicates, 2261 ImplicationChecksByTransitivity, 2.7s Time, 0.0s BasicInterpolantAutomatonTime, BiggestAbstraction: size=117occurred in iteration=13, traceCheckStatistics: No data available, InterpolantConsolidationStatistics: No data available, PathInvariantsStatistics: No data available, 0/0 InterpolantCoveringCapability, TotalInterpolationStatistics: No data available, 31.8s AbstIntTime, 2 AbstIntIterations, 1 AbstIntStrong, 0.6966666666666665 AbsIntWeakeningRatio, 0.56 AbsIntAvgWeakeningVarsNumRemoved, 0.84 AbsIntAvgWeakenedConjuncts, 0.0s DumpTime, AutomataMinimizationStatistics: 0.1s AutomataMinimizationTime, 14 MinimizatonAttempts, 163 StatesRemovedByMinimization, 12 NontrivialMinimizations, HoareAnnotationStatistics: No data available, RefinementEngineStatistics: TraceCheckStatistics: 0.2s SsaConstructionTime, 1.0s SatisfiabilityAnalysisTime, 18.4s InterpolantComputationTime, 13085 NumberOfCodeBlocks, 12125 NumberOfCodeBlocksAsserted, 87 NumberOfCheckSat, 17747 ConstructedInterpolants, 0 QuantifiedInterpolants, 24589044 SizeOfPredicates, 78 NumberOfNonLiveVariables, 10801 ConjunctsInSsa, 155 ConjunctsInUnsatCore, 36 InterpolantComputations, 3 PerfectInterpolantSequences, 1222308/1300782 InterpolantCoveringCapability, InvariantSynthesisStatistics: No data available, InterpolantConsolidationStatistics: No data available, ReuseStatistics: No data available RESULT: Ultimate proved your program to be incorrect! Received shutdown request...