typedef unsigned char __u_char; typedef unsigned short int __u_short; typedef unsigned int __u_int; typedef unsigned long int __u_long; typedef signed char __int8_t; typedef unsigned char __uint8_t; typedef signed short int __int16_t; typedef unsigned short int __uint16_t; typedef signed int __int32_t; typedef unsigned int __uint32_t; typedef signed long int __int64_t; typedef unsigned long int __uint64_t; typedef long int __quad_t; typedef unsigned long int __u_quad_t; typedef long int __intmax_t; typedef unsigned long int __uintmax_t; typedef unsigned long int __dev_t; typedef unsigned int __uid_t; typedef unsigned int __gid_t; typedef unsigned long int __ino_t; typedef unsigned long int __ino64_t; typedef unsigned int __mode_t; typedef unsigned long int __nlink_t; typedef long int __off_t; typedef long int __off64_t; typedef int __pid_t; typedef struct { int __val[2]; } __fsid_t; typedef long int __clock_t; typedef unsigned long int __rlim_t; typedef unsigned long int __rlim64_t; typedef unsigned int __id_t; typedef long int __time_t; typedef unsigned int __useconds_t; typedef long int __suseconds_t; typedef int __daddr_t; typedef int __key_t; typedef int __clockid_t; typedef void * __timer_t; typedef long int __blksize_t; typedef long int __blkcnt_t; typedef long int __blkcnt64_t; typedef unsigned long int __fsblkcnt_t; typedef unsigned long int __fsblkcnt64_t; typedef unsigned long int __fsfilcnt_t; typedef unsigned long int __fsfilcnt64_t; typedef long int __fsword_t; typedef long int __ssize_t; typedef long int __syscall_slong_t; typedef unsigned long int __syscall_ulong_t; typedef __off64_t __loff_t; typedef char *__caddr_t; typedef long int __intptr_t; typedef unsigned int __socklen_t; typedef int __sig_atomic_t; typedef __int8_t int8_t; typedef __int16_t int16_t; typedef __int32_t int32_t; typedef __int64_t int64_t; typedef __uint8_t uint8_t; typedef __uint16_t uint16_t; typedef __uint32_t uint32_t; typedef __uint64_t uint64_t; typedef signed char int_least8_t; typedef short int int_least16_t; typedef int int_least32_t; typedef long int int_least64_t; typedef unsigned char uint_least8_t; typedef unsigned short int uint_least16_t; typedef unsigned int uint_least32_t; typedef unsigned long int uint_least64_t; typedef signed char int_fast8_t; typedef long int int_fast16_t; typedef long int int_fast32_t; typedef long int int_fast64_t; typedef unsigned char uint_fast8_t; typedef unsigned long int uint_fast16_t; typedef unsigned long int uint_fast32_t; typedef unsigned long int uint_fast64_t; typedef long int intptr_t; typedef unsigned long int uintptr_t; typedef __intmax_t intmax_t; typedef __uintmax_t uintmax_t; typedef int __gwchar_t; typedef struct { long int quot; long int rem; } imaxdiv_t; extern intmax_t imaxabs (intmax_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern imaxdiv_t imaxdiv (intmax_t __numer, intmax_t __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern intmax_t strtoimax (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern uintmax_t strtoumax (const char *__restrict __nptr, char ** __restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern intmax_t wcstoimax (const __gwchar_t *__restrict __nptr, __gwchar_t **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern uintmax_t wcstoumax (const __gwchar_t *__restrict __nptr, __gwchar_t ** __restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); typedef _Bool bool; extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "aws_hash_iter_begin_harness.i", 208, "reach_error"); } extern void abort(void); void assume_abort_if_not(_Bool cond) { if(!cond) {abort();} } extern const void *__VERIFIER_base_pointer(const void *ptr); extern _Bool __VERIFIER_nondet_bool(); extern int __VERIFIER_nondet_int(); extern short __VERIFIER_nondet_short(); extern unsigned int __VERIFIER_nondet_uint(); extern unsigned long __VERIFIER_nondet_ulong(); extern unsigned char __VERIFIER_nondet_uchar(); void __VERIFIER_assert(_Bool cond) { if(!cond) {reach_error();abort();} } void my_abort(void) { {reach_error();} } void __CPROVER_allocated_memory(unsigned long address, unsigned long extent) { } uint64_t __CPROVER_uninterpreted_hasher(const void *const a) { return (uint64_t)a; } bool __CPROVER_uninterpreted_equals(const void *const a, const void *const b) { return a == b; } int __CPROVER_uninterpreted_compare(const void *const a, const void *const b) { return a < b ? -1 : a > b ? 1 : 0; } _Bool __CPROVER_overflow_plus(unsigned long a, unsigned long b) { unsigned long c; return __builtin_uaddl_overflow(a, b, &c); } _Bool __CPROVER_overflow_mult(unsigned long a, unsigned long b) { unsigned long c; return __builtin_umull_overflow(a, b, &c); } _Bool nondet_bool() { return __VERIFIER_nondet_bool(); } int nondet_int() { return __VERIFIER_nondet_int(); } unsigned long nondet_size_t() { return __VERIFIER_nondet_ulong(); } uint16_t nondet_uint16_t() { return __VERIFIER_nondet_short(); } uint32_t nondet_uint32_t() { return __VERIFIER_nondet_uint(); } uint64_t nondet_uint64_t() { return __VERIFIER_nondet_ulong(); } uint8_t nondet_uint8_t() { return __VERIFIER_nondet_uchar(); } void *nondet_voidp() { return (void *)__VERIFIER_nondet_ulong(); } typedef char static_assertion_at_line_48[(!!(1 == 1)) * 2 - 1]; typedef char static_assertion_at_line_49[(!!(2 == 2)) * 2 - 1]; typedef char static_assertion_at_line_50[(!!(3 == 3)) * 2 - 1]; typedef long unsigned int size_t; struct _IO_FILE; typedef struct _IO_FILE __FILE; struct _IO_FILE; typedef struct _IO_FILE FILE; typedef struct { int __count; union { unsigned int __wch; char __wchb[4]; } __value; } __mbstate_t; typedef struct { __off_t __pos; __mbstate_t __state; } _G_fpos_t; typedef struct { __off64_t __pos; __mbstate_t __state; } _G_fpos64_t; typedef __builtin_va_list __gnuc_va_list; struct _IO_jump_t; struct _IO_FILE; typedef void _IO_lock_t; struct _IO_marker { struct _IO_marker *_next; struct _IO_FILE *_sbuf; int _pos; }; enum __codecvt_result { __codecvt_ok, __codecvt_partial, __codecvt_error, __codecvt_noconv }; struct _IO_FILE { int _flags; char* _IO_read_ptr; char* _IO_read_end; char* _IO_read_base; char* _IO_write_base; char* _IO_write_ptr; char* _IO_write_end; char* _IO_buf_base; char* _IO_buf_end; char *_IO_save_base; char *_IO_backup_base; char *_IO_save_end; struct _IO_marker *_markers; struct _IO_FILE *_chain; int _fileno; int _flags2; __off_t _old_offset; unsigned short _cur_column; signed char _vtable_offset; char _shortbuf[1]; _IO_lock_t *_lock; __off64_t _offset; void *__pad1; void *__pad2; void *__pad3; void *__pad4; size_t __pad5; int _mode; char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)]; }; typedef struct _IO_FILE _IO_FILE; struct _IO_FILE_plus; extern struct _IO_FILE_plus _IO_2_1_stdin_; extern struct _IO_FILE_plus _IO_2_1_stdout_; extern struct _IO_FILE_plus _IO_2_1_stderr_; typedef __ssize_t __io_read_fn (void *__cookie, char *__buf, size_t __nbytes); typedef __ssize_t __io_write_fn (void *__cookie, const char *__buf, size_t __n); typedef int __io_seek_fn (void *__cookie, __off64_t *__pos, int __w); typedef int __io_close_fn (void *__cookie); extern int __underflow (_IO_FILE *); extern int __uflow (_IO_FILE *); extern int __overflow (_IO_FILE *, int); extern int _IO_getc (_IO_FILE *__fp); extern int _IO_putc (int __c, _IO_FILE *__fp); extern int _IO_feof (_IO_FILE *__fp) __attribute__ ((__nothrow__ , __leaf__)); extern int _IO_ferror (_IO_FILE *__fp) __attribute__ ((__nothrow__ , __leaf__)); extern int _IO_peekc_locked (_IO_FILE *__fp); extern void _IO_flockfile (_IO_FILE *) __attribute__ ((__nothrow__ , __leaf__)); extern void _IO_funlockfile (_IO_FILE *) __attribute__ ((__nothrow__ , __leaf__)); extern int _IO_ftrylockfile (_IO_FILE *) __attribute__ ((__nothrow__ , __leaf__)); extern int _IO_vfscanf (_IO_FILE * __restrict, const char * __restrict, __gnuc_va_list, int *__restrict); extern int _IO_vfprintf (_IO_FILE *__restrict, const char *__restrict, __gnuc_va_list); extern __ssize_t _IO_padn (_IO_FILE *, int, __ssize_t); extern size_t _IO_sgetn (_IO_FILE *, void *, size_t); extern __off64_t _IO_seekoff (_IO_FILE *, __off64_t, int, int); extern __off64_t _IO_seekpos (_IO_FILE *, __off64_t, int); extern void _IO_free_backup_area (_IO_FILE *) __attribute__ ((__nothrow__ , __leaf__)); typedef __gnuc_va_list va_list; typedef __off_t off_t; typedef __ssize_t ssize_t; typedef _G_fpos_t fpos_t; extern struct _IO_FILE *stdin; extern struct _IO_FILE *stdout; extern struct _IO_FILE *stderr; extern int remove (const char *__filename) __attribute__ ((__nothrow__ , __leaf__)); extern int rename (const char *__old, const char *__new) __attribute__ ((__nothrow__ , __leaf__)); extern int renameat (int __oldfd, const char *__old, int __newfd, const char *__new) __attribute__ ((__nothrow__ , __leaf__)); extern FILE *tmpfile (void) ; extern char *tmpnam (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ; extern char *tmpnam_r (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ; extern char *tempnam (const char *__dir, const char *__pfx) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ; extern int fclose (FILE *__stream); extern int fflush (FILE *__stream); extern int fflush_unlocked (FILE *__stream); extern FILE *fopen (const char *__restrict __filename, const char *__restrict __modes) ; extern FILE *freopen (const char *__restrict __filename, const char *__restrict __modes, FILE *__restrict __stream) ; extern FILE *fdopen (int __fd, const char *__modes) __attribute__ ((__nothrow__ , __leaf__)) ; extern FILE *fmemopen (void *__s, size_t __len, const char *__modes) __attribute__ ((__nothrow__ , __leaf__)) ; extern FILE *open_memstream (char **__bufloc, size_t *__sizeloc) __attribute__ ((__nothrow__ , __leaf__)) ; extern void setbuf (FILE *__restrict __stream, char *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)); extern int setvbuf (FILE *__restrict __stream, char *__restrict __buf, int __modes, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern void setbuffer (FILE *__restrict __stream, char *__restrict __buf, size_t __size) __attribute__ ((__nothrow__ , __leaf__)); extern void setlinebuf (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int fprintf (FILE *__restrict __stream, const char *__restrict __format, ...); extern int printf (const char *__restrict __format, ...); extern int sprintf (char *__restrict __s, const char *__restrict __format, ...) __attribute__ ((__nothrow__)); extern int vfprintf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg); extern int vprintf (const char *__restrict __format, __gnuc_va_list __arg); extern int vsprintf (char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__)); extern int snprintf (char *__restrict __s, size_t __maxlen, const char *__restrict __format, ...) __attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 4))); extern int vsnprintf (char *__restrict __s, size_t __maxlen, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 0))); extern int vdprintf (int __fd, const char *__restrict __fmt, __gnuc_va_list __arg) __attribute__ ((__format__ (__printf__, 2, 0))); extern int dprintf (int __fd, const char *__restrict __fmt, ...) __attribute__ ((__format__ (__printf__, 2, 3))); extern int fscanf (FILE *__restrict __stream, const char *__restrict __format, ...) ; extern int scanf (const char *__restrict __format, ...) ; extern int sscanf (const char *__restrict __s, const char *__restrict __format, ...) __attribute__ ((__nothrow__ , __leaf__)); extern int fscanf (FILE *__restrict __stream, const char *__restrict __format, ...) __asm__ ("" "__isoc99_fscanf") ; extern int scanf (const char *__restrict __format, ...) __asm__ ("" "__isoc99_scanf") ; extern int sscanf (const char *__restrict __s, const char *__restrict __format, ...) __asm__ ("" "__isoc99_sscanf") __attribute__ ((__nothrow__ , __leaf__)) ; extern int vfscanf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 2, 0))) ; extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 1, 0))) ; extern int vsscanf (const char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__format__ (__scanf__, 2, 0))); extern int vfscanf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vfscanf") __attribute__ ((__format__ (__scanf__, 2, 0))) ; extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vscanf") __attribute__ ((__format__ (__scanf__, 1, 0))) ; extern int vsscanf (const char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vsscanf") __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__format__ (__scanf__, 2, 0))); extern int fgetc (FILE *__stream); extern int getc (FILE *__stream); extern int getchar (void); extern int getc_unlocked (FILE *__stream); extern int getchar_unlocked (void); extern int fgetc_unlocked (FILE *__stream); extern int fputc (int __c, FILE *__stream); extern int putc (int __c, FILE *__stream); extern int putchar (int __c); extern int fputc_unlocked (int __c, FILE *__stream); extern int putc_unlocked (int __c, FILE *__stream); extern int putchar_unlocked (int __c); extern int getw (FILE *__stream); extern int putw (int __w, FILE *__stream); extern char *fgets (char *__restrict __s, int __n, FILE *__restrict __stream) ; extern __ssize_t __getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) ; extern __ssize_t getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) ; extern __ssize_t getline (char **__restrict __lineptr, size_t *__restrict __n, FILE *__restrict __stream) ; extern int fputs (const char *__restrict __s, FILE *__restrict __stream); extern int puts (const char *__s); extern int ungetc (int __c, FILE *__stream); extern size_t fread (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) ; extern size_t fwrite (const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __s); extern size_t fread_unlocked (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) ; extern size_t fwrite_unlocked (const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream); extern int fseek (FILE *__stream, long int __off, int __whence); extern long int ftell (FILE *__stream) ; extern void rewind (FILE *__stream); extern int fseeko (FILE *__stream, __off_t __off, int __whence); extern __off_t ftello (FILE *__stream) ; extern int fgetpos (FILE *__restrict __stream, fpos_t *__restrict __pos); extern int fsetpos (FILE *__stream, const fpos_t *__pos); extern void clearerr (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int feof (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int ferror (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void clearerr_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int feof_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int ferror_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void perror (const char *__s); extern int sys_nerr; extern const char *const sys_errlist[]; extern int fileno (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int fileno_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern FILE *popen (const char *__command, const char *__modes) ; extern int pclose (FILE *__stream); extern char *ctermid (char *__s) __attribute__ ((__nothrow__ , __leaf__)); extern void flockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int ftrylockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void funlockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); void aws_fatal_assert(const char *cond_str, const char *file, int line) __attribute__((noreturn)); void aws_backtrace_print(FILE *fp, void *call_site_data); typedef long int ptrdiff_t; typedef int wchar_t; typedef struct { long long __max_align_ll __attribute__((__aligned__(__alignof__(long long)))); long double __max_align_ld __attribute__((__aligned__(__alignof__(long double)))); } max_align_t; typedef enum { P_ALL, P_PID, P_PGID } idtype_t; typedef struct { int quot; int rem; } div_t; typedef struct { long int quot; long int rem; } ldiv_t; __extension__ typedef struct { long long int quot; long long int rem; } lldiv_t; extern size_t __ctype_get_mb_cur_max (void) __attribute__ ((__nothrow__ , __leaf__)) ; extern double atof (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern int atoi (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern long int atol (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; __extension__ extern long long int atoll (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern double strtod (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern float strtof (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long double strtold (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long int strtol (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern unsigned long int strtoul (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern long long int strtoq (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern unsigned long long int strtouq (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern long long int strtoll (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern unsigned long long int strtoull (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern char *l64a (long int __n) __attribute__ ((__nothrow__ , __leaf__)) ; extern long int a64l (const char *__s) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; typedef __u_char u_char; typedef __u_short u_short; typedef __u_int u_int; typedef __u_long u_long; typedef __quad_t quad_t; typedef __u_quad_t u_quad_t; typedef __fsid_t fsid_t; typedef __loff_t loff_t; typedef __ino_t ino_t; typedef __dev_t dev_t; typedef __gid_t gid_t; typedef __mode_t mode_t; typedef __nlink_t nlink_t; typedef __uid_t uid_t; typedef __pid_t pid_t; typedef __id_t id_t; typedef __daddr_t daddr_t; typedef __caddr_t caddr_t; typedef __key_t key_t; typedef __clock_t clock_t; typedef __clockid_t clockid_t; typedef __time_t time_t; typedef __timer_t timer_t; typedef unsigned long int ulong; typedef unsigned short int ushort; typedef unsigned int uint; typedef unsigned int u_int8_t __attribute__ ((__mode__ (__QI__))); typedef unsigned int u_int16_t __attribute__ ((__mode__ (__HI__))); typedef unsigned int u_int32_t __attribute__ ((__mode__ (__SI__))); typedef unsigned int u_int64_t __attribute__ ((__mode__ (__DI__))); typedef int register_t __attribute__ ((__mode__ (__word__))); static __inline unsigned int __bswap_32 (unsigned int __bsx) { return __builtin_bswap32 (__bsx); } static __inline __uint64_t __bswap_64 (__uint64_t __bsx) { return __builtin_bswap64 (__bsx); } static __inline __uint16_t __uint16_identity (__uint16_t __x) { return __x; } static __inline __uint32_t __uint32_identity (__uint32_t __x) { return __x; } static __inline __uint64_t __uint64_identity (__uint64_t __x) { return __x; } typedef struct { unsigned long int __val[(1024 / (8 * sizeof (unsigned long int)))]; } __sigset_t; typedef __sigset_t sigset_t; struct timeval { __time_t tv_sec; __suseconds_t tv_usec; }; struct timespec { __time_t tv_sec; __syscall_slong_t tv_nsec; }; typedef __suseconds_t suseconds_t; typedef long int __fd_mask; typedef struct { __fd_mask __fds_bits[1024 / (8 * (int) sizeof (__fd_mask))]; } fd_set; typedef __fd_mask fd_mask; extern int select (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, struct timeval *__restrict __timeout); extern int pselect (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, const struct timespec *__restrict __timeout, const __sigset_t *__restrict __sigmask); extern unsigned int gnu_dev_major (__dev_t __dev) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern unsigned int gnu_dev_minor (__dev_t __dev) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern __dev_t gnu_dev_makedev (unsigned int __major, unsigned int __minor) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); typedef __blksize_t blksize_t; typedef __blkcnt_t blkcnt_t; typedef __fsblkcnt_t fsblkcnt_t; typedef __fsfilcnt_t fsfilcnt_t; struct __pthread_rwlock_arch_t { unsigned int __readers; unsigned int __writers; unsigned int __wrphase_futex; unsigned int __writers_futex; unsigned int __pad3; unsigned int __pad4; int __cur_writer; int __shared; signed char __rwelision; unsigned char __pad1[7]; unsigned long int __pad2; unsigned int __flags; }; typedef struct __pthread_internal_list { struct __pthread_internal_list *__prev; struct __pthread_internal_list *__next; } __pthread_list_t; struct __pthread_mutex_s { int __lock ; unsigned int __count; int __owner; unsigned int __nusers; int __kind; short __spins; short __elision; __pthread_list_t __list; }; struct __pthread_cond_s { __extension__ union { __extension__ unsigned long long int __wseq; struct { unsigned int __low; unsigned int __high; } __wseq32; }; __extension__ union { __extension__ unsigned long long int __g1_start; struct { unsigned int __low; unsigned int __high; } __g1_start32; }; unsigned int __g_refs[2] ; unsigned int __g_size[2]; unsigned int __g1_orig_size; unsigned int __wrefs; unsigned int __g_signals[2]; }; typedef unsigned long int pthread_t; typedef union { char __size[4]; int __align; } pthread_mutexattr_t; typedef union { char __size[4]; int __align; } pthread_condattr_t; typedef unsigned int pthread_key_t; typedef int pthread_once_t; union pthread_attr_t { char __size[56]; long int __align; }; typedef union pthread_attr_t pthread_attr_t; typedef union { struct __pthread_mutex_s __data; char __size[40]; long int __align; } pthread_mutex_t; typedef union { struct __pthread_cond_s __data; char __size[48]; __extension__ long long int __align; } pthread_cond_t; typedef union { struct __pthread_rwlock_arch_t __data; char __size[56]; long int __align; } pthread_rwlock_t; typedef union { char __size[8]; long int __align; } pthread_rwlockattr_t; typedef volatile int pthread_spinlock_t; typedef union { char __size[32]; long int __align; } pthread_barrier_t; typedef union { char __size[4]; int __align; } pthread_barrierattr_t; extern long int random (void) __attribute__ ((__nothrow__ , __leaf__)); extern void srandom (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__)); extern char *initstate (unsigned int __seed, char *__statebuf, size_t __statelen) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern char *setstate (char *__statebuf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); struct random_data { int32_t *fptr; int32_t *rptr; int32_t *state; int rand_type; int rand_deg; int rand_sep; int32_t *end_ptr; }; extern int random_r (struct random_data *__restrict __buf, int32_t *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int srandom_r (unsigned int __seed, struct random_data *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int initstate_r (unsigned int __seed, char *__restrict __statebuf, size_t __statelen, struct random_data *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2, 4))); extern int setstate_r (char *__restrict __statebuf, struct random_data *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int rand (void) __attribute__ ((__nothrow__ , __leaf__)); extern void srand (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__)); extern int rand_r (unsigned int *__seed) __attribute__ ((__nothrow__ , __leaf__)); extern double drand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern double erand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long int lrand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern long int nrand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long int mrand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern long int jrand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void srand48 (long int __seedval) __attribute__ ((__nothrow__ , __leaf__)); extern unsigned short int *seed48 (unsigned short int __seed16v[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void lcong48 (unsigned short int __param[7]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); struct drand48_data { unsigned short int __x[3]; unsigned short int __old_x[3]; unsigned short int __c; unsigned short int __init; __extension__ unsigned long long int __a; }; extern int drand48_r (struct drand48_data *__restrict __buffer, double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int erand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int lrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int nrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int mrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int jrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int srand48_r (long int __seedval, struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int seed48_r (unsigned short int __seed16v[3], struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int lcong48_r (unsigned short int __param[7], struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern void *malloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ; extern void *calloc (size_t __nmemb, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ; extern void *realloc (void *__ptr, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__warn_unused_result__)); extern void free (void *__ptr) __attribute__ ((__nothrow__ , __leaf__)); extern void *alloca (size_t __size) __attribute__ ((__nothrow__ , __leaf__)); extern void *valloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ; extern int posix_memalign (void **__memptr, size_t __alignment, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; extern void *aligned_alloc (size_t __alignment, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (2))) ; extern void my_abort (void) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern int atexit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int at_quick_exit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int on_exit (void (*__func) (int __status, void *__arg), void *__arg) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void quick_exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void _Exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern char *getenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; extern int putenv (char *__string) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int setenv (const char *__name, const char *__value, int __replace) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int unsetenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int clearenv (void) __attribute__ ((__nothrow__ , __leaf__)); extern char *mktemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int mkstemp (char *__template) __attribute__ ((__nonnull__ (1))) ; extern int mkstemps (char *__template, int __suffixlen) __attribute__ ((__nonnull__ (1))) ; extern char *mkdtemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; extern int system (const char *__command) ; extern char *realpath (const char *__restrict __name, char *__restrict __resolved) __attribute__ ((__nothrow__ , __leaf__)) ; typedef int (*__compar_fn_t) (const void *, const void *); extern void *bsearch (const void *__key, const void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 2, 5))) ; extern void qsort (void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 4))); extern int abs (int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern long int labs (long int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; __extension__ extern long long int llabs (long long int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern div_t div (int __numer, int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern ldiv_t ldiv (long int __numer, long int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; __extension__ extern lldiv_t lldiv (long long int __numer, long long int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern char *ecvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *fcvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *gcvt (double __value, int __ndigit, char *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ; extern char *qecvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *qfcvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *qgcvt (long double __value, int __ndigit, char *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ; extern int ecvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int fcvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int qecvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int qfcvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int mblen (const char *__s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int mbtowc (wchar_t *__restrict __pwc, const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int wctomb (char *__s, wchar_t __wchar) __attribute__ ((__nothrow__ , __leaf__)); extern size_t mbstowcs (wchar_t *__restrict __pwcs, const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern size_t wcstombs (char *__restrict __s, const wchar_t *__restrict __pwcs, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int rpmatch (const char *__response) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; extern int getsubopt (char **__restrict __optionp, char *const *__restrict __tokens, char **__restrict __valuep) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2, 3))) ; extern int getloadavg (double __loadavg[], int __nelem) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); typedef off_t aws_off_t; typedef char static_assertion_at_line_108[(!!(sizeof(int64_t) >= sizeof(aws_off_t))) * 2 - 1]; struct aws_allocator { void *(*mem_acquire)(struct aws_allocator *allocator, size_t size); void (*mem_release)(struct aws_allocator *allocator, void *ptr); void *(*mem_realloc)(struct aws_allocator *allocator, void *oldptr, size_t oldsize, size_t newsize); void *(*mem_calloc)(struct aws_allocator *allocator, size_t num, size_t size); void *impl; }; _Bool aws_allocator_is_valid(const struct aws_allocator *alloc); struct aws_allocator *aws_default_allocator(void); void *aws_mem_acquire(struct aws_allocator *allocator, size_t size); void *aws_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size); void *aws_mem_acquire_many(struct aws_allocator *allocator, size_t count, ...); void aws_mem_release(struct aws_allocator *allocator, void *ptr); int aws_mem_realloc(struct aws_allocator *allocator, void **ptr, size_t oldsize, size_t newsize); struct aws_error_info { int error_code; const char *literal_name; const char *error_str; const char *lib_name; const char *formatted_name; }; struct aws_error_info_list { const struct aws_error_info *error_list; uint16_t count; }; typedef void(aws_error_handler_fn)(int err, void *ctx); int aws_last_error(void); const char *aws_error_str(int err); const char *aws_error_name(int err); const char *aws_error_lib_name(int err); const char *aws_error_debug_str(int err); void aws_raise_error_private(int err); static inline int aws_raise_error(int err); void aws_reset_error(void); void aws_restore_error(int err); aws_error_handler_fn *aws_set_global_error_handler_fn(aws_error_handler_fn *handler, void *ctx); aws_error_handler_fn *aws_set_thread_local_error_handler_fn(aws_error_handler_fn *handler, void *ctx); void aws_register_error_info(const struct aws_error_info_list *error_info); void aws_unregister_error_info(const struct aws_error_info_list *error_info); int aws_translate_and_raise_io_error(int error_no); static inline int aws_raise_error(int err) { aws_raise_error_private(err); return (-1); } enum aws_common_error { AWS_ERROR_SUCCESS = 0, AWS_ERROR_OOM, AWS_ERROR_UNKNOWN, AWS_ERROR_SHORT_BUFFER, AWS_ERROR_OVERFLOW_DETECTED, AWS_ERROR_UNSUPPORTED_OPERATION, AWS_ERROR_INVALID_BUFFER_SIZE, AWS_ERROR_INVALID_HEX_STR, AWS_ERROR_INVALID_BASE64_STR, AWS_ERROR_INVALID_INDEX, AWS_ERROR_THREAD_INVALID_SETTINGS, AWS_ERROR_THREAD_INSUFFICIENT_RESOURCE, AWS_ERROR_THREAD_NO_PERMISSIONS, AWS_ERROR_THREAD_NOT_JOINABLE, AWS_ERROR_THREAD_NO_SUCH_THREAD_ID, AWS_ERROR_THREAD_DEADLOCK_DETECTED, AWS_ERROR_MUTEX_NOT_INIT, AWS_ERROR_MUTEX_TIMEOUT, AWS_ERROR_MUTEX_CALLER_NOT_OWNER, AWS_ERROR_MUTEX_FAILED, AWS_ERROR_COND_VARIABLE_INIT_FAILED, AWS_ERROR_COND_VARIABLE_TIMED_OUT, AWS_ERROR_COND_VARIABLE_ERROR_UNKNOWN, AWS_ERROR_CLOCK_FAILURE, AWS_ERROR_LIST_EMPTY, AWS_ERROR_DEST_COPY_TOO_SMALL, AWS_ERROR_LIST_EXCEEDS_MAX_SIZE, AWS_ERROR_LIST_STATIC_MODE_CANT_SHRINK, AWS_ERROR_PRIORITY_QUEUE_FULL, AWS_ERROR_PRIORITY_QUEUE_EMPTY, AWS_ERROR_PRIORITY_QUEUE_BAD_NODE, AWS_ERROR_HASHTBL_ITEM_NOT_FOUND, AWS_ERROR_INVALID_DATE_STR, AWS_ERROR_INVALID_ARGUMENT, AWS_ERROR_RANDOM_GEN_FAILED, AWS_ERROR_MALFORMED_INPUT_STRING, AWS_ERROR_UNIMPLEMENTED, AWS_ERROR_INVALID_STATE, AWS_ERROR_ENVIRONMENT_GET, AWS_ERROR_ENVIRONMENT_SET, AWS_ERROR_ENVIRONMENT_UNSET, AWS_ERROR_STREAM_UNSEEKABLE, AWS_ERROR_NO_PERMISSION, AWS_ERROR_FILE_INVALID_PATH, AWS_ERROR_MAX_FDS_EXCEEDED, AWS_ERROR_SYS_CALL_FAILURE, AWS_ERROR_END_COMMON_RANGE = 0x03FF }; extern void *memcpy (void *__restrict __dest, const void *__restrict __src, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern void *memmove (void *__dest, const void *__src, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern void *memccpy (void *__restrict __dest, const void *__restrict __src, int __c, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern void *memset (void *__s, int __c, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int memcmp (const void *__s1, const void *__s2, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern void *memchr (const void *__s, int __c, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern char *strcpy (char *__restrict __dest, const char *__restrict __src) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strncpy (char *__restrict __dest, const char *__restrict __src, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strcat (char *__restrict __dest, const char *__restrict __src) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strncat (char *__restrict __dest, const char *__restrict __src, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int strcmp (const char *__s1, const char *__s2) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strncmp (const char *__s1, const char *__s2, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strcoll (const char *__s1, const char *__s2) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern size_t strxfrm (char *__restrict __dest, const char *__restrict __src, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); struct __locale_struct { struct __locale_data *__locales[13]; const unsigned short int *__ctype_b; const int *__ctype_tolower; const int *__ctype_toupper; const char *__names[13]; }; typedef struct __locale_struct *__locale_t; typedef __locale_t locale_t; extern int strcoll_l (const char *__s1, const char *__s2, locale_t __l) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2, 3))); extern size_t strxfrm_l (char *__dest, const char *__src, size_t __n, locale_t __l) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2, 4))); extern char *strdup (const char *__s) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__nonnull__ (1))); extern char *strndup (const char *__string, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__nonnull__ (1))); extern char *strchr (const char *__s, int __c) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern char *strrchr (const char *__s, int __c) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern size_t strcspn (const char *__s, const char *__reject) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern size_t strspn (const char *__s, const char *__accept) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strpbrk (const char *__s, const char *__accept) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strstr (const char *__haystack, const char *__needle) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strtok (char *__restrict __s, const char *__restrict __delim) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern char *__strtok_r (char *__restrict __s, const char *__restrict __delim, char **__restrict __save_ptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2, 3))); extern char *strtok_r (char *__restrict __s, const char *__restrict __delim, char **__restrict __save_ptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2, 3))); extern size_t strlen (const char *__s) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern size_t strnlen (const char *__string, size_t __maxlen) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern char *strerror (int __errnum) __attribute__ ((__nothrow__ , __leaf__)); extern int strerror_r (int __errnum, char *__buf, size_t __buflen) __asm__ ("" "__xpg_strerror_r") __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern char *strerror_l (int __errnum, locale_t __l) __attribute__ ((__nothrow__ , __leaf__)); extern int bcmp (const void *__s1, const void *__s2, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern void bcopy (const void *__src, void *__dest, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern void bzero (void *__s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern char *index (const char *__s, int __c) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern char *rindex (const char *__s, int __c) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern int ffs (int __i) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern int ffsl (long int __l) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); __extension__ extern int ffsll (long long int __ll) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern int strcasecmp (const char *__s1, const char *__s2) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strncasecmp (const char *__s1, const char *__s2, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strcasecmp_l (const char *__s1, const char *__s2, locale_t __loc) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2, 3))); extern int strncasecmp_l (const char *__s1, const char *__s2, size_t __n, locale_t __loc) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2, 4))); extern void explicit_bzero (void *__s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern char *strsep (char **__restrict __stringp, const char *__restrict __delim) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strsignal (int __sig) __attribute__ ((__nothrow__ , __leaf__)); extern char *__stpcpy (char *__restrict __dest, const char *__restrict __src) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern char *stpcpy (char *__restrict __dest, const char *__restrict __src) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern char *__stpncpy (char *__restrict __dest, const char *__restrict __src, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern char *stpncpy (char *__restrict __dest, const char *__restrict __src, size_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); static inline _Bool aws_is_mem_zeroed(const void *buf, size_t bufsize); void aws_secure_zero(void *pBuf, size_t bufsize); static inline _Bool aws_is_mem_zeroed(const void *buf, size_t bufsize) { size_t i; const uint8_t *buf_u8 = (const uint8_t *)buf; for (i = 0; i < bufsize; ++i) { if (buf_u8[i]) { return 0 ; } } return 1 ; } void aws_common_library_init(struct aws_allocator *allocator); void aws_common_library_clean_up(void); void aws_common_fatal_assert_library_initialized(void); static inline uint64_t aws_mul_u64_saturating(uint64_t a, uint64_t b); static inline int aws_mul_u64_checked(uint64_t a, uint64_t b, uint64_t *r); static inline uint32_t aws_mul_u32_saturating(uint32_t a, uint32_t b); static inline int aws_mul_u32_checked(uint32_t a, uint32_t b, uint32_t *r); static inline uint64_t aws_add_u64_saturating(uint64_t a, uint64_t b); static inline int aws_add_u64_checked(uint64_t a, uint64_t b, uint64_t *r); static inline uint32_t aws_add_u32_saturating(uint32_t a, uint32_t b); static inline int aws_add_u32_checked(uint32_t a, uint32_t b, uint32_t *r); static inline size_t aws_mul_size_saturating(size_t a, size_t b); static inline int aws_mul_size_checked(size_t a, size_t b, size_t *r); static inline size_t aws_add_size_saturating(size_t a, size_t b); static inline int aws_add_size_checked(size_t a, size_t b, size_t *r); int aws_add_size_checked_varargs(size_t num, size_t *r, ...); static inline _Bool aws_is_power_of_two(const size_t x); static inline int aws_round_up_to_power_of_two(size_t n, size_t *result); static inline uint64_t aws_mul_u64_saturating(uint64_t a, uint64_t b) { if (__CPROVER_overflow_mult(a, b)) return (18446744073709551615UL) ; return a * b; } static inline int aws_mul_u64_checked(uint64_t a, uint64_t b, uint64_t *r) { if (__CPROVER_overflow_mult(a, b)) return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED); *r = a * b; return (0); } static inline uint32_t aws_mul_u32_saturating(uint32_t a, uint32_t b) { if (__CPROVER_overflow_mult(a, b)) return (4294967295U) ; return a * b; } static inline int aws_mul_u32_checked(uint32_t a, uint32_t b, uint32_t *r) { if (__CPROVER_overflow_mult(a, b)) return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED); *r = a * b; return (0); } static inline uint64_t aws_add_u64_saturating(uint64_t a, uint64_t b) { if (__CPROVER_overflow_plus(a, b)) return (18446744073709551615UL) ; return a + b; } static inline int aws_add_u64_checked(uint64_t a, uint64_t b, uint64_t *r) { if (__CPROVER_overflow_plus(a, b)) return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED); *r = a + b; return (0); } static inline uint32_t aws_add_u32_saturating(uint32_t a, uint32_t b) { if (__CPROVER_overflow_plus(a, b)) return (4294967295U) ; return a + b; } static inline int aws_add_u32_checked(uint32_t a, uint32_t b, uint32_t *r) { if (__CPROVER_overflow_plus(a, b)) return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED); *r = a + b; return (0); } static inline size_t aws_mul_size_saturating(size_t a, size_t b) { return (size_t)aws_mul_u64_saturating(a, b); } static inline int aws_mul_size_checked(size_t a, size_t b, size_t *r) { return aws_mul_u64_checked(a, b, (uint64_t *)r); } static inline size_t aws_add_size_saturating(size_t a, size_t b) { return (size_t)aws_add_u64_saturating(a, b); } static inline int aws_add_size_checked(size_t a, size_t b, size_t *r) { return aws_add_u64_checked(a, b, (uint64_t *)r); } static inline _Bool aws_is_power_of_two(const size_t x) { return x && (!(x & (x - 1))); } static inline int aws_round_up_to_power_of_two(size_t n, size_t *result) { if (n == 0) { *result = 1; return (0); } if (n > (((size_t)1) << (64 - 1))) { return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED); } n--; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; n |= n >> 32; n++; *result = n; return (0); } struct aws_array_list { struct aws_allocator *alloc; size_t current_size; size_t length; size_t item_size; void *data; }; typedef int(aws_array_list_comparator_fn)(const void *a, const void *b); static inline int aws_array_list_init_dynamic( struct aws_array_list *restrict list, struct aws_allocator *alloc, size_t initial_item_allocation, size_t item_size); static inline void aws_array_list_init_static( struct aws_array_list *restrict list, void *raw_array, size_t item_count, size_t item_size); static inline _Bool aws_array_list_is_valid(const struct aws_array_list *restrict list); static inline void aws_array_list_clean_up(struct aws_array_list *restrict list); static inline int aws_array_list_push_back(struct aws_array_list *restrict list, const void *val); static inline int aws_array_list_front(const struct aws_array_list *restrict list, void *val); static inline int aws_array_list_pop_front(struct aws_array_list *restrict list); static inline void aws_array_list_pop_front_n(struct aws_array_list *restrict list, size_t n); static inline int aws_array_list_erase(struct aws_array_list *restrict list, size_t index); static inline int aws_array_list_back(const struct aws_array_list *restrict list, void *val); static inline int aws_array_list_pop_back(struct aws_array_list *restrict list); static inline void aws_array_list_clear(struct aws_array_list *restrict list); int aws_array_list_shrink_to_fit(struct aws_array_list *restrict list); int aws_array_list_copy(const struct aws_array_list *restrict from, struct aws_array_list *restrict to); static inline void aws_array_list_swap_contents( struct aws_array_list *restrict list_a, struct aws_array_list *restrict list_b); static inline size_t aws_array_list_capacity(const struct aws_array_list *restrict list); static inline size_t aws_array_list_length(const struct aws_array_list *restrict list); static inline int aws_array_list_get_at(const struct aws_array_list *restrict list, void *val, size_t index); static inline int aws_array_list_get_at_ptr(const struct aws_array_list *restrict list, void **val, size_t index); int aws_array_list_ensure_capacity(struct aws_array_list *restrict list, size_t index); static inline int aws_array_list_set_at(struct aws_array_list *restrict list, const void *val, size_t index); void aws_array_list_swap(struct aws_array_list *restrict list, size_t a, size_t b); static inline void aws_array_list_sort(struct aws_array_list *restrict list, aws_array_list_comparator_fn *compare_fn); static inline int aws_array_list_init_dynamic( struct aws_array_list *restrict list, struct aws_allocator *alloc, size_t initial_item_allocation, size_t item_size) { assume_abort_if_not((list != ((void *)0) )); assume_abort_if_not((alloc != ((void *)0) )); assume_abort_if_not((item_size > 0)); do { memset(&(*list), 0, sizeof(*list)); } while (0); size_t allocation_size; if (aws_mul_size_checked(initial_item_allocation, item_size, &allocation_size)) { goto error; } if (allocation_size > 0) { list->data = aws_mem_acquire(alloc, allocation_size); if (!list->data) { goto error; } list->current_size = allocation_size; } list->item_size = item_size; list->alloc = alloc; __VERIFIER_assert((list->current_size == 0 || list->data)); __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); error: __VERIFIER_assert((aws_is_mem_zeroed(&(*list), sizeof(*list)))); return (-1); } static inline void aws_array_list_init_static( struct aws_array_list *restrict list, void *raw_array, size_t item_count, size_t item_size) { assume_abort_if_not((list != ((void *)0) )); assume_abort_if_not((raw_array != ((void *)0) )); assume_abort_if_not((item_count > 0)); assume_abort_if_not((item_size > 0)); list->alloc = ((void *)0) ; int no_overflow = !aws_mul_size_checked(item_count, item_size, &list->current_size); assume_abort_if_not((no_overflow)); list->item_size = item_size; list->length = 0; list->data = raw_array; __VERIFIER_assert((aws_array_list_is_valid(list))); } static inline _Bool aws_array_list_is_valid(const struct aws_array_list *restrict list) { if (!list) { return 0 ; } size_t required_size = 0; _Bool required_size_is_valid = (aws_mul_size_checked(list->length, list->item_size, &required_size) == (0)); _Bool current_size_is_valid = (list->current_size >= required_size); _Bool data_is_valid = ((list->current_size == 0 && list->data == ((void *)0) ) || ((((list->current_size)) == 0) || ((list->data)))); _Bool item_size_is_valid = (list->item_size != 0); return required_size_is_valid && current_size_is_valid && data_is_valid && item_size_is_valid; } static inline void aws_array_list_debug_print(const struct aws_array_list *list) { printf( "arraylist %p. Alloc %p. current_size %zu. length %zu. item_size %zu. data %p\n", (void *)list, (void *)list->alloc, list->current_size, list->length, list->item_size, (void *)list->data); } static inline void aws_array_list_clean_up(struct aws_array_list *restrict list) { assume_abort_if_not((aws_is_mem_zeroed(&(*list), sizeof(*list)) || aws_array_list_is_valid(list))); if (list->alloc && list->data) { aws_mem_release(list->alloc, list->data); } do { memset(&(*list), 0, sizeof(*list)); } while (0); } static inline int aws_array_list_push_back(struct aws_array_list *restrict list, const void *val) { assume_abort_if_not((aws_array_list_is_valid(list))); assume_abort_if_not((val && ((((list->item_size)) == 0) || ((val))))) ; int err_code = aws_array_list_set_at(list, val, aws_array_list_length(list)); if (err_code && aws_last_error() == AWS_ERROR_INVALID_INDEX && !list->alloc) { __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_LIST_EXCEEDS_MAX_SIZE); } __VERIFIER_assert((aws_array_list_is_valid(list))); return err_code; } static inline int aws_array_list_front(const struct aws_array_list *restrict list, void *val) { assume_abort_if_not((aws_array_list_is_valid(list))); assume_abort_if_not((val && ((((list->item_size)) == 0) || ((val))))) ; if (aws_array_list_length(list) > 0) { memcpy(val, list->data, list->item_size); __VERIFIER_assert(((1))); __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_LIST_EMPTY); } static inline int aws_array_list_pop_front(struct aws_array_list *restrict list) { assume_abort_if_not((aws_array_list_is_valid(list))); if (aws_array_list_length(list) > 0) { aws_array_list_pop_front_n(list, 1); __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_LIST_EMPTY); } static inline void aws_array_list_pop_front_n(struct aws_array_list *restrict list, size_t n) { assume_abort_if_not((aws_array_list_is_valid(list))); if (n >= aws_array_list_length(list)) { aws_array_list_clear(list); __VERIFIER_assert((aws_array_list_is_valid(list))); return; } if (n > 0) { size_t popping_bytes = list->item_size * n; size_t remaining_items = aws_array_list_length(list) - n; size_t remaining_bytes = remaining_items * list->item_size; memmove(list->data, (uint8_t *)list->data + popping_bytes, remaining_bytes); list->length = remaining_items; } __VERIFIER_assert((aws_array_list_is_valid(list))); } int aws_array_list_erase(struct aws_array_list *restrict list, size_t index) { assume_abort_if_not((aws_array_list_is_valid(list))); const size_t length = aws_array_list_length(list); if (index >= length) { __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_INVALID_INDEX); } if (index == 0) { aws_array_list_pop_front(list); } else if (index == (length - 1)) { aws_array_list_pop_back(list); } else { uint8_t *item_ptr = (uint8_t *)list->data + (index * list->item_size); uint8_t *next_item_ptr = item_ptr + list->item_size; size_t trailing_items = (length - index) - 1; size_t trailing_bytes = trailing_items * list->item_size; memmove(item_ptr, next_item_ptr, trailing_bytes); aws_array_list_pop_back(list); } __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } static inline int aws_array_list_back(const struct aws_array_list *restrict list, void *val) { assume_abort_if_not((aws_array_list_is_valid(list))); assume_abort_if_not((val && ((((list->item_size)) == 0) || ((val))))) ; if (aws_array_list_length(list) > 0) { size_t last_item_offset = list->item_size * (aws_array_list_length(list) - 1); memcpy(val, (void *)((uint8_t *)list->data + last_item_offset), list->item_size); __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_LIST_EMPTY); } static inline int aws_array_list_pop_back(struct aws_array_list *restrict list) { assume_abort_if_not((aws_array_list_is_valid(list))); if (aws_array_list_length(list) > 0) { assume_abort_if_not((list->data)); size_t last_item_offset = list->item_size * (aws_array_list_length(list) - 1); memset((void *)((uint8_t *)list->data + last_item_offset), 0, list->item_size); list->length--; __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_LIST_EMPTY); } static inline void aws_array_list_clear(struct aws_array_list *restrict list) { assume_abort_if_not((aws_array_list_is_valid(list))); if (list->data) { list->length = 0; } __VERIFIER_assert((aws_array_list_is_valid(list))); } static inline void aws_array_list_swap_contents( struct aws_array_list *restrict list_a, struct aws_array_list *restrict list_b) { assume_abort_if_not((list_a->alloc)); assume_abort_if_not((list_a->alloc == list_b->alloc)); assume_abort_if_not((list_a->item_size == list_b->item_size)); assume_abort_if_not((list_a != list_b)); assume_abort_if_not((aws_array_list_is_valid(list_a))); assume_abort_if_not((aws_array_list_is_valid(list_b))); struct aws_array_list tmp = *list_a; *list_a = *list_b; *list_b = tmp; __VERIFIER_assert((aws_array_list_is_valid(list_a))); __VERIFIER_assert((aws_array_list_is_valid(list_b))); } static inline size_t aws_array_list_capacity(const struct aws_array_list *restrict list) { assume_abort_if_not((list->item_size)); assume_abort_if_not((aws_array_list_is_valid(list))); size_t capacity = list->current_size / list->item_size; __VERIFIER_assert((aws_array_list_is_valid(list))); return capacity; } static inline size_t aws_array_list_length(const struct aws_array_list *restrict list) { assume_abort_if_not((!list->length || list->data)); assume_abort_if_not((aws_array_list_is_valid(list))); size_t len = list->length; __VERIFIER_assert((aws_array_list_is_valid(list))); return len; } static inline int aws_array_list_get_at(const struct aws_array_list *restrict list, void *val, size_t index) { assume_abort_if_not((aws_array_list_is_valid(list))); assume_abort_if_not((val && ((((list->item_size)) == 0) || ((val))))) ; if (aws_array_list_length(list) > index) { memcpy(val, (void *)((uint8_t *)list->data + (list->item_size * index)), list->item_size); __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_INVALID_INDEX); } static inline int aws_array_list_get_at_ptr(const struct aws_array_list *restrict list, void **val, size_t index) { assume_abort_if_not((aws_array_list_is_valid(list))); assume_abort_if_not((val != ((void *)0) )); if (aws_array_list_length(list) > index) { *val = (void *)((uint8_t *)list->data + (list->item_size * index)); __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } __VERIFIER_assert((aws_array_list_is_valid(list))); return aws_raise_error(AWS_ERROR_INVALID_INDEX); } static inline int aws_array_list_set_at(struct aws_array_list *restrict list, const void *val, size_t index) { assume_abort_if_not((aws_array_list_is_valid(list))); assume_abort_if_not((val && ((((list->item_size)) == 0) || ((val))))) ; if (aws_array_list_ensure_capacity(list, index)) { __VERIFIER_assert((aws_array_list_is_valid(list))); return (-1); } assume_abort_if_not((list->data)); memcpy((void *)((uint8_t *)list->data + (list->item_size * index)), val, list->item_size); if (index >= aws_array_list_length(list)) { if (aws_add_size_checked(index, 1, &list->length)) { __VERIFIER_assert((aws_array_list_is_valid(list))); return (-1); } } __VERIFIER_assert((aws_array_list_is_valid(list))); return (0); } static inline void aws_array_list_sort(struct aws_array_list *restrict list, aws_array_list_comparator_fn *compare_fn) { assume_abort_if_not((aws_array_list_is_valid(list))); if (list->data) { qsort(list->data, aws_array_list_length(list), list->item_size, compare_fn); } __VERIFIER_assert((aws_array_list_is_valid(list))); } static inline int aws_is_big_endian(void); static inline uint64_t aws_hton64(uint64_t x); static inline uint64_t aws_ntoh64(uint64_t x); static inline uint32_t aws_hton32(uint32_t x); static inline float aws_htonf32(float x); static inline double aws_htonf64(double x); static inline uint32_t aws_ntoh32(uint32_t x); static inline float aws_ntohf32(float x); static inline double aws_ntohf64(double x); static inline uint32_t aws_hton24(uint32_t x); static inline uint32_t aws_ntoh24(uint32_t x); static inline uint16_t aws_hton16(uint16_t x); static inline uint16_t aws_ntoh16(uint16_t x); struct iovec { void *iov_base; size_t iov_len; }; typedef __socklen_t socklen_t; enum __socket_type { SOCK_STREAM = 1, SOCK_DGRAM = 2, SOCK_RAW = 3, SOCK_RDM = 4, SOCK_SEQPACKET = 5, SOCK_DCCP = 6, SOCK_PACKET = 10, SOCK_CLOEXEC = 02000000, SOCK_NONBLOCK = 00004000 }; typedef unsigned short int sa_family_t; struct sockaddr { sa_family_t sa_family; char sa_data[14]; }; struct sockaddr_storage { sa_family_t ss_family; char __ss_padding[(128 - (sizeof (unsigned short int)) - sizeof (unsigned long int))]; unsigned long int __ss_align; }; enum { MSG_OOB = 0x01, MSG_PEEK = 0x02, MSG_DONTROUTE = 0x04, MSG_CTRUNC = 0x08, MSG_PROXY = 0x10, MSG_TRUNC = 0x20, MSG_DONTWAIT = 0x40, MSG_EOR = 0x80, MSG_WAITALL = 0x100, MSG_FIN = 0x200, MSG_SYN = 0x400, MSG_CONFIRM = 0x800, MSG_RST = 0x1000, MSG_ERRQUEUE = 0x2000, MSG_NOSIGNAL = 0x4000, MSG_MORE = 0x8000, MSG_WAITFORONE = 0x10000, MSG_BATCH = 0x40000, MSG_ZEROCOPY = 0x4000000, MSG_FASTOPEN = 0x20000000, MSG_CMSG_CLOEXEC = 0x40000000 }; struct msghdr { void *msg_name; socklen_t msg_namelen; struct iovec *msg_iov; size_t msg_iovlen; void *msg_control; size_t msg_controllen; int msg_flags; }; struct cmsghdr { size_t cmsg_len; int cmsg_level; int cmsg_type; __extension__ unsigned char __cmsg_data []; }; extern struct cmsghdr *__cmsg_nxthdr (struct msghdr *__mhdr, struct cmsghdr *__cmsg) __attribute__ ((__nothrow__ , __leaf__)); enum { SCM_RIGHTS = 0x01 }; struct linger { int l_onoff; int l_linger; }; struct osockaddr { unsigned short int sa_family; unsigned char sa_data[14]; }; enum { SHUT_RD = 0, SHUT_WR, SHUT_RDWR }; extern int socket (int __domain, int __type, int __protocol) __attribute__ ((__nothrow__ , __leaf__)); extern int socketpair (int __domain, int __type, int __protocol, int __fds[2]) __attribute__ ((__nothrow__ , __leaf__)); extern int bind (int __fd, const struct sockaddr * __addr, socklen_t __len) __attribute__ ((__nothrow__ , __leaf__)); extern int getsockname (int __fd, struct sockaddr *__restrict __addr, socklen_t *__restrict __len) __attribute__ ((__nothrow__ , __leaf__)); extern int connect (int __fd, const struct sockaddr * __addr, socklen_t __len); extern int getpeername (int __fd, struct sockaddr *__restrict __addr, socklen_t *__restrict __len) __attribute__ ((__nothrow__ , __leaf__)); extern ssize_t send (int __fd, const void *__buf, size_t __n, int __flags); extern ssize_t recv (int __fd, void *__buf, size_t __n, int __flags); extern ssize_t sendto (int __fd, const void *__buf, size_t __n, int __flags, const struct sockaddr * __addr, socklen_t __addr_len); extern ssize_t recvfrom (int __fd, void *__restrict __buf, size_t __n, int __flags, struct sockaddr *__restrict __addr, socklen_t *__restrict __addr_len); extern ssize_t sendmsg (int __fd, const struct msghdr *__message, int __flags); extern ssize_t recvmsg (int __fd, struct msghdr *__message, int __flags); extern int getsockopt (int __fd, int __level, int __optname, void *__restrict __optval, socklen_t *__restrict __optlen) __attribute__ ((__nothrow__ , __leaf__)); extern int setsockopt (int __fd, int __level, int __optname, const void *__optval, socklen_t __optlen) __attribute__ ((__nothrow__ , __leaf__)); extern int listen (int __fd, int __n) __attribute__ ((__nothrow__ , __leaf__)); extern int accept (int __fd, struct sockaddr *__restrict __addr, socklen_t *__restrict __addr_len); extern int shutdown (int __fd, int __how) __attribute__ ((__nothrow__ , __leaf__)); extern int sockatmark (int __fd) __attribute__ ((__nothrow__ , __leaf__)); extern int isfdtype (int __fd, int __fdtype) __attribute__ ((__nothrow__ , __leaf__)); typedef uint32_t in_addr_t; struct in_addr { in_addr_t s_addr; }; struct ip_opts { struct in_addr ip_dst; char ip_opts[40]; }; struct ip_mreqn { struct in_addr imr_multiaddr; struct in_addr imr_address; int imr_ifindex; }; struct in_pktinfo { int ipi_ifindex; struct in_addr ipi_spec_dst; struct in_addr ipi_addr; }; enum { IPPROTO_IP = 0, IPPROTO_ICMP = 1, IPPROTO_IGMP = 2, IPPROTO_IPIP = 4, IPPROTO_TCP = 6, IPPROTO_EGP = 8, IPPROTO_PUP = 12, IPPROTO_UDP = 17, IPPROTO_IDP = 22, IPPROTO_TP = 29, IPPROTO_DCCP = 33, IPPROTO_IPV6 = 41, IPPROTO_RSVP = 46, IPPROTO_GRE = 47, IPPROTO_ESP = 50, IPPROTO_AH = 51, IPPROTO_MTP = 92, IPPROTO_BEETPH = 94, IPPROTO_ENCAP = 98, IPPROTO_PIM = 103, IPPROTO_COMP = 108, IPPROTO_SCTP = 132, IPPROTO_UDPLITE = 136, IPPROTO_MPLS = 137, IPPROTO_RAW = 255, IPPROTO_MAX }; enum { IPPROTO_HOPOPTS = 0, IPPROTO_ROUTING = 43, IPPROTO_FRAGMENT = 44, IPPROTO_ICMPV6 = 58, IPPROTO_NONE = 59, IPPROTO_DSTOPTS = 60, IPPROTO_MH = 135 }; typedef uint16_t in_port_t; enum { IPPORT_ECHO = 7, IPPORT_DISCARD = 9, IPPORT_SYSTAT = 11, IPPORT_DAYTIME = 13, IPPORT_NETSTAT = 15, IPPORT_FTP = 21, IPPORT_TELNET = 23, IPPORT_SMTP = 25, IPPORT_TIMESERVER = 37, IPPORT_NAMESERVER = 42, IPPORT_WHOIS = 43, IPPORT_MTP = 57, IPPORT_TFTP = 69, IPPORT_RJE = 77, IPPORT_FINGER = 79, IPPORT_TTYLINK = 87, IPPORT_SUPDUP = 95, IPPORT_EXECSERVER = 512, IPPORT_LOGINSERVER = 513, IPPORT_CMDSERVER = 514, IPPORT_EFSSERVER = 520, IPPORT_BIFFUDP = 512, IPPORT_WHOSERVER = 513, IPPORT_ROUTESERVER = 520, IPPORT_RESERVED = 1024, IPPORT_USERRESERVED = 5000 }; struct in6_addr { union { uint8_t __u6_addr8[16]; uint16_t __u6_addr16[8]; uint32_t __u6_addr32[4]; } __in6_u; }; extern const struct in6_addr in6addr_any; extern const struct in6_addr in6addr_loopback; struct sockaddr_in { sa_family_t sin_family; in_port_t sin_port; struct in_addr sin_addr; unsigned char sin_zero[sizeof (struct sockaddr) - (sizeof (unsigned short int)) - sizeof (in_port_t) - sizeof (struct in_addr)]; }; struct sockaddr_in6 { sa_family_t sin6_family; in_port_t sin6_port; uint32_t sin6_flowinfo; struct in6_addr sin6_addr; uint32_t sin6_scope_id; }; struct ip_mreq { struct in_addr imr_multiaddr; struct in_addr imr_interface; }; struct ip_mreq_source { struct in_addr imr_multiaddr; struct in_addr imr_interface; struct in_addr imr_sourceaddr; }; struct ipv6_mreq { struct in6_addr ipv6mr_multiaddr; unsigned int ipv6mr_interface; }; struct group_req { uint32_t gr_interface; struct sockaddr_storage gr_group; }; struct group_source_req { uint32_t gsr_interface; struct sockaddr_storage gsr_group; struct sockaddr_storage gsr_source; }; struct ip_msfilter { struct in_addr imsf_multiaddr; struct in_addr imsf_interface; uint32_t imsf_fmode; uint32_t imsf_numsrc; struct in_addr imsf_slist[1]; }; struct group_filter { uint32_t gf_interface; struct sockaddr_storage gf_group; uint32_t gf_fmode; uint32_t gf_numsrc; struct sockaddr_storage gf_slist[1]; }; extern uint32_t ntohl (uint32_t __netlong) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern uint16_t ntohs (uint16_t __netshort) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern uint32_t htonl (uint32_t __hostlong) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern uint16_t htons (uint16_t __hostshort) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern int bindresvport (int __sockfd, struct sockaddr_in *__sock_in) __attribute__ ((__nothrow__ , __leaf__)); extern int bindresvport6 (int __sockfd, struct sockaddr_in6 *__sock_in) __attribute__ ((__nothrow__ , __leaf__)); static inline int aws_is_big_endian(void) { const uint16_t z = 0x100; return *(const uint8_t *)&z; } static inline uint64_t aws_hton64(uint64_t x) { if (aws_is_big_endian()) { return x; } uint32_t low = (uint32_t)x; uint32_t high = (uint32_t)(x >> 32); return ((uint64_t)htonl(low)) << 32 | htonl(high); } static inline uint64_t aws_ntoh64(uint64_t x) { return aws_hton64(x); } static inline uint32_t aws_hton32(uint32_t x) { return htonl(x); } static inline float aws_htonf32(float x) { if (aws_is_big_endian()) { return x; } uint8_t *f_storage = (uint8_t *)&x; float ret_value; uint8_t *ret_storage = (uint8_t *)&ret_value; ret_storage[0] = f_storage[3]; ret_storage[1] = f_storage[2]; ret_storage[2] = f_storage[1]; ret_storage[3] = f_storage[0]; return ret_value; } static inline double aws_htonf64(double x) { if (aws_is_big_endian()) { return x; } uint8_t *f_storage = (uint8_t *)&x; double ret_value; uint8_t *ret_storage = (uint8_t *)&ret_value; ret_storage[0] = f_storage[7]; ret_storage[1] = f_storage[6]; ret_storage[2] = f_storage[5]; ret_storage[3] = f_storage[4]; ret_storage[4] = f_storage[3]; ret_storage[5] = f_storage[2]; ret_storage[6] = f_storage[1]; ret_storage[7] = f_storage[0]; return ret_value; } static inline uint32_t aws_ntoh32(uint32_t x) { return ntohl(x); } static inline float aws_ntohf32(float x) { return aws_htonf32(x); } static inline double aws_ntohf64(double x) { return aws_htonf64(x); } static inline uint32_t aws_hton24(uint32_t x) { assume_abort_if_not((x <= 0xFFFFFF)); if (aws_is_big_endian()) { return x; } else { return aws_hton32(x) >> 8; } } static inline uint32_t aws_ntoh24(uint32_t x) { assume_abort_if_not(((x) <= 0xFFFFFFF)); if (aws_is_big_endian()) { return x; } else { return aws_ntoh32(x) >> 8; } } static inline uint16_t aws_hton16(uint16_t x) { return htons(x); } static inline uint16_t aws_ntoh16(uint16_t x) { return ntohs(x); } struct aws_byte_buf { size_t len; uint8_t *buffer; size_t capacity; struct aws_allocator *allocator; }; struct aws_byte_cursor { size_t len; uint8_t *ptr; }; typedef _Bool (aws_byte_predicate_fn)(uint8_t value); _Bool aws_array_eq(const void *const array_a, const size_t len_a, const void *array_b, const size_t len_b); _Bool aws_array_eq_ignore_case( const void *const array_a, const size_t len_a, const void *const array_b, const size_t len_b); _Bool aws_array_eq_c_str(const void *const array, const size_t array_len, const char *const c_str); _Bool aws_array_eq_c_str_ignore_case(const void *const array, const size_t array_len, const char *const c_str); int aws_byte_buf_init(struct aws_byte_buf *buf, struct aws_allocator *allocator, size_t capacity); int aws_byte_buf_init_copy( struct aws_byte_buf *dest, struct aws_allocator *allocator, const struct aws_byte_buf *src); _Bool aws_byte_buf_is_valid(const struct aws_byte_buf *const buf); _Bool aws_byte_cursor_is_valid(const struct aws_byte_cursor *cursor); int aws_byte_buf_init_copy_from_cursor( struct aws_byte_buf *dest, struct aws_allocator *allocator, struct aws_byte_cursor src); void aws_byte_buf_clean_up(struct aws_byte_buf *buf); void aws_byte_buf_clean_up_secure(struct aws_byte_buf *buf); void aws_byte_buf_reset(struct aws_byte_buf *buf, _Bool zero_contents); void aws_byte_buf_secure_zero(struct aws_byte_buf *buf); _Bool aws_byte_buf_eq(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b); _Bool aws_byte_buf_eq_ignore_case(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b); _Bool aws_byte_buf_eq_c_str(const struct aws_byte_buf *const buf, const char *const c_str); _Bool aws_byte_buf_eq_c_str_ignore_case(const struct aws_byte_buf *const buf, const char *const c_str); _Bool aws_byte_cursor_next_split( const struct aws_byte_cursor *restrict input_str, char split_on, struct aws_byte_cursor *restrict substr); int aws_byte_cursor_split_on_char( const struct aws_byte_cursor *restrict input_str, char split_on, struct aws_array_list *restrict output); int aws_byte_cursor_split_on_char_n( const struct aws_byte_cursor *restrict input_str, char split_on, size_t n, struct aws_array_list *restrict output); struct aws_byte_cursor aws_byte_cursor_right_trim_pred( const struct aws_byte_cursor *source, aws_byte_predicate_fn *predicate); struct aws_byte_cursor aws_byte_cursor_left_trim_pred( const struct aws_byte_cursor *source, aws_byte_predicate_fn *predicate); struct aws_byte_cursor aws_byte_cursor_trim_pred( const struct aws_byte_cursor *source, aws_byte_predicate_fn *predicate); _Bool aws_byte_cursor_satisfies_pred(const struct aws_byte_cursor *source, aws_byte_predicate_fn *predicate); int aws_byte_buf_append(struct aws_byte_buf *to, const struct aws_byte_cursor *from); int aws_byte_buf_append_with_lookup( struct aws_byte_buf *restrict to, const struct aws_byte_cursor *restrict from, const uint8_t *lookup_table); int aws_byte_buf_append_dynamic(struct aws_byte_buf *to, const struct aws_byte_cursor *from); int aws_byte_buf_reserve(struct aws_byte_buf *buffer, size_t requested_capacity); int aws_byte_buf_reserve_relative(struct aws_byte_buf *buffer, size_t additional_length); int aws_byte_buf_cat(struct aws_byte_buf *dest, size_t number_of_args, ...); _Bool aws_byte_cursor_eq(const struct aws_byte_cursor *a, const struct aws_byte_cursor *b); _Bool aws_byte_cursor_eq_ignore_case(const struct aws_byte_cursor *a, const struct aws_byte_cursor *b); _Bool aws_byte_cursor_eq_byte_buf(const struct aws_byte_cursor *const a, const struct aws_byte_buf *const b); _Bool aws_byte_cursor_eq_byte_buf_ignore_case(const struct aws_byte_cursor *const a, const struct aws_byte_buf *const b); _Bool aws_byte_cursor_eq_c_str(const struct aws_byte_cursor *const cursor, const char *const c_str); _Bool aws_byte_cursor_eq_c_str_ignore_case(const struct aws_byte_cursor *const cursor, const char *const c_str); uint64_t aws_hash_array_ignore_case(const void *array, const size_t len); uint64_t aws_hash_byte_cursor_ptr_ignore_case(const void *item); const uint8_t *aws_lookup_table_to_lower_get(void); int aws_byte_cursor_compare_lexical(const struct aws_byte_cursor *lhs, const struct aws_byte_cursor *rhs); int aws_byte_cursor_compare_lookup( const struct aws_byte_cursor *lhs, const struct aws_byte_cursor *rhs, const uint8_t *lookup_table); struct aws_byte_buf aws_byte_buf_from_c_str(const char *c_str); struct aws_byte_buf aws_byte_buf_from_array(const void *bytes, size_t len); struct aws_byte_buf aws_byte_buf_from_empty_array(const void *bytes, size_t capacity); struct aws_byte_cursor aws_byte_cursor_from_buf(const struct aws_byte_buf *const buf); struct aws_byte_cursor aws_byte_cursor_from_c_str(const char *c_str); struct aws_byte_cursor aws_byte_cursor_from_array(const void *const bytes, const size_t len); struct aws_byte_cursor aws_byte_cursor_advance(struct aws_byte_cursor *const cursor, const size_t len); struct aws_byte_cursor aws_byte_cursor_advance_nospec(struct aws_byte_cursor *const cursor, size_t len); _Bool aws_byte_cursor_read( struct aws_byte_cursor *restrict cur, void *restrict dest, const size_t len); _Bool aws_byte_cursor_read_and_fill_buffer( struct aws_byte_cursor *restrict cur, struct aws_byte_buf *restrict dest); _Bool aws_byte_cursor_read_u8(struct aws_byte_cursor *restrict cur, uint8_t *restrict var); _Bool aws_byte_cursor_read_be16(struct aws_byte_cursor *cur, uint16_t *var); _Bool aws_byte_cursor_read_be32(struct aws_byte_cursor *cur, uint32_t *var); _Bool aws_byte_cursor_read_float_be32(struct aws_byte_cursor *cur, float *var); _Bool aws_byte_cursor_read_float_be64(struct aws_byte_cursor *cur, double *var); _Bool aws_byte_cursor_read_be64(struct aws_byte_cursor *cur, uint64_t *var); _Bool aws_byte_buf_advance( struct aws_byte_buf *const restrict buffer, struct aws_byte_buf *const restrict output, const size_t len); _Bool aws_byte_buf_write( struct aws_byte_buf *restrict buf, const uint8_t *restrict src, size_t len); _Bool aws_byte_buf_write_from_whole_buffer( struct aws_byte_buf *restrict buf, struct aws_byte_buf src); _Bool aws_byte_buf_write_from_whole_cursor( struct aws_byte_buf *restrict buf, struct aws_byte_cursor src); _Bool aws_byte_buf_write_u8(struct aws_byte_buf *restrict buf, uint8_t c); _Bool aws_byte_buf_write_be16(struct aws_byte_buf *buf, uint16_t x); _Bool aws_byte_buf_write_be32(struct aws_byte_buf *buf, uint32_t x); _Bool aws_byte_buf_write_float_be32(struct aws_byte_buf *buf, float x); _Bool aws_byte_buf_write_be64(struct aws_byte_buf *buf, uint64_t x); _Bool aws_byte_buf_write_float_be64(struct aws_byte_buf *buf, double x); struct aws_linked_list_node { struct aws_linked_list_node *next; struct aws_linked_list_node *prev; }; struct aws_linked_list { struct aws_linked_list_node head; struct aws_linked_list_node tail; }; static inline void aws_linked_list_node_reset(struct aws_linked_list_node *node); static inline _Bool aws_linked_list_empty(const struct aws_linked_list *list); static inline _Bool aws_linked_list_is_valid(const struct aws_linked_list *list); static inline _Bool aws_linked_list_node_next_is_valid(const struct aws_linked_list_node *node); static inline _Bool aws_linked_list_node_prev_is_valid(const struct aws_linked_list_node *node); static inline _Bool aws_linked_list_is_valid_deep(const struct aws_linked_list *list); static inline void aws_linked_list_init(struct aws_linked_list *list); static inline struct aws_linked_list_node *aws_linked_list_begin(const struct aws_linked_list *list); static inline const struct aws_linked_list_node *aws_linked_list_end(const struct aws_linked_list *list); static inline struct aws_linked_list_node *aws_linked_list_rbegin(const struct aws_linked_list *list); static inline const struct aws_linked_list_node *aws_linked_list_rend(const struct aws_linked_list *list); static inline struct aws_linked_list_node *aws_linked_list_next(const struct aws_linked_list_node *node); static inline struct aws_linked_list_node *aws_linked_list_prev(const struct aws_linked_list_node *node); static inline void aws_linked_list_insert_after( struct aws_linked_list_node *after, struct aws_linked_list_node *to_add); static inline void aws_linked_list_swap_nodes(struct aws_linked_list_node *a, struct aws_linked_list_node *b); static inline void aws_linked_list_insert_before( struct aws_linked_list_node *before, struct aws_linked_list_node *to_add); static inline void aws_linked_list_remove(struct aws_linked_list_node *node); static inline void aws_linked_list_push_back(struct aws_linked_list *list, struct aws_linked_list_node *node); static inline struct aws_linked_list_node *aws_linked_list_back(const struct aws_linked_list *list); static inline struct aws_linked_list_node *aws_linked_list_pop_back(struct aws_linked_list *list); static inline void aws_linked_list_push_front(struct aws_linked_list *list, struct aws_linked_list_node *node); static inline struct aws_linked_list_node *aws_linked_list_front(const struct aws_linked_list *list); static inline struct aws_linked_list_node *aws_linked_list_pop_front(struct aws_linked_list *list); static inline void aws_linked_list_swap_contents(struct aws_linked_list *a, struct aws_linked_list *b); static inline void aws_linked_list_node_reset(struct aws_linked_list_node *node) { assume_abort_if_not((node != ((void *)0) )); do { memset(&(*node), 0, sizeof(*node)); } while (0); __VERIFIER_assert((aws_is_mem_zeroed(&(*node), sizeof(*node)))); } static inline _Bool aws_linked_list_empty(const struct aws_linked_list *list) { assume_abort_if_not((list)); return list->head.next == &list->tail; } static inline _Bool aws_linked_list_is_valid(const struct aws_linked_list *list) { if (list && list->head.next && list->head.prev == ((void *)0) && list->tail.prev && list->tail.next == ((void *)0) ) { return 1 ; } return 0 ; } static inline _Bool aws_linked_list_node_next_is_valid(const struct aws_linked_list_node *node) { return node && node->next && node->next->prev == node; } static inline _Bool aws_linked_list_node_prev_is_valid(const struct aws_linked_list_node *node) { return node && node->prev && node->prev->next == node; } static inline _Bool aws_linked_list_is_valid_deep(const struct aws_linked_list *list) { if (!list) { return 0 ; } const struct aws_linked_list_node *temp = &list->head; _Bool head_reaches_tail = 0 ; while (temp) { if (temp == &list->tail) { head_reaches_tail = 1 ; break; } else if (!aws_linked_list_node_next_is_valid(temp)) { return 0 ; } temp = temp->next; } return head_reaches_tail; } static inline void aws_linked_list_init(struct aws_linked_list *list) { assume_abort_if_not((list)); list->head.next = &list->tail; list->head.prev = ((void *)0) ; list->tail.prev = &list->head; list->tail.next = ((void *)0) ; __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((aws_linked_list_empty(list))); } static inline struct aws_linked_list_node *aws_linked_list_begin(const struct aws_linked_list *list) { assume_abort_if_not((aws_linked_list_is_valid(list))); struct aws_linked_list_node *rval = list->head.next; __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((rval == list->head.next)); return rval; } static inline const struct aws_linked_list_node *aws_linked_list_end(const struct aws_linked_list *list) { assume_abort_if_not((aws_linked_list_is_valid(list))); const struct aws_linked_list_node *rval = &list->tail; __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((rval == &list->tail)); return rval; } static inline struct aws_linked_list_node *aws_linked_list_rbegin(const struct aws_linked_list *list) { assume_abort_if_not((aws_linked_list_is_valid(list))); struct aws_linked_list_node *rval = list->tail.prev; __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((rval == list->tail.prev)); return rval; } static inline const struct aws_linked_list_node *aws_linked_list_rend(const struct aws_linked_list *list) { assume_abort_if_not((aws_linked_list_is_valid(list))); const struct aws_linked_list_node *rval = &list->head; __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((rval == &list->head)); return rval; } static inline struct aws_linked_list_node *aws_linked_list_next(const struct aws_linked_list_node *node) { assume_abort_if_not((aws_linked_list_node_next_is_valid(node))); struct aws_linked_list_node *rval = node->next; __VERIFIER_assert((aws_linked_list_node_next_is_valid(node))); __VERIFIER_assert((aws_linked_list_node_prev_is_valid(rval))); __VERIFIER_assert((rval == node->next)); return rval; } static inline struct aws_linked_list_node *aws_linked_list_prev(const struct aws_linked_list_node *node) { assume_abort_if_not((aws_linked_list_node_prev_is_valid(node))); struct aws_linked_list_node *rval = node->prev; __VERIFIER_assert((aws_linked_list_node_prev_is_valid(node))); __VERIFIER_assert((aws_linked_list_node_next_is_valid(rval))); __VERIFIER_assert((rval == node->prev)); return rval; } static inline void aws_linked_list_insert_after( struct aws_linked_list_node *after, struct aws_linked_list_node *to_add) { assume_abort_if_not((aws_linked_list_node_next_is_valid(after))); assume_abort_if_not((to_add != ((void *)0) )); to_add->prev = after; to_add->next = after->next; after->next->prev = to_add; after->next = to_add; __VERIFIER_assert((aws_linked_list_node_next_is_valid(after))); __VERIFIER_assert((aws_linked_list_node_prev_is_valid(to_add))); __VERIFIER_assert((aws_linked_list_node_next_is_valid(to_add))); __VERIFIER_assert((after->next == to_add)); } static inline void aws_linked_list_swap_nodes(struct aws_linked_list_node *a, struct aws_linked_list_node *b) { assume_abort_if_not((aws_linked_list_node_prev_is_valid(a))); assume_abort_if_not((aws_linked_list_node_next_is_valid(a))); assume_abort_if_not((aws_linked_list_node_prev_is_valid(b))); assume_abort_if_not((aws_linked_list_node_next_is_valid(b))); if (a == b) { return; } struct aws_linked_list_node tmp = *b; a->prev->next = b; a->next->prev = b; tmp.prev->next = a; tmp.next->prev = a; tmp = *a; *a = *b; *b = tmp; __VERIFIER_assert((aws_linked_list_node_prev_is_valid(a))); __VERIFIER_assert((aws_linked_list_node_next_is_valid(a))); __VERIFIER_assert((aws_linked_list_node_prev_is_valid(b))); __VERIFIER_assert((aws_linked_list_node_next_is_valid(b))); } static inline void aws_linked_list_insert_before( struct aws_linked_list_node *before, struct aws_linked_list_node *to_add) { assume_abort_if_not((aws_linked_list_node_prev_is_valid(before))); assume_abort_if_not((to_add != ((void *)0) )); to_add->next = before; to_add->prev = before->prev; before->prev->next = to_add; before->prev = to_add; __VERIFIER_assert((aws_linked_list_node_prev_is_valid(before))); __VERIFIER_assert((aws_linked_list_node_prev_is_valid(to_add))); __VERIFIER_assert((aws_linked_list_node_next_is_valid(to_add))); __VERIFIER_assert((before->prev == to_add)); } static inline void aws_linked_list_remove(struct aws_linked_list_node *node) { assume_abort_if_not((aws_linked_list_node_prev_is_valid(node))); assume_abort_if_not((aws_linked_list_node_next_is_valid(node))); node->prev->next = node->next; node->next->prev = node->prev; aws_linked_list_node_reset(node); __VERIFIER_assert((node->next == ((void *)0) && node->prev == ((void *)0) )); } static inline void aws_linked_list_push_back(struct aws_linked_list *list, struct aws_linked_list_node *node) { assume_abort_if_not((aws_linked_list_is_valid(list))); assume_abort_if_not((node != ((void *)0) )); aws_linked_list_insert_before(&list->tail, node); __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((list->tail.prev == node)); } static inline struct aws_linked_list_node *aws_linked_list_back(const struct aws_linked_list *list) { assume_abort_if_not((aws_linked_list_is_valid(list))); assume_abort_if_not((!aws_linked_list_empty(list))); struct aws_linked_list_node *rval = list->tail.prev; __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((aws_linked_list_node_prev_is_valid(rval))); __VERIFIER_assert((aws_linked_list_node_next_is_valid(rval))); return rval; } static inline struct aws_linked_list_node *aws_linked_list_pop_back(struct aws_linked_list *list) { assume_abort_if_not((!aws_linked_list_empty(list))); assume_abort_if_not((aws_linked_list_is_valid(list))); struct aws_linked_list_node *back = aws_linked_list_back(list); aws_linked_list_remove(back); __VERIFIER_assert((back->next == ((void *)0) && back->prev == ((void *)0) )); __VERIFIER_assert((aws_linked_list_is_valid(list))); return back; } static inline void aws_linked_list_push_front(struct aws_linked_list *list, struct aws_linked_list_node *node) { assume_abort_if_not((aws_linked_list_is_valid(list))); assume_abort_if_not((node != ((void *)0) )); aws_linked_list_insert_before(list->head.next, node); __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((list->head.next == node)); } static inline struct aws_linked_list_node *aws_linked_list_front(const struct aws_linked_list *list) { assume_abort_if_not((aws_linked_list_is_valid(list))); assume_abort_if_not((!aws_linked_list_empty(list))); struct aws_linked_list_node *rval = list->head.next; __VERIFIER_assert((aws_linked_list_is_valid(list))); __VERIFIER_assert((aws_linked_list_node_prev_is_valid(rval))); __VERIFIER_assert((aws_linked_list_node_next_is_valid(rval))); return rval; } static inline struct aws_linked_list_node *aws_linked_list_pop_front(struct aws_linked_list *list) { assume_abort_if_not((!aws_linked_list_empty(list))); assume_abort_if_not((aws_linked_list_is_valid(list))); struct aws_linked_list_node *front = aws_linked_list_front(list); aws_linked_list_remove(front); __VERIFIER_assert((front->next == ((void *)0) && front->prev == ((void *)0) )); __VERIFIER_assert((aws_linked_list_is_valid(list))); return front; } static inline void aws_linked_list_swap_contents(struct aws_linked_list *a, struct aws_linked_list *b) { assume_abort_if_not((aws_linked_list_is_valid(a))); assume_abort_if_not((aws_linked_list_is_valid(b))); struct aws_linked_list_node *a_first = a->head.next; struct aws_linked_list_node *a_last = a->tail.prev; if (aws_linked_list_empty(b)) { aws_linked_list_init(a); } else { a->head.next = b->head.next; a->head.next->prev = &a->head; a->tail.prev = b->tail.prev; a->tail.prev->next = &a->tail; } if (a_first == &a->tail) { aws_linked_list_init(b); } else { b->head.next = a_first; b->head.next->prev = &b->head; b->tail.prev = a_last; b->tail.prev->next = &b->tail; } __VERIFIER_assert((aws_linked_list_is_valid(a))); __VERIFIER_assert((aws_linked_list_is_valid(b))); } typedef int(aws_priority_queue_compare_fn)(const void *a, const void *b); struct aws_priority_queue { aws_priority_queue_compare_fn *pred; struct aws_array_list container; struct aws_array_list backpointers; }; struct aws_priority_queue_node { size_t current_index; }; int aws_priority_queue_init_dynamic( struct aws_priority_queue *queue, struct aws_allocator *alloc, size_t default_size, size_t item_size, aws_priority_queue_compare_fn *pred); void aws_priority_queue_init_static( struct aws_priority_queue *queue, void *heap, size_t item_count, size_t item_size, aws_priority_queue_compare_fn *pred); _Bool aws_priority_queue_backpointer_index_valid(const struct aws_priority_queue *const queue, size_t index); _Bool aws_priority_queue_backpointers_valid_deep(const struct aws_priority_queue *const queue); _Bool aws_priority_queue_backpointers_valid(const struct aws_priority_queue *const queue); _Bool aws_priority_queue_is_valid(const struct aws_priority_queue *const queue); void aws_priority_queue_clean_up(struct aws_priority_queue *queue); int aws_priority_queue_push(struct aws_priority_queue *queue, void *item); int aws_priority_queue_push_ref( struct aws_priority_queue *queue, void *item, struct aws_priority_queue_node *backpointer); int aws_priority_queue_pop(struct aws_priority_queue *queue, void *item); int aws_priority_queue_remove(struct aws_priority_queue *queue, void *item, const struct aws_priority_queue_node *node); int aws_priority_queue_top(const struct aws_priority_queue *queue, void **item); size_t aws_priority_queue_size(const struct aws_priority_queue *queue); size_t aws_priority_queue_capacity(const struct aws_priority_queue *queue); struct hash_table_state; struct aws_hash_table { struct hash_table_state *p_impl; }; struct aws_hash_element { const void *key; void *value; }; enum aws_hash_iter_status { AWS_HASH_ITER_STATUS_DONE, AWS_HASH_ITER_STATUS_DELETE_CALLED, AWS_HASH_ITER_STATUS_READY_FOR_USE, }; struct aws_hash_iter { const struct aws_hash_table *map; struct aws_hash_element element; size_t slot; size_t limit; enum aws_hash_iter_status status; int unused_0; void *unused_1; void *unused_2; }; typedef uint64_t(aws_hash_fn)(const void *key); typedef _Bool (aws_hash_callback_eq_fn)(const void *a, const void *b); typedef void(aws_hash_callback_destroy_fn)(void *key_or_value); int aws_hash_table_init( struct aws_hash_table *map, struct aws_allocator *alloc, size_t size, aws_hash_fn *hash_fn, aws_hash_callback_eq_fn *equals_fn, aws_hash_callback_destroy_fn *destroy_key_fn, aws_hash_callback_destroy_fn *destroy_value_fn); void aws_hash_table_clean_up(struct aws_hash_table *map); void aws_hash_table_swap(struct aws_hash_table *restrict a, struct aws_hash_table *restrict b); void aws_hash_table_move(struct aws_hash_table *restrict to, struct aws_hash_table *restrict from); size_t aws_hash_table_get_entry_count(const struct aws_hash_table *map); struct aws_hash_iter aws_hash_iter_begin(const struct aws_hash_table *map); _Bool aws_hash_iter_done(const struct aws_hash_iter *iter); void aws_hash_iter_next(struct aws_hash_iter *iter); void aws_hash_iter_delete(struct aws_hash_iter *iter, _Bool destroy_contents); int aws_hash_table_find(const struct aws_hash_table *map, const void *key, struct aws_hash_element **p_elem); int aws_hash_table_create( struct aws_hash_table *map, const void *key, struct aws_hash_element **p_elem, int *was_created); int aws_hash_table_put(struct aws_hash_table *map, const void *key, void *value, int *was_created); int aws_hash_table_remove( struct aws_hash_table *map, const void *key, struct aws_hash_element *p_value, int *was_present); int aws_hash_table_remove_element(struct aws_hash_table *map, struct aws_hash_element *p_value); int aws_hash_table_foreach( struct aws_hash_table *map, int (*callback)(void *context, struct aws_hash_element *p_element), void *context); _Bool aws_hash_table_eq( const struct aws_hash_table *a, const struct aws_hash_table *b, aws_hash_callback_eq_fn *value_eq); void aws_hash_table_clear(struct aws_hash_table *map); uint64_t aws_hash_c_string(const void *item); uint64_t aws_hash_string(const void *item); uint64_t aws_hash_byte_cursor_ptr(const void *item); uint64_t aws_hash_ptr(const void *item); _Bool aws_hash_callback_c_str_eq(const void *a, const void *b); _Bool aws_hash_callback_string_eq(const void *a, const void *b); void aws_hash_callback_string_destroy(void *a); _Bool aws_ptr_eq(const void *a, const void *b); _Bool aws_hash_table_is_valid(const struct aws_hash_table *map); _Bool aws_hash_iter_is_valid(const struct aws_hash_iter *iter); struct hash_table_entry { struct aws_hash_element element; uint64_t hash_code; }; struct hash_table_state { aws_hash_fn *hash_fn; aws_hash_callback_eq_fn *equals_fn; aws_hash_callback_destroy_fn *destroy_key_fn; aws_hash_callback_destroy_fn *destroy_value_fn; struct aws_allocator *alloc; size_t size, entry_count; size_t max_load; size_t mask; double max_load_factor; struct hash_table_entry slots[]; }; _Bool hash_table_state_is_valid(const struct hash_table_state *map); int hash_table_state_required_bytes(size_t size, size_t *required_bytes); struct aws_atomic_var { void *value; }; enum aws_memory_order { aws_memory_order_relaxed = 0, aws_memory_order_acquire = 2, aws_memory_order_release, aws_memory_order_acq_rel, aws_memory_order_seq_cst }; static inline void aws_atomic_init_int(volatile struct aws_atomic_var *var, size_t n); static inline void aws_atomic_init_ptr(volatile struct aws_atomic_var *var, void *p); static inline size_t aws_atomic_load_int_explicit(volatile const struct aws_atomic_var *var, enum aws_memory_order memory_order); static inline size_t aws_atomic_load_int(volatile const struct aws_atomic_var *var); static inline void *aws_atomic_load_ptr_explicit(volatile const struct aws_atomic_var *var, enum aws_memory_order memory_order); static inline void *aws_atomic_load_ptr(volatile const struct aws_atomic_var *var); static inline void aws_atomic_store_int_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order memory_order); static inline void aws_atomic_store_int(volatile struct aws_atomic_var *var, size_t n); static inline void aws_atomic_store_ptr_explicit(volatile struct aws_atomic_var *var, void *p, enum aws_memory_order memory_order); static inline void aws_atomic_store_ptr(volatile struct aws_atomic_var *var, void *p); static inline size_t aws_atomic_exchange_int_explicit( volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order memory_order); static inline size_t aws_atomic_exchange_int(volatile struct aws_atomic_var *var, size_t n); static inline void *aws_atomic_exchange_ptr_explicit( volatile struct aws_atomic_var *var, void *p, enum aws_memory_order memory_order); static inline void *aws_atomic_exchange_ptr(volatile struct aws_atomic_var *var, void *p); static inline _Bool aws_atomic_compare_exchange_int_explicit( volatile struct aws_atomic_var *var, size_t *expected, size_t desired, enum aws_memory_order order_success, enum aws_memory_order order_failure); static inline _Bool aws_atomic_compare_exchange_int(volatile struct aws_atomic_var *var, size_t *expected, size_t desired); static inline _Bool aws_atomic_compare_exchange_ptr_explicit( volatile struct aws_atomic_var *var, void **expected, void *desired, enum aws_memory_order order_success, enum aws_memory_order order_failure); static inline _Bool aws_atomic_compare_exchange_ptr(volatile struct aws_atomic_var *var, void **expected, void *desired); static inline size_t aws_atomic_fetch_add_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order); static inline size_t aws_atomic_fetch_sub_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order); static inline size_t aws_atomic_fetch_or_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order); static inline size_t aws_atomic_fetch_and_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order); static inline size_t aws_atomic_fetch_xor_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order); static inline size_t aws_atomic_fetch_add(volatile struct aws_atomic_var *var, size_t n); static inline size_t aws_atomic_fetch_sub(volatile struct aws_atomic_var *var, size_t n); static inline size_t aws_atomic_fetch_and(volatile struct aws_atomic_var *var, size_t n); static inline size_t aws_atomic_fetch_or(volatile struct aws_atomic_var *var, size_t n); static inline size_t aws_atomic_fetch_xor(volatile struct aws_atomic_var *var, size_t n); static inline void aws_atomic_thread_fence(enum aws_memory_order order); static inline size_t aws_atomic_load_int(volatile const struct aws_atomic_var *var) { return aws_atomic_load_int_explicit(var, aws_memory_order_seq_cst); } static inline void *aws_atomic_load_ptr(volatile const struct aws_atomic_var *var) { return aws_atomic_load_ptr_explicit(var, aws_memory_order_seq_cst); } static inline void aws_atomic_store_int(volatile struct aws_atomic_var *var, size_t n) { aws_atomic_store_int_explicit(var, n, aws_memory_order_seq_cst); } static inline void aws_atomic_store_ptr(volatile struct aws_atomic_var *var, void *p) { aws_atomic_store_ptr_explicit(var, p, aws_memory_order_seq_cst); } static inline size_t aws_atomic_exchange_int(volatile struct aws_atomic_var *var, size_t n) { return aws_atomic_exchange_int_explicit(var, n, aws_memory_order_seq_cst); } static inline void *aws_atomic_exchange_ptr(volatile struct aws_atomic_var *var, void *p) { return aws_atomic_exchange_ptr_explicit(var, p, aws_memory_order_seq_cst); } static inline _Bool aws_atomic_compare_exchange_int(volatile struct aws_atomic_var *var, size_t *expected, size_t desired) { return aws_atomic_compare_exchange_int_explicit( var, expected, desired, aws_memory_order_seq_cst, aws_memory_order_seq_cst); } static inline _Bool aws_atomic_compare_exchange_ptr(volatile struct aws_atomic_var *var, void **expected, void *desired) { return aws_atomic_compare_exchange_ptr_explicit( var, expected, desired, aws_memory_order_seq_cst, aws_memory_order_seq_cst); } static inline size_t aws_atomic_fetch_add(volatile struct aws_atomic_var *var, size_t n) { return aws_atomic_fetch_add_explicit(var, n, aws_memory_order_seq_cst); } static inline size_t aws_atomic_fetch_sub(volatile struct aws_atomic_var *var, size_t n) { return aws_atomic_fetch_sub_explicit(var, n, aws_memory_order_seq_cst); } static inline size_t aws_atomic_fetch_and(volatile struct aws_atomic_var *var, size_t n) { return aws_atomic_fetch_and_explicit(var, n, aws_memory_order_seq_cst); } static inline size_t aws_atomic_fetch_or(volatile struct aws_atomic_var *var, size_t n) { return aws_atomic_fetch_or_explicit(var, n, aws_memory_order_seq_cst); } static inline size_t aws_atomic_fetch_xor(volatile struct aws_atomic_var *var, size_t n) { return aws_atomic_fetch_xor_explicit(var, n, aws_memory_order_seq_cst); } typedef size_t aws_atomic_impl_int_t; static inline int aws_atomic_priv_xlate_order(enum aws_memory_order order) { switch (order) { case aws_memory_order_relaxed: return 0; case aws_memory_order_acquire: return 2; case aws_memory_order_release: return 3; case aws_memory_order_acq_rel: return 4; case aws_memory_order_seq_cst: return 5; default: my_abort(); } } static inline void aws_atomic_init_int(volatile struct aws_atomic_var *var, size_t n) { (*(aws_atomic_impl_int_t *)(var)) = n; } static inline void aws_atomic_init_ptr(volatile struct aws_atomic_var *var, void *p) { ((var)->value) = p; } static inline size_t aws_atomic_load_int_explicit(volatile const struct aws_atomic_var *var, enum aws_memory_order memory_order) { return __atomic_load_n(&(*(aws_atomic_impl_int_t *)(var)), aws_atomic_priv_xlate_order(memory_order)); } static inline void *aws_atomic_load_ptr_explicit(volatile const struct aws_atomic_var *var, enum aws_memory_order memory_order) { return __atomic_load_n(&((var)->value), aws_atomic_priv_xlate_order(memory_order)); } static inline void aws_atomic_store_int_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order memory_order) { __atomic_store_n(&(*(aws_atomic_impl_int_t *)(var)), n, aws_atomic_priv_xlate_order(memory_order)); } static inline void aws_atomic_store_ptr_explicit(volatile struct aws_atomic_var *var, void *p, enum aws_memory_order memory_order) { __atomic_store_n(&((var)->value), p, aws_atomic_priv_xlate_order(memory_order)); } static inline size_t aws_atomic_exchange_int_explicit( volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order memory_order) { return __atomic_exchange_n(&(*(aws_atomic_impl_int_t *)(var)), n, aws_atomic_priv_xlate_order(memory_order)); } static inline void *aws_atomic_exchange_ptr_explicit( volatile struct aws_atomic_var *var, void *p, enum aws_memory_order memory_order) { return __atomic_exchange_n(&((var)->value), p, aws_atomic_priv_xlate_order(memory_order)); } static inline _Bool aws_atomic_compare_exchange_int_explicit( volatile struct aws_atomic_var *var, size_t *expected, size_t desired, enum aws_memory_order order_success, enum aws_memory_order order_failure) { return __atomic_compare_exchange_n( &(*(aws_atomic_impl_int_t *)(var)), expected, desired, 0 , aws_atomic_priv_xlate_order(order_success), aws_atomic_priv_xlate_order(order_failure)); } static inline _Bool aws_atomic_compare_exchange_ptr_explicit( volatile struct aws_atomic_var *var, void **expected, void *desired, enum aws_memory_order order_success, enum aws_memory_order order_failure) { return __atomic_compare_exchange_n( &((var)->value), expected, desired, 0 , aws_atomic_priv_xlate_order(order_success), aws_atomic_priv_xlate_order(order_failure)); } static inline size_t aws_atomic_fetch_add_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) { return __atomic_fetch_add(&(*(aws_atomic_impl_int_t *)(var)), n, aws_atomic_priv_xlate_order(order)); } static inline size_t aws_atomic_fetch_sub_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) { return __atomic_fetch_sub(&(*(aws_atomic_impl_int_t *)(var)), n, aws_atomic_priv_xlate_order(order)); } static inline size_t aws_atomic_fetch_or_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) { return __atomic_fetch_or(&(*(aws_atomic_impl_int_t *)(var)), n, aws_atomic_priv_xlate_order(order)); } static inline size_t aws_atomic_fetch_and_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) { return __atomic_fetch_and(&(*(aws_atomic_impl_int_t *)(var)), n, aws_atomic_priv_xlate_order(order)); } static inline size_t aws_atomic_fetch_xor_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) { return __atomic_fetch_xor(&(*(aws_atomic_impl_int_t *)(var)), n, aws_atomic_priv_xlate_order(order)); } static inline void aws_atomic_thread_fence(enum aws_memory_order order) { __atomic_thread_fence(order); } struct aws_ring_buffer { struct aws_allocator *allocator; uint8_t *allocation; struct aws_atomic_var head; struct aws_atomic_var tail; uint8_t *allocation_end; }; struct aws_byte_buf; int aws_ring_buffer_init(struct aws_ring_buffer *ring_buf, struct aws_allocator *allocator, size_t size); static inline _Bool aws_ring_buffer_check_atomic_ptr( const struct aws_ring_buffer *ring_buf, const uint8_t *atomic_ptr); static inline _Bool aws_ring_buffer_is_empty(const struct aws_ring_buffer *ring_buf); static inline _Bool aws_ring_buffer_is_valid(const struct aws_ring_buffer *ring_buf); void aws_ring_buffer_clean_up(struct aws_ring_buffer *ring_buf); int aws_ring_buffer_acquire( struct aws_ring_buffer *ring_buf, size_t requested_size, struct aws_byte_buf *dest); int aws_ring_buffer_acquire_up_to( struct aws_ring_buffer *ring_buf, size_t minimum_size, size_t requested_size, struct aws_byte_buf *dest); void aws_ring_buffer_release(struct aws_ring_buffer *ring_buffer, struct aws_byte_buf *buf); _Bool aws_ring_buffer_buf_belongs_to_pool( const struct aws_ring_buffer *ring_buffer, const struct aws_byte_buf *buf); static inline _Bool aws_ring_buffer_check_atomic_ptr( const struct aws_ring_buffer *ring_buf, const uint8_t *atomic_ptr) { return (atomic_ptr >= ring_buf->allocation && atomic_ptr <= ring_buf->allocation_end); } static inline _Bool aws_ring_buffer_is_empty(const struct aws_ring_buffer *ring_buf) { uint8_t *head = (uint8_t *)aws_atomic_load_ptr(&ring_buf->head); uint8_t *tail = (uint8_t *)aws_atomic_load_ptr(&ring_buf->tail); return head == tail; } static inline _Bool aws_ring_buffer_is_valid(const struct aws_ring_buffer *ring_buf) { uint8_t *head = (uint8_t *)aws_atomic_load_ptr(&ring_buf->head); uint8_t *tail = (uint8_t *)aws_atomic_load_ptr(&ring_buf->tail); _Bool head_in_range = aws_ring_buffer_check_atomic_ptr(ring_buf, head); _Bool tail_in_range = aws_ring_buffer_check_atomic_ptr(ring_buf, tail); _Bool valid_head_tail = (head != ring_buf->allocation) || (tail == ring_buf->allocation); return ring_buf && ((((ring_buf->allocation_end - ring_buf->allocation)) == 0) || ((ring_buf->allocation))) && head_in_range && tail_in_range && valid_head_tail && (ring_buf->allocator != ((void *)0) ); } struct aws_string { struct aws_allocator *const allocator; const size_t len; const uint8_t bytes[]; }; _Bool aws_string_eq(const struct aws_string *a, const struct aws_string *b); _Bool aws_string_eq_ignore_case(const struct aws_string *a, const struct aws_string *b); _Bool aws_string_eq_byte_cursor(const struct aws_string *str, const struct aws_byte_cursor *cur); _Bool aws_string_eq_byte_cursor_ignore_case(const struct aws_string *str, const struct aws_byte_cursor *cur); _Bool aws_string_eq_byte_buf(const struct aws_string *str, const struct aws_byte_buf *buf); _Bool aws_string_eq_byte_buf_ignore_case(const struct aws_string *str, const struct aws_byte_buf *buf); _Bool aws_string_eq_c_str(const struct aws_string *str, const char *c_str); _Bool aws_string_eq_c_str_ignore_case(const struct aws_string *str, const char *c_str); struct aws_string *aws_string_new_from_c_str(struct aws_allocator *allocator, const char *c_str); struct aws_string *aws_string_new_from_array(struct aws_allocator *allocator, const uint8_t *bytes, size_t len); struct aws_string *aws_string_new_from_string(struct aws_allocator *allocator, const struct aws_string *str); void aws_string_destroy(struct aws_string *str); void aws_string_destroy_secure(struct aws_string *str); int aws_string_compare(const struct aws_string *a, const struct aws_string *b); int aws_array_list_comparator_string(const void *a, const void *b); _Bool aws_byte_buf_write_from_whole_string( struct aws_byte_buf *restrict buf, const struct aws_string *restrict src); struct aws_byte_cursor aws_byte_cursor_from_string(const struct aws_string *src); struct aws_string *aws_string_clone_or_reuse(struct aws_allocator *allocator, const struct aws_string *str); static inline const uint8_t *aws_string_bytes(const struct aws_string *str); static inline _Bool aws_string_is_valid(const struct aws_string *str); static inline _Bool aws_c_string_is_valid(const char *str); static inline const uint8_t *aws_string_bytes(const struct aws_string *str) { assume_abort_if_not((aws_string_is_valid(str))); return str->bytes; } static inline _Bool aws_string_is_valid(const struct aws_string *str) { return str && ((((str->len + 1)) == 0) || ((&str->bytes[0]))) && str->bytes[str->len] == 0; } static inline _Bool aws_c_string_is_valid(const char *str) { return str && ((((1)) == 0) || ((str))); } _Bool nondet_bool(); int nondet_int(); size_t nondet_size_t(); uint16_t nondet_uint16_t(); uint32_t nondet_uint32_t(); uint64_t nondet_uint64_t(); uint8_t nondet_uint8_t(); void *nondet_voidp(); void *bounded_calloc(size_t num, size_t size); void *bounded_malloc(size_t size); struct aws_allocator *can_fail_allocator(); void *can_fail_calloc(size_t num, size_t size); void *can_fail_malloc(size_t size); void *can_fail_realloc(void *ptr, size_t newsize); struct store_byte_from_buffer { size_t index; uint8_t byte; }; void assert_bytes_match(const uint8_t *const a, const uint8_t *const b, const size_t len); void assert_all_bytes_are(const uint8_t *const a, const uint8_t c, const size_t len); void assert_all_zeroes(const uint8_t *const a, const size_t len); void assert_byte_from_buffer_matches(const uint8_t *const buffer, const struct store_byte_from_buffer *const b); void save_byte_from_array(const uint8_t *const array, const size_t size, struct store_byte_from_buffer *const storage); void assert_array_list_equivalence( const struct aws_array_list *const lhs, const struct aws_array_list *const rhs, const struct store_byte_from_buffer *const rhs_byte); void assert_byte_cursor_equivalence( const struct aws_byte_cursor *const lhs, const struct aws_byte_cursor *const rhs, const struct store_byte_from_buffer *const rhs_byte); void assert_ring_buffer_equivalence( const struct aws_ring_buffer *const lhs, const struct aws_ring_buffer *const rhs); void assert_byte_buf_equivalence( const struct aws_byte_buf *const lhs, const struct aws_byte_buf *const rhs, const struct store_byte_from_buffer *const rhs_byte); void save_byte_from_hash_table(const struct aws_hash_table *map, struct store_byte_from_buffer *storage); void check_hash_table_unchanged(const struct aws_hash_table *map, const struct store_byte_from_buffer *storage); int nondet_compare(const void *const a, const void *const b); int uninterpreted_compare(const void *const a, const void *const b); _Bool nondet_equals(const void *const a, const void *const b); _Bool uninterpreted_equals(const void *const a, const void *const b); _Bool uninterpreted_equals_assert_inputs_nonnull(const void *const a, const void *const b); uint64_t nondet_hasher(const void *a); uint64_t uninterpreted_hasher(const void *a); _Bool uninterpreted_predicate_fn(uint8_t value); _Bool aws_byte_buf_is_bounded(const struct aws_byte_buf *const buf, const size_t max_size); _Bool aws_byte_buf_has_allocator(const struct aws_byte_buf *const buf); void ensure_byte_buf_has_allocated_buffer_member(struct aws_byte_buf *const buf); void ensure_ring_buffer_has_allocated_members(struct aws_ring_buffer *ring_buf, const size_t size); _Bool aws_byte_cursor_is_bounded(const struct aws_byte_cursor *const cursor, const size_t max_size); void ensure_byte_buf_has_allocated_buffer_member_in_ring_buf( struct aws_byte_buf *buf, struct aws_ring_buffer *ring_buf); void ensure_byte_cursor_has_allocated_buffer_member(struct aws_byte_cursor *const cursor); _Bool aws_array_list_is_bounded( const struct aws_array_list *const list, const size_t max_initial_item_allocation, const size_t max_item_size); void ensure_array_list_has_allocated_data_member(struct aws_array_list *const list); void ensure_linked_list_is_allocated(struct aws_linked_list *list, size_t max_length); _Bool aws_priority_queue_is_bounded( const struct aws_priority_queue *const queue, const size_t max_initial_item_allocation, const size_t max_item_size); void ensure_priority_queue_has_allocated_members(struct aws_priority_queue *const queue); void ensure_allocated_hash_table(struct aws_hash_table *map, size_t max_table_entries); void ensure_hash_table_has_valid_destroy_functions(struct aws_hash_table *map); _Bool aws_hash_table_has_an_empty_slot(const struct aws_hash_table *const map, size_t *const rval); _Bool hash_table_state_has_an_empty_slot(const struct hash_table_state *const state, size_t *const rval); void hash_proof_destroy_noop(void *p); struct aws_string *ensure_string_is_allocated_nondet_length(); struct aws_string *ensure_string_is_allocated_bounded_length(size_t max_size); struct aws_string *ensure_string_is_allocated(size_t size); const char *ensure_c_str_is_allocated(size_t max_size); _Bool aws_byte_buf_is_bounded(const struct aws_byte_buf *const buf, const size_t max_size) { return (buf->capacity <= max_size); } _Bool aws_byte_buf_has_allocator(const struct aws_byte_buf *const buf) { return (buf->allocator == can_fail_allocator()); } void ensure_byte_buf_has_allocated_buffer_member(struct aws_byte_buf *const buf) { buf->allocator = (nondet_bool()) ? ((void *)0) : can_fail_allocator(); buf->buffer = bounded_malloc(sizeof(*(buf->buffer)) * buf->capacity); } void ensure_ring_buffer_has_allocated_members(struct aws_ring_buffer *ring_buf, const size_t size) { ring_buf->allocator = can_fail_allocator(); ring_buf->allocation = bounded_malloc(sizeof(*(ring_buf->allocation)) * size); size_t position_head = nondet_uint64_t(); size_t position_tail = nondet_uint64_t(); assume_abort_if_not(position_head <= size); assume_abort_if_not(position_tail <= size); aws_atomic_store_ptr(&ring_buf->head, (ring_buf->allocation + position_head)); aws_atomic_store_ptr(&ring_buf->tail, (ring_buf->allocation + position_tail)); ring_buf->allocation_end = ring_buf->allocation + size; } void ensure_byte_buf_has_allocated_buffer_member_in_range(struct aws_byte_buf *buf, uint8_t *lo, uint8_t *hi) { __VERIFIER_assert(lo < hi); size_t space = hi - lo; size_t pos = nondet_uint64_t(); assume_abort_if_not(pos < space); buf->buffer = lo + pos; size_t max_capacity = hi - buf->buffer; __VERIFIER_assert(0 < max_capacity); assume_abort_if_not(0 < buf->capacity && buf->capacity <= max_capacity); } void ensure_byte_buf_has_allocated_buffer_member_in_ring_buf( struct aws_byte_buf *buf, struct aws_ring_buffer *ring_buf) { buf->allocator = (nondet_bool()) ? ((void *)0) : can_fail_allocator(); uint8_t *head = aws_atomic_load_ptr(&ring_buf->head); uint8_t *tail = aws_atomic_load_ptr(&ring_buf->tail); if (head < tail) { if (nondet_bool()) { assume_abort_if_not(tail < ring_buf->allocation_end); ensure_byte_buf_has_allocated_buffer_member_in_range(buf, tail, ring_buf->allocation_end); } else { assume_abort_if_not(ring_buf->allocation < head); ensure_byte_buf_has_allocated_buffer_member_in_range(buf, ring_buf->allocation, head); } } else { ensure_byte_buf_has_allocated_buffer_member_in_range(buf, tail, head); } } _Bool aws_byte_cursor_is_bounded(const struct aws_byte_cursor *const cursor, const size_t max_size) { return cursor->len <= max_size; } void ensure_byte_cursor_has_allocated_buffer_member(struct aws_byte_cursor *const cursor) { cursor->ptr = (nondet_bool()) ? ((void *)0) : bounded_malloc(cursor->len); } _Bool aws_array_list_is_bounded( const struct aws_array_list *const list, const size_t max_initial_item_allocation, const size_t max_item_size) { _Bool item_size_is_bounded = list->item_size <= max_item_size; _Bool length_is_bounded = list->length <= max_initial_item_allocation; return item_size_is_bounded && length_is_bounded; } void ensure_array_list_has_allocated_data_member(struct aws_array_list *const list) { if (list->current_size == 0 && list->length == 0) { assume_abort_if_not(list->data == ((void *)0) ); list->alloc = can_fail_allocator(); } else { list->data = bounded_malloc(list->current_size); list->alloc = nondet_bool() ? ((void *)0) : can_fail_allocator(); } } void ensure_linked_list_is_allocated(struct aws_linked_list *const list, size_t max_length) { size_t length = nondet_uint64_t(); assume_abort_if_not(length <= max_length); list->head.prev = ((void *)0) ; list->tail.next = ((void *)0) ; struct aws_linked_list_node *curr = &list->head; for (size_t i = 0; i < length; i++) { struct aws_linked_list_node *node = malloc(sizeof(struct aws_linked_list_node)); curr->next = node; node->prev = curr; curr = node; } curr->next = &list->tail; list->tail.prev = curr; } _Bool aws_priority_queue_is_bounded( const struct aws_priority_queue *const queue, const size_t max_initial_item_allocation, const size_t max_item_size) { _Bool container_is_bounded = aws_array_list_is_bounded(&queue->container, max_initial_item_allocation, max_item_size); _Bool backpointers_list_is_bounded = aws_array_list_is_bounded( &queue->backpointers, max_initial_item_allocation, sizeof(struct aws_priority_queue_node *)); return container_is_bounded && backpointers_list_is_bounded; } void ensure_priority_queue_has_allocated_members(struct aws_priority_queue *const queue) { ensure_array_list_has_allocated_data_member(&queue->container); ensure_array_list_has_allocated_data_member(&queue->backpointers); queue->pred = nondet_compare; } void ensure_allocated_hash_table(struct aws_hash_table *map, size_t max_table_entries) { size_t num_entries = nondet_uint64_t(); assume_abort_if_not(num_entries <= max_table_entries); assume_abort_if_not(aws_is_power_of_two(num_entries)); size_t required_bytes; assume_abort_if_not(!hash_table_state_required_bytes(num_entries, &required_bytes)); struct hash_table_state *impl = bounded_malloc(required_bytes); impl->size = num_entries; map->p_impl = impl; } void ensure_hash_table_has_valid_destroy_functions(struct aws_hash_table *map) { map->p_impl->destroy_key_fn = nondet_bool() ? ((void *)0) : hash_proof_destroy_noop; map->p_impl->destroy_value_fn = nondet_bool() ? ((void *)0) : hash_proof_destroy_noop; } _Bool aws_hash_table_has_an_empty_slot(const struct aws_hash_table *const map, size_t *const rval) { return hash_table_state_has_an_empty_slot(map->p_impl, rval); } _Bool hash_table_state_has_an_empty_slot(const struct hash_table_state *const state, size_t *const rval) { assume_abort_if_not(state->entry_count > 0); size_t empty_slot_idx = nondet_uint64_t(); assume_abort_if_not(empty_slot_idx < state->size); *rval = empty_slot_idx; return state->slots[empty_slot_idx].hash_code == 0; } void hash_proof_destroy_noop(void *p) {} struct aws_string *ensure_string_is_allocated_nondet_length() { return ensure_string_is_allocated_bounded_length( (18446744073709551615UL) - 1 - sizeof(struct aws_string)); } struct aws_string *ensure_string_is_allocated_bounded_length(size_t max_size) { size_t len = nondet_uint64_t(); assume_abort_if_not(len < max_size); return ensure_string_is_allocated(len); } struct aws_string *ensure_string_is_allocated(size_t len) { struct aws_string *str = bounded_malloc(sizeof(struct aws_string) + len + 1); *(struct aws_allocator **)(&str->allocator) = nondet_bool() ? can_fail_allocator() : ((void *)0) ; *(size_t *)(&str->len) = len; *(uint8_t *)&str->bytes[len] = '\0'; return str; } const char *ensure_c_str_is_allocated(size_t max_size) { size_t cap = nondet_uint64_t(); assume_abort_if_not(cap > 0 && cap <= max_size); const char *str = bounded_malloc(cap); assume_abort_if_not(str[cap - 1] == 0); return str; } static void *s_can_fail_calloc_allocator(struct aws_allocator *allocator, size_t num, size_t size) { (void)allocator; return can_fail_calloc(num, size); } static void *s_can_fail_malloc_allocator(struct aws_allocator *allocator, size_t size) { (void)allocator; return can_fail_malloc(size); } static void s_can_fail_free_allocator(struct aws_allocator *allocator, void *ptr) { (void)allocator; free(ptr); } static void *s_can_fail_realloc_allocator(struct aws_allocator *allocator, void *ptr, size_t oldsize, size_t newsize) { (void)allocator; (void)oldsize; return can_fail_realloc(ptr, newsize); } static struct aws_allocator s_can_fail_allocator_static = { .mem_acquire = s_can_fail_malloc_allocator, .mem_release = s_can_fail_free_allocator, .mem_realloc = s_can_fail_realloc_allocator, .mem_calloc = s_can_fail_calloc_allocator, }; void *bounded_calloc(size_t num, size_t size) { size_t required_bytes; assume_abort_if_not(aws_mul_size_checked(num, size, &required_bytes) == (0)); assume_abort_if_not(required_bytes <= ( (18446744073709551615UL) >> (8 + 1))); return calloc(num, size); } void *bounded_malloc(size_t size) { assume_abort_if_not(size <= ( (18446744073709551615UL) >> (8 + 1))); return malloc(size); } struct aws_allocator *can_fail_allocator() { return &s_can_fail_allocator_static; } void *can_fail_calloc(size_t num, size_t size) { return nondet_bool() ? ((void *)0) : bounded_calloc(num, size); } void *can_fail_malloc(size_t size) { return nondet_bool() ? ((void *)0) : bounded_malloc(size); } void *can_fail_realloc(void *ptr, size_t newsize) { if (newsize > ( (18446744073709551615UL) >> (8 + 1))) { return ((void *)0) ; } if (newsize == 0) { if (nondet_bool()) { free(ptr); } return nondet_voidp(); } return nondet_bool() ? ((void *)0) : realloc(ptr, newsize); } _Bool aws_allocator_is_valid(const struct aws_allocator *alloc) { return alloc == can_fail_allocator(); } void *aws_mem_acquire(struct aws_allocator *allocator, size_t size) { assume_abort_if_not((aws_allocator_is_valid(allocator))); assume_abort_if_not((size != 0)); void *mem = can_fail_malloc(size); if (!mem) { aws_raise_error(AWS_ERROR_OOM); } return mem; } void *aws_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size) { assume_abort_if_not((aws_allocator_is_valid(allocator))); assume_abort_if_not((num != 0 && size != 0)); size_t required_bytes; if (aws_mul_size_checked(num, size, &required_bytes)) { return ((void *)0) ; } void *mem = can_fail_calloc(num, size); if (!mem) { aws_raise_error(AWS_ERROR_OOM); } return mem; } void *aws_mem_acquire_many(struct aws_allocator *allocator, size_t count, ...) { enum { S_ALIGNMENT = sizeof(intmax_t) }; va_list args_size; __builtin_va_start( args_size , count ) ; va_list args_allocs; __builtin_va_copy( args_allocs , args_size ) ; size_t total_size = 0; for (size_t i = 0; i < count; ++i) { __builtin_va_arg( args_size , void ** ) ; size_t alloc_size = __builtin_va_arg( args_size , size_t ) ; total_size += (((alloc_size) + ((S_ALIGNMENT)-1)) & ~((S_ALIGNMENT)-1)); } __builtin_va_end( args_size ) ; void *allocation = ((void *)0) ; if (total_size > 0) { allocation = can_fail_malloc(total_size); if (!allocation) { aws_raise_error(AWS_ERROR_OOM); goto cleanup; } uint8_t *current_ptr = allocation; for (size_t i = 0; i < count; ++i) { void **out_ptr = __builtin_va_arg( args_allocs , void ** ) ; size_t alloc_size = __builtin_va_arg( args_allocs , size_t ) ; alloc_size = (((alloc_size) + ((S_ALIGNMENT)-1)) & ~((S_ALIGNMENT)-1)); *out_ptr = current_ptr; current_ptr += alloc_size; } } cleanup: __builtin_va_end( args_allocs ) ; return allocation; } void aws_mem_release(struct aws_allocator *allocator, void *ptr) { assume_abort_if_not((allocator != ((void *)0) )); assume_abort_if_not((allocator->mem_release != ((void *)0) )); if (ptr != ((void *)0) ) { free(ptr); } } int aws_mem_realloc(struct aws_allocator *allocator, void **ptr, size_t oldsize, size_t newsize) { assume_abort_if_not((allocator != ((void *)0) )); assume_abort_if_not((allocator->mem_realloc || allocator->mem_acquire)); assume_abort_if_not((allocator->mem_release)); if (newsize == 0) { aws_mem_release(allocator, *ptr); *ptr = ((void *)0) ; return (0); } void *newptr = can_fail_realloc(*ptr, newsize); if (!newptr) { return aws_raise_error(AWS_ERROR_OOM); } *ptr = newptr; return (0); } void assert_bytes_match(const uint8_t *const a, const uint8_t *const b, const size_t len) { __VERIFIER_assert(!a == !b); if (len > 0 && a != ((void *)0) && b != ((void *)0) ) { size_t i = nondet_uint64_t(); assume_abort_if_not(i < len && len < ( (18446744073709551615UL) >> (8 + 1))); __VERIFIER_assert(a[i] == b[i]); } } void assert_all_bytes_are(const uint8_t *const a, const uint8_t c, const size_t len) { if (len > 0 && a != ((void *)0) ) { size_t i = nondet_uint64_t(); assume_abort_if_not(i < len); __VERIFIER_assert(a[i] == c); } } void assert_all_zeroes(const uint8_t *const a, const size_t len) { assert_all_bytes_are(a, 0, len); } void assert_byte_from_buffer_matches(const uint8_t *const buffer, const struct store_byte_from_buffer *const b) { if (buffer && b) { __VERIFIER_assert(*(buffer + b->index) == b->byte); } } void save_byte_from_array(const uint8_t *const array, const size_t size, struct store_byte_from_buffer *const storage) { if (size > 0 && array && storage) { storage->index = nondet_size_t(); assume_abort_if_not(storage->index < size - 1); storage->byte = array[storage->index + 1]; // introduced a bug; had to update previous line too } } void assert_array_list_equivalence( const struct aws_array_list *const lhs, const struct aws_array_list *const rhs, const struct store_byte_from_buffer *const rhs_byte) { if (lhs == rhs) { return; } else { __VERIFIER_assert(lhs && rhs); } __VERIFIER_assert(lhs->alloc == rhs->alloc); __VERIFIER_assert(lhs->current_size == rhs->current_size); __VERIFIER_assert(lhs->length == rhs->length); __VERIFIER_assert(lhs->item_size == rhs->item_size); if (lhs->current_size > 0) { assert_byte_from_buffer_matches((uint8_t *)lhs->data, rhs_byte); } } void assert_byte_buf_equivalence( const struct aws_byte_buf *const lhs, const struct aws_byte_buf *const rhs, const struct store_byte_from_buffer *const rhs_byte) { if (lhs == rhs) { return; } else { __VERIFIER_assert(lhs && rhs); } __VERIFIER_assert(lhs->len == rhs->len); __VERIFIER_assert(lhs->capacity == rhs->capacity); __VERIFIER_assert(lhs->allocator == rhs->allocator); if (lhs->len > 0) { assert_byte_from_buffer_matches(lhs->buffer, rhs_byte); } } void assert_byte_cursor_equivalence( const struct aws_byte_cursor *const lhs, const struct aws_byte_cursor *const rhs, const struct store_byte_from_buffer *const rhs_byte) { __VERIFIER_assert(!lhs == !rhs); if (lhs && rhs) { __VERIFIER_assert(lhs->len == rhs->len); if (lhs->len > 0) { assert_byte_from_buffer_matches(lhs->ptr, rhs_byte); } } } void assert_ring_buffer_equivalence( const struct aws_ring_buffer *const lhs, const struct aws_ring_buffer *const rhs) { __VERIFIER_assert(!lhs == !rhs); if (lhs && rhs) { __VERIFIER_assert(lhs->allocator == rhs->allocator); __VERIFIER_assert(lhs->allocation == rhs->allocation); __VERIFIER_assert(lhs->head.value == rhs->head.value); __VERIFIER_assert(lhs->tail.value == rhs->tail.value); __VERIFIER_assert(lhs->allocation_end == rhs->allocation_end); } } void save_byte_from_hash_table(const struct aws_hash_table *map, struct store_byte_from_buffer *storage) { struct hash_table_state *state = map->p_impl; size_t size_in_bytes; assume_abort_if_not(hash_table_state_required_bytes(state->size, &size_in_bytes) == (0)); save_byte_from_array((uint8_t *)state, size_in_bytes, storage); } void check_hash_table_unchanged(const struct aws_hash_table *map, const struct store_byte_from_buffer *storage) { struct hash_table_state *state = map->p_impl; uint8_t *byte_array = (uint8_t *)state; __VERIFIER_assert(byte_array[storage->index] == storage->byte); } int nondet_compare(const void *const a, const void *const b) { __VERIFIER_assert(a != ((void *)0) ); __VERIFIER_assert(b != ((void *)0) ); return nondet_int(); } int __CPROVER_uninterpreted_compare(const void *const a, const void *const b); int uninterpreted_compare(const void *const a, const void *const b) { __VERIFIER_assert(a != ((void *)0) ); __VERIFIER_assert(b != ((void *)0) ); int rval = __CPROVER_uninterpreted_compare(a, b); assume_abort_if_not((!(a == b) || (rval == 0))); assume_abort_if_not(__CPROVER_uninterpreted_compare(b, a) == -rval); if (rval == 0) { assume_abort_if_not(__CPROVER_uninterpreted_hasher(a) == __CPROVER_uninterpreted_hasher(b)); } return rval; } _Bool nondet_equals(const void *const a, const void *const b) { __VERIFIER_assert(a != ((void *)0) ); __VERIFIER_assert(b != ((void *)0) ); return nondet_bool(); } _Bool __CPROVER_uninterpreted_equals(const void *const a, const void *const b); uint64_t __CPROVER_uninterpreted_hasher(const void *const a); _Bool uninterpreted_equals(const void *const a, const void *const b) { _Bool rval = __CPROVER_uninterpreted_equals(a, b); assume_abort_if_not((!(a == b) || (rval))); assume_abort_if_not(__CPROVER_uninterpreted_equals(b, a) == rval); if (rval) { assume_abort_if_not(__CPROVER_uninterpreted_hasher(a) == __CPROVER_uninterpreted_hasher(b)); } return rval; } _Bool uninterpreted_equals_assert_inputs_nonnull(const void *const a, const void *const b) { __VERIFIER_assert(a != ((void *)0) ); __VERIFIER_assert(b != ((void *)0) ); return uninterpreted_equals(a, b); } uint64_t nondet_hasher(const void *a) { __VERIFIER_assert(a != ((void *)0) ); return nondet_uint64_t(); } uint64_t uninterpreted_hasher(const void *a) { __VERIFIER_assert(a != ((void *)0) ); return __CPROVER_uninterpreted_hasher(a); } _Bool uninterpreted_predicate_fn(uint8_t value); static __thread int tl_last_error = 0; void aws_raise_error_private(int err) { tl_last_error = err; } int aws_last_error(void) { return tl_last_error; } enum aws_log_level { AWS_LL_NONE = 0, AWS_LL_FATAL = 1, AWS_LL_ERROR = 2, AWS_LL_WARN = 3, AWS_LL_INFO = 4, AWS_LL_DEBUG = 5, AWS_LL_TRACE = 6, AWS_LL_COUNT }; typedef uint32_t aws_log_subject_t; struct aws_log_subject_info { aws_log_subject_t subject_id; const char *subject_name; const char *subject_description; }; struct aws_log_subject_info_list { struct aws_log_subject_info *subject_list; size_t count; }; enum aws_common_log_subject { AWS_LS_COMMON_GENERAL = 0, AWS_LS_COMMON_TASK_SCHEDULER, AWS_LS_COMMON_LAST = (AWS_LS_COMMON_GENERAL + (1 << 10) - 1) }; struct aws_logger; struct aws_log_formatter; struct aws_log_channel; struct aws_log_writer; struct aws_logger_vtable { int (*const log)( struct aws_logger *logger, enum aws_log_level log_level, aws_log_subject_t subject, const char *format, ...) __attribute__((format(printf, 4, 5))) ; enum aws_log_level (*const get_log_level)(struct aws_logger *logger, aws_log_subject_t subject); void (*const clean_up)(struct aws_logger *logger); }; struct aws_logger { struct aws_logger_vtable *vtable; struct aws_allocator *allocator; void *p_impl; }; struct aws_logger_pipeline { struct aws_log_formatter *formatter; struct aws_log_channel *channel; struct aws_log_writer *writer; struct aws_allocator *allocator; enum aws_log_level level; }; struct aws_logger_standard_options { enum aws_log_level level; const char *filename; FILE *file; }; void aws_logger_set(struct aws_logger *logger); struct aws_logger *aws_logger_get(void); void aws_logger_clean_up(struct aws_logger *logger); int aws_log_level_to_string(enum aws_log_level log_level, const char **level_string); const char *aws_log_subject_name(aws_log_subject_t subject); void aws_register_log_subject_info_list(struct aws_log_subject_info_list *log_subject_list); void aws_unregister_log_subject_info_list(struct aws_log_subject_info_list *log_subject_list); int aws_logger_init_standard( struct aws_logger *logger, struct aws_allocator *allocator, struct aws_logger_standard_options *options); int aws_logger_init_from_external( struct aws_logger *logger, struct aws_allocator *allocator, struct aws_log_formatter *formatter, struct aws_log_channel *channel, struct aws_log_writer *writer, enum aws_log_level level); extern struct aws_logger_vtable g_pipeline_logger_owned_vtable; void aws_secure_zero(void *pBuf, size_t bufsize) { memset(pBuf, 0, bufsize); __asm__ __volatile__("" : : "r"(pBuf) : "memory"); } static struct aws_error_info errors[] = { [(AWS_ERROR_SUCCESS)-0x0000] = { .literal_name = "AWS_ERROR_SUCCESS", .error_code = (AWS_ERROR_SUCCESS), .error_str = ("Success."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_SUCCESS" ", " "Success.", } , [(AWS_ERROR_OOM)-0x0000] = { .literal_name = "AWS_ERROR_OOM", .error_code = (AWS_ERROR_OOM), .error_str = ("Out of memory."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_OOM" ", " "Out of memory.", } , [(AWS_ERROR_UNKNOWN)-0x0000] = { .literal_name = "AWS_ERROR_UNKNOWN", .error_code = (AWS_ERROR_UNKNOWN), .error_str = ("Unknown error."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_UNKNOWN" ", " "Unknown error.", } , [(AWS_ERROR_SHORT_BUFFER)-0x0000] = { .literal_name = "AWS_ERROR_SHORT_BUFFER", .error_code = (AWS_ERROR_SHORT_BUFFER), .error_str = ("Buffer is not large enough to hold result."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_SHORT_BUFFER" ", " "Buffer is not large enough to hold result.", } , [(AWS_ERROR_OVERFLOW_DETECTED)-0x0000] = { .literal_name = "AWS_ERROR_OVERFLOW_DETECTED", .error_code = (AWS_ERROR_OVERFLOW_DETECTED), .error_str = ("Fixed size value overflow was detected."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_OVERFLOW_DETECTED" ", " "Fixed size value overflow was detected.", } , [(AWS_ERROR_UNSUPPORTED_OPERATION)-0x0000] = { .literal_name = "AWS_ERROR_UNSUPPORTED_OPERATION", .error_code = (AWS_ERROR_UNSUPPORTED_OPERATION), .error_str = ("Unsupported operation."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_UNSUPPORTED_OPERATION" ", " "Unsupported operation.", } , [(AWS_ERROR_INVALID_BUFFER_SIZE)-0x0000] = { .literal_name = "AWS_ERROR_INVALID_BUFFER_SIZE", .error_code = (AWS_ERROR_INVALID_BUFFER_SIZE), .error_str = ("Invalid buffer size."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_INVALID_BUFFER_SIZE" ", " "Invalid buffer size.", } , [(AWS_ERROR_INVALID_HEX_STR)-0x0000] = { .literal_name = "AWS_ERROR_INVALID_HEX_STR", .error_code = (AWS_ERROR_INVALID_HEX_STR), .error_str = ("Invalid hex string."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_INVALID_HEX_STR" ", " "Invalid hex string.", } , [(AWS_ERROR_INVALID_BASE64_STR)-0x0000] = { .literal_name = "AWS_ERROR_INVALID_BASE64_STR", .error_code = (AWS_ERROR_INVALID_BASE64_STR), .error_str = ("Invalid base64 string."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_INVALID_BASE64_STR" ", " "Invalid base64 string.", } , [(AWS_ERROR_INVALID_INDEX)-0x0000] = { .literal_name = "AWS_ERROR_INVALID_INDEX", .error_code = (AWS_ERROR_INVALID_INDEX), .error_str = ("Invalid index for list access."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_INVALID_INDEX" ", " "Invalid index for list access.", } , [(AWS_ERROR_THREAD_INVALID_SETTINGS)-0x0000] = { .literal_name = "AWS_ERROR_THREAD_INVALID_SETTINGS", .error_code = (AWS_ERROR_THREAD_INVALID_SETTINGS), .error_str = ("Invalid thread settings."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_THREAD_INVALID_SETTINGS" ", " "Invalid thread settings.", } , [(AWS_ERROR_THREAD_INSUFFICIENT_RESOURCE)-0x0000] = { .literal_name = "AWS_ERROR_THREAD_INSUFFICIENT_RESOURCE", .error_code = (AWS_ERROR_THREAD_INSUFFICIENT_RESOURCE), .error_str = ("Insufficent resources for thread."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_THREAD_INSUFFICIENT_RESOURCE" ", " "Insufficent resources for thread.", } , [(AWS_ERROR_THREAD_NO_PERMISSIONS)-0x0000] = { .literal_name = "AWS_ERROR_THREAD_NO_PERMISSIONS", .error_code = (AWS_ERROR_THREAD_NO_PERMISSIONS), .error_str = ("Insufficient permissions for thread operation."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_THREAD_NO_PERMISSIONS" ", " "Insufficient permissions for thread operation.", } , [(AWS_ERROR_THREAD_NOT_JOINABLE)-0x0000] = { .literal_name = "AWS_ERROR_THREAD_NOT_JOINABLE", .error_code = (AWS_ERROR_THREAD_NOT_JOINABLE), .error_str = ("Thread not joinable."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_THREAD_NOT_JOINABLE" ", " "Thread not joinable.", } , [(AWS_ERROR_THREAD_NO_SUCH_THREAD_ID)-0x0000] = { .literal_name = "AWS_ERROR_THREAD_NO_SUCH_THREAD_ID", .error_code = (AWS_ERROR_THREAD_NO_SUCH_THREAD_ID), .error_str = ("No such thread ID."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_THREAD_NO_SUCH_THREAD_ID" ", " "No such thread ID.", } , [(AWS_ERROR_THREAD_DEADLOCK_DETECTED)-0x0000] = { .literal_name = "AWS_ERROR_THREAD_DEADLOCK_DETECTED", .error_code = (AWS_ERROR_THREAD_DEADLOCK_DETECTED), .error_str = ("Deadlock detected in thread."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_THREAD_DEADLOCK_DETECTED" ", " "Deadlock detected in thread.", } , [(AWS_ERROR_MUTEX_NOT_INIT)-0x0000] = { .literal_name = "AWS_ERROR_MUTEX_NOT_INIT", .error_code = (AWS_ERROR_MUTEX_NOT_INIT), .error_str = ("Mutex not initialized."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_MUTEX_NOT_INIT" ", " "Mutex not initialized.", } , [(AWS_ERROR_MUTEX_TIMEOUT)-0x0000] = { .literal_name = "AWS_ERROR_MUTEX_TIMEOUT", .error_code = (AWS_ERROR_MUTEX_TIMEOUT), .error_str = ("Mutex operation timed out."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_MUTEX_TIMEOUT" ", " "Mutex operation timed out.", } , [(AWS_ERROR_MUTEX_CALLER_NOT_OWNER)-0x0000] = { .literal_name = "AWS_ERROR_MUTEX_CALLER_NOT_OWNER", .error_code = (AWS_ERROR_MUTEX_CALLER_NOT_OWNER), .error_str = ("The caller of a mutex operation was not the owner."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_MUTEX_CALLER_NOT_OWNER" ", " "The caller of a mutex operation was not the owner.", } , [(AWS_ERROR_MUTEX_FAILED)-0x0000] = { .literal_name = "AWS_ERROR_MUTEX_FAILED", .error_code = (AWS_ERROR_MUTEX_FAILED), .error_str = ("Mutex operation failed."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_MUTEX_FAILED" ", " "Mutex operation failed.", } , [(AWS_ERROR_COND_VARIABLE_INIT_FAILED)-0x0000] = { .literal_name = "AWS_ERROR_COND_VARIABLE_INIT_FAILED", .error_code = (AWS_ERROR_COND_VARIABLE_INIT_FAILED), .error_str = ("Condition variable initialization failed."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_COND_VARIABLE_INIT_FAILED" ", " "Condition variable initialization failed.", } , [(AWS_ERROR_COND_VARIABLE_TIMED_OUT)-0x0000] = { .literal_name = "AWS_ERROR_COND_VARIABLE_TIMED_OUT", .error_code = (AWS_ERROR_COND_VARIABLE_TIMED_OUT), .error_str = ("Condition variable wait timed out."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_COND_VARIABLE_TIMED_OUT" ", " "Condition variable wait timed out.", } , [(AWS_ERROR_COND_VARIABLE_ERROR_UNKNOWN)-0x0000] = { .literal_name = "AWS_ERROR_COND_VARIABLE_ERROR_UNKNOWN", .error_code = (AWS_ERROR_COND_VARIABLE_ERROR_UNKNOWN), .error_str = ("Condition variable unknown error."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_COND_VARIABLE_ERROR_UNKNOWN" ", " "Condition variable unknown error.", } , [(AWS_ERROR_CLOCK_FAILURE)-0x0000] = { .literal_name = "AWS_ERROR_CLOCK_FAILURE", .error_code = (AWS_ERROR_CLOCK_FAILURE), .error_str = ("Clock operation failed."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_CLOCK_FAILURE" ", " "Clock operation failed.", } , [(AWS_ERROR_LIST_EMPTY)-0x0000] = { .literal_name = "AWS_ERROR_LIST_EMPTY", .error_code = (AWS_ERROR_LIST_EMPTY), .error_str = ("Empty list."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_LIST_EMPTY" ", " "Empty list.", } , [(AWS_ERROR_DEST_COPY_TOO_SMALL)-0x0000] = { .literal_name = "AWS_ERROR_DEST_COPY_TOO_SMALL", .error_code = (AWS_ERROR_DEST_COPY_TOO_SMALL), .error_str = ("Destination of copy is too small."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_DEST_COPY_TOO_SMALL" ", " "Destination of copy is too small.", } , [(AWS_ERROR_LIST_EXCEEDS_MAX_SIZE)-0x0000] = { .literal_name = "AWS_ERROR_LIST_EXCEEDS_MAX_SIZE", .error_code = (AWS_ERROR_LIST_EXCEEDS_MAX_SIZE), .error_str = ("A requested operation on a list would exceed it's max size."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_LIST_EXCEEDS_MAX_SIZE" ", " "A requested operation on a list would exceed it's max size.", } , [(AWS_ERROR_LIST_STATIC_MODE_CANT_SHRINK)-0x0000] = { .literal_name = "AWS_ERROR_LIST_STATIC_MODE_CANT_SHRINK", .error_code = (AWS_ERROR_LIST_STATIC_MODE_CANT_SHRINK), .error_str = ("Attempt to shrink a list in static mode."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_LIST_STATIC_MODE_CANT_SHRINK" ", " "Attempt to shrink a list in static mode.", } , [(AWS_ERROR_PRIORITY_QUEUE_FULL)-0x0000] = { .literal_name = "AWS_ERROR_PRIORITY_QUEUE_FULL", .error_code = (AWS_ERROR_PRIORITY_QUEUE_FULL), .error_str = ("Attempt to add items to a full preallocated queue in static mode."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_PRIORITY_QUEUE_FULL" ", " "Attempt to add items to a full preallocated queue in static mode.", } , [(AWS_ERROR_PRIORITY_QUEUE_EMPTY)-0x0000] = { .literal_name = "AWS_ERROR_PRIORITY_QUEUE_EMPTY", .error_code = (AWS_ERROR_PRIORITY_QUEUE_EMPTY), .error_str = ("Attempt to pop an item from an empty queue."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_PRIORITY_QUEUE_EMPTY" ", " "Attempt to pop an item from an empty queue.", } , [(AWS_ERROR_PRIORITY_QUEUE_BAD_NODE)-0x0000] = { .literal_name = "AWS_ERROR_PRIORITY_QUEUE_BAD_NODE", .error_code = (AWS_ERROR_PRIORITY_QUEUE_BAD_NODE), .error_str = ("Bad node handle passed to remove."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_PRIORITY_QUEUE_BAD_NODE" ", " "Bad node handle passed to remove.", } , [(AWS_ERROR_HASHTBL_ITEM_NOT_FOUND)-0x0000] = { .literal_name = "AWS_ERROR_HASHTBL_ITEM_NOT_FOUND", .error_code = (AWS_ERROR_HASHTBL_ITEM_NOT_FOUND), .error_str = ("Item not found in hash table."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_HASHTBL_ITEM_NOT_FOUND" ", " "Item not found in hash table.", } , [(AWS_ERROR_INVALID_DATE_STR)-0x0000] = { .literal_name = "AWS_ERROR_INVALID_DATE_STR", .error_code = (AWS_ERROR_INVALID_DATE_STR), .error_str = ("Date string is invalid and cannot be parsed."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_INVALID_DATE_STR" ", " "Date string is invalid and cannot be parsed.", } , [(AWS_ERROR_INVALID_ARGUMENT)-0x0000] = { .literal_name = "AWS_ERROR_INVALID_ARGUMENT", .error_code = (AWS_ERROR_INVALID_ARGUMENT), .error_str = ("An invalid argument was passed to a function."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_INVALID_ARGUMENT" ", " "An invalid argument was passed to a function.", } , [(AWS_ERROR_RANDOM_GEN_FAILED)-0x0000] = { .literal_name = "AWS_ERROR_RANDOM_GEN_FAILED", .error_code = (AWS_ERROR_RANDOM_GEN_FAILED), .error_str = ("A call to the random number generator failed. Retry later."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_RANDOM_GEN_FAILED" ", " "A call to the random number generator failed. Retry later.", } , [(AWS_ERROR_MALFORMED_INPUT_STRING)-0x0000] = { .literal_name = "AWS_ERROR_MALFORMED_INPUT_STRING", .error_code = (AWS_ERROR_MALFORMED_INPUT_STRING), .error_str = ("An input string was passed to a parser and the string was incorrectly formatted."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_MALFORMED_INPUT_STRING" ", " "An input string was passed to a parser and the string was incorrectly formatted.", } , [(AWS_ERROR_UNIMPLEMENTED)-0x0000] = { .literal_name = "AWS_ERROR_UNIMPLEMENTED", .error_code = (AWS_ERROR_UNIMPLEMENTED), .error_str = ("A function was called, but is not implemented."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_UNIMPLEMENTED" ", " "A function was called, but is not implemented.", } , [(AWS_ERROR_INVALID_STATE)-0x0000] = { .literal_name = "AWS_ERROR_INVALID_STATE", .error_code = (AWS_ERROR_INVALID_STATE), .error_str = ("An invalid state was encountered."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_INVALID_STATE" ", " "An invalid state was encountered.", } , [(AWS_ERROR_ENVIRONMENT_GET)-0x0000] = { .literal_name = "AWS_ERROR_ENVIRONMENT_GET", .error_code = (AWS_ERROR_ENVIRONMENT_GET), .error_str = ("System call failure when getting an environment variable."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_ENVIRONMENT_GET" ", " "System call failure when getting an environment variable.", } , [(AWS_ERROR_ENVIRONMENT_SET)-0x0000] = { .literal_name = "AWS_ERROR_ENVIRONMENT_SET", .error_code = (AWS_ERROR_ENVIRONMENT_SET), .error_str = ("System call failure when setting an environment variable."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_ENVIRONMENT_SET" ", " "System call failure when setting an environment variable.", } , [(AWS_ERROR_ENVIRONMENT_UNSET)-0x0000] = { .literal_name = "AWS_ERROR_ENVIRONMENT_UNSET", .error_code = (AWS_ERROR_ENVIRONMENT_UNSET), .error_str = ("System call failure when unsetting an environment variable."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_ENVIRONMENT_UNSET" ", " "System call failure when unsetting an environment variable.", } , [(AWS_ERROR_SYS_CALL_FAILURE)-0x0000] = { .literal_name = "AWS_ERROR_SYS_CALL_FAILURE", .error_code = (AWS_ERROR_SYS_CALL_FAILURE), .error_str = ("System call failure"), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_SYS_CALL_FAILURE" ", " "System call failure", } , [(AWS_ERROR_FILE_INVALID_PATH)-0x0000] = { .literal_name = "AWS_ERROR_FILE_INVALID_PATH", .error_code = (AWS_ERROR_FILE_INVALID_PATH), .error_str = ("Invalid file path."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_FILE_INVALID_PATH" ", " "Invalid file path.", } , [(AWS_ERROR_MAX_FDS_EXCEEDED)-0x0000] = { .literal_name = "AWS_ERROR_MAX_FDS_EXCEEDED", .error_code = (AWS_ERROR_MAX_FDS_EXCEEDED), .error_str = ("The maximum number of fds has been exceeded."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_MAX_FDS_EXCEEDED" ", " "The maximum number of fds has been exceeded.", } , [(AWS_ERROR_NO_PERMISSION)-0x0000] = { .literal_name = "AWS_ERROR_NO_PERMISSION", .error_code = (AWS_ERROR_NO_PERMISSION), .error_str = ("User does not have permission to perform the requested action."), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_NO_PERMISSION" ", " "User does not have permission to perform the requested action.", } , [(AWS_ERROR_STREAM_UNSEEKABLE)-0x0000] = { .literal_name = "AWS_ERROR_STREAM_UNSEEKABLE", .error_code = (AWS_ERROR_STREAM_UNSEEKABLE), .error_str = ("Stream does not support seek operations"), .lib_name = ("aws-c-common"), .formatted_name = "aws-c-common" ": " "AWS_ERROR_STREAM_UNSEEKABLE" ", " "Stream does not support seek operations", } , }; static struct aws_error_info_list s_list = { .error_list = errors, .count = (sizeof(errors) / sizeof((errors)[0])), }; static struct aws_log_subject_info s_common_log_subject_infos[] = { { .subject_id = (AWS_LS_COMMON_GENERAL), .subject_name = ("aws-c-common"), .subject_description = ("Subject for aws-c-common logging that doesn't belong to any particular category") } , { .subject_id = (AWS_LS_COMMON_TASK_SCHEDULER), .subject_name = ("task-scheduler"), .subject_description = ("Subject for task scheduler or task specific logging.") } , }; static struct aws_log_subject_info_list s_common_log_subject_list = { .subject_list = s_common_log_subject_infos, .count = (sizeof(s_common_log_subject_infos) / sizeof((s_common_log_subject_infos)[0])), }; static _Bool s_common_library_initialized = 0 ; void aws_common_fatal_assert_library_initialized(void) { if (!s_common_library_initialized) { fprintf( stderr , "%s", "aws_common_library_init() must be called before using any functionality in aws-c-common."); __VERIFIER_assert(s_common_library_initialized); } } struct tm { int tm_sec; int tm_min; int tm_hour; int tm_mday; int tm_mon; int tm_year; int tm_wday; int tm_yday; int tm_isdst; long int tm_gmtoff; const char *tm_zone; }; struct itimerspec { struct timespec it_interval; struct timespec it_value; }; struct sigevent; extern clock_t clock (void) __attribute__ ((__nothrow__ , __leaf__)); extern time_t time (time_t *__timer) __attribute__ ((__nothrow__ , __leaf__)); extern double difftime (time_t __time1, time_t __time0) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern time_t mktime (struct tm *__tp) __attribute__ ((__nothrow__ , __leaf__)); extern size_t strftime (char *__restrict __s, size_t __maxsize, const char *__restrict __format, const struct tm *__restrict __tp) __attribute__ ((__nothrow__ , __leaf__)); extern size_t strftime_l (char *__restrict __s, size_t __maxsize, const char *__restrict __format, const struct tm *__restrict __tp, locale_t __loc) __attribute__ ((__nothrow__ , __leaf__)); extern struct tm *gmtime (const time_t *__timer) __attribute__ ((__nothrow__ , __leaf__)); extern struct tm *localtime (const time_t *__timer) __attribute__ ((__nothrow__ , __leaf__)); extern struct tm *gmtime_r (const time_t *__restrict __timer, struct tm *__restrict __tp) __attribute__ ((__nothrow__ , __leaf__)); extern struct tm *localtime_r (const time_t *__restrict __timer, struct tm *__restrict __tp) __attribute__ ((__nothrow__ , __leaf__)); extern char *asctime (const struct tm *__tp) __attribute__ ((__nothrow__ , __leaf__)); extern char *ctime (const time_t *__timer) __attribute__ ((__nothrow__ , __leaf__)); extern char *asctime_r (const struct tm *__restrict __tp, char *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)); extern char *ctime_r (const time_t *__restrict __timer, char *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)); extern char *__tzname[2]; extern int __daylight; extern long int __timezone; extern char *tzname[2]; extern void tzset (void) __attribute__ ((__nothrow__ , __leaf__)); extern int daylight; extern long int timezone; extern int stime (const time_t *__when) __attribute__ ((__nothrow__ , __leaf__)); extern time_t timegm (struct tm *__tp) __attribute__ ((__nothrow__ , __leaf__)); extern time_t timelocal (struct tm *__tp) __attribute__ ((__nothrow__ , __leaf__)); extern int dysize (int __year) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern int nanosleep (const struct timespec *__requested_time, struct timespec *__remaining); extern int clock_getres (clockid_t __clock_id, struct timespec *__res) __attribute__ ((__nothrow__ , __leaf__)); extern int clock_gettime (clockid_t __clock_id, struct timespec *__tp) __attribute__ ((__nothrow__ , __leaf__)); extern int clock_settime (clockid_t __clock_id, const struct timespec *__tp) __attribute__ ((__nothrow__ , __leaf__)); extern int clock_nanosleep (clockid_t __clock_id, int __flags, const struct timespec *__req, struct timespec *__rem); extern int clock_getcpuclockid (pid_t __pid, clockid_t *__clock_id) __attribute__ ((__nothrow__ , __leaf__)); extern int timer_create (clockid_t __clock_id, struct sigevent *__restrict __evp, timer_t *__restrict __timerid) __attribute__ ((__nothrow__ , __leaf__)); extern int timer_delete (timer_t __timerid) __attribute__ ((__nothrow__ , __leaf__)); extern int timer_settime (timer_t __timerid, int __flags, const struct itimerspec *__restrict __value, struct itimerspec *__restrict __ovalue) __attribute__ ((__nothrow__ , __leaf__)); extern int timer_gettime (timer_t __timerid, struct itimerspec *__value) __attribute__ ((__nothrow__ , __leaf__)); extern int timer_getoverrun (timer_t __timerid) __attribute__ ((__nothrow__ , __leaf__)); extern int timespec_get (struct timespec *__ts, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); typedef __sig_atomic_t sig_atomic_t; union sigval { int sival_int; void *sival_ptr; }; typedef union sigval __sigval_t; typedef struct { int si_signo; int si_errno; int si_code; int __pad0; union { int _pad[((128 / sizeof (int)) - 4)]; struct { __pid_t si_pid; __uid_t si_uid; } _kill; struct { int si_tid; int si_overrun; __sigval_t si_sigval; } _timer; struct { __pid_t si_pid; __uid_t si_uid; __sigval_t si_sigval; } _rt; struct { __pid_t si_pid; __uid_t si_uid; int si_status; __clock_t si_utime; __clock_t si_stime; } _sigchld; struct { void *si_addr; short int si_addr_lsb; union { struct { void *_lower; void *_upper; } _addr_bnd; __uint32_t _pkey; } _bounds; } _sigfault; struct { long int si_band; int si_fd; } _sigpoll; struct { void *_call_addr; int _syscall; unsigned int _arch; } _sigsys; } _sifields; } siginfo_t ; enum { SI_ASYNCNL = -60, SI_TKILL = -6, SI_SIGIO, SI_ASYNCIO, SI_MESGQ, SI_TIMER, SI_QUEUE, SI_USER, SI_KERNEL = 0x80 }; enum { ILL_ILLOPC = 1, ILL_ILLOPN, ILL_ILLADR, ILL_ILLTRP, ILL_PRVOPC, ILL_PRVREG, ILL_COPROC, ILL_BADSTK }; enum { FPE_INTDIV = 1, FPE_INTOVF, FPE_FLTDIV, FPE_FLTOVF, FPE_FLTUND, FPE_FLTRES, FPE_FLTINV, FPE_FLTSUB }; enum { SEGV_MAPERR = 1, SEGV_ACCERR, SEGV_BNDERR, SEGV_PKUERR }; enum { BUS_ADRALN = 1, BUS_ADRERR, BUS_OBJERR, BUS_MCEERR_AR, BUS_MCEERR_AO }; enum { CLD_EXITED = 1, CLD_KILLED, CLD_DUMPED, CLD_TRAPPED, CLD_STOPPED, CLD_CONTINUED }; enum { POLL_IN = 1, POLL_OUT, POLL_MSG, POLL_ERR, POLL_PRI, POLL_HUP }; typedef __sigval_t sigval_t; typedef struct sigevent { __sigval_t sigev_value; int sigev_signo; int sigev_notify; union { int _pad[((64 / sizeof (int)) - 4)]; __pid_t _tid; struct { void (*_function) (__sigval_t); pthread_attr_t *_attribute; } _sigev_thread; } _sigev_un; } sigevent_t; enum { SIGEV_SIGNAL = 0, SIGEV_NONE, SIGEV_THREAD, SIGEV_THREAD_ID = 4 }; typedef void (*__sighandler_t) (int); extern __sighandler_t __sysv_signal (int __sig, __sighandler_t __handler) __attribute__ ((__nothrow__ , __leaf__)); extern __sighandler_t signal (int __sig, __sighandler_t __handler) __attribute__ ((__nothrow__ , __leaf__)); extern int kill (__pid_t __pid, int __sig) __attribute__ ((__nothrow__ , __leaf__)); extern int killpg (__pid_t __pgrp, int __sig) __attribute__ ((__nothrow__ , __leaf__)); extern int raise (int __sig) __attribute__ ((__nothrow__ , __leaf__)); extern __sighandler_t ssignal (int __sig, __sighandler_t __handler) __attribute__ ((__nothrow__ , __leaf__)); extern int gsignal (int __sig) __attribute__ ((__nothrow__ , __leaf__)); extern void psignal (int __sig, const char *__s); extern void psiginfo (const siginfo_t *__pinfo, const char *__s); extern int sigblock (int __mask) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__deprecated__)); extern int sigsetmask (int __mask) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__deprecated__)); extern int siggetmask (void) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__deprecated__)); typedef __sighandler_t sig_t; extern int sigemptyset (sigset_t *__set) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int sigfillset (sigset_t *__set) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int sigaddset (sigset_t *__set, int __signo) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int sigdelset (sigset_t *__set, int __signo) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int sigismember (const sigset_t *__set, int __signo) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); struct sigaction { union { __sighandler_t sa_handler; void (*sa_sigaction) (int, siginfo_t *, void *); } __sigaction_handler; __sigset_t sa_mask; int sa_flags; void (*sa_restorer) (void); }; extern int sigprocmask (int __how, const sigset_t *__restrict __set, sigset_t *__restrict __oset) __attribute__ ((__nothrow__ , __leaf__)); extern int sigsuspend (const sigset_t *__set) __attribute__ ((__nonnull__ (1))); extern int sigaction (int __sig, const struct sigaction *__restrict __act, struct sigaction *__restrict __oact) __attribute__ ((__nothrow__ , __leaf__)); extern int sigpending (sigset_t *__set) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int sigwait (const sigset_t *__restrict __set, int *__restrict __sig) __attribute__ ((__nonnull__ (1, 2))); extern int sigwaitinfo (const sigset_t *__restrict __set, siginfo_t *__restrict __info) __attribute__ ((__nonnull__ (1))); extern int sigtimedwait (const sigset_t *__restrict __set, siginfo_t *__restrict __info, const struct timespec *__restrict __timeout) __attribute__ ((__nonnull__ (1))); extern int sigqueue (__pid_t __pid, int __sig, const union sigval __val) __attribute__ ((__nothrow__ , __leaf__)); extern const char *const _sys_siglist[(64 + 1)]; extern const char *const sys_siglist[(64 + 1)]; struct _fpx_sw_bytes { __uint32_t magic1; __uint32_t extended_size; __uint64_t xstate_bv; __uint32_t xstate_size; __uint32_t __glibc_reserved1[7]; }; struct _fpreg { unsigned short significand[4]; unsigned short exponent; }; struct _fpxreg { unsigned short significand[4]; unsigned short exponent; unsigned short __glibc_reserved1[3]; }; struct _xmmreg { __uint32_t element[4]; }; struct _fpstate { __uint16_t cwd; __uint16_t swd; __uint16_t ftw; __uint16_t fop; __uint64_t rip; __uint64_t rdp; __uint32_t mxcsr; __uint32_t mxcr_mask; struct _fpxreg _st[8]; struct _xmmreg _xmm[16]; __uint32_t __glibc_reserved1[24]; }; struct sigcontext { __uint64_t r8; __uint64_t r9; __uint64_t r10; __uint64_t r11; __uint64_t r12; __uint64_t r13; __uint64_t r14; __uint64_t r15; __uint64_t rdi; __uint64_t rsi; __uint64_t rbp; __uint64_t rbx; __uint64_t rdx; __uint64_t rax; __uint64_t rcx; __uint64_t rsp; __uint64_t rip; __uint64_t eflags; unsigned short cs; unsigned short gs; unsigned short fs; unsigned short __pad0; __uint64_t err; __uint64_t trapno; __uint64_t oldmask; __uint64_t cr2; __extension__ union { struct _fpstate * fpstate; __uint64_t __fpstate_word; }; __uint64_t __reserved1 [8]; }; struct _xsave_hdr { __uint64_t xstate_bv; __uint64_t __glibc_reserved1[2]; __uint64_t __glibc_reserved2[5]; }; struct _ymmh_state { __uint32_t ymmh_space[64]; }; struct _xstate { struct _fpstate fpstate; struct _xsave_hdr xstate_hdr; struct _ymmh_state ymmh; }; extern int sigreturn (struct sigcontext *__scp) __attribute__ ((__nothrow__ , __leaf__)); typedef struct { void *ss_sp; int ss_flags; size_t ss_size; } stack_t; __extension__ typedef long long int greg_t; typedef greg_t gregset_t[23]; struct _libc_fpxreg { unsigned short int significand[4]; unsigned short int exponent; unsigned short int __glibc_reserved1[3]; }; struct _libc_xmmreg { __uint32_t element[4]; }; struct _libc_fpstate { __uint16_t cwd; __uint16_t swd; __uint16_t ftw; __uint16_t fop; __uint64_t rip; __uint64_t rdp; __uint32_t mxcsr; __uint32_t mxcr_mask; struct _libc_fpxreg _st[8]; struct _libc_xmmreg _xmm[16]; __uint32_t __glibc_reserved1[24]; }; typedef struct _libc_fpstate *fpregset_t; typedef struct { gregset_t gregs; fpregset_t fpregs; __extension__ unsigned long long __reserved1 [8]; } mcontext_t; typedef struct ucontext_t { unsigned long int uc_flags; struct ucontext_t *uc_link; stack_t uc_stack; mcontext_t uc_mcontext; sigset_t uc_sigmask; struct _libc_fpstate __fpregs_mem; } ucontext_t; extern int siginterrupt (int __sig, int __interrupt) __attribute__ ((__nothrow__ , __leaf__)); enum { SS_ONSTACK = 1, SS_DISABLE }; extern int sigaltstack (const stack_t *__restrict __ss, stack_t *__restrict __oss) __attribute__ ((__nothrow__ , __leaf__)); struct sigstack { void *ss_sp; int ss_onstack; }; extern int sigstack (struct sigstack *__ss, struct sigstack *__oss) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__deprecated__)); extern int pthread_sigmask (int __how, const __sigset_t *__restrict __newmask, __sigset_t *__restrict __oldmask)__attribute__ ((__nothrow__ , __leaf__)); extern int pthread_kill (pthread_t __threadid, int __signo) __attribute__ ((__nothrow__ , __leaf__)); extern int __libc_current_sigrtmin (void) __attribute__ ((__nothrow__ , __leaf__)); extern int __libc_current_sigrtmax (void) __attribute__ ((__nothrow__ , __leaf__)); static uint32_t hashword( const uint32_t *k, size_t length, uint32_t initval) { uint32_t a,b,c; a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; while (length > 3) { a += k[0]; b += k[1]; c += k[2]; { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 3; k += 3; } switch(length) { case 3 : c+=k[2]; case 2 : b+=k[1]; case 1 : a+=k[0]; { c ^= b; c -= (((b)<<(14)) | ((b)>>(32-(14)))); a ^= c; a -= (((c)<<(11)) | ((c)>>(32-(11)))); b ^= a; b -= (((a)<<(25)) | ((a)>>(32-(25)))); c ^= b; c -= (((b)<<(16)) | ((b)>>(32-(16)))); a ^= c; a -= (((c)<<(4)) | ((c)>>(32-(4)))); b ^= a; b -= (((a)<<(14)) | ((a)>>(32-(14)))); c ^= b; c -= (((b)<<(24)) | ((b)>>(32-(24)))); }; case 0: break; } return c; } static void hashword2 ( const uint32_t *k, size_t length, uint32_t *pc, uint32_t *pb) { uint32_t a,b,c; a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; c += *pb; while (length > 3) { a += k[0]; b += k[1]; c += k[2]; { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 3; k += 3; } switch(length) { case 3 : c+=k[2]; case 2 : b+=k[1]; case 1 : a+=k[0]; { c ^= b; c -= (((b)<<(14)) | ((b)>>(32-(14)))); a ^= c; a -= (((c)<<(11)) | ((c)>>(32-(11)))); b ^= a; b -= (((a)<<(25)) | ((a)>>(32-(25)))); c ^= b; c -= (((b)<<(16)) | ((b)>>(32-(16)))); a ^= c; a -= (((c)<<(4)) | ((c)>>(32-(4)))); b ^= a; b -= (((a)<<(14)) | ((a)>>(32-(14)))); c ^= b; c -= (((b)<<(24)) | ((b)>>(32-(24)))); }; case 0: break; } *pc=c; *pb=b; } static uint32_t hashlittle( const void *key, size_t length, uint32_t initval) { uint32_t a,b,c; union { const void *ptr; size_t i; } u; a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; u.ptr = key; if (1 && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; while (length > 12) { a += k[0]; b += k[1]; c += k[2]; { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 3; } switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff; a+=k[0]; break; case 6 : b+=k[1]&0xffff; a+=k[0]; break; case 5 : b+=k[1]&0xff; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff; break; case 2 : a+=k[0]&0xffff; break; case 1 : a+=k[0]&0xff; break; case 0 : return c; } } else if (1 && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; while (length > 12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 6; } const uint8_t *k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[4]+(((uint32_t)k[5])<<16); b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 11: c+=((uint32_t)k8[10])<<16; case 10: c+=k[4]; b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 9 : c+=k8[8]; case 8 : b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 7 : b+=((uint32_t)k8[6])<<16; case 6 : b+=k[2]; a+=k[0]+(((uint32_t)k[1])<<16); break; case 5 : b+=k8[4]; case 4 : a+=k[0]+(((uint32_t)k[1])<<16); break; case 3 : a+=((uint32_t)k8[2])<<16; case 2 : a+=k[0]; break; case 1 : a+=k8[0]; break; case 0 : return c; } } else { const uint8_t *k = (const uint8_t *)key; while (length > 12) { a += k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 12; } switch(length) { case 12: c+=((uint32_t)k[11])<<24; case 11: c+=((uint32_t)k[10])<<16; case 10: c+=((uint32_t)k[9])<<8; case 9 : c+=k[8]; case 8 : b+=((uint32_t)k[7])<<24; case 7 : b+=((uint32_t)k[6])<<16; case 6 : b+=((uint32_t)k[5])<<8; case 5 : b+=k[4]; case 4 : a+=((uint32_t)k[3])<<24; case 3 : a+=((uint32_t)k[2])<<16; case 2 : a+=((uint32_t)k[1])<<8; case 1 : a+=k[0]; break; case 0 : return c; } } { c ^= b; c -= (((b)<<(14)) | ((b)>>(32-(14)))); a ^= c; a -= (((c)<<(11)) | ((c)>>(32-(11)))); b ^= a; b -= (((a)<<(25)) | ((a)>>(32-(25)))); c ^= b; c -= (((b)<<(16)) | ((b)>>(32-(16)))); a ^= c; a -= (((c)<<(4)) | ((c)>>(32-(4)))); b ^= a; b -= (((a)<<(14)) | ((a)>>(32-(14)))); c ^= b; c -= (((b)<<(24)) | ((b)>>(32-(24)))); }; return c; } static void hashlittle2( const void *key, size_t length, uint32_t *pc, uint32_t *pb) { uint32_t a,b,c; union { const void *ptr; size_t i; } u; a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; c += *pb; u.ptr = key; if (1 && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; while (length > 12) { a += k[0]; b += k[1]; c += k[2]; { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 3; } switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff; a+=k[0]; break; case 6 : b+=k[1]&0xffff; a+=k[0]; break; case 5 : b+=k[1]&0xff; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff; break; case 2 : a+=k[0]&0xffff; break; case 1 : a+=k[0]&0xff; break; case 0 : *pc=c; *pb=b; return; } } else if (1 && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; while (length > 12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 6; } const uint8_t *k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[4]+(((uint32_t)k[5])<<16); b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 11: c+=((uint32_t)k8[10])<<16; case 10: c+=k[4]; b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 9 : c+=k8[8]; case 8 : b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 7 : b+=((uint32_t)k8[6])<<16; case 6 : b+=k[2]; a+=k[0]+(((uint32_t)k[1])<<16); break; case 5 : b+=k8[4]; case 4 : a+=k[0]+(((uint32_t)k[1])<<16); break; case 3 : a+=((uint32_t)k8[2])<<16; case 2 : a+=k[0]; break; case 1 : a+=k8[0]; break; case 0 : *pc=c; *pb=b; return; } } else { const uint8_t *k = (const uint8_t *)key; while (length > 12) { a += k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 12; } switch(length) { case 12: c+=((uint32_t)k[11])<<24; case 11: c+=((uint32_t)k[10])<<16; case 10: c+=((uint32_t)k[9])<<8; case 9 : c+=k[8]; case 8 : b+=((uint32_t)k[7])<<24; case 7 : b+=((uint32_t)k[6])<<16; case 6 : b+=((uint32_t)k[5])<<8; case 5 : b+=k[4]; case 4 : a+=((uint32_t)k[3])<<24; case 3 : a+=((uint32_t)k[2])<<16; case 2 : a+=((uint32_t)k[1])<<8; case 1 : a+=k[0]; break; case 0 : *pc=c; *pb=b; return; } } { c ^= b; c -= (((b)<<(14)) | ((b)>>(32-(14)))); a ^= c; a -= (((c)<<(11)) | ((c)>>(32-(11)))); b ^= a; b -= (((a)<<(25)) | ((a)>>(32-(25)))); c ^= b; c -= (((b)<<(16)) | ((b)>>(32-(16)))); a ^= c; a -= (((c)<<(4)) | ((c)>>(32-(4)))); b ^= a; b -= (((a)<<(14)) | ((a)>>(32-(14)))); c ^= b; c -= (((b)<<(24)) | ((b)>>(32-(24)))); }; *pc=c; *pb=b; } static uint32_t hashbig( const void *key, size_t length, uint32_t initval) { uint32_t a,b,c; union { const void *ptr; size_t i; } u; a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; u.ptr = key; if (0 && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; while (length > 12) { a += k[0]; b += k[1]; c += k[2]; { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 3; } switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; case 5 : b+=k[1]&0xff000000; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff00; break; case 2 : a+=k[0]&0xffff0000; break; case 1 : a+=k[0]&0xff000000; break; case 0 : return c; } } else { const uint8_t *k = (const uint8_t *)key; while (length > 12) { a += ((uint32_t)k[0])<<24; a += ((uint32_t)k[1])<<16; a += ((uint32_t)k[2])<<8; a += ((uint32_t)k[3]); b += ((uint32_t)k[4])<<24; b += ((uint32_t)k[5])<<16; b += ((uint32_t)k[6])<<8; b += ((uint32_t)k[7]); c += ((uint32_t)k[8])<<24; c += ((uint32_t)k[9])<<16; c += ((uint32_t)k[10])<<8; c += ((uint32_t)k[11]); { a -= c; a ^= (((c)<<(4)) | ((c)>>(32-(4)))); c += b; b -= a; b ^= (((a)<<(6)) | ((a)>>(32-(6)))); a += c; c -= b; c ^= (((b)<<(8)) | ((b)>>(32-(8)))); b += a; a -= c; a ^= (((c)<<(16)) | ((c)>>(32-(16)))); c += b; b -= a; b ^= (((a)<<(19)) | ((a)>>(32-(19)))); a += c; c -= b; c ^= (((b)<<(4)) | ((b)>>(32-(4)))); b += a; }; length -= 12; k += 12; } switch(length) { case 12: c+=k[11]; case 11: c+=((uint32_t)k[10])<<8; case 10: c+=((uint32_t)k[9])<<16; case 9 : c+=((uint32_t)k[8])<<24; case 8 : b+=k[7]; case 7 : b+=((uint32_t)k[6])<<8; case 6 : b+=((uint32_t)k[5])<<16; case 5 : b+=((uint32_t)k[4])<<24; case 4 : a+=k[3]; case 3 : a+=((uint32_t)k[2])<<8; case 2 : a+=((uint32_t)k[1])<<16; case 1 : a+=((uint32_t)k[0])<<24; break; case 0 : return c; } } { c ^= b; c -= (((b)<<(14)) | ((b)>>(32-(14)))); a ^= c; a -= (((c)<<(11)) | ((c)>>(32-(11)))); b ^= a; b -= (((a)<<(25)) | ((a)>>(32-(25)))); c ^= b; c -= (((b)<<(16)) | ((b)>>(32-(16)))); a ^= c; a -= (((c)<<(4)) | ((c)>>(32-(4)))); b ^= a; b -= (((a)<<(14)) | ((a)>>(32-(14)))); c ^= b; c -= (((b)<<(24)) | ((b)>>(32-(24)))); }; return c; } static void s_suppress_unused_lookup3_func_warnings(void) { (void)hashword; (void)hashword2; (void)hashlittle; (void)hashbig; } static uint64_t s_hash_for(struct hash_table_state *state, const void *key) { assume_abort_if_not((hash_table_state_is_valid(state))); s_suppress_unused_lookup3_func_warnings(); if (key == ((void *)0) ) { return 42; } uint64_t hash_code = state->hash_fn(key); if (!hash_code) { hash_code = 1; } do { __VERIFIER_assert((hash_code != 0)); return hash_code; } while (0); } static _Bool s_safe_eq_check(aws_hash_callback_eq_fn *equals_fn, const void *a, const void *b) { if (a == b) { return 1 ; } if (a == ((void *)0) || b == ((void *)0) ) { return 0 ; } return equals_fn(a, b); } static _Bool s_hash_keys_eq(struct hash_table_state *state, const void *a, const void *b) { assume_abort_if_not((hash_table_state_is_valid(state))); _Bool rval = s_safe_eq_check(state->equals_fn, a, b); do { __VERIFIER_assert((hash_table_state_is_valid(state))); return rval; } while (0); } static size_t s_index_for(struct hash_table_state *map, struct hash_table_entry *entry) { assume_abort_if_not((hash_table_state_is_valid(map))); size_t index = entry - map->slots; do { __VERIFIER_assert((index < map->size && hash_table_state_is_valid(map))); return index; } while (0); } size_t aws_hash_table_get_entry_count(const struct aws_hash_table *map) { struct hash_table_state *state = map->p_impl; return state->entry_count; } static struct hash_table_state *s_alloc_state(const struct hash_table_state *template) { size_t required_bytes; if (hash_table_state_required_bytes(template->size, &required_bytes)) { return ((void *)0) ; } struct hash_table_state *state = aws_mem_calloc(template->alloc, 1, required_bytes); if (state == ((void *)0) ) { return state; } *state = *template; return state; } static int s_update_template_size(struct hash_table_state *template, size_t expected_elements) { size_t min_size = expected_elements; if (min_size < 2) { min_size = 2; } size_t size; if (aws_round_up_to_power_of_two(min_size, &size)) { return (-1); } template->size = size; template->max_load = (size_t)(template->max_load_factor * (double)template->size); if (template->max_load >= size) { template->max_load = size - 1; } template->mask = size - 1; return (0); } int aws_hash_table_init( struct aws_hash_table *map, struct aws_allocator *alloc, size_t size, aws_hash_fn *hash_fn, aws_hash_callback_eq_fn *equals_fn, aws_hash_callback_destroy_fn *destroy_key_fn, aws_hash_callback_destroy_fn *destroy_value_fn) { assume_abort_if_not((map != ((void *)0) )); assume_abort_if_not((alloc != ((void *)0) )); assume_abort_if_not((hash_fn != ((void *)0) )); assume_abort_if_not((equals_fn != ((void *)0) )); struct hash_table_state template; template.hash_fn = hash_fn; template.equals_fn = equals_fn; template.destroy_key_fn = destroy_key_fn; template.destroy_value_fn = destroy_value_fn; template.alloc = alloc; template.entry_count = 0; template.max_load_factor = 0.95; if (s_update_template_size(&template, size)) { return (-1); } map->p_impl = s_alloc_state(&template); if (!map->p_impl) { return (-1); } do { __VERIFIER_assert((aws_hash_table_is_valid(map))); return (0); } while (0); } void aws_hash_table_clean_up(struct aws_hash_table *map) { assume_abort_if_not((map != ((void *)0) )); assume_abort_if_not((map->p_impl == ((void *)0) || aws_hash_table_is_valid(map))) ; struct hash_table_state *state = map->p_impl; if (!state) { return; } aws_hash_table_clear(map); aws_mem_release(map->p_impl->alloc, map->p_impl); map->p_impl = ((void *)0) ; __VERIFIER_assert((map->p_impl == ((void *)0) )); } void aws_hash_table_swap(struct aws_hash_table *restrict a, struct aws_hash_table *restrict b) { assume_abort_if_not((a != b)); struct aws_hash_table tmp = *a; *a = *b; *b = tmp; } void aws_hash_table_move(struct aws_hash_table *restrict to, struct aws_hash_table *restrict from) { assume_abort_if_not((to != ((void *)0) )); assume_abort_if_not((from != ((void *)0) )); assume_abort_if_not((to != from)); assume_abort_if_not((aws_hash_table_is_valid(from))); *to = *from; do { memset(&(*from), 0, sizeof(*from)); } while (0); __VERIFIER_assert((aws_hash_table_is_valid(to))); } static int s_find_entry1( struct hash_table_state *state, uint64_t hash_code, const void *key, struct hash_table_entry **p_entry, size_t *p_probe_idx); static int inline s_find_entry( struct hash_table_state *state, uint64_t hash_code, const void *key, struct hash_table_entry **p_entry, size_t *p_probe_idx) { struct hash_table_entry *entry = &state->slots[hash_code & state->mask]; if (entry->hash_code == 0) { if (p_probe_idx) { *p_probe_idx = 0; } *p_entry = entry; return AWS_ERROR_HASHTBL_ITEM_NOT_FOUND; } if (entry->hash_code == hash_code && s_hash_keys_eq(state, key, entry->element.key)) { if (p_probe_idx) { *p_probe_idx = 0; } *p_entry = entry; return (0); } return s_find_entry1(state, hash_code, key, p_entry, p_probe_idx); } static int s_find_entry1( struct hash_table_state *state, uint64_t hash_code, const void *key, struct hash_table_entry **p_entry, size_t *p_probe_idx) { size_t probe_idx = 1; int rv; struct hash_table_entry *entry; while (1) { uint64_t index = (hash_code + probe_idx) & state->mask; entry = &state->slots[index]; if (!entry->hash_code) { rv = AWS_ERROR_HASHTBL_ITEM_NOT_FOUND; break; } if (entry->hash_code == hash_code && s_hash_keys_eq(state, key, entry->element.key)) { rv = AWS_ERROR_SUCCESS; break; } uint64_t entry_probe = (index - entry->hash_code) & state->mask; if (entry_probe < probe_idx) { rv = AWS_ERROR_HASHTBL_ITEM_NOT_FOUND; break; } probe_idx++; } *p_entry = entry; if (p_probe_idx) { *p_probe_idx = probe_idx; } return rv; } int aws_hash_table_find(const struct aws_hash_table *map, const void *key, struct aws_hash_element **p_elem) { assume_abort_if_not((aws_hash_table_is_valid(map))); assume_abort_if_not((((((sizeof(*(p_elem)))) == 0) || (((p_elem)))))); struct hash_table_state *state = map->p_impl; uint64_t hash_code = s_hash_for(state, key); struct hash_table_entry *entry; int rv = s_find_entry(state, hash_code, key, &entry, ((void *)0) ); if (rv == AWS_ERROR_SUCCESS) { *p_elem = &entry->element; } else { *p_elem = ((void *)0) ; } do { __VERIFIER_assert((aws_hash_table_is_valid(map))); return (0); } while (0); } static struct hash_table_entry *s_emplace_item( struct hash_table_state *state, struct hash_table_entry entry, size_t probe_idx) { assume_abort_if_not((hash_table_state_is_valid(state))); if (entry.hash_code == 0) { do { __VERIFIER_assert((hash_table_state_is_valid(state))); return ((void *)0) ; } while (0); } struct hash_table_entry *rval = ((void *)0) ; while (entry.hash_code != 0) { size_t index = (size_t)(entry.hash_code + probe_idx) & state->mask; struct hash_table_entry *victim = &state->slots[index]; size_t victim_probe_idx = (size_t)(index - victim->hash_code) & state->mask; if (!victim->hash_code || victim_probe_idx < probe_idx) { if (!rval) { rval = victim; } struct hash_table_entry tmp = *victim; *victim = entry; entry = tmp; probe_idx = victim_probe_idx + 1; } else { probe_idx++; } } do { __VERIFIER_assert((hash_table_state_is_valid(state) && rval >= &state->slots[0] && rval < &state->slots[state->size])); return rval; } while (0) ; } static int s_expand_table(struct aws_hash_table *map) { struct hash_table_state *old_state = map->p_impl; struct hash_table_state template = *old_state; size_t new_size; if (aws_mul_size_checked(template.size, 2, &new_size)) { return (-1); } if (s_update_template_size(&template, new_size)) { return (-1); } struct hash_table_state *new_state = s_alloc_state(&template); if (!new_state) { return (-1); } for (size_t i = 0; i < old_state->size; i++) { struct hash_table_entry entry = old_state->slots[i]; if (entry.hash_code) { s_emplace_item(new_state, entry, 0); } } map->p_impl = new_state; aws_mem_release(new_state->alloc, old_state); return (0); } int aws_hash_table_create( struct aws_hash_table *map, const void *key, struct aws_hash_element **p_elem, int *was_created) { struct hash_table_state *state = map->p_impl; uint64_t hash_code = s_hash_for(state, key); struct hash_table_entry *entry; size_t probe_idx; int ignored; if (!was_created) { was_created = &ignored; } int rv = s_find_entry(state, hash_code, key, &entry, &probe_idx); if (rv == AWS_ERROR_SUCCESS) { if (p_elem) { *p_elem = &entry->element; } *was_created = 0; return (0); } size_t incr_entry_count; if (aws_add_size_checked(state->entry_count, 1, &incr_entry_count)) { return (-1); } if (incr_entry_count > state->max_load) { rv = s_expand_table(map); if (rv != (0)) { return rv; } state = map->p_impl; probe_idx = 0; } state->entry_count++; struct hash_table_entry new_entry; new_entry.element.key = key; new_entry.element.value = ((void *)0) ; new_entry.hash_code = hash_code; entry = s_emplace_item(state, new_entry, probe_idx); if (p_elem) { *p_elem = &entry->element; } *was_created = 1; return (0); } int aws_hash_table_put(struct aws_hash_table *map, const void *key, void *value, int *was_created) { struct aws_hash_element *p_elem; int was_created_fallback; if (!was_created) { was_created = &was_created_fallback; } if (aws_hash_table_create(map, key, &p_elem, was_created)) { return (-1); } struct hash_table_state *state = map->p_impl; if (!*was_created) { if (p_elem->key != key && state->destroy_key_fn) { state->destroy_key_fn((void *)p_elem->key); } if (state->destroy_value_fn) { state->destroy_value_fn((void *)p_elem->value); } } p_elem->key = key; p_elem->value = value; return (0); } static size_t s_remove_entry(struct hash_table_state *state, struct hash_table_entry *entry) { assume_abort_if_not((hash_table_state_is_valid(state))); assume_abort_if_not((state->entry_count > 0)); assume_abort_if_not((entry >= &state->slots[0] && entry < &state->slots[state->size])) ; state->entry_count--; size_t index = s_index_for(state, entry); while (1) { size_t next_index = (index + 1) & state->mask; if (!state->slots[next_index].hash_code) { break; } if ((state->slots[next_index].hash_code & state->mask) == next_index) { break; } state->slots[index] = state->slots[next_index]; index = next_index; } do { memset(&(state->slots[index]), 0, sizeof(state->slots[index])); } while (0); do { __VERIFIER_assert((hash_table_state_is_valid(state) && index <= state->size)); return index; } while (0); } int aws_hash_table_remove( struct aws_hash_table *map, const void *key, struct aws_hash_element *p_value, int *was_present) { assume_abort_if_not((aws_hash_table_is_valid(map))); assume_abort_if_not((p_value == ((void *)0) || ((((sizeof(*(p_value)))) == 0) || (((p_value)))))) ; assume_abort_if_not((was_present == ((void *)0) || ((((sizeof(*(was_present)))) == 0) || (((was_present)))))) ; struct hash_table_state *state = map->p_impl; uint64_t hash_code = s_hash_for(state, key); struct hash_table_entry *entry; int ignored; if (!was_present) { was_present = &ignored; } int rv = s_find_entry(state, hash_code, key, &entry, ((void *)0) ); if (rv != AWS_ERROR_SUCCESS) { *was_present = 0; do { __VERIFIER_assert((aws_hash_table_is_valid(map))); return (0); } while (0); } *was_present = 1; if (p_value) { *p_value = entry->element; } else { if (state->destroy_key_fn) { state->destroy_key_fn((void *)entry->element.key); } if (state->destroy_value_fn) { state->destroy_value_fn(entry->element.value); } } s_remove_entry(state, entry); do { __VERIFIER_assert((aws_hash_table_is_valid(map))); return (0); } while (0); } int aws_hash_table_remove_element(struct aws_hash_table *map, struct aws_hash_element *p_value) { assume_abort_if_not((aws_hash_table_is_valid(map))); assume_abort_if_not((p_value != ((void *)0) )); struct hash_table_state *state = map->p_impl; struct hash_table_entry *entry = ((struct hash_table_entry *)((uint8_t *)(p_value)- __builtin_offsetof ( struct hash_table_entry , element ) )); s_remove_entry(state, entry); do { __VERIFIER_assert((aws_hash_table_is_valid(map))); return (0); } while (0); } int aws_hash_table_foreach( struct aws_hash_table *map, int (*callback)(void *context, struct aws_hash_element *pElement), void *context) { for (struct aws_hash_iter iter = aws_hash_iter_begin(map); !aws_hash_iter_done(&iter); aws_hash_iter_next(&iter)) { int rv = callback(context, &iter.element); if (rv & (1 << 1)) { aws_hash_iter_delete(&iter, 0 ); } if (!(rv & (1 << 0))) { break; } } return (0); } _Bool aws_hash_table_eq( const struct aws_hash_table *a, const struct aws_hash_table *b, aws_hash_callback_eq_fn *value_eq) { assume_abort_if_not((aws_hash_table_is_valid(a))); assume_abort_if_not((aws_hash_table_is_valid(b))); assume_abort_if_not((value_eq != ((void *)0) )); if (aws_hash_table_get_entry_count(a) != aws_hash_table_get_entry_count(b)) { do { __VERIFIER_assert((aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b))); return 0 ; } while (0); } for (size_t i = 0; i < a->p_impl->size; ++i) { const struct hash_table_entry *const a_entry = &a->p_impl->slots[i]; if (a_entry->hash_code == 0) { continue; } struct aws_hash_element *b_element = ((void *)0) ; aws_hash_table_find(b, a_entry->element.key, &b_element); if (!b_element) { do { __VERIFIER_assert((aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b))); return 0 ; } while (0); } if (!s_safe_eq_check(value_eq, a_entry->element.value, b_element->value)) { do { __VERIFIER_assert((aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b))); return 0 ; } while (0); } } do { __VERIFIER_assert((aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b))); return 1 ; } while (0); } static inline void s_get_next_element(struct aws_hash_iter *iter, size_t start_slot) { assume_abort_if_not((iter != ((void *)0) )); assume_abort_if_not((aws_hash_table_is_valid(iter->map))); struct hash_table_state *state = iter->map->p_impl; size_t limit = iter->limit; for (size_t i = start_slot; i < limit; i++) { struct hash_table_entry *entry = &state->slots[i]; if (entry->hash_code) { iter->element = entry->element; iter->slot = i; iter->status = AWS_HASH_ITER_STATUS_READY_FOR_USE; return; } } iter->element.key = ((void *)0) ; iter->element.value = ((void *)0) ; iter->slot = iter->limit; iter->status = AWS_HASH_ITER_STATUS_DONE; __VERIFIER_assert((aws_hash_iter_is_valid(iter))); } struct aws_hash_iter aws_hash_iter_begin(const struct aws_hash_table *map) { assume_abort_if_not((aws_hash_table_is_valid(map))); struct hash_table_state *state = map->p_impl; struct aws_hash_iter iter; do { memset(&(iter), 0, sizeof(iter)); } while (0); iter.map = map; iter.limit = state->size; s_get_next_element(&iter, 0); do { __VERIFIER_assert((aws_hash_iter_is_valid(&iter) && (iter.status == AWS_HASH_ITER_STATUS_DONE || iter.status == AWS_HASH_ITER_STATUS_READY_FOR_USE))); return iter; } while (0) ; } _Bool aws_hash_iter_done(const struct aws_hash_iter *iter) { assume_abort_if_not((aws_hash_iter_is_valid(iter))); assume_abort_if_not((iter->status == AWS_HASH_ITER_STATUS_DONE || iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE)) ; _Bool rval = (iter->slot == iter->limit); __VERIFIER_assert((iter->status == AWS_HASH_ITER_STATUS_DONE || iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE)) ; __VERIFIER_assert((rval == (iter->status == AWS_HASH_ITER_STATUS_DONE))) ; __VERIFIER_assert((aws_hash_iter_is_valid(iter))); return rval; } void aws_hash_iter_next(struct aws_hash_iter *iter) { assume_abort_if_not((aws_hash_iter_is_valid(iter))); s_get_next_element(iter, iter->slot + 1); __VERIFIER_assert((iter->status == AWS_HASH_ITER_STATUS_DONE || iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE)) ; __VERIFIER_assert((aws_hash_iter_is_valid(iter))); } void aws_hash_iter_delete(struct aws_hash_iter *iter, _Bool destroy_contents) { assume_abort_if_not((iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE)) ; assume_abort_if_not((aws_hash_iter_is_valid(iter))); assume_abort_if_not((iter->map->p_impl->entry_count > 0)) ; struct hash_table_state *state = iter->map->p_impl; if (destroy_contents) { if (state->destroy_key_fn) { state->destroy_key_fn((void *)iter->element.key); } if (state->destroy_value_fn) { state->destroy_value_fn(iter->element.value); } } size_t last_index = s_remove_entry(state, &state->slots[iter->slot]); if (last_index < iter->slot || last_index >= iter->limit) { iter->limit--; } iter->slot--; iter->status = AWS_HASH_ITER_STATUS_DELETE_CALLED; __VERIFIER_assert((iter->status == AWS_HASH_ITER_STATUS_DELETE_CALLED)) ; __VERIFIER_assert((aws_hash_iter_is_valid(iter))); } void aws_hash_table_clear(struct aws_hash_table *map) { assume_abort_if_not((aws_hash_table_is_valid(map))); struct hash_table_state *state = map->p_impl; if (state->destroy_key_fn || state->destroy_value_fn) { for (size_t i = 0; i < state->size; ++i) { struct hash_table_entry *entry = &state->slots[i]; if (!entry->hash_code) { continue; } if (state->destroy_key_fn) { state->destroy_key_fn((void *)entry->element.key); } if (state->destroy_value_fn) { state->destroy_value_fn(entry->element.value); } } } memset(state->slots, 0, sizeof(*state->slots) * state->size); state->entry_count = 0; __VERIFIER_assert((aws_hash_table_is_valid(map))); } uint64_t aws_hash_c_string(const void *item) { assume_abort_if_not((aws_c_string_is_valid(item))); const char *str = item; uint32_t b = 0x3243F6A8, c = 0x885A308D; hashlittle2(str, strlen(str), &c, &b); return ((uint64_t)b << 32) | c; } uint64_t aws_hash_string(const void *item) { assume_abort_if_not((aws_string_is_valid(item))); const struct aws_string *str = item; uint32_t b = 0x3243F6A8, c = 0x885A308D; hashlittle2(aws_string_bytes(str), str->len, &c, &b); do { __VERIFIER_assert((aws_string_is_valid(str))); return ((uint64_t)b << 32) | c; } while (0); } uint64_t aws_hash_ptr(const void *item) { uint32_t b = 0x2b7e1516, c = 0x28aed2a6; hashlittle2(&item, sizeof(item), &c, &b); return ((uint64_t)b << 32) | c; } _Bool aws_hash_callback_c_str_eq(const void *a, const void *b) { assume_abort_if_not((aws_c_string_is_valid(a))); assume_abort_if_not((aws_c_string_is_valid(b))); _Bool rval = !strcmp(a, b); do { __VERIFIER_assert((aws_c_string_is_valid(a) && aws_c_string_is_valid(b))); return rval; } while (0); } _Bool aws_ptr_eq(const void *a, const void *b) { return a == b; } _Bool aws_hash_table_is_valid(const struct aws_hash_table *map) { return map && map->p_impl && hash_table_state_is_valid(map->p_impl); } _Bool hash_table_state_is_valid(const struct hash_table_state *map) { if (!map) { return 0 ; } _Bool hash_fn_nonnull = (map->hash_fn != ((void *)0) ); _Bool equals_fn_nonnull = (map->equals_fn != ((void *)0) ); _Bool alloc_nonnull = (map->alloc != ((void *)0) ); _Bool size_at_least_two = (map->size >= 2); _Bool size_is_power_of_two = aws_is_power_of_two(map->size); _Bool entry_count = (map->entry_count <= map->max_load); _Bool max_load = (map->max_load < map->size); _Bool mask_is_correct = (map->mask == (map->size - 1)); _Bool max_load_factor_bounded = map->max_load_factor == 0.95; _Bool slots_allocated = ((((sizeof(map->slots[0]) * map->size)) == 0) || ((&map->slots[0]))); return hash_fn_nonnull && equals_fn_nonnull && alloc_nonnull && size_at_least_two && size_is_power_of_two && entry_count && max_load && mask_is_correct && max_load_factor_bounded && slots_allocated; } _Bool aws_hash_iter_is_valid(const struct aws_hash_iter *iter) { if (!iter) { return 0 ; } if (!iter->map) { return 0 ; } if (!aws_hash_table_is_valid(iter->map)) { return 0 ; } if (iter->limit > iter->map->p_impl->size) { return 0 ; } switch (iter->status) { case AWS_HASH_ITER_STATUS_DONE: return iter->slot == iter->limit; case AWS_HASH_ITER_STATUS_DELETE_CALLED: return iter->slot <= iter->limit || iter->slot == (18446744073709551615UL) ; case AWS_HASH_ITER_STATUS_READY_FOR_USE: return iter->slot < iter->limit && iter->map->p_impl->slots[iter->slot].hash_code != 0; } return 0 ; } int hash_table_state_required_bytes(size_t size, size_t *required_bytes) { size_t elemsize; if (aws_mul_size_checked(size, sizeof(struct hash_table_entry), &elemsize)) { return (-1); } if (aws_add_size_checked(elemsize, sizeof(struct hash_table_state), required_bytes)) { return (-1); } return (0); } void aws_hash_iter_begin_harness() { struct aws_hash_table map; ensure_allocated_hash_table(&map, 32); assume_abort_if_not(aws_hash_table_is_valid(&map)); struct store_byte_from_buffer old_byte; save_byte_from_hash_table(&map, &old_byte); struct aws_hash_iter iter = aws_hash_iter_begin(&map); __VERIFIER_assert(aws_hash_iter_is_valid(&iter)); __VERIFIER_assert(iter.status == AWS_HASH_ITER_STATUS_DONE || iter.status == AWS_HASH_ITER_STATUS_READY_FOR_USE); __VERIFIER_assert(aws_hash_table_is_valid(&map)); check_hash_table_unchanged(&map, &old_byte); } int main() { aws_hash_iter_begin_harness(); return 0; }