extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "cos_polynomial.c", 3, "reach_error"); } /* Example from the Habilitation Report "Static Analysis of Numerical Programs and Systems" by Sylvie Putot. Inspired from http://www.netlib.org/fdlibm/k_cos.c */ extern double __VERIFIER_nondet_double(); extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR: {reach_error();abort();} } return; } double C1 = 4.16666666666666019037e-02; double C2 = -1.38888888888741095749e-03; double C3 = 2.48015872894767294178e-05; double C4 = -2.75573143513906633035e-07; double C5 = 2.08757232129817482790e-09; double C6 = -1.13596475577881948265e-11; double mcos(double x) { double a, hz, z, r, qx, zr; z = x*x; if (x < 0.) x = -x; hz = 0.5 * z; r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); zr = z*r; if (x < 0.3) { return 1.-(hz-zr); } else { if (x > 0.78125) { qx = 0.28125; } else { qx = x/4.; } hz = hz-qx; a = 1.-qx; return a-(hz-zr); } } int main() { double a, r; a = __VERIFIER_nondet_double(); assume_abort_if_not(a >= -0.5 && a <= 0.75); r = mcos(a); __VERIFIER_assert(r >= 0. && r <= 1.1); return 0; }