/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22037 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22037 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28487 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28488 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28487 reg_state : 8 ; bool dismantle ; enum ldv_28488 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_248 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_248 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_249 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_249 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_254 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_254 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_255 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_255 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_257 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_256 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_257 __annonCompField79 ; }; union __anonunion____missing_field_name_258 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_260 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_259 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_260 __annonCompField82 ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_256 __annonCompField80 ; union __anonunion____missing_field_name_258 __annonCompField81 ; union __anonunion____missing_field_name_259 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_261 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_262 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_263 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_263 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_264 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_264 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct mdio_if_info { int prtad ; u32 mmds ; unsigned int mode_support ; struct net_device *dev ; int (*mdio_read)(struct net_device * , int , int , u16 ) ; int (*mdio_write)(struct net_device * , int , int , u16 , u16 ) ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_276 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_276 __annonCompField86 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_277 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_279 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField88 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_277 __annonCompField87 ; union __anonunion____missing_field_name_278 __annonCompField89 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct __anonstruct_l_282 { __le32 pkt_len ; __le32 resvd ; }; union __anonunion_adrl_281 { __le64 addr ; struct __anonstruct_l_282 l ; }; struct alx_txd { __le16 len ; __le16 vlan_tag ; __le32 word1 ; union __anonunion_adrl_281 adrl ; }; struct alx_rfd { __le64 addr ; }; struct alx_rrd { __le32 word0 ; __le32 rss_hash ; __le32 word2 ; __le32 word3 ; }; struct alx_hw_stats { u64 rx_ok ; u64 rx_bcast ; u64 rx_mcast ; u64 rx_pause ; u64 rx_ctrl ; u64 rx_fcs_err ; u64 rx_len_err ; u64 rx_byte_cnt ; u64 rx_runt ; u64 rx_frag ; u64 rx_sz_64B ; u64 rx_sz_127B ; u64 rx_sz_255B ; u64 rx_sz_511B ; u64 rx_sz_1023B ; u64 rx_sz_1518B ; u64 rx_sz_max ; u64 rx_ov_sz ; u64 rx_ov_rxf ; u64 rx_ov_rrd ; u64 rx_align_err ; u64 rx_bc_byte_cnt ; u64 rx_mc_byte_cnt ; u64 rx_err_addr ; u64 tx_ok ; u64 tx_bcast ; u64 tx_mcast ; u64 tx_pause ; u64 tx_exc_defer ; u64 tx_ctrl ; u64 tx_defer ; u64 tx_byte_cnt ; u64 tx_sz_64B ; u64 tx_sz_127B ; u64 tx_sz_255B ; u64 tx_sz_511B ; u64 tx_sz_1023B ; u64 tx_sz_1518B ; u64 tx_sz_max ; u64 tx_single_col ; u64 tx_multi_col ; u64 tx_late_col ; u64 tx_abort_col ; u64 tx_underrun ; u64 tx_trd_eop ; u64 tx_len_err ; u64 tx_trunc ; u64 tx_bc_byte_cnt ; u64 tx_mc_byte_cnt ; u64 update ; }; struct alx_hw { struct pci_dev *pdev ; u8 *hw_addr ; u8 mac_addr[6U] ; u8 perm_addr[6U] ; u16 mtu ; u16 imt ; u8 dma_chnl ; u8 max_dma_chnl ; u32 ith_tpd ; u32 rx_ctrl ; u32 mc_hash[2U] ; u32 smb_timer ; int link_speed ; u8 duplex ; u8 flowctrl ; u32 adv_cfg ; spinlock_t mdio_lock ; struct mdio_if_info mdio ; u16 phy_id[2U] ; bool lnk_patch ; struct alx_hw_stats stats ; }; struct alx_buffer { struct sk_buff *skb ; dma_addr_t dma ; __u32 size ; }; struct alx_rx_queue { struct alx_rrd *rrd ; dma_addr_t rrd_dma ; struct alx_rfd *rfd ; dma_addr_t rfd_dma ; struct alx_buffer *bufs ; u16 write_idx ; u16 read_idx ; u16 rrd_read_idx ; }; struct alx_tx_queue { struct alx_txd *tpd ; dma_addr_t tpd_dma ; struct alx_buffer *bufs ; u16 write_idx ; u16 read_idx ; }; struct __anonstruct_descmem_283 { dma_addr_t dma ; void *virt ; unsigned int size ; }; struct alx_priv { struct net_device *dev ; struct alx_hw hw ; struct __anonstruct_descmem_283 descmem ; spinlock_t irq_lock ; u32 int_mask ; unsigned int tx_ringsz ; unsigned int rx_ringsz ; unsigned int rxbuf_size ; struct napi_struct napi ; struct alx_tx_queue txq ; struct alx_rx_queue rxq ; struct work_struct link_check_wk ; struct work_struct reset_wk ; u16 msg_enable ; bool msi ; spinlock_t stats_lock ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef struct net_device *ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; enum hrtimer_restart; enum hrtimer_restart; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; extern void ldv_after_alloc(void * ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern void dump_stack(void) ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_104(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_111(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_irq_lock_of_alx_priv(void) ; void ldv_spin_unlock_irq_lock_of_alx_priv(void) ; void ldv_spin_lock_stats_lock_of_alx_priv(void) ; void ldv_spin_unlock_stats_lock_of_alx_priv(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_113(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_114(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_105(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_105(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void iounmap(void volatile * ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void msleep(unsigned int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { { tmp = ldv__builtin_expect(count > 268435455U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); __builtin_unreachable(); } } else { } dql->num_queued = dql->num_queued + count; dql->last_obj_cnt = count; return; } } __inline static int dql_avail(struct dql const *dql ) { { return ((int )((unsigned int )dql->adj_limit - (unsigned int )dql->num_queued)); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void get_random_bytes(void * , int ) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { { tmp = dma_set_mask(dev, mask); rc = tmp; } if (rc == 0) { { dma_set_coherent_mask(dev, mask); } } else { } return (rc); } } void *ldv_zalloc(size_t size ) ; __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } void *ldv_malloc(size_t size ) ; static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } extern void synchronize_irq(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38520; ldv_38519: { msleep(1U); } ldv_38520: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38519; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_117(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_119(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_schedule_queue(struct netdev_queue *txq ) { { if ((txq->state & 3UL) == 0UL) { { __netif_schedule(txq->qdisc); } } else { } return; } } __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39415; ldv_39414: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_39415: ; if (i < dev->num_tx_queues) { goto ldv_39414; } else { } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39429; ldv_39428: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_39429: ; if (i < dev->num_tx_queues) { goto ldv_39428; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); } if (tmp___0 != 0L) { return; } else { } { set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); } if (tmp___2 != 0L) { { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } } else { } return; } } __inline static void netdev_sent_queue(struct net_device *dev , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_sent_queue(tmp, bytes); } return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect(bytes == 0U, 0L); } if (tmp != 0L) { return; } else { } { dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); } if (tmp___0 < 0) { return; } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___1 != 0) { { netif_schedule_queue(dev_queue); } } else { } return; } } __inline static void netdev_completed_queue(struct net_device *dev , unsigned int pkts , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_completed_queue(tmp, pkts, bytes); } return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); } return; } } __inline static void netdev_reset_queue(struct net_device *dev_queue ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev_queue, 0U); netdev_tx_reset_queue(tmp); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_69(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_72(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39974; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39974; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39974; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39974; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39974: pscr_ret__ = pfo_ret__; goto ldv_39980; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39984; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39984; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39984; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39984; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39984: pscr_ret__ = pfo_ret_____0; goto ldv_39980; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39993; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39993; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39993; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39993; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39993: pscr_ret__ = pfo_ret_____1; goto ldv_39980; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40002; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40002; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40002; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40002; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_40002: pscr_ret__ = pfo_ret_____2; goto ldv_39980; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39980; switch_break: /* CIL Label */ ; } ldv_39980: cpu = pscr_ret__; i = 0U; goto ldv_40012; ldv_40011: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_40012: ; if (i < dev->num_tx_queues) { goto ldv_40011; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_116(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_118(struct net_device *ldv_func_arg1 ) ; extern void netdev_update_features(struct net_device * ) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_select_bars(struct pci_dev * , unsigned long ) ; extern int pci_request_selected_regions(struct pci_dev * , int , char const * ) ; extern void pci_release_selected_regions(struct pci_dev * , int ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_120(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_121(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_108(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_109(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_110(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; extern int rtnl_is_locked(void) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_115(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } __inline static void eth_hw_addr_random(struct net_device *dev ) { { { dev->addr_assign_type = 1U; eth_random_addr(dev->dev_addr); } return; } } __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern int mdio_mii_ioctl(struct mdio_if_info const * , struct mii_ioctl_data * , int ) ; extern int pci_enable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_disable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_cleanup_aer_uncorrect_error_status(struct pci_dev * ) ; extern u32 bitrev32(u32 ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; __inline static int alx_hw_revision(struct alx_hw *hw ) { { return ((int )(hw->pdev)->revision >> 3); } } __inline static void alx_write_mem16(struct alx_hw *hw , u32 reg , u16 val ) { { { writew((int )val, (void volatile *)hw->hw_addr + (unsigned long )reg); } return; } } __inline static u16 alx_read_mem16(struct alx_hw *hw , u32 reg ) { unsigned short tmp ; { { tmp = readw((void const volatile *)hw->hw_addr + (unsigned long )reg); } return (tmp); } } __inline static void alx_write_mem32(struct alx_hw *hw , u32 reg , u32 val ) { { { writel(val, (void volatile *)hw->hw_addr + (unsigned long )reg); } return; } } __inline static u32 alx_read_mem32(struct alx_hw *hw , u32 reg ) { unsigned int tmp ; { { tmp = readl((void const volatile *)hw->hw_addr + (unsigned long )reg); } return (tmp); } } __inline static void alx_post_write(struct alx_hw *hw ) { { { readl((void const volatile *)hw->hw_addr); } return; } } int alx_get_perm_macaddr(struct alx_hw *hw , u8 *addr ) ; void alx_reset_phy(struct alx_hw *hw ) ; void alx_reset_pcie(struct alx_hw *hw ) ; void alx_enable_aspm(struct alx_hw *hw , bool l0s_en , bool l1_en ) ; int alx_setup_speed_duplex(struct alx_hw *hw , u32 ethadv , u8 flowctrl ) ; void alx_post_phy_link(struct alx_hw *hw ) ; int alx_read_phy_reg(struct alx_hw *hw , u16 reg , u16 *phy_data ) ; int alx_write_phy_reg(struct alx_hw *hw , u16 reg , u16 phy_data ) ; int alx_read_phy_ext(struct alx_hw *hw , u8 dev , u16 reg , u16 *pdata ) ; int alx_write_phy_ext(struct alx_hw *hw , u8 dev , u16 reg , u16 data ) ; int alx_read_phy_link(struct alx_hw *hw ) ; int alx_clear_phy_intr(struct alx_hw *hw ) ; void alx_start_mac(struct alx_hw *hw ) ; int alx_reset_mac(struct alx_hw *hw ) ; void alx_set_macaddr(struct alx_hw *hw , u8 const *addr ) ; bool alx_phy_configured(struct alx_hw *hw ) ; void alx_configure_basic(struct alx_hw *hw ) ; void alx_disable_rss(struct alx_hw *hw ) ; bool alx_get_phy_info(struct alx_hw *hw ) ; void alx_update_hw_stats(struct alx_hw *hw ) ; __inline static u32 alx_speed_to_ethadv(int speed , u8 duplex ) { { if (speed == 1000 && (unsigned int )duplex == 1U) { return (32U); } else { } if (speed == 100 && (unsigned int )duplex == 1U) { return (8U); } else { } if (speed == 100 && (unsigned int )duplex == 0U) { return (4U); } else { } if (speed == 10 && (unsigned int )duplex == 1U) { return (2U); } else { } if (speed == 10 && (unsigned int )duplex == 0U) { return (1U); } else { } return (0U); } } struct ethtool_ops const alx_ethtool_ops ; char const alx_drv_name[4U] ; char const alx_drv_name[4U] = { 'a', 'l', 'x', '\000'}; static void alx_free_txbuf(struct alx_priv *alx , int entry ) { struct alx_buffer *txb ; { txb = alx->txq.bufs + (unsigned long )entry; if (txb->size != 0U) { { dma_unmap_single_attrs(& (alx->hw.pdev)->dev, txb->dma, (size_t )txb->size, 1, (struct dma_attrs *)0); txb->size = 0U; } } else { } if ((unsigned long )txb->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(txb->skb); txb->skb = (struct sk_buff *)0; } } else { } return; } } static int alx_refill_rx_ring(struct alx_priv *alx , gfp_t gfp ) { struct alx_rx_queue *rxq ; struct sk_buff *skb ; struct alx_buffer *cur_buf ; dma_addr_t dma ; u16 cur ; u16 next ; u16 count ; struct alx_rfd *rfd ; int tmp ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; { rxq = & alx->rxq; count = 0U; cur = rxq->write_idx; next = cur; next = (u16 )((int )next + 1); if ((unsigned int )next == alx->rx_ringsz) { next = 0U; } else { } cur_buf = rxq->bufs + (unsigned long )cur; goto ldv_50688; ldv_50687: { rfd = rxq->rfd + (unsigned long )cur; skb = ldv___netdev_alloc_skb_103(alx->dev, alx->rxbuf_size, gfp); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_50684; } else { } { dma = dma_map_single_attrs(& (alx->hw.pdev)->dev, (void *)skb->data, (size_t )alx->rxbuf_size, 2, (struct dma_attrs *)0); tmp = dma_mapping_error(& (alx->hw.pdev)->dev, dma); } if (tmp != 0) { { consume_skb(skb); } goto ldv_50684; } else { } { __ret_warn_on = (dma & 3ULL) != 0ULL; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/ethernet/atheros/alx/main.c", 103); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { consume_skb(skb); } goto ldv_50684; } else { } cur_buf->skb = skb; cur_buf->size = alx->rxbuf_size; cur_buf->dma = dma; rfd->addr = dma; cur = next; next = (u16 )((int )next + 1); if ((unsigned int )next == alx->rx_ringsz) { next = 0U; } else { } cur_buf = rxq->bufs + (unsigned long )cur; count = (u16 )((int )count + 1); ldv_50688: ; if ((unsigned long )cur_buf->skb == (unsigned long )((struct sk_buff *)0) && (int )next != (int )rxq->read_idx) { goto ldv_50687; } else { } ldv_50684: ; if ((unsigned int )count != 0U) { { __asm__ volatile ("sfence": : : "memory"); rxq->write_idx = cur; alx_write_mem16(& alx->hw, 5600U, (int )cur); } } else { } return ((int )count); } } __inline static int alx_tpd_avail(struct alx_priv *alx ) { struct alx_tx_queue *txq ; { txq = & alx->txq; if ((int )txq->write_idx >= (int )txq->read_idx) { return ((int )(((alx->tx_ringsz + (unsigned int )txq->read_idx) - (unsigned int )txq->write_idx) - 1U)); } else { } return (((int )txq->read_idx - (int )txq->write_idx) + -1); } } static bool alx_clean_tx_irq(struct alx_priv *alx ) { struct alx_tx_queue *txq ; u16 hw_read_idx ; u16 sw_read_idx ; unsigned int total_bytes ; unsigned int total_packets ; int budget ; struct sk_buff *skb ; bool tmp ; bool tmp___0 ; int tmp___1 ; { { txq = & alx->txq; total_bytes = 0U; total_packets = 0U; budget = 128; sw_read_idx = txq->read_idx; hw_read_idx = alx_read_mem16(& alx->hw, 5622U); } if ((int )sw_read_idx != (int )hw_read_idx) { goto ldv_50704; ldv_50703: skb = (txq->bufs + (unsigned long )sw_read_idx)->skb; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { total_bytes = total_bytes + skb->len; total_packets = total_packets + 1U; budget = budget - 1; } else { } { alx_free_txbuf(alx, (int )sw_read_idx); sw_read_idx = (u16 )((int )sw_read_idx + 1); } if ((unsigned int )sw_read_idx == alx->tx_ringsz) { sw_read_idx = 0U; } else { } ldv_50704: ; if ((int )sw_read_idx != (int )hw_read_idx && budget > 0) { goto ldv_50703; } else { } { txq->read_idx = sw_read_idx; netdev_completed_queue(alx->dev, total_packets, total_bytes); } } else { } { tmp = netif_queue_stopped((struct net_device const *)alx->dev); } if ((int )tmp) { { tmp___0 = netif_carrier_ok((struct net_device const *)alx->dev); } if ((int )tmp___0) { { tmp___1 = alx_tpd_avail(alx); } if ((unsigned int )tmp___1 > alx->tx_ringsz / 4U) { { netif_wake_queue(alx->dev); } } else { } } else { } } else { } return ((int )sw_read_idx == (int )hw_read_idx); } } static void alx_schedule_link_check(struct alx_priv *alx ) { { { schedule_work(& alx->link_check_wk); } return; } } static void alx_schedule_reset(struct alx_priv *alx ) { { { schedule_work(& alx->reset_wk); } return; } } static bool alx_clean_rx_irq(struct alx_priv *alx , int budget ) { struct alx_rx_queue *rxq ; struct alx_rrd *rrd ; struct alx_buffer *rxb ; struct sk_buff *skb ; u16 length ; u16 rfd_cleaned ; int tmp ; { rxq = & alx->rxq; rfd_cleaned = 0U; goto ldv_50730; ldv_50729: rrd = rxq->rrd + (unsigned long )rxq->rrd_read_idx; if ((int )rrd->word3 >= 0) { goto ldv_50722; } else { } rrd->word3 = rrd->word3 & 2147483647U; if (rrd->word0 >> 20 != (__le32 )rxq->read_idx || ((rrd->word0 >> 16) & 15U) != 1U) { { alx_schedule_reset(alx); } return (0); } else { } { rxb = rxq->bufs + (unsigned long )rxq->read_idx; dma_unmap_single_attrs(& (alx->hw.pdev)->dev, rxb->dma, (size_t )rxb->size, 2, (struct dma_attrs *)0); rxb->size = 0U; skb = rxb->skb; rxb->skb = (struct sk_buff *)0; } if ((rrd->word3 & 1048576U) != 0U || (rrd->word3 & 1073741824U) != 0U) { { rrd->word3 = 0U; dev_kfree_skb_any(skb); } goto next_pkt; } else { } { length = ((unsigned int )((u16 )rrd->word3) & 16383U) - 4U; skb_put(skb, (unsigned int )length); skb->protocol = eth_type_trans(skb, alx->dev); skb_checksum_none_assert((struct sk_buff const *)skb); } if (((alx->dev)->features & 4294967296ULL) != 0ULL && (rrd->word3 & 49152U) == 0U) { { if (((rrd->word2 >> 16) & 255U) == 4U) { goto case_4; } else { } if (((rrd->word2 >> 16) & 255U) == 5U) { goto case_5; } else { } if (((rrd->word2 >> 16) & 255U) == 3U) { goto case_3; } else { } if (((rrd->word2 >> 16) & 255U) == 2U) { goto case_2; } else { } goto switch_break; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_3: /* CIL Label */ ; case_2: /* CIL Label */ skb->ip_summed = 1U; goto ldv_50728; switch_break: /* CIL Label */ ; } ldv_50728: ; } else { } { napi_gro_receive(& alx->napi, skb); budget = budget - 1; } next_pkt: rxq->read_idx = (u16 )((int )rxq->read_idx + 1); if ((unsigned int )rxq->read_idx == alx->rx_ringsz) { rxq->read_idx = 0U; } else { } rxq->rrd_read_idx = (u16 )((int )rxq->rrd_read_idx + 1); if ((unsigned int )rxq->rrd_read_idx == alx->rx_ringsz) { rxq->rrd_read_idx = 0U; } else { } rfd_cleaned = (u16 )((int )rfd_cleaned + 1); if ((unsigned int )rfd_cleaned > 32U) { { tmp = alx_refill_rx_ring(alx, 32U); rfd_cleaned = (int )rfd_cleaned - (int )((u16 )tmp); } } else { } ldv_50730: ; if (budget > 0) { goto ldv_50729; } else { } ldv_50722: ; if ((unsigned int )rfd_cleaned != 0U) { { alx_refill_rx_ring(alx, 32U); } } else { } return (budget > 0); } } static int alx_poll(struct napi_struct *napi , int budget ) { struct alx_priv *alx ; struct napi_struct const *__mptr ; struct alx_hw *hw ; bool complete___0 ; unsigned long flags ; bool tmp ; bool tmp___0 ; int tmp___1 ; { { __mptr = (struct napi_struct const *)napi; alx = (struct alx_priv *)__mptr + 0xfffffffffffffd38UL; hw = & alx->hw; complete___0 = 1; tmp = alx_clean_tx_irq(alx); } if ((int )tmp) { { tmp___0 = alx_clean_rx_irq(alx, budget); } if ((int )tmp___0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } complete___0 = (bool )tmp___1; if (! complete___0) { return (1); } else { } { napi_complete(& alx->napi); ldv___ldv_spin_lock_104(& alx->irq_lock); alx->int_mask = alx->int_mask | 98304U; alx_write_mem32(hw, 5636U, alx->int_mask); ldv_spin_unlock_irqrestore_105(& alx->irq_lock, flags); alx_post_write(hw); } return (0); } } static irqreturn_t alx_intr_handle(struct alx_priv *alx , u32 intr ) { struct alx_hw *hw ; bool write_int_mask ; { { hw = & alx->hw; write_int_mask = 0; ldv_spin_lock_106(& alx->irq_lock); alx_write_mem32(hw, 5632U, intr | 2147483648U); intr = intr & alx->int_mask; } if (((unsigned long )intr & 67110400UL) != 0UL) { if (((int )alx->msg_enable & 8192) != 0) { { netdev_warn((struct net_device const *)alx->dev, "fatal interrupt 0x%x, resetting\n", intr); } } else { } { alx_schedule_reset(alx); } goto out; } else { } if (((unsigned long )intr & 280UL) != 0UL) { { netdev_warn((struct net_device const *)alx->dev, "alert interrupt: 0x%x\n", intr); } } else { } if (((unsigned long )intr & 4096UL) != 0UL) { { alx->int_mask = alx->int_mask & 4294963199U; write_int_mask = 1; alx_schedule_link_check(alx); } } else { } if (((unsigned long )intr & 98304UL) != 0UL) { { napi_schedule(& alx->napi); alx->int_mask = alx->int_mask & 2280685343U; write_int_mask = 1; } } else { } if ((int )write_int_mask) { { alx_write_mem32(hw, 5636U, alx->int_mask); } } else { } { alx_write_mem32(hw, 5632U, 0U); } out: { ldv_spin_unlock_107(& alx->irq_lock); } return (1); } } static irqreturn_t alx_intr_msi(int irq , void *data ) { struct alx_priv *alx ; u32 tmp ; irqreturn_t tmp___0 ; { { alx = (struct alx_priv *)data; tmp = alx_read_mem32(& alx->hw, 5632U); tmp___0 = alx_intr_handle(alx, tmp); } return (tmp___0); } } static irqreturn_t alx_intr_legacy(int irq , void *data ) { struct alx_priv *alx ; struct alx_hw *hw ; u32 intr ; irqreturn_t tmp ; { { alx = (struct alx_priv *)data; hw = & alx->hw; intr = alx_read_mem32(hw, 5632U); } if ((int )intr < 0 || (intr & alx->int_mask) == 0U) { return (0); } else { } { tmp = alx_intr_handle(alx, intr); } return (tmp); } } static void alx_init_ring_ptrs(struct alx_priv *alx ) { struct alx_hw *hw ; u32 addr_hi ; { { hw = & alx->hw; addr_hi = (u32 )(alx->descmem.dma >> 32); alx->rxq.read_idx = 0U; alx->rxq.write_idx = 0U; alx->rxq.rrd_read_idx = 0U; alx_write_mem32(hw, 5440U, addr_hi); alx_write_mem32(hw, 5480U, (u32 )alx->rxq.rrd_dma); alx_write_mem32(hw, 5496U, alx->rx_ringsz); alx_write_mem32(hw, 5456U, (u32 )alx->rxq.rfd_dma); alx_write_mem32(hw, 5472U, alx->rx_ringsz); alx_write_mem32(hw, 5476U, alx->rxbuf_size); alx->txq.read_idx = 0U; alx->txq.write_idx = 0U; alx_write_mem32(hw, 5444U, addr_hi); alx_write_mem32(hw, 5504U, (u32 )alx->txq.tpd_dma); alx_write_mem32(hw, 5508U, alx->tx_ringsz); alx_write_mem32(hw, 5428U, 1U); } return; } } static void alx_free_txring_buf(struct alx_priv *alx ) { struct alx_tx_queue *txq ; int i ; { txq = & alx->txq; if ((unsigned long )txq->bufs == (unsigned long )((struct alx_buffer *)0)) { return; } else { } i = 0; goto ldv_50771; ldv_50770: { alx_free_txbuf(alx, i); i = i + 1; } ldv_50771: ; if ((unsigned int )i < alx->tx_ringsz) { goto ldv_50770; } else { } { memset((void *)txq->bufs, 0, (unsigned long )alx->tx_ringsz * 24UL); memset((void *)txq->tpd, 0, (unsigned long )alx->tx_ringsz * 16UL); txq->write_idx = 0U; txq->read_idx = 0U; netdev_reset_queue(alx->dev); } return; } } static void alx_free_rxring_buf(struct alx_priv *alx ) { struct alx_rx_queue *rxq ; struct alx_buffer *cur_buf ; u16 i ; { rxq = & alx->rxq; if ((unsigned long )rxq == (unsigned long )((struct alx_rx_queue *)0)) { return; } else { } i = 0U; goto ldv_50780; ldv_50779: cur_buf = rxq->bufs + (unsigned long )i; if ((unsigned long )cur_buf->skb != (unsigned long )((struct sk_buff *)0)) { { dma_unmap_single_attrs(& (alx->hw.pdev)->dev, cur_buf->dma, (size_t )cur_buf->size, 2, (struct dma_attrs *)0); consume_skb(cur_buf->skb); cur_buf->skb = (struct sk_buff *)0; cur_buf->size = 0U; cur_buf->dma = 0ULL; } } else { } i = (u16 )((int )i + 1); ldv_50780: ; if ((unsigned int )i < alx->rx_ringsz) { goto ldv_50779; } else { } rxq->write_idx = 0U; rxq->read_idx = 0U; rxq->rrd_read_idx = 0U; return; } } static void alx_free_buffers(struct alx_priv *alx ) { { { alx_free_txring_buf(alx); alx_free_rxring_buf(alx); } return; } } static int alx_reinit_rings(struct alx_priv *alx ) { int tmp ; { { alx_free_buffers(alx); alx_init_ring_ptrs(alx); tmp = alx_refill_rx_ring(alx, 208U); } if (tmp == 0) { return (-12); } else { } return (0); } } static void alx_add_mc_addr(struct alx_hw *hw , u8 const *addr , u32 *mc_hash ) { u32 crc32 ; u32 bit ; u32 reg ; u32 tmp ; { { tmp = crc32_le(4294967295U, addr, 6UL); crc32 = bitrev32(tmp); reg = crc32 >> 31; bit = (crc32 >> 26) & 31U; *(mc_hash + (unsigned long )reg) = *(mc_hash + (unsigned long )reg) | (u32 )(1UL << (int )bit); } return; } } static void __alx_set_rx_mode(struct net_device *netdev ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; struct netdev_hw_addr *ha ; u32 mc_hash[2U] ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; mc_hash[0] = 0U; mc_hash[1] = 0U; } if ((netdev->flags & 512U) == 0U) { __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_50808; ldv_50807: { alx_add_mc_addr(hw, (u8 const *)(& ha->addr), (u32 *)(& mc_hash)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_50808: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_50807; } else { } { alx_write_mem32(hw, 5264U, mc_hash[0]); alx_write_mem32(hw, 5268U, mc_hash[1]); } } else { } hw->rx_ctrl = hw->rx_ctrl & 4261380095U; if ((netdev->flags & 256U) != 0U) { hw->rx_ctrl = hw->rx_ctrl | 32768U; } else { } if ((netdev->flags & 512U) != 0U) { hw->rx_ctrl = hw->rx_ctrl | 33554432U; } else { } { alx_write_mem32(hw, 5248U, hw->rx_ctrl); } return; } } static void alx_set_rx_mode(struct net_device *netdev ) { { { __alx_set_rx_mode(netdev); } return; } } static int alx_set_mac_address(struct net_device *netdev , void *data ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; addr = (struct sockaddr *)data; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } if ((int )netdev->addr_assign_type & 1) { netdev->addr_assign_type = (unsigned int )netdev->addr_assign_type ^ 1U; } else { } { memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), (size_t )netdev->addr_len); memcpy((void *)(& hw->mac_addr), (void const *)(& addr->sa_data), (size_t )netdev->addr_len); alx_set_macaddr(hw, (u8 const *)(& hw->mac_addr)); } return (0); } } extern void __compiletime_assert_542(void) ; extern void __compiletime_assert_551(void) ; static int alx_alloc_descriptors(struct alx_priv *alx ) { void *tmp ; void *tmp___0 ; bool __cond ; bool __cond___0 ; { { tmp = kcalloc((size_t )alx->tx_ringsz, 24UL, 208U); alx->txq.bufs = (struct alx_buffer *)tmp; } if ((unsigned long )alx->txq.bufs == (unsigned long )((struct alx_buffer *)0)) { return (-12); } else { } { tmp___0 = kcalloc((size_t )alx->rx_ringsz, 24UL, 208U); alx->rxq.bufs = (struct alx_buffer *)tmp___0; } if ((unsigned long )alx->rxq.bufs == (unsigned long )((struct alx_buffer *)0)) { goto out_free; } else { } { alx->descmem.size = (unsigned int )(((unsigned long )alx->tx_ringsz + (unsigned long )alx->rx_ringsz) * 2UL + (unsigned long )alx->rx_ringsz) * 8U; alx->descmem.virt = dma_zalloc_coherent(& (alx->hw.pdev)->dev, (size_t )alx->descmem.size, & alx->descmem.dma, 208U); } if ((unsigned long )alx->descmem.virt == (unsigned long )((void *)0)) { goto out_free; } else { } alx->txq.tpd = (struct alx_txd *)alx->descmem.virt; alx->txq.tpd_dma = alx->descmem.dma; __cond = 0; if ((int )__cond) { { __compiletime_assert_542(); } } else { } alx->rxq.rrd = (struct alx_rrd *)alx->descmem.virt + (unsigned long )alx->tx_ringsz * 16UL; alx->rxq.rrd_dma = alx->descmem.dma + (unsigned long long )((unsigned long )alx->tx_ringsz * 16UL); __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_551(); } } else { } alx->rxq.rfd = (struct alx_rfd *)(alx->descmem.virt + ((unsigned long )alx->tx_ringsz + (unsigned long )alx->rx_ringsz) * 16UL); alx->rxq.rfd_dma = alx->descmem.dma + ((unsigned long long )alx->rx_ringsz + (unsigned long long )alx->tx_ringsz) * 16ULL; return (0); out_free: { kfree((void const *)alx->txq.bufs); kfree((void const *)alx->rxq.bufs); } return (-12); } } static int alx_alloc_rings(struct alx_priv *alx ) { int err ; { { err = alx_alloc_descriptors(alx); } if (err != 0) { return (err); } else { } { alx->int_mask = alx->int_mask & 2280685343U; alx->int_mask = alx->int_mask | 98304U; alx->tx_ringsz = alx->tx_ringsz; netif_napi_add(alx->dev, & alx->napi, & alx_poll, 64); alx_reinit_rings(alx); } return (0); } } static void alx_free_rings(struct alx_priv *alx ) { { { netif_napi_del(& alx->napi); alx_free_buffers(alx); kfree((void const *)alx->txq.bufs); kfree((void const *)alx->rxq.bufs); dma_free_attrs(& (alx->hw.pdev)->dev, (size_t )alx->descmem.size, alx->descmem.virt, alx->descmem.dma, (struct dma_attrs *)0); } return; } } static void alx_config_vector_mapping(struct alx_priv *alx ) { struct alx_hw *hw ; { { hw = & alx->hw; alx_write_mem32(hw, 5584U, 0U); alx_write_mem32(hw, 5592U, 0U); alx_write_mem32(hw, 5588U, 0U); } return; } } static void alx_irq_enable(struct alx_priv *alx ) { struct alx_hw *hw ; { { hw = & alx->hw; alx_write_mem32(hw, 5632U, 0U); alx_write_mem32(hw, 5636U, alx->int_mask); alx_post_write(hw); } return; } } static void alx_irq_disable(struct alx_priv *alx ) { struct alx_hw *hw ; { { hw = & alx->hw; alx_write_mem32(hw, 5632U, 2147483648U); alx_write_mem32(hw, 5636U, 0U); alx_post_write(hw); synchronize_irq((alx->hw.pdev)->irq); } return; } } static int alx_request_irq(struct alx_priv *alx ) { struct pci_dev *pdev ; struct alx_hw *hw ; int err ; u32 msi_ctrl ; int tmp ; { { pdev = alx->hw.pdev; hw = & alx->hw; msi_ctrl = (u32 )((int )hw->imt >> 1); tmp = pci_enable_msi_block(alx->hw.pdev, 1); } if (tmp == 0) { { alx->msi = 1; alx_write_mem32(hw, 6432U, msi_ctrl | 65536U); err = ldv_request_irq_108(pdev->irq, & alx_intr_msi, 0UL, (char const *)(& (alx->dev)->name), (void *)alx); } if (err == 0) { goto out; } else { } { pci_disable_msi(alx->hw.pdev); } } else { } { alx_write_mem32(hw, 6432U, 0U); err = ldv_request_irq_109(pdev->irq, & alx_intr_legacy, 128UL, (char const *)(& (alx->dev)->name), (void *)alx); } out: ; if (err == 0) { { alx_config_vector_mapping(alx); } } else { } return (err); } } static void alx_free_irq(struct alx_priv *alx ) { struct pci_dev *pdev ; { { pdev = alx->hw.pdev; ldv_free_irq_110(pdev->irq, (void *)alx); } if ((int )alx->msi) { { pci_disable_msi(alx->hw.pdev); alx->msi = 0; } } else { } return; } } static int alx_identify_hw(struct alx_priv *alx ) { struct alx_hw *hw ; int rev ; int tmp ; { { hw = & alx->hw; tmp = alx_hw_revision(hw); rev = tmp; } if (rev > 3) { return (-22); } else { } hw->max_dma_chnl = rev > 1 ? 4U : 2U; return (0); } } static int alx_init_sw(struct alx_priv *alx ) { struct pci_dev *pdev ; struct alx_hw *hw ; int err ; { { pdev = alx->hw.pdev; hw = & alx->hw; err = alx_identify_hw(alx); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "unrecognized chip, aborting\n"); } return (err); } else { } alx->hw.lnk_patch = (bool )(((unsigned int )pdev->device == 4241U && *((unsigned int *)pdev + 16UL) == 9509225U) && (unsigned int )pdev->revision == 0U); hw->smb_timer = 400U; hw->mtu = (u16 )(alx->dev)->mtu; alx->rxbuf_size = (unsigned int )((int )hw->mtu + 29) & 4294967288U; alx->tx_ringsz = 256U; alx->rx_ringsz = 512U; hw->imt = 200U; alx->int_mask = 67110407U; hw->dma_chnl = hw->max_dma_chnl; hw->ith_tpd = alx->tx_ringsz / 3U; hw->link_speed = -1; hw->duplex = 255U; hw->adv_cfg = 111U; hw->flowctrl = 7U; hw->rx_ctrl = 1677728972U; return (err); } } static netdev_features_t alx_fix_features(struct net_device *netdev , netdev_features_t features ) { { if (netdev->mtu > 7168U) { features = features & 0xffffffffffeeffffULL; } else { } return (features); } } static void alx_netif_stop(struct alx_priv *alx ) { bool tmp ; { { (alx->dev)->trans_start = jiffies; tmp = netif_carrier_ok((struct net_device const *)alx->dev); } if ((int )tmp) { { netif_carrier_off(alx->dev); netif_tx_disable(alx->dev); napi_disable(& alx->napi); } } else { } return; } } static void alx_halt(struct alx_priv *alx ) { struct alx_hw *hw ; { { hw = & alx->hw; alx_netif_stop(alx); hw->link_speed = -1; hw->duplex = 255U; alx_reset_mac(hw); alx_enable_aspm(hw, 0, 0); alx_irq_disable(alx); alx_free_buffers(alx); } return; } } static void alx_configure(struct alx_priv *alx ) { struct alx_hw *hw ; { { hw = & alx->hw; alx_configure_basic(hw); alx_disable_rss(hw); __alx_set_rx_mode(alx->dev); alx_write_mem32(hw, 5248U, hw->rx_ctrl); } return; } } static void alx_activate(struct alx_priv *alx ) { { { alx_reinit_rings(alx); alx_configure(alx); alx_write_mem32(& alx->hw, 5632U, 2147483647U); alx_irq_enable(alx); alx_schedule_link_check(alx); } return; } } static void alx_reinit(struct alx_priv *alx ) { int tmp ; long tmp___0 ; { { tmp = rtnl_is_locked(); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { printk("\vRTNL: assertion failed at %s (%d)\n", (char *)"drivers/net/ethernet/atheros/alx/main.c", 798); dump_stack(); } } else { } { alx_halt(alx); alx_activate(alx); } return; } } static int alx_change_mtu(struct net_device *netdev , int mtu ) { struct alx_priv *alx ; void *tmp ; int max_frame ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; max_frame = mtu + 22; } if ((unsigned int )max_frame - 68U > 9148U) { return (-22); } else { } if (netdev->mtu == (unsigned int )mtu) { return (0); } else { } { netdev->mtu = (unsigned int )mtu; alx->hw.mtu = (u16 )mtu; alx->rxbuf_size = mtu > 1536 ? (unsigned int )(max_frame + 7) & 4294967288U : 1536U; netdev_update_features(netdev); tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { alx_reinit(alx); } } else { } return (0); } } static void alx_netif_start(struct alx_priv *alx ) { { { netif_tx_wake_all_queues(alx->dev); napi_enable(& alx->napi); netif_carrier_on(alx->dev); } return; } } static int __alx_open(struct alx_priv *alx , bool resume ) { int err ; { if (! resume) { { netif_carrier_off(alx->dev); } } else { } { err = alx_alloc_rings(alx); } if (err != 0) { return (err); } else { } { alx_configure(alx); err = alx_request_irq(alx); } if (err != 0) { goto out_free_rings; } else { } { alx_write_mem32(& alx->hw, 5632U, 2147483647U); alx_irq_enable(alx); } if (! resume) { { netif_tx_start_all_queues(alx->dev); } } else { } { alx_schedule_link_check(alx); } return (0); out_free_rings: { alx_free_rings(alx); } return (err); } } static void __alx_stop(struct alx_priv *alx ) { { { alx_halt(alx); alx_free_irq(alx); alx_free_rings(alx); } return; } } static char const *alx_speed_desc(struct alx_hw *hw ) { u32 tmp ; { { tmp = alx_speed_to_ethadv(hw->link_speed, (int )hw->duplex); } { if (tmp == 32U) { goto case_32; } else { } if (tmp == 8U) { goto case_8; } else { } if (tmp == 4U) { goto case_4; } else { } if (tmp == 2U) { goto case_2; } else { } if (tmp == 1U) { goto case_1; } else { } goto switch_default; case_32: /* CIL Label */ ; return ("1 Gbps Full"); case_8: /* CIL Label */ ; return ("100 Mbps Full"); case_4: /* CIL Label */ ; return ("100 Mbps Half"); case_2: /* CIL Label */ ; return ("10 Mbps Full"); case_1: /* CIL Label */ ; return ("10 Mbps Half"); switch_default: /* CIL Label */ ; return ("Unknown speed"); switch_break: /* CIL Label */ ; } } } static void alx_check_link(struct alx_priv *alx ) { struct alx_hw *hw ; unsigned long flags ; int old_speed ; u8 old_duplex ; int err ; char const *tmp ; { { hw = & alx->hw; alx_clear_phy_intr(hw); old_speed = hw->link_speed; old_duplex = hw->duplex; err = alx_read_phy_link(hw); } if (err < 0) { goto reset; } else { } { ldv___ldv_spin_lock_111(& alx->irq_lock); alx->int_mask = alx->int_mask | 4096U; alx_write_mem32(hw, 5636U, alx->int_mask); ldv_spin_unlock_irqrestore_105(& alx->irq_lock, flags); } if (old_speed == hw->link_speed) { return; } else { } if (hw->link_speed != -1) { if (((int )alx->msg_enable & 4) != 0) { { tmp = alx_speed_desc(hw); netdev_info((struct net_device const *)alx->dev, "NIC Up: %s\n", tmp); } } else { } { alx_post_phy_link(hw); alx_enable_aspm(hw, 1, 1); alx_start_mac(hw); } if (old_speed == -1) { { alx_netif_start(alx); } } else { } } else { { alx_netif_stop(alx); } if (((int )alx->msg_enable & 4) != 0) { { netdev_info((struct net_device const *)alx->dev, "Link Down\n"); } } else { } { err = alx_reset_mac(hw); } if (err != 0) { goto reset; } else { } { alx_irq_disable(alx); err = alx_reinit_rings(alx); } if (err != 0) { goto reset; } else { } { alx_configure(alx); alx_enable_aspm(hw, 0, 1); alx_post_phy_link(hw); alx_irq_enable(alx); } } return; reset: { alx_schedule_reset(alx); } return; } } static int alx_open(struct net_device *netdev ) { void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); tmp___0 = __alx_open((struct alx_priv *)tmp, 0); } return (tmp___0); } } static int alx_stop(struct net_device *netdev ) { void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); __alx_stop((struct alx_priv *)tmp); } return (0); } } static void alx_link_check(struct work_struct *work ) { struct alx_priv *alx ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; alx = (struct alx_priv *)__mptr + 0xfffffffffffffc30UL; rtnl_lock(); alx_check_link(alx); rtnl_unlock(); } return; } } static void alx_reset(struct work_struct *work ) { struct alx_priv *alx ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; alx = (struct alx_priv *)__mptr + 0xfffffffffffffbe0UL; rtnl_lock(); alx_reinit(alx); rtnl_unlock(); } return; } } static int alx_tx_csum(struct sk_buff *skb , struct alx_txd *first ) { u8 cso ; u8 css ; int tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) != 12U) { return (0); } else { } { tmp = skb_checksum_start_offset((struct sk_buff const *)skb); cso = (u8 )tmp; } if ((int )cso & 1) { return (-22); } else { } css = (int )cso + (int )((u8 )skb->__annonCompField68.__annonCompField67.csum_offset); first->word1 = first->word1 | (__le32 )((int )cso >> 1); first->word1 = first->word1 | (__le32 )(((int )css >> 1) << 18); first->word1 = first->word1 | 256U; return (0); } } static int alx_map_tx_skb(struct alx_priv *alx , struct sk_buff *skb ) { struct alx_tx_queue *txq ; struct alx_txd *tpd ; struct alx_txd *first_tpd ; dma_addr_t dma ; int maplen ; int f ; int first_idx ; unsigned int tmp ; int tmp___0 ; struct skb_frag_struct *frag ; unsigned char *tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; unsigned char *tmp___4 ; { { txq = & alx->txq; first_idx = (int )txq->write_idx; first_tpd = txq->tpd + (unsigned long )txq->write_idx; tpd = first_tpd; tmp = skb_headlen((struct sk_buff const *)skb); maplen = (int )tmp; dma = dma_map_single_attrs(& (alx->hw.pdev)->dev, (void *)skb->data, (size_t )maplen, 1, (struct dma_attrs *)0); tmp___0 = dma_mapping_error(& (alx->hw.pdev)->dev, dma); } if (tmp___0 != 0) { goto err_dma; } else { } (txq->bufs + (unsigned long )txq->write_idx)->size = (__u32 )maplen; (txq->bufs + (unsigned long )txq->write_idx)->dma = dma; tpd->adrl.addr = dma; tpd->len = (unsigned short )maplen; f = 0; goto ldv_50969; ldv_50968: { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )f; txq->write_idx = (u16 )((int )txq->write_idx + 1); } if ((unsigned int )txq->write_idx == alx->tx_ringsz) { txq->write_idx = 0U; } else { } { tpd = txq->tpd + (unsigned long )txq->write_idx; tpd->word1 = first_tpd->word1; tmp___2 = skb_frag_size((skb_frag_t const *)frag); maplen = (int )tmp___2; dma = skb_frag_dma_map(& (alx->hw.pdev)->dev, (skb_frag_t const *)frag, 0UL, (size_t )maplen, 1); tmp___3 = dma_mapping_error(& (alx->hw.pdev)->dev, dma); } if (tmp___3 != 0) { goto err_dma; } else { } (txq->bufs + (unsigned long )txq->write_idx)->size = (__u32 )maplen; (txq->bufs + (unsigned long )txq->write_idx)->dma = dma; tpd->adrl.addr = dma; tpd->len = (unsigned short )maplen; f = f + 1; ldv_50969: { tmp___4 = skb_end_pointer((struct sk_buff const *)skb); } if (f < (int )((struct skb_shared_info *)tmp___4)->nr_frags) { goto ldv_50968; } else { } tpd->word1 = tpd->word1 | 2147483648U; (txq->bufs + (unsigned long )txq->write_idx)->skb = skb; txq->write_idx = (u16 )((int )txq->write_idx + 1); if ((unsigned int )txq->write_idx == alx->tx_ringsz) { txq->write_idx = 0U; } else { } return (0); err_dma: f = first_idx; goto ldv_50972; ldv_50971: { alx_free_txbuf(alx, f); f = f + 1; } if ((unsigned int )f == alx->tx_ringsz) { f = 0; } else { } ldv_50972: ; if (f != (int )txq->write_idx) { goto ldv_50971; } else { } return (-12); } } static netdev_tx_t alx_start_xmit(struct sk_buff *skb , struct net_device *netdev ) { struct alx_priv *alx ; void *tmp ; struct alx_tx_queue *txq ; struct alx_txd *first ; int tpdreq ; unsigned char *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; txq = & alx->txq; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); tpdreq = (int )((struct skb_shared_info *)tmp___0)->nr_frags + 1; tmp___1 = alx_tpd_avail(alx); } if (tmp___1 < tpdreq) { { netif_stop_queue(alx->dev); } goto drop; } else { } { first = txq->tpd + (unsigned long )txq->write_idx; memset((void *)first, 0, 16UL); tmp___2 = alx_tx_csum(skb, first); } if (tmp___2 != 0) { goto drop; } else { } { tmp___3 = alx_map_tx_skb(alx, skb); } if (tmp___3 < 0) { goto drop; } else { } { netdev_sent_queue(alx->dev, skb->len); __asm__ volatile ("sfence": : : "memory"); alx_write_mem16(& alx->hw, 5618U, (int )txq->write_idx); tmp___4 = alx_tpd_avail(alx); } if ((unsigned int )tmp___4 < alx->tx_ringsz / 8U) { { netif_stop_queue(alx->dev); } } else { } return (0); drop: { consume_skb(skb); } return (0); } } static void alx_tx_timeout(struct net_device *dev ) { struct alx_priv *alx ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); alx = (struct alx_priv *)tmp; alx_schedule_reset(alx); } return; } } static int alx_mdio_read(struct net_device *netdev , int prtad , int devad , u16 addr ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; u16 val ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; } if (prtad != hw->mdio.prtad) { return (-22); } else { } if (devad == -1) { { err = alx_read_phy_reg(hw, (int )addr, & val); } } else { { err = alx_read_phy_ext(hw, (int )((u8 )devad), (int )addr, & val); } } if (err != 0) { return (err); } else { } return ((int )val); } } static int alx_mdio_write(struct net_device *netdev , int prtad , int devad , u16 addr , u16 val ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; } if (prtad != hw->mdio.prtad) { return (-22); } else { } if (devad == -1) { { tmp___0 = alx_write_phy_reg(hw, (int )addr, (int )val); } return (tmp___0); } else { } { tmp___1 = alx_write_phy_ext(hw, (int )((u8 )devad), (int )addr, (int )val); } return (tmp___1); } } static int alx_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { struct alx_priv *alx ; void *tmp ; bool tmp___0 ; int tmp___1 ; struct mii_ioctl_data *tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-11); } else { } { tmp___2 = if_mii(ifr); tmp___3 = mdio_mii_ioctl((struct mdio_if_info const *)(& alx->hw.mdio), tmp___2, cmd); } return (tmp___3); } } static void alx_poll_controller(struct net_device *netdev ) { struct alx_priv *alx ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; } if ((int )alx->msi) { { alx_intr_msi(0, (void *)alx); } } else { { alx_intr_legacy(0, (void *)alx); } } return; } } static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev , struct rtnl_link_stats64 *net_stats ) { struct alx_priv *alx ; void *tmp ; struct alx_hw_stats *hw_stats ; { { tmp = netdev_priv((struct net_device const *)dev); alx = (struct alx_priv *)tmp; hw_stats = & alx->hw.stats; ldv_spin_lock_113(& alx->stats_lock); alx_update_hw_stats(& alx->hw); net_stats->tx_bytes = hw_stats->tx_byte_cnt; net_stats->rx_bytes = hw_stats->rx_byte_cnt; net_stats->multicast = hw_stats->rx_mcast; net_stats->collisions = ((hw_stats->tx_single_col + hw_stats->tx_multi_col) + hw_stats->tx_late_col) + hw_stats->tx_abort_col; net_stats->rx_errors = (((((hw_stats->rx_frag + hw_stats->rx_fcs_err) + hw_stats->rx_len_err) + hw_stats->rx_ov_sz) + hw_stats->rx_ov_rrd) + hw_stats->rx_align_err) + hw_stats->rx_ov_rxf; net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf; net_stats->rx_length_errors = hw_stats->rx_len_err; net_stats->rx_crc_errors = hw_stats->rx_fcs_err; net_stats->rx_frame_errors = hw_stats->rx_align_err; net_stats->rx_dropped = hw_stats->rx_ov_rrd; net_stats->tx_errors = ((hw_stats->tx_late_col + hw_stats->tx_abort_col) + hw_stats->tx_underrun) + hw_stats->tx_trunc; net_stats->tx_aborted_errors = hw_stats->tx_abort_col; net_stats->tx_fifo_errors = hw_stats->tx_underrun; net_stats->tx_window_errors = hw_stats->tx_late_col; net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; ldv_spin_unlock_114(& alx->stats_lock); } return (net_stats); } } static struct net_device_ops const alx_netdev_ops = {0, 0, & alx_open, & alx_stop, & alx_start_xmit, 0, 0, & alx_set_rx_mode, & alx_set_mac_address, & eth_validate_addr, & alx_ioctl, 0, & alx_change_mtu, 0, & alx_tx_timeout, & alx_get_stats64, 0, 0, 0, & alx_poll_controller, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & alx_fix_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int alx_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct alx_priv *alx ; struct alx_hw *hw ; bool phy_configured ; int bars ; int err ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; void *tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_1 ; { { err = pci_enable_device_mem(pdev); } if (err != 0) { return (err); } else { } { tmp___0 = dma_set_mask_and_coherent(& pdev->dev, 0xffffffffffffffffULL); } if (tmp___0 == 0) { { descriptor.modname = "alx"; descriptor.function = "alx_probe"; descriptor.filename = "drivers/net/ethernet/atheros/alx/main.c"; descriptor.format = "DMA to 64-BIT addresses\n"; descriptor.lineno = 1252U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pdev->dev), "DMA to 64-BIT addresses\n"); } } else { } } else { { err = dma_set_mask_and_coherent(& pdev->dev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA config, aborting\n"); } goto out_pci_disable; } else { } } { bars = pci_select_bars(pdev, 512UL); err = pci_request_selected_regions(pdev, bars, (char const *)(& alx_drv_name)); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_request_selected_regions failed(bars:%d)\n", bars); } goto out_pci_disable; } else { } { pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); } if ((unsigned int )pdev->pm_cap == 0U) { { dev_err((struct device const *)(& pdev->dev), "Can\'t find power management capability, aborting\n"); err = -5; } goto out_pci_release; } else { } { netdev = ldv_alloc_etherdev_mqs_115(1216, 1U, 1U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { err = -12; goto out_pci_release; } else { } { netdev->dev.parent = & pdev->dev; tmp___1 = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp___1; spinlock_check(& alx->hw.mdio_lock); __raw_spin_lock_init(& alx->hw.mdio_lock.__annonCompField19.rlock, "&(&alx->hw.mdio_lock)->rlock", & __key); spinlock_check(& alx->irq_lock); __raw_spin_lock_init(& alx->irq_lock.__annonCompField19.rlock, "&(&alx->irq_lock)->rlock", & __key___0); spinlock_check(& alx->stats_lock); __raw_spin_lock_init(& alx->stats_lock.__annonCompField19.rlock, "&(&alx->stats_lock)->rlock", & __key___1); alx->dev = netdev; alx->hw.pdev = pdev; alx->msg_enable = 24804U; hw = & alx->hw; pci_set_drvdata(pdev, (void *)alx); tmp___2 = pci_ioremap_bar(pdev, 0); hw->hw_addr = (u8 *)tmp___2; } if ((unsigned long )hw->hw_addr == (unsigned long )((u8 *)0U)) { { dev_err((struct device const *)(& pdev->dev), "cannot map device registers\n"); err = -5; } goto out_free_netdev; } else { } netdev->netdev_ops = & alx_netdev_ops; netdev->ethtool_ops = & alx_ethtool_ops; netdev->irq = (int )pdev->irq; netdev->watchdog_timeo = 1250; if ((int )ent->driver_data & 1) { pdev->dev_flags = (pci_dev_flags_t )((unsigned int )pdev->dev_flags | 1U); } else { } { err = alx_init_sw(alx); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "net device private data init failed\n"); } goto out_unmap; } else { } { alx_reset_pcie(hw); phy_configured = alx_phy_configured(hw); } if (! phy_configured) { { alx_reset_phy(hw); } } else { } { err = alx_reset_mac(hw); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "MAC Reset failed, error = %d\n", err); } goto out_unmap; } else { } if (! phy_configured) { { err = alx_setup_speed_duplex(hw, hw->adv_cfg, (int )hw->flowctrl); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "failed to configure PHY speed/duplex (err=%d)\n", err); } goto out_unmap; } else { } } else { } { netdev->hw_features = 9ULL; tmp___3 = alx_get_perm_macaddr(hw, (u8 *)(& hw->perm_addr)); } if (tmp___3 != 0) { { dev_warn((struct device const *)(& pdev->dev), "Invalid permanent address programmed, using random one\n"); eth_hw_addr_random(netdev); memcpy((void *)(& hw->perm_addr), (void const *)netdev->dev_addr, (size_t )netdev->addr_len); } } else { } { memcpy((void *)(& hw->mac_addr), (void const *)(& hw->perm_addr), 6UL); memcpy((void *)netdev->dev_addr, (void const *)(& hw->mac_addr), 6UL); memcpy((void *)(& netdev->perm_addr), (void const *)(& hw->perm_addr), 6UL); hw->mdio.prtad = 0; hw->mdio.mmds = 0U; hw->mdio.dev = netdev; hw->mdio.mode_support = 7U; hw->mdio.mdio_read = & alx_mdio_read; hw->mdio.mdio_write = & alx_mdio_write; tmp___4 = alx_get_phy_info(hw); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { dev_err((struct device const *)(& pdev->dev), "failed to identify PHY\n"); err = -5; } goto out_unmap; } else { } { __init_work(& alx->link_check_wk, 0); __constr_expr_0.counter = 137438953408L; alx->link_check_wk.data = __constr_expr_0; lockdep_init_map(& alx->link_check_wk.lockdep_map, "(&alx->link_check_wk)", & __key___2, 0); INIT_LIST_HEAD(& alx->link_check_wk.entry); alx->link_check_wk.func = & alx_link_check; __init_work(& alx->reset_wk, 0); __constr_expr_1.counter = 137438953408L; alx->reset_wk.data = __constr_expr_1; lockdep_init_map(& alx->reset_wk.lockdep_map, "(&alx->reset_wk)", & __key___3, 0); INIT_LIST_HEAD(& alx->reset_wk.entry); alx->reset_wk.func = & alx_reset; netif_carrier_off(netdev); err = ldv_register_netdev_116(netdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "register netdevice failed\n"); } goto out_unmap; } else { } { netdev_info((struct net_device const *)netdev, "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", netdev->dev_addr); } return (0); out_unmap: { iounmap((void volatile *)hw->hw_addr); } out_free_netdev: { ldv_free_netdev_117(netdev); } out_pci_release: { pci_release_selected_regions(pdev, bars); } out_pci_disable: { pci_disable_device(pdev); } return (err); } } static void alx_remove(struct pci_dev *pdev ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; int tmp___0 ; { { tmp = pci_get_drvdata(pdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; cancel_work_sync(& alx->link_check_wk); cancel_work_sync(& alx->reset_wk); alx_set_macaddr(hw, (u8 const *)(& hw->perm_addr)); ldv_unregister_netdev_118(alx->dev); iounmap((void volatile *)hw->hw_addr); tmp___0 = pci_select_bars(pdev, 512UL); pci_release_selected_regions(pdev, tmp___0); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); ldv_free_netdev_119(alx->dev); } return; } } static int alx_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct alx_priv *alx ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); alx = (struct alx_priv *)tmp; tmp___0 = netif_running((struct net_device const *)alx->dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { netif_device_detach(alx->dev); __alx_stop(alx); } return (0); } } static int alx_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; alx_reset_phy(hw); tmp___0 = netif_running((struct net_device const *)alx->dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { netif_device_attach(alx->dev); tmp___2 = __alx_open(alx, 1); } return (tmp___2); } } static struct dev_pm_ops const alx_pm_ops = {0, 0, & alx_suspend, & alx_resume, & alx_suspend, & alx_resume, & alx_suspend, & alx_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct alx_priv *alx ; void *tmp ; struct net_device *netdev ; pci_ers_result_t rc ; bool tmp___0 ; { { tmp = pci_get_drvdata(pdev); alx = (struct alx_priv *)tmp; netdev = alx->dev; rc = 3U; _dev_info((struct device const *)(& pdev->dev), "pci error detected\n"); rtnl_lock(); tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { netif_device_detach(netdev); alx_halt(alx); } } else { } if (state == 3U) { rc = 4U; } else { { pci_disable_device(pdev); } } { rtnl_unlock(); } return (rc); } } static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; pci_ers_result_t rc ; int tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; rc = 4U; _dev_info((struct device const *)(& pdev->dev), "pci error slot reset\n"); rtnl_lock(); tmp___0 = pci_enable_device(pdev); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to re-enable PCI device after reset\n"); } goto out; } else { } { pci_set_master(pdev); alx_reset_pcie(hw); tmp___1 = alx_reset_mac(hw); } if (tmp___1 == 0) { rc = 5U; } else { } out: { pci_cleanup_aer_uncorrect_error_status(pdev); rtnl_unlock(); } return (rc); } } static void alx_pci_error_resume(struct pci_dev *pdev ) { struct alx_priv *alx ; void *tmp ; struct net_device *netdev ; bool tmp___0 ; { { tmp = pci_get_drvdata(pdev); alx = (struct alx_priv *)tmp; netdev = alx->dev; _dev_info((struct device const *)(& pdev->dev), "pci error resume\n"); rtnl_lock(); tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { alx_activate(alx); netif_device_attach(netdev); } } else { } { rtnl_unlock(); } return; } } static struct pci_error_handlers const alx_err_handlers = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& alx_pci_error_detected), 0, 0, & alx_pci_error_slot_reset, & alx_pci_error_resume}; static struct pci_device_id const alx_pci_tbl[6U] = { {6505U, 4241U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {6505U, 57489U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {6505U, 4240U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {6505U, 4257U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 4256U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; static struct pci_driver alx_driver = {{0, 0}, (char const *)(& alx_drv_name), (struct pci_device_id const *)(& alx_pci_tbl), & alx_probe, & alx_remove, 0, 0, 0, 0, 0, 0, & alx_err_handlers, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & alx_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int alx_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_120(& alx_driver, & __this_module, "alx"); } return (tmp); } } static void alx_driver_exit(void) { { { ldv_pci_unregister_driver_121(& alx_driver); } return; } } struct pci_device_id const __mod_pci_device_table ; void ldv_EMGentry_exit_alx_driver_exit_15_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_alx_driver_init_15_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_12_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_13_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_platform_instance_13_15_4(void) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_5_5(void) ; void ldv_dispatch_pm_register_5_6(void) ; void ldv_dispatch_register_14_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_9_4(struct net_device *arg0 ) ; void ldv_dispatch_register_platform_instance_13_15_5(void) ; void ldv_dummy_resourceless_instance_callback_2_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_11(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_12(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_16(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_19(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_22(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_25(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_28(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_3(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_30(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_31(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_32(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_33(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_34(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_35(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_39(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_9(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_entry_EMGentry_15(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_2(void *arg0 ) ; void ldv_pci_instance_callback_3_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_3_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_3_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_4_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_4_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_4_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_4_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_4_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_4_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_4_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_4_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_4_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_4_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_4_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_4_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_4_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_4_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_4_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_5(void *arg0 ) ; void ldv_pm_pm_ops_instance_4(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; int ldv_switch_3(void) ; int ldv_switch_4(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_5(void) ; void ldv_switch_automaton_state_3_11(void) ; void ldv_switch_automaton_state_3_20(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_29(void) ; void ldv_switch_automaton_state_5_17(void) ; void ldv_switch_automaton_state_5_8(void) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_12_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_15_exit_alx_driver_exit_default)(void) ; int (*ldv_15_init_alx_driver_init_default)(void) ; int ldv_15_ret_default ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) ; void (*ldv_2_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_2_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_2_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) ; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_2_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_2_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; struct net_device *ldv_2_container_net_device ; struct ethtool_cmd *ldv_2_container_struct_ethtool_cmd_ptr ; struct ethtool_pauseparam *ldv_2_container_struct_ethtool_pauseparam_ptr ; struct ethtool_stats *ldv_2_container_struct_ethtool_stats_ptr ; struct ifreq *ldv_2_container_struct_ifreq_ptr ; struct rtnl_link_stats64 *ldv_2_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_2_container_struct_sk_buff_ptr ; int ldv_2_ldv_param_13_1_default ; unsigned int ldv_2_ldv_param_16_1_default ; unsigned char *ldv_2_ldv_param_16_2_default ; int ldv_2_ldv_param_19_1_default ; int ldv_2_ldv_param_22_2_default ; unsigned long long ldv_2_ldv_param_25_1_default ; unsigned int ldv_2_ldv_param_35_1_default ; unsigned long long *ldv_2_ldv_param_3_2_default ; unsigned int (*ldv_3_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_3_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_3_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; enum pci_channel_state ldv_3_resource_enum_pci_channel_state ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct device *ldv_4_device_device ; struct dev_pm_ops *ldv_4_pm_ops_dev_pm_ops ; struct platform_driver *ldv_5_container_platform_driver ; struct platform_device *ldv_5_ldv_param_14_0_default ; struct platform_device *ldv_5_ldv_param_3_0_default ; int ldv_5_probed_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_15 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & alx_intr_legacy; void (*ldv_15_exit_alx_driver_exit_default)(void) = & alx_driver_exit; int (*ldv_15_init_alx_driver_init_default)(void) = & alx_driver_init; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & alx_intr_msi; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) = & alx_change_mtu; int (*ldv_2_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & alx_ioctl; unsigned long long (*ldv_2_callback_ndo_fix_features)(struct net_device * , unsigned long long ) = & alx_fix_features; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & alx_get_stats64; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) = & alx_poll_controller; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) = & alx_set_mac_address; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) = & alx_set_rx_mode; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & alx_start_xmit; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) = & alx_tx_timeout; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; unsigned int (*ldv_3_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) = (unsigned int (*)(struct pci_dev * , enum pci_channel_state ))(& alx_pci_error_detected); void (*ldv_3_callback_func_1_ptr)(struct pci_dev * ) = & alx_pci_error_resume; unsigned int (*ldv_3_callback_slot_reset)(struct pci_dev * ) = & alx_pci_error_slot_reset; void ldv_EMGentry_exit_alx_driver_exit_15_2(void (*arg0)(void) ) { { { alx_driver_exit(); } return; } } int ldv_EMGentry_init_alx_driver_init_15_9(int (*arg0)(void) ) { int tmp ; { { tmp = alx_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_3 == 20); ldv_dispatch_register_14_2(ldv_14_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_6_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_6_netdev_net_device = (struct net_device *)tmp; } return (ldv_6_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_data_data = ldv_malloc(0UL); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_2_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_2_container_struct_ethtool_cmd_ptr = ldv_malloc(sizeof(struct ethtool_cmd)); ldv_2_container_struct_ethtool_pauseparam_ptr = ldv_malloc(sizeof(struct ethtool_pauseparam)); ldv_2_container_struct_ethtool_stats_ptr = ldv_malloc(sizeof(struct ethtool_stats)); ldv_2_container_struct_ifreq_ptr = ldv_malloc(sizeof(struct ifreq)); ldv_2_container_struct_rtnl_link_stats64_ptr = ldv_malloc(sizeof(struct rtnl_link_stats64)); ldv_2_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_2_ldv_param_16_2_default = ldv_malloc(sizeof(unsigned char)); ldv_2_ldv_param_3_2_default = ldv_malloc(sizeof(unsigned long long)); ldv_3_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_4_device_device = ldv_malloc(sizeof(struct device)); ldv_5_container_platform_driver = ldv_malloc(sizeof(struct platform_driver)); ldv_5_ldv_param_14_0_default = ldv_malloc(sizeof(struct platform_device)); ldv_5_ldv_param_3_0_default = ldv_malloc(sizeof(struct platform_device)); } return; } } void ldv_dispatch_deregister_12_1(struct net_device *arg0 ) { { { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_1(); } return; } } void ldv_dispatch_deregister_13_1(struct pci_driver *arg0 ) { { { ldv_3_container_pci_driver = arg0; ldv_switch_automaton_state_3_11(); } return; } } void ldv_dispatch_deregister_platform_instance_13_15_4(void) { { { ldv_switch_automaton_state_5_8(); } return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } } else { { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } } return; } } void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_pm_deregister_5_5(void) { { { ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_pm_register_5_6(void) { { { ldv_switch_automaton_state_4_29(); } return; } } void ldv_dispatch_register_14_2(struct pci_driver *arg0 ) { { { ldv_3_container_pci_driver = arg0; ldv_switch_automaton_state_3_20(); } return; } } void ldv_dispatch_register_9_4(struct net_device *arg0 ) { { { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_5(); } return; } } void ldv_dispatch_register_platform_instance_13_15_5(void) { { { ldv_switch_automaton_state_5_17(); } return; } } void ldv_dummy_resourceless_instance_callback_2_19(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { alx_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_22(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { alx_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_25(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { alx_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_28(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { alx_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { alx_poll_controller(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_30(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { alx_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_31(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { alx_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_32(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { alx_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_33(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { alx_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_34(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_entry_EMGentry_15(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_15 == 2) { goto case_2; } else { } if (ldv_statevar_15 == 3) { goto case_3; } else { } if (ldv_statevar_15 == 4) { goto case_4; } else { } if (ldv_statevar_15 == 5) { goto case_5; } else { } if (ldv_statevar_15 == 6) { goto case_6; } else { } if (ldv_statevar_15 == 8) { goto case_8; } else { } if (ldv_statevar_15 == 9) { goto case_9; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 12); ldv_EMGentry_exit_alx_driver_exit_15_2(ldv_15_exit_alx_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_15 = 9; } goto ldv_51846; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 12); ldv_EMGentry_exit_alx_driver_exit_15_2(ldv_15_exit_alx_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_15 = 9; } goto ldv_51846; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 9); ldv_dispatch_deregister_platform_instance_13_15_4(); ldv_statevar_15 = 2; } goto ldv_51846; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 17); ldv_dispatch_register_platform_instance_13_15_5(); ldv_statevar_15 = 4; } goto ldv_51846; case_6: /* CIL Label */ { ldv_assume(ldv_15_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_15 = 3; } else { ldv_statevar_15 = 5; } goto ldv_51846; case_8: /* CIL Label */ { ldv_assume(ldv_15_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_15 = 9; } goto ldv_51846; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 20); ldv_15_ret_default = ldv_EMGentry_init_alx_driver_init_15_9(ldv_15_init_alx_driver_init_default); ldv_15_ret_default = ldv_post_init(ldv_15_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_15 = 6; } else { ldv_statevar_15 = 8; } goto ldv_51846; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_51846: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_15 = 9; ldv_statevar_0 = 6; ldv_statevar_1 = 6; ldv_statevar_2 = 5; ldv_3_ret_default = 1; ldv_statevar_3 = 20; ldv_statevar_4 = 29; ldv_5_probed_default = 1; ldv_statevar_5 = 17; } ldv_51865: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_15((void *)0); } goto ldv_51857; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_51857; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_51857; case_3: /* CIL Label */ { ldv_net_dummy_resourceless_instance_2((void *)0); } goto ldv_51857; case_4: /* CIL Label */ { ldv_pci_pci_instance_3((void *)0); } goto ldv_51857; case_5: /* CIL Label */ { ldv_pm_pm_ops_instance_4((void *)0); } goto ldv_51857; case_6: /* CIL Label */ { ldv_pm_platform_instance_5((void *)0); } goto ldv_51857; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_51857: ; goto ldv_51865; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_8_netdev_net_device ; { { ldv_8_netdev_net_device = arg1; ldv_free((void *)ldv_8_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = alx_intr_legacy(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = alx_intr_msi(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_51911; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_51911; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_51911; case_6: /* CIL Label */ ; goto ldv_51911; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_51911: ; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_51920; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_51920; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_51920; case_6: /* CIL Label */ ; goto ldv_51920; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_51920: ; return; } } void ldv_net_dummy_resourceless_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 26) { goto case_26; } else { } if (ldv_statevar_2 == 28) { goto case_28; } else { } if (ldv_statevar_2 == 29) { goto case_29; } else { } if (ldv_statevar_2 == 30) { goto case_30; } else { } if (ldv_statevar_2 == 31) { goto case_31; } else { } if (ldv_statevar_2 == 32) { goto case_32; } else { } if (ldv_statevar_2 == 33) { goto case_33; } else { } if (ldv_statevar_2 == 34) { goto case_34; } else { } if (ldv_statevar_2 == 36) { goto case_36; } else { } if (ldv_statevar_2 == 38) { goto case_38; } else { } if (ldv_statevar_2 == 39) { goto case_39; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_51929; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 1; } else { ldv_statevar_2 = 7; } goto ldv_51929; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_get_ethtool_stats, ldv_2_container_net_device, ldv_2_container_struct_ethtool_stats_ptr, ldv_2_ldv_param_3_2_default); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 1; } else { ldv_statevar_2 = 7; } goto ldv_51929; case_5: /* CIL Label */ ; goto ldv_51929; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(8UL); ldv_2_ldv_param_3_2_default = (unsigned long long *)tmp___1; ldv_statevar_2 = ldv_switch_0(); } goto ldv_51929; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_9(ldv_2_callback_get_link, ldv_2_container_net_device); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_10(ldv_2_callback_get_msglevel, ldv_2_container_net_device); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_11(ldv_2_callback_get_pauseparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_pauseparam_ptr); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_get_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_13(ldv_2_callback_get_sset_count, ldv_2_container_net_device, ldv_2_ldv_param_13_1_default); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_17: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_2_ldv_param_16_2_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_2_16(ldv_2_callback_get_strings, ldv_2_container_net_device, ldv_2_ldv_param_16_1_default, ldv_2_ldv_param_16_2_default); ldv_free((void *)ldv_2_ldv_param_16_2_default); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_19(ldv_2_callback_ndo_change_mtu, ldv_2_container_net_device, ldv_2_ldv_param_19_1_default); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_22(ldv_2_callback_ndo_do_ioctl, ldv_2_container_net_device, ldv_2_container_struct_ifreq_ptr, ldv_2_ldv_param_22_2_default); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_25(ldv_2_callback_ndo_fix_features, ldv_2_container_net_device, ldv_2_ldv_param_25_1_default); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_28(ldv_2_callback_ndo_get_stats64, ldv_2_container_net_device, ldv_2_container_struct_rtnl_link_stats64_ptr); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_29(ldv_2_callback_ndo_poll_controller, ldv_2_container_net_device); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_30(ldv_2_callback_ndo_set_mac_address, ldv_2_container_net_device, (void *)ldv_2_container_struct_ethtool_cmd_ptr); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_31(ldv_2_callback_ndo_set_rx_mode, ldv_2_container_net_device); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_32(ldv_2_callback_ndo_start_xmit, ldv_2_container_struct_sk_buff_ptr, ldv_2_container_net_device); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_33(ldv_2_callback_ndo_tx_timeout, ldv_2_container_net_device); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_34(ldv_2_callback_ndo_validate_addr, ldv_2_container_net_device); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_35(ldv_2_callback_set_msglevel, ldv_2_container_net_device, ldv_2_ldv_param_35_1_default); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_38(ldv_2_callback_set_pauseparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_pauseparam_ptr); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_39(ldv_2_callback_set_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); ldv_free((void *)ldv_2_ldv_param_3_2_default); ldv_statevar_2 = 2; } goto ldv_51929; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_51929: ; return; } } void ldv_pci_instance_callback_3_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { alx_pci_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_3_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { alx_pci_error_resume(arg1); } return; } } void ldv_pci_instance_callback_3_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { alx_pci_error_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = alx_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { alx_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 9) { goto case_9; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 12) { goto case_12; } else { } if (ldv_statevar_3 == 14) { goto case_14; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 17) { goto case_17; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 20) { goto case_20; } else { } if (ldv_statevar_3 == 23) { goto case_23; } else { } if (ldv_statevar_3 == 24) { goto case_24; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_52017; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 1); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); ldv_statevar_3 = 1; } goto ldv_52017; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); } } else { } ldv_statevar_3 = 2; goto ldv_52017; case_4: /* CIL Label */ { ldv_statevar_3 = ldv_switch_1(); } goto ldv_52017; case_5: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } } else { } ldv_statevar_3 = 4; goto ldv_52017; case_6: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } ldv_statevar_3 = 5; goto ldv_52017; case_7: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); ldv_statevar_3 = 6; } goto ldv_52017; case_8: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); ldv_statevar_3 = 7; } goto ldv_52017; case_9: /* CIL Label */ { ldv_statevar_3 = ldv_switch_1(); } goto ldv_52017; case_10: /* CIL Label */ { ldv_pci_instance_callback_3_10(ldv_3_callback_error_detected, ldv_3_resource_dev, ldv_3_resource_enum_pci_channel_state); ldv_statevar_3 = 9; } goto ldv_52017; case_12: /* CIL Label */ { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = 1; ldv_statevar_3 = 20; } goto ldv_52017; case_14: /* CIL Label */ { ldv_assume(ldv_3_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_52017; case_16: /* CIL Label */ { ldv_assume(ldv_3_ret_default == 0); ldv_statevar_3 = ldv_switch_1(); } goto ldv_52017; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 5); ldv_pre_probe(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_post_probe(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 14; } else { ldv_statevar_3 = 16; } goto ldv_52017; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_3_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_52017; case_20: /* CIL Label */ ; goto ldv_52017; case_23: /* CIL Label */ { ldv_pci_instance_callback_3_23(ldv_3_callback_func_1_ptr, ldv_3_resource_dev); ldv_statevar_3 = 9; } goto ldv_52017; case_24: /* CIL Label */ { ldv_pci_instance_callback_3_24(ldv_3_callback_slot_reset, ldv_3_resource_dev); ldv_statevar_3 = 9; } goto ldv_52017; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52017: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; { { ldv_13_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_3 == 12); ldv_dispatch_deregister_13_1(ldv_13_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_5_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_5_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_4_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { alx_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_4_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_4_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { alx_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_4_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_4_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_4_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { alx_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_4_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_4_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { alx_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_4_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_4_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_4_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { alx_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_4_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_4_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { alx_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_4_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_4_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } if (ldv_statevar_5 == 6) { goto case_6; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 9) { goto case_9; } else { } if (ldv_statevar_5 == 11) { goto case_11; } else { } if (ldv_statevar_5 == 13) { goto case_13; } else { } if (ldv_statevar_5 == 16) { goto case_16; } else { } if (ldv_statevar_5 == 17) { goto case_17; } else { } if (ldv_statevar_5 == 20) { goto case_20; } else { } if (ldv_statevar_5 == 22) { goto case_22; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 9; } else { ldv_statevar_5 = 22; } goto ldv_52170; case_4: /* CIL Label */ { ldv_statevar_5 = ldv_switch_4(); } goto ldv_52170; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 1); ldv_dispatch_pm_deregister_5_5(); ldv_statevar_5 = 4; } goto ldv_52170; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 29); ldv_dispatch_pm_register_5_6(); ldv_statevar_5 = 5; } goto ldv_52170; case_7: /* CIL Label */ ldv_statevar_5 = 4; goto ldv_52170; case_9: /* CIL Label */ ldv_5_probed_default = 1; ldv_statevar_5 = 17; goto ldv_52170; case_11: /* CIL Label */ { ldv_assume(ldv_5_probed_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 9; } else { ldv_statevar_5 = 22; } goto ldv_52170; case_13: /* CIL Label */ { ldv_assume(ldv_5_probed_default == 0); ldv_statevar_5 = ldv_switch_4(); } goto ldv_52170; case_16: /* CIL Label */ { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_5 = 9; } else { ldv_statevar_5 = 22; } goto ldv_52170; case_17: /* CIL Label */ ; goto ldv_52170; case_20: /* CIL Label */ { tmp___2 = ldv_xmalloc(1432UL); ldv_5_ldv_param_3_0_default = (struct platform_device *)tmp___2; } if ((unsigned long )ldv_5_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_5_3(ldv_5_container_platform_driver->remove, ldv_5_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_3_0_default); ldv_5_probed_default = 1; ldv_statevar_5 = 1; } goto ldv_52170; case_22: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_5_ldv_param_14_0_default = (struct platform_device *)tmp___3; ldv_pre_probe(); } if ((unsigned long )ldv_5_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_5_probed_default = ldv_platform_instance_probe_5_14(ldv_5_container_platform_driver->probe, ldv_5_ldv_param_14_0_default); } } else { } { ldv_5_probed_default = ldv_post_probe(ldv_5_probed_default); ldv_free((void *)ldv_5_ldv_param_14_0_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_5 = 11; } else { ldv_statevar_5 = 13; } goto ldv_52170; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52170: ; return; } } void ldv_pm_pm_ops_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 6) { goto case_6; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 9) { goto case_9; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 11) { goto case_11; } else { } if (ldv_statevar_4 == 12) { goto case_12; } else { } if (ldv_statevar_4 == 13) { goto case_13; } else { } if (ldv_statevar_4 == 14) { goto case_14; } else { } if (ldv_statevar_4 == 15) { goto case_15; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 17) { goto case_17; } else { } if (ldv_statevar_4 == 18) { goto case_18; } else { } if (ldv_statevar_4 == 19) { goto case_19; } else { } if (ldv_statevar_4 == 20) { goto case_20; } else { } if (ldv_statevar_4 == 21) { goto case_21; } else { } if (ldv_statevar_4 == 22) { goto case_22; } else { } if (ldv_statevar_4 == 23) { goto case_23; } else { } if (ldv_statevar_4 == 24) { goto case_24; } else { } if (ldv_statevar_4 == 25) { goto case_25; } else { } if (ldv_statevar_4 == 26) { goto case_26; } else { } if (ldv_statevar_4 == 27) { goto case_27; } else { } if (ldv_statevar_4 == 28) { goto case_28; } else { } if (ldv_statevar_4 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52187; case_2: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_52187; case_3: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_4_3(ldv_4_pm_ops_dev_pm_ops->complete, ldv_4_device_device); } } else { } ldv_statevar_4 = 2; goto ldv_52187; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_pm_ops_instance_restore_4_4(ldv_4_pm_ops_dev_pm_ops->restore, ldv_4_device_device); ldv_statevar_4 = 3; } goto ldv_52187; case_5: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_4_5(ldv_4_pm_ops_dev_pm_ops->restore_noirq, ldv_4_device_device); } } else { } ldv_statevar_4 = 4; goto ldv_52187; case_6: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_4_6(ldv_4_pm_ops_dev_pm_ops->poweroff_noirq, ldv_4_device_device); } } else { } ldv_statevar_4 = 5; goto ldv_52187; case_7: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_4_7(ldv_4_pm_ops_dev_pm_ops->restore_early, ldv_4_device_device); } } else { } ldv_statevar_4 = 4; goto ldv_52187; case_8: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_4_8(ldv_4_pm_ops_dev_pm_ops->poweroff_late, ldv_4_device_device); } } else { } ldv_statevar_4 = 7; goto ldv_52187; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_pm_ops_instance_poweroff_4_9(ldv_4_pm_ops_dev_pm_ops->poweroff, ldv_4_device_device); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 6; } else { ldv_statevar_4 = 8; } goto ldv_52187; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_pm_ops_instance_thaw_4_10(ldv_4_pm_ops_dev_pm_ops->thaw, ldv_4_device_device); ldv_statevar_4 = 3; } goto ldv_52187; case_11: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_4_11(ldv_4_pm_ops_dev_pm_ops->thaw_noirq, ldv_4_device_device); } } else { } ldv_statevar_4 = 10; goto ldv_52187; case_12: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_4_12(ldv_4_pm_ops_dev_pm_ops->freeze_noirq, ldv_4_device_device); } } else { } ldv_statevar_4 = 11; goto ldv_52187; case_13: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_4_13(ldv_4_pm_ops_dev_pm_ops->thaw_early, ldv_4_device_device); } } else { } ldv_statevar_4 = 10; goto ldv_52187; case_14: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_4_14(ldv_4_pm_ops_dev_pm_ops->freeze_late, ldv_4_device_device); } } else { } ldv_statevar_4 = 13; goto ldv_52187; case_15: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_pm_ops_instance_freeze_4_15(ldv_4_pm_ops_dev_pm_ops->freeze, ldv_4_device_device); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 12; } else { ldv_statevar_4 = 14; } goto ldv_52187; case_16: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_pm_ops_instance_resume_4_16(ldv_4_pm_ops_dev_pm_ops->resume, ldv_4_device_device); ldv_statevar_4 = 3; } goto ldv_52187; case_17: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_4_17(ldv_4_pm_ops_dev_pm_ops->resume_early, ldv_4_device_device); } } else { } ldv_statevar_4 = 16; goto ldv_52187; case_18: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_4_18(ldv_4_pm_ops_dev_pm_ops->suspend_late, ldv_4_device_device); } } else { } ldv_statevar_4 = 17; goto ldv_52187; case_19: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_4_19(ldv_4_pm_ops_dev_pm_ops->resume_noirq, ldv_4_device_device); } } else { } ldv_statevar_4 = 16; goto ldv_52187; case_20: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_4_20(ldv_4_pm_ops_dev_pm_ops->suspend_noirq, ldv_4_device_device); } } else { } ldv_statevar_4 = 19; goto ldv_52187; case_21: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_pm_ops_instance_suspend_4_21(ldv_4_pm_ops_dev_pm_ops->suspend, ldv_4_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_4 = 18; } else { ldv_statevar_4 = 20; } goto ldv_52187; case_22: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_4_22(ldv_4_pm_ops_dev_pm_ops->prepare, ldv_4_device_device); } } else { } { ldv_statevar_4 = ldv_switch_3(); } goto ldv_52187; case_23: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_52187; case_24: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_4_24(ldv_4_pm_ops_dev_pm_ops->runtime_resume, ldv_4_device_device); } } else { } ldv_statevar_4 = 23; goto ldv_52187; case_25: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_4_25(ldv_4_pm_ops_dev_pm_ops->runtime_suspend, ldv_4_device_device); } } else { } ldv_statevar_4 = 24; goto ldv_52187; case_26: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_52187; case_27: /* CIL Label */ ; if ((unsigned long )ldv_4_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_4_27(ldv_4_pm_ops_dev_pm_ops->runtime_idle, ldv_4_device_device); } } else { } ldv_statevar_4 = 26; goto ldv_52187; case_28: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_52187; case_29: /* CIL Label */ ; goto ldv_52187; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52187: ; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_9_netdev_net_device ; int ldv_9_ret_default ; int tmp ; int tmp___0 ; { { ldv_9_ret_default = 1; ldv_9_ret_default = ldv_pre_register_netdev(); ldv_9_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_9_ret_default = ldv_register_netdev_open_9_6((ldv_9_netdev_net_device->netdev_ops)->ndo_open, ldv_9_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_2 == 5); ldv_dispatch_register_9_4(ldv_9_netdev_net_device); } } else { { ldv_assume(ldv_9_ret_default != 0); } } } else { { ldv_assume(ldv_9_ret_default != 0); } } return (ldv_9_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = alx_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_11_callback_handler)(int , void * ) ; void *ldv_11_data_data ; int ldv_11_line_line ; enum irqreturn (*ldv_11_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_line_line = (int )arg1; ldv_11_callback_handler = arg2; ldv_11_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_11_data_data = arg5; ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_dispatch_irq_register_11_2(ldv_11_line_line, ldv_11_callback_handler, ldv_11_thread_thread, ldv_11_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (9); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (11); case_4: /* CIL Label */ ; return (12); case_5: /* CIL Label */ ; return (14); case_6: /* CIL Label */ ; return (17); case_7: /* CIL Label */ ; return (20); case_8: /* CIL Label */ ; return (23); case_9: /* CIL Label */ ; return (26); case_10: /* CIL Label */ ; return (28); case_11: /* CIL Label */ ; return (29); case_12: /* CIL Label */ ; return (30); case_13: /* CIL Label */ ; return (31); case_14: /* CIL Label */ ; return (32); case_15: /* CIL Label */ ; return (33); case_16: /* CIL Label */ ; return (34); case_17: /* CIL Label */ ; return (36); case_18: /* CIL Label */ ; return (38); case_19: /* CIL Label */ ; return (39); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (23); case_4: /* CIL Label */ ; return (24); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (22); case_2: /* CIL Label */ ; return (25); case_3: /* CIL Label */ ; return (27); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_3(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (9); case_1: /* CIL Label */ ; return (15); case_2: /* CIL Label */ ; return (21); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_4(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (6); case_1: /* CIL Label */ ; return (7); case_2: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 5; return; } } void ldv_switch_automaton_state_2_5(void) { { ldv_statevar_2 = 4; return; } } void ldv_switch_automaton_state_3_11(void) { { ldv_3_ret_default = 1; ldv_statevar_3 = 20; return; } } void ldv_switch_automaton_state_3_20(void) { { ldv_statevar_3 = 19; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 29; return; } } void ldv_switch_automaton_state_4_29(void) { { ldv_statevar_4 = 28; return; } } void ldv_switch_automaton_state_5_17(void) { { ldv_statevar_5 = 16; return; } } void ldv_switch_automaton_state_5_8(void) { { ldv_5_probed_default = 1; ldv_statevar_5 = 17; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_12_netdev_net_device ; { { ldv_12_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_unregister_netdev_stop_12_2((ldv_12_netdev_net_device->netdev_ops)->ndo_stop, ldv_12_netdev_net_device); ldv_assume(ldv_statevar_2 == 1); ldv_dispatch_deregister_12_1(ldv_12_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_12_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { alx_stop(arg1); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_calloc(n, size); ldv_after_alloc(res); } return (res); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_zalloc(size); } return (tmp); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } static void ldv___ldv_spin_lock_104(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_alx_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_105(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_irq_lock_of_alx_priv(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_106(spinlock_t *lock ) { { { ldv_spin_lock_irq_lock_of_alx_priv(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_107(spinlock_t *lock ) { { { ldv_spin_unlock_irq_lock_of_alx_priv(); spin_unlock(lock); } return; } } __inline static int ldv_request_irq_108(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_109(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_110(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_spin_lock_111(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_alx_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_113(spinlock_t *lock ) { { { ldv_spin_lock_stats_lock_of_alx_priv(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_114(spinlock_t *lock ) { { { ldv_spin_unlock_stats_lock_of_alx_priv(); spin_unlock(lock); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_115(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_116(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_117(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_118(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_119(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_120(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_121(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } extern void __compiletime_assert_123(void) ; __inline static void ldv_spin_lock_113(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_114(spinlock_t *lock ) ; __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static bool alx_hw_giga(struct alx_hw *hw ) { { return (((int )(hw->pdev)->device & 1) != 0); } } void alx_cfg_mac_flowcontrol(struct alx_hw *hw , u8 fc ) ; static char const alx_gstrings_stats[50U][32U] = { { 'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'p', 'a', 'u', 's', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'c', 't', 'r', 'l', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'f', 'c', 's', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 'r', 'x', '_', 'r', 'u', 'n', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'f', 'r', 'a', 'g', 'm', 'e', 'n', 't', 's', '\000'}, { 'r', 'x', '_', '6', '4', 'B', '_', 'o', 'r', '_', 'l', 'e', 's', 's', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', '6', '5', 'B', '_', 't', 'o', '_', '1', '2', '7', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', '1', '2', '8', 'B', '_', 't', 'o', '_', '2', '5', '5', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', '2', '5', '6', 'B', '_', 't', 'o', '_', '5', '1', '1', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', '5', '1', '2', 'B', '_', 't', 'o', '_', '1', '0', '2', '3', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', '1', '0', '2', '4', 'B', '_', 't', 'o', '_', '1', '5', '1', '8', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', '1', '5', '1', '9', 'B', '_', 't', 'o', '_', 'm', 't', 'u', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'o', 'v', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'r', 'x', 'f', '_', 'o', 'v', '_', 'd', 'r', 'o', 'p', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'r', 'r', 'd', '_', 'o', 'v', '_', 'd', 'r', 'o', 'p', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 'r', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 'r', 'x', '_', 'a', 'd', 'd', 'r', 'e', 's', 's', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'p', 'a', 'u', 's', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'e', 'x', 'c', '_', 'd', 'e', 'f', 'e', 'r', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'c', 't', 'r', 'l', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'd', 'e', 'f', 'e', 'r', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 't', 'x', '_', '6', '4', 'B', '_', 'o', 'r', '_', 'l', 'e', 's', 's', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', '6', '5', 'B', '_', 't', 'o', '_', '1', '2', '7', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', '1', '2', '8', 'B', '_', 't', 'o', '_', '2', '5', '5', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', '2', '5', '6', 'B', '_', 't', 'o', '_', '5', '1', '1', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', '5', '1', '2', 'B', '_', 't', 'o', '_', '1', '0', '2', '3', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', '1', '0', '2', '4', 'B', '_', 't', 'o', '_', '1', '5', '1', '8', 'B', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', '1', '5', '1', '9', 'B', '_', 't', 'o', '_', 'm', 't', 'u', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', '\000'}, { 't', 'x', '_', 'm', 'u', 'l', 't', 'i', 'p', 'l', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, { 't', 'x', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', '\000'}, { 't', 'x', '_', 'a', 'b', 'o', 'r', 't', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', '\000'}, { 't', 'x', '_', 'u', 'n', 'd', 'e', 'r', 'r', 'u', 'n', '\000'}, { 't', 'x', '_', 't', 'r', 'd', '_', 'e', 'o', 'p', '\000'}, { 't', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 't', 'r', 'u', 'n', 'c', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 't', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '\000'}, { 't', 'x', '_', 'u', 'p', 'd', 'a', 't', 'e', '\000'}}; extern void __compiletime_assert_119(void) ; extern void __compiletime_assert_120(void) ; extern void __compiletime_assert_121(void) ; extern void __compiletime_assert_122(void) ; static u32 alx_get_supported_speeds(struct alx_hw *hw ) { u32 supported ; bool tmp ; bool __cond ; bool __cond___0 ; bool __cond___1 ; bool __cond___2 ; bool __cond___3 ; { { supported = 15U; tmp = alx_hw_giga(hw); } if ((int )tmp) { supported = supported | 32U; } else { } __cond = 0; if ((int )__cond) { { __compiletime_assert_119(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_120(); } } else { } __cond___1 = 0; if ((int )__cond___1) { { __compiletime_assert_121(); } } else { } __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_122(); } } else { } __cond___3 = 0; if ((int )__cond___3) { { __compiletime_assert_123(); } } else { } return (supported); } } static int alx_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; bool tmp___0 ; u32 tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; ecmd->supported = 24768U; tmp___0 = alx_hw_giga(hw); } if ((int )tmp___0) { ecmd->supported = ecmd->supported | 32U; } else { } { tmp___1 = alx_get_supported_speeds(hw); ecmd->supported = ecmd->supported | tmp___1; ecmd->advertising = 128U; } if ((hw->adv_cfg & 64U) != 0U) { ecmd->advertising = ecmd->advertising | hw->adv_cfg; } else { } ecmd->port = 0U; ecmd->phy_address = 0U; if ((hw->adv_cfg & 64U) != 0U) { ecmd->autoneg = 1U; } else { ecmd->autoneg = 0U; } ecmd->transceiver = 0U; if (((int )hw->flowctrl & 4) != 0 && (hw->adv_cfg & 64U) != 0U) { if ((int )hw->flowctrl & 1) { ecmd->advertising = ecmd->advertising | 8192U; if (((int )hw->flowctrl & 2) == 0) { ecmd->advertising = ecmd->advertising | 16384U; } else { } } else if (((int )hw->flowctrl & 2) != 0) { ecmd->advertising = ecmd->advertising | 16384U; } else { } } else { } { ethtool_cmd_speed_set(ecmd, (__u32 )hw->link_speed); ecmd->duplex = hw->duplex; } return (0); } } static int alx_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; u32 adv_cfg ; int tmp___0 ; long tmp___1 ; u32 tmp___2 ; __u32 tmp___3 ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; tmp___0 = rtnl_is_locked(); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { printk("\vRTNL: assertion failed at %s (%d)\n", (char *)"drivers/net/ethernet/atheros/alx/ethtool.c", 177); dump_stack(); } } else { } if ((unsigned int )ecmd->autoneg == 1U) { { tmp___2 = alx_get_supported_speeds(hw); } if ((ecmd->advertising & ~ tmp___2) != 0U) { return (-22); } else { } adv_cfg = ecmd->advertising | 64U; } else { { tmp___3 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); adv_cfg = alx_speed_to_ethadv((int )tmp___3, (int )ecmd->duplex); } if (adv_cfg == 0U || adv_cfg == 32U) { return (-22); } else { } } { hw->adv_cfg = adv_cfg; tmp___4 = alx_setup_speed_duplex(hw, adv_cfg, (int )hw->flowctrl); } return (tmp___4); } } static void alx_get_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; pause->autoneg = (__u32 )(((int )hw->flowctrl & 4) != 0 && (hw->adv_cfg & 64U) != 0U); pause->tx_pause = ((int )hw->flowctrl & 2) != 0; pause->rx_pause = (__u32 )hw->flowctrl & 1U; } return; } } static int alx_set_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; int err ; bool reconfig_phy ; u8 fc ; int tmp___0 ; long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; err = 0; reconfig_phy = 0; fc = 0U; } if (pause->tx_pause != 0U) { fc = (u8 )((unsigned int )fc | 2U); } else { } if (pause->rx_pause != 0U) { fc = (u8 )((unsigned int )fc | 1U); } else { } if (pause->autoneg != 0U) { fc = (u8 )((unsigned int )fc | 4U); } else { } { tmp___0 = rtnl_is_locked(); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { printk("\vRTNL: assertion failed at %s (%d)\n", (char *)"drivers/net/ethernet/atheros/alx/ethtool.c", 224); dump_stack(); } } else { } if ((hw->adv_cfg & 64U) != 0U) { if ((((int )fc ^ (int )hw->flowctrl) & 4) == 0) { reconfig_phy = 1; } else { } if ((((int )fc & (int )hw->flowctrl) & 4) != 0 && (((int )fc ^ (int )hw->flowctrl) & 3) != 0) { reconfig_phy = 1; } else { } } else { } if ((int )reconfig_phy) { { err = alx_setup_speed_duplex(hw, hw->adv_cfg, (int )fc); } if (err != 0) { return (err); } else { } } else { } if ((((int )fc ^ (int )hw->flowctrl) & 3) != 0) { { alx_cfg_mac_flowcontrol(hw, (int )fc); } } else { } hw->flowctrl = fc; return (0); } } static u32 alx_get_msglevel(struct net_device *netdev ) { struct alx_priv *alx ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; } return ((u32 )alx->msg_enable); } } static void alx_set_msglevel(struct net_device *netdev , u32 data ) { struct alx_priv *alx ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; alx->msg_enable = (u16 )data; } return; } } extern void __compiletime_assert_274(void) ; static void alx_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *estats , u64 *data ) { struct alx_priv *alx ; void *tmp ; struct alx_hw *hw ; bool __cond ; { { tmp = netdev_priv((struct net_device const *)netdev); alx = (struct alx_priv *)tmp; hw = & alx->hw; ldv_spin_lock_113(& alx->stats_lock); alx_update_hw_stats(hw); __cond = 0; } if ((int )__cond) { { __compiletime_assert_274(); } } else { } { memcpy((void *)data, (void const *)(& hw->stats.rx_ok), 400UL); ldv_spin_unlock_114(& alx->stats_lock); } return; } } static void alx_get_strings(struct net_device *netdev , u32 stringset , u8 *buf ) { int __ret_warn_on ; long tmp ; { { if (stringset == 1U) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ { memcpy((void *)buf, (void const *)(& alx_gstrings_stats), 1600UL); } goto ldv_47643; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/atheros/alx/ethtool.c", 287); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_47643; switch_break: /* CIL Label */ ; } ldv_47643: ; return; } } static int alx_get_sset_count(struct net_device *netdev , int sset ) { { { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (50); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } struct ethtool_ops const alx_ethtool_ops = {& alx_get_settings, & alx_set_settings, 0, 0, 0, 0, 0, & alx_get_msglevel, & alx_set_msglevel, 0, & ethtool_op_get_link, 0, 0, 0, 0, 0, 0, 0, & alx_get_pauseparam, & alx_set_pauseparam, 0, & alx_get_strings, 0, & alx_get_ethtool_stats, 0, 0, 0, 0, & alx_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & alx_get_ethtool_stats; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) = & alx_get_msglevel; void (*ldv_2_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & alx_get_pauseparam; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & alx_get_settings; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) = & alx_get_sset_count; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & alx_get_strings; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) = & alx_set_msglevel; int (*ldv_2_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & alx_set_pauseparam; int (*ldv_2_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & alx_set_settings; void ldv_dummy_resourceless_instance_callback_2_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { alx_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_11(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { alx_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { alx_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { alx_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_16(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { alx_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { alx_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_35(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { alx_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { alx_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_39(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { alx_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_9(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static __u32 __le32_to_cpup(__le32 const *p ) { { return ((__u32 )*p); } } __inline static __u16 __le16_to_cpup(__le16 const *p ) { { return ((__u16 )*p); } } void ldv_spin_lock_mdio_lock_of_alx_hw(void) ; void ldv_spin_unlock_mdio_lock_of_alx_hw(void) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_85(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_86(spinlock_t *lock ) ; extern void __const_udelay(unsigned long ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pcie_get_readrq(struct pci_dev * ) ; extern int pcie_set_readrq(struct pci_dev * , int ) ; __inline static u16 get_unaligned_le16(void const *p ) { __u16 tmp ; { { tmp = __le16_to_cpup((__le16 const *)p); } return (tmp); } } __inline static u32 get_unaligned_le32(void const *p ) { __u32 tmp ; { { tmp = __le32_to_cpup((__le32 const *)p); } return (tmp); } } __inline static void put_unaligned_le16(u16 val , void *p ) { { *((__le16 *)p) = val; return; } } __inline static void put_unaligned_le32(u32 val , void *p ) { { *((__le32 *)p) = val; return; } } __inline static void put_unaligned_le64(u64 val , void *p ) { { *((__le64 *)p) = val; return; } } extern void __bad_unaligned_access_size(void) ; __inline static u32 ethtool_adv_to_mii_adv_t(u32 ethadv ) { u32 result ; { result = 0U; if ((int )ethadv & 1) { result = result | 32U; } else { } if ((ethadv & 2U) != 0U) { result = result | 64U; } else { } if ((ethadv & 4U) != 0U) { result = result | 128U; } else { } if ((ethadv & 8U) != 0U) { result = result | 256U; } else { } if ((ethadv & 8192U) != 0U) { result = result | 1024U; } else { } if ((ethadv & 16384U) != 0U) { result = result | 2048U; } else { } return (result); } } __inline static u32 ethtool_adv_to_mii_ctrl1000_t(u32 ethadv ) { u32 result ; { result = 0U; if ((ethadv & 16U) != 0U) { result = result | 256U; } else { } if ((ethadv & 32U) != 0U) { result = result | 512U; } else { } return (result); } } __inline static bool alx_hw_with_cr(struct alx_hw *hw ) { { return (((int )(hw->pdev)->revision & 1) != 0); } } __inline static bool alx_is_rev_a(u8 rev ) { { return ((unsigned int )rev <= 1U); } } static int alx_wait_mdio_idle(struct alx_hw *hw ) { u32 val ; int i ; { i = 0; goto ldv_42727; ldv_42726: { val = alx_read_mem32(hw, 5140U); } if (((unsigned long )val & 134217728UL) == 0UL) { return (0); } else { } { __const_udelay(42950UL); i = i + 1; } ldv_42727: ; if (i <= 119) { goto ldv_42726; } else { } return (-110); } } static int alx_read_phy_core(struct alx_hw *hw , bool ext , u8 dev , u16 reg , u16 *phy_data ) { u32 val ; u32 clk_sel ; int err ; { *phy_data = 0U; clk_sel = hw->link_speed != -1 ? 0U : 7U; if ((int )ext) { { val = (u32 )(((int )dev << 16) | (int )reg); alx_write_mem32(hw, 5192U, val); val = (clk_sel << 24) | 1088421888U; } } else { val = ((clk_sel << 24) | (u32 )((int )reg << 16)) | 14680064U; } { alx_write_mem32(hw, 5140U, val); err = alx_wait_mdio_idle(hw); } if (err != 0) { return (err); } else { } { val = alx_read_mem32(hw, 5140U); *phy_data = (u16 )val; } return (0); } } static int alx_write_phy_core(struct alx_hw *hw , bool ext , u8 dev , u16 reg , u16 phy_data ) { u32 val ; u32 clk_sel ; int tmp ; { clk_sel = hw->link_speed != -1 ? 0U : 7U; if ((int )ext) { { val = (u32 )(((int )dev << 16) | (int )reg); alx_write_mem32(hw, 5192U, val); val = ((clk_sel << 24) | (u32 )phy_data) | 1086324736U; } } else { val = (((clk_sel << 24) | (u32 )((int )reg << 16)) | (u32 )phy_data) | 12582912U; } { alx_write_mem32(hw, 5140U, val); tmp = alx_wait_mdio_idle(hw); } return (tmp); } } static int __alx_read_phy_reg(struct alx_hw *hw , u16 reg , u16 *phy_data ) { int tmp ; { { tmp = alx_read_phy_core(hw, 0, 0, (int )reg, phy_data); } return (tmp); } } static int __alx_write_phy_reg(struct alx_hw *hw , u16 reg , u16 phy_data ) { int tmp ; { { tmp = alx_write_phy_core(hw, 0, 0, (int )reg, (int )phy_data); } return (tmp); } } static int __alx_read_phy_ext(struct alx_hw *hw , u8 dev , u16 reg , u16 *pdata ) { int tmp ; { { tmp = alx_read_phy_core(hw, 1, (int )dev, (int )reg, pdata); } return (tmp); } } static int __alx_write_phy_ext(struct alx_hw *hw , u8 dev , u16 reg , u16 data ) { int tmp ; { { tmp = alx_write_phy_core(hw, 1, (int )dev, (int )reg, (int )data); } return (tmp); } } static int __alx_read_phy_dbg(struct alx_hw *hw , u16 reg , u16 *pdata ) { int err ; int tmp ; { { err = __alx_write_phy_reg(hw, 29, (int )reg); } if (err != 0) { return (err); } else { } { tmp = __alx_read_phy_reg(hw, 30, pdata); } return (tmp); } } static int __alx_write_phy_dbg(struct alx_hw *hw , u16 reg , u16 data ) { int err ; int tmp ; { { err = __alx_write_phy_reg(hw, 29, (int )reg); } if (err != 0) { return (err); } else { } { tmp = __alx_write_phy_reg(hw, 30, (int )data); } return (tmp); } } int alx_read_phy_reg(struct alx_hw *hw , u16 reg , u16 *phy_data ) { int err ; { { ldv_spin_lock_85(& hw->mdio_lock); err = __alx_read_phy_reg(hw, (int )reg, phy_data); ldv_spin_unlock_86(& hw->mdio_lock); } return (err); } } int alx_write_phy_reg(struct alx_hw *hw , u16 reg , u16 phy_data ) { int err ; { { ldv_spin_lock_85(& hw->mdio_lock); err = __alx_write_phy_reg(hw, (int )reg, (int )phy_data); ldv_spin_unlock_86(& hw->mdio_lock); } return (err); } } int alx_read_phy_ext(struct alx_hw *hw , u8 dev , u16 reg , u16 *pdata ) { int err ; { { ldv_spin_lock_85(& hw->mdio_lock); err = __alx_read_phy_ext(hw, (int )dev, (int )reg, pdata); ldv_spin_unlock_86(& hw->mdio_lock); } return (err); } } int alx_write_phy_ext(struct alx_hw *hw , u8 dev , u16 reg , u16 data ) { int err ; { { ldv_spin_lock_85(& hw->mdio_lock); err = __alx_write_phy_ext(hw, (int )dev, (int )reg, (int )data); ldv_spin_unlock_86(& hw->mdio_lock); } return (err); } } static int alx_read_phy_dbg(struct alx_hw *hw , u16 reg , u16 *pdata ) { int err ; { { ldv_spin_lock_85(& hw->mdio_lock); err = __alx_read_phy_dbg(hw, (int )reg, pdata); ldv_spin_unlock_86(& hw->mdio_lock); } return (err); } } static int alx_write_phy_dbg(struct alx_hw *hw , u16 reg , u16 data ) { int err ; { { ldv_spin_lock_85(& hw->mdio_lock); err = __alx_write_phy_dbg(hw, (int )reg, (int )data); ldv_spin_unlock_86(& hw->mdio_lock); } return (err); } } static u16 alx_get_phy_config(struct alx_hw *hw ) { u32 val ; u16 phy_val ; { { val = alx_read_mem32(hw, 5132U); } if (((unsigned long )val & 1UL) == 0UL) { return (0U); } else { } { val = alx_read_mem32(hw, 6148U); val = (val >> 21) & 255U; } if (val == 0U) { return (0U); } else { } { alx_read_phy_reg(hw, 29, & phy_val); } if ((unsigned int )phy_val == 63U) { return ((u16 )val); } else { } return (0U); } } static bool alx_wait_reg(struct alx_hw *hw , u32 reg , u32 wait , u32 *val ) { u32 read ; int i ; unsigned long __ms ; unsigned long tmp ; { i = 0; goto ldv_42838; ldv_42837: { read = alx_read_mem32(hw, reg); } if ((read & wait) == 0U) { if ((unsigned long )val != (unsigned long )((u32 *)0U)) { *val = read; } else { } return (1); } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_42835; ldv_42834: { __const_udelay(4295000UL); } ldv_42835: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_42834; } else { } } i = i + 1; ldv_42838: ; if (i <= 99) { goto ldv_42837; } else { } return (0); } } static bool alx_read_macaddr(struct alx_hw *hw , u8 *addr ) { u32 mac0 ; u32 mac1 ; void *__gu_p ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; void *__gu_p___0 ; __u16 tmp___3 ; __u16 tmp___4 ; __u16 tmp___5 ; __u16 tmp___6 ; bool tmp___7 ; { { mac0 = alx_read_mem32(hw, 5256U); mac1 = alx_read_mem32(hw, 5260U); __gu_p = (void *)addr + 2U; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = __fswab32(mac0); *((u8 *)__gu_p) = (unsigned char )tmp; } goto ldv_42848; case_2: /* CIL Label */ { tmp___0 = __fswab32(mac0); put_unaligned_le16((unsigned short )tmp___0, __gu_p); } goto ldv_42848; case_4: /* CIL Label */ { tmp___1 = __fswab32(mac0); put_unaligned_le32(tmp___1, __gu_p); } goto ldv_42848; case_8: /* CIL Label */ { tmp___2 = __fswab32(mac0); put_unaligned_le64((unsigned long long )tmp___2, __gu_p); } goto ldv_42848; switch_default: /* CIL Label */ { __bad_unaligned_access_size(); } goto ldv_42848; switch_break: /* CIL Label */ ; } ldv_42848: __gu_p___0 = (void *)addr; { if (2UL == 1UL) { goto case_1___0; } else { } if (2UL == 2UL) { goto case_2___0; } else { } if (2UL == 4UL) { goto case_4___0; } else { } if (2UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ { tmp___3 = __fswab16((int )((__u16 )mac1)); *((u8 *)__gu_p___0) = (unsigned char )tmp___3; } goto ldv_42855; case_2___0: /* CIL Label */ { tmp___4 = __fswab16((int )((__u16 )mac1)); put_unaligned_le16((int )tmp___4, __gu_p___0); } goto ldv_42855; case_4___0: /* CIL Label */ { tmp___5 = __fswab16((int )((__u16 )mac1)); put_unaligned_le32((unsigned int )tmp___5, __gu_p___0); } goto ldv_42855; case_8___0: /* CIL Label */ { tmp___6 = __fswab16((int )((__u16 )mac1)); put_unaligned_le64((unsigned long long )tmp___6, __gu_p___0); } goto ldv_42855; switch_default___0: /* CIL Label */ { __bad_unaligned_access_size(); } goto ldv_42855; switch_break___0: /* CIL Label */ ; } ldv_42855: { tmp___7 = is_valid_ether_addr((u8 const *)addr); } return (tmp___7); } } int alx_get_perm_macaddr(struct alx_hw *hw , u8 *addr ) { u32 val ; bool tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; bool tmp___5 ; int tmp___6 ; bool tmp___7 ; int tmp___8 ; bool tmp___9 ; { { tmp = alx_read_macaddr(hw, addr); } if ((int )tmp) { return (0); } else { } { tmp___0 = alx_wait_reg(hw, 536U, 6144U, & val); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-5); } else { } { alx_write_mem32(hw, 536U, val | 2048U); tmp___2 = alx_wait_reg(hw, 536U, 2048U, (u32 *)0U); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (-5); } else { } { tmp___4 = alx_read_macaddr(hw, addr); } if ((int )tmp___4) { return (0); } else { } { val = alx_read_mem32(hw, 516U); } if (((unsigned long )val & 1536UL) != 0UL) { { tmp___5 = alx_wait_reg(hw, 516U, 33U, & val); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { return (-5); } else { } { alx_write_mem32(hw, 516U, val | 1U); tmp___7 = alx_wait_reg(hw, 516U, 1U, (u32 *)0U); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { return (-5); } else { } { tmp___9 = alx_read_macaddr(hw, addr); } if ((int )tmp___9) { return (0); } else { } } else { } return (-5); } } void alx_set_macaddr(struct alx_hw *hw , u8 const *addr ) { u32 val ; u32 tmp ; __u32 tmp___0 ; u16 tmp___1 ; __u16 tmp___2 ; { { tmp = get_unaligned_le32((void const *)addr + 2U); tmp___0 = __fswab32(tmp); val = tmp___0; alx_write_mem32(hw, 5256U, val); tmp___1 = get_unaligned_le16((void const *)addr); tmp___2 = __fswab16((int )tmp___1); val = (u32 )tmp___2; alx_write_mem32(hw, 5260U, val); } return; } } static void alx_reset_osc(struct alx_hw *hw , u8 rev ) { u32 val ; u32 val2 ; bool tmp ; { { val = alx_read_mem32(hw, 6604U); alx_write_mem32(hw, 6604U, (val & 4294967292U) | 1U); val = alx_read_mem32(hw, 6592U); } if ((unsigned int )rev > 1U) { { val = val & 4280287231U; val = val | 14680064U; val = val & 4294967287U; alx_write_mem32(hw, 6592U, val); alx_write_mem32(hw, 6592U, val | 8U); val2 = alx_read_mem32(hw, 6600U); val2 = val2 & 4294967294U; alx_write_mem32(hw, 6600U, val2); alx_write_mem32(hw, 6600U, val2 | 1U); } } else { { val = val & 4294967287U; tmp = alx_is_rev_a((int )rev); } if ((int )tmp) { val = val & 4294963199U; } else { } { alx_write_mem32(hw, 6592U, val | 8U); alx_write_mem32(hw, 6592U, val); } } { __const_udelay(85900UL); } return; } } static int alx_stop_mac(struct alx_hw *hw ) { u32 rxq ; u32 txq ; u32 val ; u16 i ; { { rxq = alx_read_mem32(hw, 5536U); alx_write_mem32(hw, 5536U, rxq & 2147483647U); txq = alx_read_mem32(hw, 5520U); alx_write_mem32(hw, 5520U, txq & 4294967263U); __const_udelay(171800UL); hw->rx_ctrl = hw->rx_ctrl & 4294967292U; alx_write_mem32(hw, 5248U, hw->rx_ctrl); i = 0U; } goto ldv_42884; ldv_42883: { val = alx_read_mem32(hw, 5136U); } if (((unsigned long )val & 15UL) == 0UL) { return (0); } else { } { __const_udelay(42950UL); i = (u16 )((int )i + 1); } ldv_42884: ; if ((unsigned int )i <= 49U) { goto ldv_42883; } else { } return (-110); } } int alx_reset_mac(struct alx_hw *hw ) { u32 val ; u32 pmctrl ; int i ; int ret ; u8 rev ; bool a_cr ; int tmp ; bool tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; { { pmctrl = 0U; tmp = alx_hw_revision(hw); rev = (u8 )tmp; tmp___0 = alx_is_rev_a((int )rev); } if ((int )tmp___0) { { tmp___1 = alx_hw_with_cr(hw); } if ((int )tmp___1) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } { a_cr = (bool )tmp___2; alx_write_mem32(hw, 144U, 4294967295U); alx_write_mem32(hw, 5636U, 0U); alx_write_mem32(hw, 5632U, 2147483648U); ret = alx_stop_mac(hw); } if (ret != 0) { return (ret); } else { } { alx_write_mem32(hw, 5600U, 1U); } if ((int )a_cr) { { pmctrl = alx_read_mem32(hw, 4856U); } if (((unsigned long )pmctrl & 4104UL) != 0UL) { { alx_write_mem32(hw, 4856U, pmctrl & 4294963191U); } } else { } } else { } { val = alx_read_mem32(hw, 5120U); alx_write_mem32(hw, 5120U, val | 65U); __const_udelay(42950UL); i = 0; } goto ldv_42897; ldv_42896: { val = alx_read_mem32(hw, 5600U); } if (val == 0U) { goto ldv_42895; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_42897: ; if (i <= 49) { goto ldv_42896; } else { } ldv_42895: ; goto ldv_42900; ldv_42899: { val = alx_read_mem32(hw, 5120U); } if (((unsigned long )val & 1UL) == 0UL) { goto ldv_42898; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_42900: ; if (i <= 49) { goto ldv_42899; } else { } ldv_42898: ; if (i == 50) { return (-5); } else { } { __const_udelay(42950UL); } if ((int )a_cr) { { alx_write_mem32(hw, 5120U, val | 4096U); } if (((unsigned long )pmctrl & 4104UL) != 0UL) { { alx_write_mem32(hw, 4856U, pmctrl); } } else { } } else { } { alx_reset_osc(hw, (int )rev); val = alx_read_mem32(hw, 6604U); alx_write_mem32(hw, 6604U, (val & 4294967292U) | 1U); val = alx_read_mem32(hw, 6592U); val = val & 4294967287U; tmp___3 = alx_is_rev_a((int )rev); } if ((int )tmp___3) { val = val & 4294963199U; } else { } { alx_write_mem32(hw, 6592U, val); __const_udelay(85900UL); alx_write_mem32(hw, 5248U, hw->rx_ctrl); val = alx_read_mem32(hw, 5156U); alx_write_mem32(hw, 5156U, val | 393216U); } return (0); } } void alx_reset_phy(struct alx_hw *hw ) { int i ; u32 val ; u16 phy_val ; { { val = alx_read_mem32(hw, 5132U); val = val & 4294811482U; val = val | 4096U; val = val | 3072U; alx_write_mem32(hw, 5132U, val); __const_udelay(42950UL); alx_write_mem32(hw, 5132U, val | 1U); i = 0; } goto ldv_42908; ldv_42907: { __const_udelay(42950UL); i = i + 1; } ldv_42908: ; if (i <= 79) { goto ldv_42907; } else { } { alx_write_phy_dbg(hw, 41, 4765); alx_write_phy_dbg(hw, 4, 48011); alx_write_phy_ext(hw, 3, 32866, 3); val = alx_read_mem32(hw, 5184U); alx_write_mem32(hw, 5184U, val & 4294967294U); alx_write_phy_ext(hw, 7, 60, 0); alx_write_phy_dbg(hw, 18, 19460); alx_write_phy_dbg(hw, 5, 11334); alx_write_phy_dbg(hw, 54, 57644); alx_write_phy_dbg(hw, 0, 751); alx_read_phy_dbg(hw, 61, & phy_val); alx_write_phy_dbg(hw, 61, (int )phy_val & 65407); alx_write_phy_ext(hw, 7, 32807, 35333); alx_write_phy_ext(hw, 7, 32803, 0); } if ((int )hw->lnk_patch) { { alx_read_phy_ext(hw, 3, 32771, & phy_val); alx_write_phy_ext(hw, 3, 32771, (int )((unsigned int )phy_val | 32768U)); alx_read_phy_dbg(hw, 61, & phy_val); alx_write_phy_dbg(hw, 61, (int )((unsigned int )phy_val | 32768U)); alx_read_phy_ext(hw, 3, 32773, & phy_val); alx_write_phy_ext(hw, 3, 32773, (int )((unsigned int )phy_val | 16384U)); } } else { } { alx_write_phy_reg(hw, 18, 3072); } return; } } void alx_reset_pcie(struct alx_hw *hw ) { u8 rev ; int tmp ; u32 val ; u16 val16 ; bool tmp___0 ; bool tmp___1 ; { { tmp = alx_hw_revision(hw); rev = (u8 )tmp; pci_read_config_word((struct pci_dev const *)hw->pdev, 4, & val16); } if (((int )val16 & 7) == 0 || ((int )val16 & 1024) != 0) { { val16 = (u16 )(((int )((short )val16) & 64504) | 7); pci_write_config_word((struct pci_dev const *)hw->pdev, 4, (int )val16); } } else { } { val = alx_read_mem32(hw, 5280U); alx_write_mem32(hw, 5280U, 0U); val = alx_read_mem32(hw, 4356U); alx_write_mem32(hw, 4356U, val & 4294965247U); val = alx_read_mem32(hw, 268U); val = val & 4294959087U; alx_write_mem32(hw, 268U, val); val = alx_read_mem32(hw, 5120U); tmp___0 = alx_is_rev_a((int )rev); } if ((int )tmp___0) { { tmp___1 = alx_hw_with_cr(hw); } if ((int )tmp___1) { if (((unsigned long )val & 4128UL) != 4128UL) { { alx_write_mem32(hw, 5120U, val | 4128U); } } else { } } else { goto _L; } } else _L: /* CIL Label */ if (((unsigned long )val & 4128UL) != 32UL) { { alx_write_mem32(hw, 5120U, (val & 4294963167U) | 32U); } } else { } { alx_enable_aspm(hw, 1, 1); __const_udelay(42950UL); } return; } } void alx_start_mac(struct alx_hw *hw ) { u32 mac ; u32 txq ; u32 rxq ; { { rxq = alx_read_mem32(hw, 5536U); alx_write_mem32(hw, 5536U, rxq | 2147483648U); txq = alx_read_mem32(hw, 5520U); alx_write_mem32(hw, 5520U, txq | 32U); mac = hw->rx_ctrl; } if ((unsigned int )hw->duplex == 1U) { mac = mac | 32U; } else { mac = mac & 4294967263U; } { mac = mac & 4291821567U; mac = mac | (hw->link_speed == 1000 ? 2097152U : 1048576U); mac = mac | 3U; hw->rx_ctrl = mac; alx_write_mem32(hw, 5248U, mac); } return; } } void alx_cfg_mac_flowcontrol(struct alx_hw *hw , u8 fc ) { { if ((int )fc & 1) { hw->rx_ctrl = hw->rx_ctrl | 8U; } else { hw->rx_ctrl = hw->rx_ctrl & 4294967287U; } if (((int )fc & 2) != 0) { hw->rx_ctrl = hw->rx_ctrl | 4U; } else { hw->rx_ctrl = hw->rx_ctrl & 4294967291U; } { alx_write_mem32(hw, 5248U, hw->rx_ctrl); } return; } } void alx_enable_aspm(struct alx_hw *hw , bool l0s_en , bool l1_en ) { u32 pmctrl ; u8 rev ; int tmp ; bool tmp___0 ; bool tmp___1 ; { { tmp = alx_hw_revision(hw); rev = (u8 )tmp; pmctrl = alx_read_mem32(hw, 4856U); pmctrl = pmctrl & 4043309055U; pmctrl = pmctrl | 201326592U; pmctrl = pmctrl | 41024U; pmctrl = pmctrl & 4279238655U; pmctrl = pmctrl | 15728640U; pmctrl = pmctrl & 4294508543U; pmctrl = pmctrl | 262144U; pmctrl = pmctrl & 536340295U; tmp___0 = alx_is_rev_a((int )rev); } if ((int )tmp___0) { { tmp___1 = alx_hw_with_cr(hw); } if ((int )tmp___1) { pmctrl = pmctrl | 48U; } else { } } else { } if ((int )l0s_en) { pmctrl = pmctrl | 1073745920U; } else { } if ((int )l1_en) { pmctrl = pmctrl | 1073741832U; } else { } { alx_write_mem32(hw, 4856U, pmctrl); } return; } } static u32 ethadv_to_hw_cfg(struct alx_hw *hw , u32 ethadv_cfg ) { u32 cfg ; { cfg = 0U; if ((ethadv_cfg & 64U) != 0U) { cfg = cfg | 268435456U; if ((int )ethadv_cfg & 1) { cfg = cfg | 33554432U; } else { } if ((ethadv_cfg & 2U) != 0U) { cfg = cfg | 50331648U; } else { } if ((ethadv_cfg & 4U) != 0U) { cfg = cfg | 67108864U; } else { } if ((ethadv_cfg & 8U) != 0U) { cfg = cfg | 83886080U; } else { } if ((ethadv_cfg & 16U) != 0U) { cfg = cfg | 134217728U; } else { } if ((ethadv_cfg & 32U) != 0U) { cfg = cfg | 83886080U; } else { } if ((ethadv_cfg & 8192U) != 0U) { cfg = cfg | 1024U; } else { } if ((ethadv_cfg & 16384U) != 0U) { cfg = cfg | 2048U; } else { } } else { { if (ethadv_cfg == 1U) { goto case_1; } else { } if (ethadv_cfg == 4U) { goto case_4; } else { } if (ethadv_cfg == 2U) { goto case_2; } else { } if (ethadv_cfg == 8U) { goto case_8; } else { } goto switch_break; case_1: /* CIL Label */ cfg = cfg | 33554432U; goto ldv_42939; case_4: /* CIL Label */ cfg = cfg | 67108864U; goto ldv_42939; case_2: /* CIL Label */ cfg = cfg | 50331648U; goto ldv_42939; case_8: /* CIL Label */ cfg = cfg | 83886080U; goto ldv_42939; switch_break: /* CIL Label */ ; } ldv_42939: ; } return (cfg); } } int alx_setup_speed_duplex(struct alx_hw *hw , u32 ethadv , u8 flowctrl ) { u16 adv ; u16 giga ; u16 cr ; u32 val ; int err ; u32 tmp ; u32 tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; u32 tmp___5 ; { { err = 0; alx_write_phy_reg(hw, 29, 0); val = alx_read_mem32(hw, 6148U); val = val & 3760193535U; val = val; } if ((ethadv & 64U) != 0U) { { adv = 1U; tmp = ethtool_adv_to_mii_adv_t(ethadv); adv = (int )adv | (int )((u16 )tmp); } if (((int )flowctrl & 4) != 0) { if ((int )flowctrl & 1) { adv = (u16 )((unsigned int )adv | 8192U); if (((int )flowctrl & 2) == 0) { adv = (u16 )((unsigned int )adv | 16384U); } else { } } else if (((int )flowctrl & 2) != 0) { adv = (u16 )((unsigned int )adv | 16384U); } else { } } else { } { giga = 0U; tmp___1 = alx_hw_giga(hw); } if ((int )tmp___1) { { tmp___0 = ethtool_adv_to_mii_ctrl1000_t(ethadv); giga = (u16 )tmp___0; } } else { } { cr = 37376U; tmp___2 = alx_write_phy_reg(hw, 4, (int )adv); } if (tmp___2 != 0) { err = -16; } else { { tmp___3 = alx_write_phy_reg(hw, 9, (int )giga); } if (tmp___3 != 0) { err = -16; } else { { tmp___4 = alx_write_phy_reg(hw, 0, (int )cr); } if (tmp___4 != 0) { err = -16; } else { } } } } else { cr = 32768U; if (ethadv == 4U || ethadv == 8U) { cr = (u16 )((unsigned int )cr | 8192U); } else { } if (ethadv == 2U || ethadv == 8U) { cr = (u16 )((unsigned int )cr | 256U); } else { } { err = alx_write_phy_reg(hw, 0, (int )cr); } } if (err == 0) { { alx_write_phy_reg(hw, 29, 63); tmp___5 = ethadv_to_hw_cfg(hw, ethadv); val = val | tmp___5; } } else { } { alx_write_mem32(hw, 6148U, val); } return (err); } } void alx_post_phy_link(struct alx_hw *hw ) { u16 phy_val ; u16 len ; u16 agc ; u8 revid ; int tmp ; bool adj_th ; bool tmp___0 ; int tmp___1 ; { { tmp = alx_hw_revision(hw); revid = (u8 )tmp; adj_th = (unsigned int )revid == 2U; } if ((unsigned int )revid != 2U) { { tmp___0 = alx_is_rev_a((int )revid); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } } else { } if (hw->link_speed != -1) { { alx_read_phy_ext(hw, 3, 32774, & phy_val); len = (unsigned int )phy_val & 255U; alx_read_phy_dbg(hw, 35, & phy_val); agc = (unsigned int )((u16 )((int )phy_val >> 8)) & 63U; } if ((hw->link_speed == 1000 && ((unsigned int )len > 116U || ((unsigned int )len == 0U && (unsigned int )agc > 40U))) || (hw->link_speed == 100 && ((unsigned int )len > 152U || ((unsigned int )len == 0U && (unsigned int )agc > 44U)))) { { alx_write_phy_dbg(hw, 21, 12816); alx_read_phy_ext(hw, 7, 32794, & phy_val); alx_write_phy_ext(hw, 7, 32794, (int )((unsigned int )phy_val | 64U)); } } else { { alx_write_phy_dbg(hw, 21, 12832); alx_read_phy_ext(hw, 7, 32794, & phy_val); alx_write_phy_ext(hw, 7, 32794, (int )phy_val & 65471); } } if ((int )adj_th && (int )hw->lnk_patch) { if (hw->link_speed == 100) { { alx_write_phy_dbg(hw, 24, 1514); } } else if (hw->link_speed == 1000) { { alx_read_phy_dbg(hw, 28, & phy_val); phy_val = (unsigned int )phy_val & 65027U; phy_val = (u16 )((unsigned int )phy_val | 336U); alx_write_phy_dbg(hw, 28, (int )phy_val); } } else { } } else { } } else { { alx_read_phy_ext(hw, 7, 32794, & phy_val); alx_write_phy_ext(hw, 7, 32794, (int )phy_val & 65471); } if ((int )adj_th && (int )hw->lnk_patch) { { alx_write_phy_dbg(hw, 24, 746); alx_read_phy_dbg(hw, 28, & phy_val); phy_val = (unsigned int )phy_val & 65027U; phy_val = (u16 )((unsigned int )phy_val | 184U); alx_write_phy_dbg(hw, 28, (int )phy_val); } } else { } } return; } } bool alx_phy_configured(struct alx_hw *hw ) { u32 cfg ; u32 hw_cfg ; u16 tmp ; { { cfg = ethadv_to_hw_cfg(hw, hw->adv_cfg); cfg = (cfg >> 21) & 255U; tmp = alx_get_phy_config(hw); hw_cfg = (u32 )tmp; } if (hw_cfg == 0U) { return (0); } else { } return (cfg == hw_cfg); } } int alx_read_phy_link(struct alx_hw *hw ) { struct pci_dev *pdev ; u16 bmsr ; u16 giga ; int err ; { { pdev = hw->pdev; err = alx_read_phy_reg(hw, 1, & bmsr); } if (err != 0) { return (err); } else { } { err = alx_read_phy_reg(hw, 1, & bmsr); } if (err != 0) { return (err); } else { } if (((int )bmsr & 4) == 0) { hw->link_speed = -1; hw->duplex = 255U; return (0); } else { } { err = alx_read_phy_reg(hw, 17, & giga); } if (err != 0) { return (err); } else { } if (((int )giga & 2048) == 0) { goto wrong_speed; } else { } { if (((int )giga & 49152) == 32768) { goto case_32768; } else { } if (((int )giga & 49152) == 16384) { goto case_16384; } else { } if (((int )giga & 49152) == 0) { goto case_0; } else { } goto switch_default; case_32768: /* CIL Label */ hw->link_speed = 1000; goto ldv_42975; case_16384: /* CIL Label */ hw->link_speed = 100; goto ldv_42975; case_0: /* CIL Label */ hw->link_speed = 10; goto ldv_42975; switch_default: /* CIL Label */ ; goto wrong_speed; switch_break: /* CIL Label */ ; } ldv_42975: hw->duplex = ((int )giga & 8192) != 0; return (0); wrong_speed: { dev_err((struct device const *)(& pdev->dev), "invalid PHY speed/duplex: 0x%x\n", (int )giga); } return (-22); } } int alx_clear_phy_intr(struct alx_hw *hw ) { u16 isr ; int tmp ; { { tmp = alx_read_phy_reg(hw, 19, & isr); } return (tmp); } } void alx_disable_rss(struct alx_hw *hw ) { u32 ctrl ; u32 tmp ; { { tmp = alx_read_mem32(hw, 5536U); ctrl = tmp; ctrl = ctrl & 3758096383U; alx_write_mem32(hw, 5536U, ctrl); } return; } } void alx_configure_basic(struct alx_hw *hw ) { u32 val ; u32 raw_mtu ; u32 max_payload ; u16 val16 ; u8 chip_rev ; int tmp ; int tmp___0 ; bool tmp___1 ; { { tmp = alx_hw_revision(hw); chip_rev = (u8 )tmp; alx_set_macaddr(hw, (u8 const *)(& hw->mac_addr)); alx_write_mem32(hw, 6164U, 63U); } if ((unsigned int )chip_rev > 1U) { { alx_write_mem32(hw, 5236U, 1024U); } } else { } { alx_write_mem32(hw, 5572U, hw->smb_timer * 500U); val = alx_read_mem32(hw, 5120U); val = val | 3200U; alx_write_mem32(hw, 5120U, val); alx_write_mem32(hw, 5128U, (u32 )((int )hw->imt >> 1)); alx_write_mem32(hw, 5640U, 20000U); alx_write_mem32(hw, 5576U, hw->ith_tpd); alx_write_mem32(hw, 5580U, (u32 )hw->imt); raw_mtu = (u32 )((int )hw->mtu + 14); alx_write_mem32(hw, 5276U, raw_mtu + 8U); } if (raw_mtu > 1514U) { hw->rx_ctrl = hw->rx_ctrl & 2147483647U; } else { } if (raw_mtu + 8U <= 7167U) { val = (raw_mtu + 15U) >> 3; } else { val = 896U; } { alx_write_mem32(hw, 5524U, val | 2048U); tmp___0 = pcie_get_readrq(hw->pdev); max_payload = (u32 )(tmp___0 >> 8); } if (max_payload <= 1U) { { pcie_set_readrq(hw->pdev, 512); } } else { } { val = 33554645U; alx_write_mem32(hw, 5520U, val); val = 2147485013U; alx_write_mem32(hw, 6460U, val); val = alx_read_mem32(hw, 5412U); val = (val & 4095U) << 3; } if (val > 8192U) { val16 = 192U; val = (val - 3212U) >> 3; } else { val16 = 192U; val = (val - 1536U) >> 3; } { alx_write_mem32(hw, 5544U, (u32 )((int )val16 << 16) | val); val = 545325244U; tmp___1 = alx_hw_giga(hw); } if ((int )tmp___1) { val = val & 4294967292U; val = val | 3U; } else { } { alx_write_mem32(hw, 5536U, val); val = alx_read_mem32(hw, 5568U); val = ((max_payload << 4) | (u32 )(((int )hw->dma_chnl + -1) << 26)) | 293892U; alx_write_mem32(hw, 5568U, val); val = 1677984772U; alx_write_mem32(hw, 6456U, val); } return; } } bool alx_get_phy_info(struct alx_hw *hw ) { u16 devs1 ; u16 devs2 ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = alx_read_phy_reg(hw, 2, (u16 *)(& hw->phy_id)); } if (tmp != 0) { return (0); } else { { tmp___0 = alx_read_phy_reg(hw, 3, (u16 *)(& hw->phy_id) + 1UL); } if (tmp___0 != 0) { return (0); } else { } } { tmp___1 = alx_read_phy_ext(hw, 3, 5, & devs1); } if (tmp___1 != 0) { return (0); } else { { tmp___2 = alx_read_phy_ext(hw, 3, 6, & devs2); } if (tmp___2 != 0) { return (0); } else { } } hw->mdio.mmds = (u32 )((int )devs1 | ((int )devs2 << 16)); return (1); } } void alx_update_hw_stats(struct alx_hw *hw ) { u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; u32 tmp___10 ; u32 tmp___11 ; u32 tmp___12 ; u32 tmp___13 ; u32 tmp___14 ; u32 tmp___15 ; u32 tmp___16 ; u32 tmp___17 ; u32 tmp___18 ; u32 tmp___19 ; u32 tmp___20 ; u32 tmp___21 ; u32 tmp___22 ; u32 tmp___23 ; u32 tmp___24 ; u32 tmp___25 ; u32 tmp___26 ; u32 tmp___27 ; u32 tmp___28 ; u32 tmp___29 ; u32 tmp___30 ; u32 tmp___31 ; u32 tmp___32 ; u32 tmp___33 ; u32 tmp___34 ; u32 tmp___35 ; u32 tmp___36 ; u32 tmp___37 ; u32 tmp___38 ; u32 tmp___39 ; u32 tmp___40 ; u32 tmp___41 ; u32 tmp___42 ; u32 tmp___43 ; u32 tmp___44 ; u32 tmp___45 ; u32 tmp___46 ; u32 tmp___47 ; u32 tmp___48 ; { { tmp = alx_read_mem32(hw, 5888U); hw->stats.rx_ok = hw->stats.rx_ok + (u64 )tmp; tmp___0 = alx_read_mem32(hw, 5892U); hw->stats.rx_bcast = hw->stats.rx_bcast + (u64 )tmp___0; tmp___1 = alx_read_mem32(hw, 5896U); hw->stats.rx_mcast = hw->stats.rx_mcast + (u64 )tmp___1; tmp___2 = alx_read_mem32(hw, 5900U); hw->stats.rx_pause = hw->stats.rx_pause + (u64 )tmp___2; tmp___3 = alx_read_mem32(hw, 5904U); hw->stats.rx_ctrl = hw->stats.rx_ctrl + (u64 )tmp___3; tmp___4 = alx_read_mem32(hw, 5908U); hw->stats.rx_fcs_err = hw->stats.rx_fcs_err + (u64 )tmp___4; tmp___5 = alx_read_mem32(hw, 5912U); hw->stats.rx_len_err = hw->stats.rx_len_err + (u64 )tmp___5; tmp___6 = alx_read_mem32(hw, 5916U); hw->stats.rx_byte_cnt = hw->stats.rx_byte_cnt + (u64 )tmp___6; tmp___7 = alx_read_mem32(hw, 5920U); hw->stats.rx_runt = hw->stats.rx_runt + (u64 )tmp___7; tmp___8 = alx_read_mem32(hw, 5924U); hw->stats.rx_frag = hw->stats.rx_frag + (u64 )tmp___8; tmp___9 = alx_read_mem32(hw, 5928U); hw->stats.rx_sz_64B = hw->stats.rx_sz_64B + (u64 )tmp___9; tmp___10 = alx_read_mem32(hw, 5932U); hw->stats.rx_sz_127B = hw->stats.rx_sz_127B + (u64 )tmp___10; tmp___11 = alx_read_mem32(hw, 5936U); hw->stats.rx_sz_255B = hw->stats.rx_sz_255B + (u64 )tmp___11; tmp___12 = alx_read_mem32(hw, 5940U); hw->stats.rx_sz_511B = hw->stats.rx_sz_511B + (u64 )tmp___12; tmp___13 = alx_read_mem32(hw, 5944U); hw->stats.rx_sz_1023B = hw->stats.rx_sz_1023B + (u64 )tmp___13; tmp___14 = alx_read_mem32(hw, 5948U); hw->stats.rx_sz_1518B = hw->stats.rx_sz_1518B + (u64 )tmp___14; tmp___15 = alx_read_mem32(hw, 5952U); hw->stats.rx_sz_max = hw->stats.rx_sz_max + (u64 )tmp___15; tmp___16 = alx_read_mem32(hw, 5956U); hw->stats.rx_ov_sz = hw->stats.rx_ov_sz + (u64 )tmp___16; tmp___17 = alx_read_mem32(hw, 5960U); hw->stats.rx_ov_rxf = hw->stats.rx_ov_rxf + (u64 )tmp___17; tmp___18 = alx_read_mem32(hw, 5964U); hw->stats.rx_ov_rrd = hw->stats.rx_ov_rrd + (u64 )tmp___18; tmp___19 = alx_read_mem32(hw, 5968U); hw->stats.rx_align_err = hw->stats.rx_align_err + (u64 )tmp___19; tmp___20 = alx_read_mem32(hw, 5972U); hw->stats.rx_bc_byte_cnt = hw->stats.rx_bc_byte_cnt + (u64 )tmp___20; tmp___21 = alx_read_mem32(hw, 5976U); hw->stats.rx_mc_byte_cnt = hw->stats.rx_mc_byte_cnt + (u64 )tmp___21; tmp___22 = alx_read_mem32(hw, 5980U); hw->stats.rx_err_addr = hw->stats.rx_err_addr + (u64 )tmp___22; tmp___23 = alx_read_mem32(hw, 5984U); hw->stats.tx_ok = hw->stats.tx_ok + (u64 )tmp___23; tmp___24 = alx_read_mem32(hw, 5988U); hw->stats.tx_bcast = hw->stats.tx_bcast + (u64 )tmp___24; tmp___25 = alx_read_mem32(hw, 5992U); hw->stats.tx_mcast = hw->stats.tx_mcast + (u64 )tmp___25; tmp___26 = alx_read_mem32(hw, 5996U); hw->stats.tx_pause = hw->stats.tx_pause + (u64 )tmp___26; tmp___27 = alx_read_mem32(hw, 6000U); hw->stats.tx_exc_defer = hw->stats.tx_exc_defer + (u64 )tmp___27; tmp___28 = alx_read_mem32(hw, 6004U); hw->stats.tx_ctrl = hw->stats.tx_ctrl + (u64 )tmp___28; tmp___29 = alx_read_mem32(hw, 6008U); hw->stats.tx_defer = hw->stats.tx_defer + (u64 )tmp___29; tmp___30 = alx_read_mem32(hw, 6012U); hw->stats.tx_byte_cnt = hw->stats.tx_byte_cnt + (u64 )tmp___30; tmp___31 = alx_read_mem32(hw, 6016U); hw->stats.tx_sz_64B = hw->stats.tx_sz_64B + (u64 )tmp___31; tmp___32 = alx_read_mem32(hw, 6020U); hw->stats.tx_sz_127B = hw->stats.tx_sz_127B + (u64 )tmp___32; tmp___33 = alx_read_mem32(hw, 6024U); hw->stats.tx_sz_255B = hw->stats.tx_sz_255B + (u64 )tmp___33; tmp___34 = alx_read_mem32(hw, 6028U); hw->stats.tx_sz_511B = hw->stats.tx_sz_511B + (u64 )tmp___34; tmp___35 = alx_read_mem32(hw, 6032U); hw->stats.tx_sz_1023B = hw->stats.tx_sz_1023B + (u64 )tmp___35; tmp___36 = alx_read_mem32(hw, 6036U); hw->stats.tx_sz_1518B = hw->stats.tx_sz_1518B + (u64 )tmp___36; tmp___37 = alx_read_mem32(hw, 6040U); hw->stats.tx_sz_max = hw->stats.tx_sz_max + (u64 )tmp___37; tmp___38 = alx_read_mem32(hw, 6044U); hw->stats.tx_single_col = hw->stats.tx_single_col + (u64 )tmp___38; tmp___39 = alx_read_mem32(hw, 6048U); hw->stats.tx_multi_col = hw->stats.tx_multi_col + (u64 )tmp___39; tmp___40 = alx_read_mem32(hw, 6052U); hw->stats.tx_late_col = hw->stats.tx_late_col + (u64 )tmp___40; tmp___41 = alx_read_mem32(hw, 6056U); hw->stats.tx_abort_col = hw->stats.tx_abort_col + (u64 )tmp___41; tmp___42 = alx_read_mem32(hw, 6060U); hw->stats.tx_underrun = hw->stats.tx_underrun + (u64 )tmp___42; tmp___43 = alx_read_mem32(hw, 6064U); hw->stats.tx_trd_eop = hw->stats.tx_trd_eop + (u64 )tmp___43; tmp___44 = alx_read_mem32(hw, 6068U); hw->stats.tx_len_err = hw->stats.tx_len_err + (u64 )tmp___44; tmp___45 = alx_read_mem32(hw, 6072U); hw->stats.tx_trunc = hw->stats.tx_trunc + (u64 )tmp___45; tmp___46 = alx_read_mem32(hw, 6076U); hw->stats.tx_bc_byte_cnt = hw->stats.tx_bc_byte_cnt + (u64 )tmp___46; tmp___47 = alx_read_mem32(hw, 6080U); hw->stats.tx_mc_byte_cnt = hw->stats.tx_mc_byte_cnt + (u64 )tmp___47; tmp___48 = alx_read_mem32(hw, 6084U); hw->stats.update = hw->stats.update + (u64 )tmp___48; } return; } } __inline static void ldv_spin_lock_85(spinlock_t *lock ) { { { ldv_spin_lock_mdio_lock_of_alx_hw(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_86(spinlock_t *lock ) { { { ldv_spin_unlock_mdio_lock_of_alx_hw(); spin_unlock(lock); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_irq_lock_of_alx_priv = 1; void ldv_spin_lock_irq_lock_of_alx_priv(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_irq_lock_of_alx_priv == 1); ldv_assume(ldv_spin_irq_lock_of_alx_priv == 1); ldv_spin_irq_lock_of_alx_priv = 2; } return; } } void ldv_spin_unlock_irq_lock_of_alx_priv(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_irq_lock_of_alx_priv == 2); ldv_assume(ldv_spin_irq_lock_of_alx_priv == 2); ldv_spin_irq_lock_of_alx_priv = 1; } return; } } int ldv_spin_trylock_irq_lock_of_alx_priv(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_irq_lock_of_alx_priv == 1); ldv_assume(ldv_spin_irq_lock_of_alx_priv == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_irq_lock_of_alx_priv = 2; return (1); } } } void ldv_spin_unlock_wait_irq_lock_of_alx_priv(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_irq_lock_of_alx_priv == 1); ldv_assume(ldv_spin_irq_lock_of_alx_priv == 1); } return; } } int ldv_spin_is_locked_irq_lock_of_alx_priv(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_irq_lock_of_alx_priv == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_irq_lock_of_alx_priv(void) { int tmp ; { { tmp = ldv_spin_is_locked_irq_lock_of_alx_priv(); } return (tmp == 0); } } int ldv_spin_is_contended_irq_lock_of_alx_priv(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_irq_lock_of_alx_priv(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_irq_lock_of_alx_priv == 1); ldv_assume(ldv_spin_irq_lock_of_alx_priv == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_irq_lock_of_alx_priv = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_mdio_lock_of_alx_hw = 1; void ldv_spin_lock_mdio_lock_of_alx_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_mdio_lock_of_alx_hw == 1); ldv_assume(ldv_spin_mdio_lock_of_alx_hw == 1); ldv_spin_mdio_lock_of_alx_hw = 2; } return; } } void ldv_spin_unlock_mdio_lock_of_alx_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_mdio_lock_of_alx_hw == 2); ldv_assume(ldv_spin_mdio_lock_of_alx_hw == 2); ldv_spin_mdio_lock_of_alx_hw = 1; } return; } } int ldv_spin_trylock_mdio_lock_of_alx_hw(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_mdio_lock_of_alx_hw == 1); ldv_assume(ldv_spin_mdio_lock_of_alx_hw == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_mdio_lock_of_alx_hw = 2; return (1); } } } void ldv_spin_unlock_wait_mdio_lock_of_alx_hw(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_mdio_lock_of_alx_hw == 1); ldv_assume(ldv_spin_mdio_lock_of_alx_hw == 1); } return; } } int ldv_spin_is_locked_mdio_lock_of_alx_hw(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_mdio_lock_of_alx_hw == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_mdio_lock_of_alx_hw(void) { int tmp ; { { tmp = ldv_spin_is_locked_mdio_lock_of_alx_hw(); } return (tmp == 0); } } int ldv_spin_is_contended_mdio_lock_of_alx_hw(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_mdio_lock_of_alx_hw(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_mdio_lock_of_alx_hw == 1); ldv_assume(ldv_spin_mdio_lock_of_alx_hw == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_mdio_lock_of_alx_hw = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_stats_lock_of_alx_priv = 1; void ldv_spin_lock_stats_lock_of_alx_priv(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_stats_lock_of_alx_priv == 1); ldv_assume(ldv_spin_stats_lock_of_alx_priv == 1); ldv_spin_stats_lock_of_alx_priv = 2; } return; } } void ldv_spin_unlock_stats_lock_of_alx_priv(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_stats_lock_of_alx_priv == 2); ldv_assume(ldv_spin_stats_lock_of_alx_priv == 2); ldv_spin_stats_lock_of_alx_priv = 1; } return; } } int ldv_spin_trylock_stats_lock_of_alx_priv(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stats_lock_of_alx_priv == 1); ldv_assume(ldv_spin_stats_lock_of_alx_priv == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_stats_lock_of_alx_priv = 2; return (1); } } } void ldv_spin_unlock_wait_stats_lock_of_alx_priv(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stats_lock_of_alx_priv == 1); ldv_assume(ldv_spin_stats_lock_of_alx_priv == 1); } return; } } int ldv_spin_is_locked_stats_lock_of_alx_priv(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_stats_lock_of_alx_priv == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_stats_lock_of_alx_priv(void) { int tmp ; { { tmp = ldv_spin_is_locked_stats_lock_of_alx_priv(); } return (tmp == 0); } } int ldv_spin_is_contended_stats_lock_of_alx_priv(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_stats_lock_of_alx_priv(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stats_lock_of_alx_priv == 1); ldv_assume(ldv_spin_stats_lock_of_alx_priv == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_stats_lock_of_alx_priv = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_irq_lock_of_alx_priv == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_mdio_lock_of_alx_hw == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_stats_lock_of_alx_priv == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_irq_lock_of_alx_priv == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_mdio_lock_of_alx_hw == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_stats_lock_of_alx_priv == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-alloc-spinlock__drivers-net-ethernet-atheros-alx-alx_true-unreach-call.cil.env.c" #include "model/common.env.c"