/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; enum system_states { SYSTEM_BOOTING = 0, SYSTEM_RUNNING = 1, SYSTEM_HALT = 2, SYSTEM_POWER_OFF = 3, SYSTEM_RESTART = 4 } ; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22077 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22077 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28531 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28532 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28531 reg_state : 8 ; bool dismantle ; enum ldv_28532 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { __u8 priority : 4 ; __u8 version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_248 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_248 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_249 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_249 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct tcmsg { unsigned char tcm_family ; unsigned char tcm__pad1 ; unsigned short tcm__pad2 ; int tcm_ifindex ; __u32 tcm_handle ; __u32 tcm_parent ; __u32 tcm_info ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_254 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_254 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_255 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_255 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_257 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_256 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_257 __annonCompField79 ; }; union __anonunion____missing_field_name_258 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_260 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_259 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_260 __annonCompField82 ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_256 __annonCompField80 ; union __anonunion____missing_field_name_258 __annonCompField81 ; union __anonunion____missing_field_name_259 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_261 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_262 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_263 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_263 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_264 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_264 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct tc_stats { __u64 bytes ; __u32 packets ; __u32 drops ; __u32 overlimits ; __u32 bps ; __u32 pps ; __u32 qlen ; __u32 backlog ; }; struct tc_sizespec { unsigned char cell_log ; unsigned char size_log ; short cell_align ; int overhead ; unsigned int linklayer ; unsigned int mpu ; unsigned int mtu ; unsigned int tsize ; }; struct gnet_stats_basic_packed { __u64 bytes ; __u32 packets ; }; struct gnet_stats_rate_est64 { __u64 bps ; __u64 pps ; }; struct gnet_stats_queue { __u32 qlen ; __u32 backlog ; __u32 drops ; __u32 requeues ; __u32 overlimits ; }; struct gnet_dump { spinlock_t *lock ; struct sk_buff *skb ; struct nlattr *tail ; int compat_tc_stats ; int compat_xstats ; void *xstats ; int xstats_len ; struct tc_stats tc_stats ; }; struct Qdisc_ops; struct qdisc_walker; struct tcf_walker; struct qdisc_size_table { struct callback_head rcu ; struct list_head list ; struct tc_sizespec szopts ; int refcnt ; u16 data[] ; }; struct Qdisc { int (*enqueue)(struct sk_buff * , struct Qdisc * ) ; struct sk_buff *(*dequeue)(struct Qdisc * ) ; unsigned int flags ; u32 limit ; struct Qdisc_ops const *ops ; struct qdisc_size_table *stab ; struct list_head list ; u32 handle ; u32 parent ; int (*reshape_fail)(struct sk_buff * , struct Qdisc * ) ; void *u32_node ; struct Qdisc *__parent ; struct netdev_queue *dev_queue ; struct gnet_stats_rate_est64 rate_est ; struct Qdisc *next_sched ; struct sk_buff *gso_skb ; unsigned long state ; struct sk_buff_head q ; struct gnet_stats_basic_packed bstats ; unsigned int __state ; struct gnet_stats_queue qstats ; struct callback_head callback_head ; int padded ; atomic_t refcnt ; spinlock_t busylock ; }; struct tcf_proto; struct Qdisc_class_ops { struct netdev_queue *(*select_queue)(struct Qdisc * , struct tcmsg * ) ; int (*graft)(struct Qdisc * , unsigned long , struct Qdisc * , struct Qdisc ** ) ; struct Qdisc *(*leaf)(struct Qdisc * , unsigned long ) ; void (*qlen_notify)(struct Qdisc * , unsigned long ) ; unsigned long (*get)(struct Qdisc * , u32 ) ; void (*put)(struct Qdisc * , unsigned long ) ; int (*change)(struct Qdisc * , u32 , u32 , struct nlattr ** , unsigned long * ) ; int (*delete)(struct Qdisc * , unsigned long ) ; void (*walk)(struct Qdisc * , struct qdisc_walker * ) ; struct tcf_proto **(*tcf_chain)(struct Qdisc * , unsigned long ) ; unsigned long (*bind_tcf)(struct Qdisc * , unsigned long , u32 ) ; void (*unbind_tcf)(struct Qdisc * , unsigned long ) ; int (*dump)(struct Qdisc * , unsigned long , struct sk_buff * , struct tcmsg * ) ; int (*dump_stats)(struct Qdisc * , unsigned long , struct gnet_dump * ) ; }; struct Qdisc_ops { struct Qdisc_ops *next ; struct Qdisc_class_ops const *cl_ops ; char id[16U] ; int priv_size ; int (*enqueue)(struct sk_buff * , struct Qdisc * ) ; struct sk_buff *(*dequeue)(struct Qdisc * ) ; struct sk_buff *(*peek)(struct Qdisc * ) ; unsigned int (*drop)(struct Qdisc * ) ; int (*init)(struct Qdisc * , struct nlattr * ) ; void (*reset)(struct Qdisc * ) ; void (*destroy)(struct Qdisc * ) ; int (*change)(struct Qdisc * , struct nlattr * ) ; void (*attach)(struct Qdisc * ) ; int (*dump)(struct Qdisc * , struct sk_buff * ) ; int (*dump_stats)(struct Qdisc * , struct gnet_dump * ) ; struct module *owner ; }; struct tcf_result { unsigned long class ; u32 classid ; }; struct tcf_proto_ops { struct list_head head ; char kind[16U] ; int (*classify)(struct sk_buff * , struct tcf_proto const * , struct tcf_result * ) ; int (*init)(struct tcf_proto * ) ; void (*destroy)(struct tcf_proto * ) ; unsigned long (*get)(struct tcf_proto * , u32 ) ; void (*put)(struct tcf_proto * , unsigned long ) ; int (*change)(struct net * , struct sk_buff * , struct tcf_proto * , unsigned long , u32 , struct nlattr ** , unsigned long * ) ; int (*delete)(struct tcf_proto * , unsigned long ) ; void (*walk)(struct tcf_proto * , struct tcf_walker * ) ; int (*dump)(struct net * , struct tcf_proto * , unsigned long , struct sk_buff * , struct tcmsg * ) ; struct module *owner ; }; struct tcf_proto { struct tcf_proto *next ; void *root ; int (*classify)(struct sk_buff * , struct tcf_proto const * , struct tcf_result * ) ; __be16 protocol ; u32 prio ; u32 classid ; struct Qdisc *q ; void *data ; struct tcf_proto_ops const *ops ; }; struct qdisc_walker { int stop ; int skip ; int count ; int (*fn)(struct Qdisc * , unsigned long , struct qdisc_walker * ) ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct e1000_adapter; struct e1000_hw; struct e1000_hw_stats; enum ldv_34706 { e1000_undefined = 0, e1000_82542_rev2_0 = 1, e1000_82542_rev2_1 = 2, e1000_82543 = 3, e1000_82544 = 4, e1000_82540 = 5, e1000_82545 = 6, e1000_82545_rev_3 = 7, e1000_82546 = 8, e1000_ce4100 = 9, e1000_82546_rev_3 = 10, e1000_82541 = 11, e1000_82541_rev_2 = 12, e1000_82547 = 13, e1000_82547_rev_2 = 14, e1000_num_macs = 15 } ; typedef enum ldv_34706 e1000_mac_type; enum ldv_34708 { e1000_eeprom_uninitialized = 0, e1000_eeprom_spi = 1, e1000_eeprom_microwire = 2, e1000_eeprom_flash = 3, e1000_eeprom_none = 4, e1000_num_eeprom_types = 5 } ; typedef enum ldv_34708 e1000_eeprom_type; enum ldv_34710 { e1000_media_type_copper = 0, e1000_media_type_fiber = 1, e1000_media_type_internal_serdes = 2, e1000_num_media_types = 3 } ; typedef enum ldv_34710 e1000_media_type; enum ldv_34714 { E1000_FC_NONE = 0, E1000_FC_RX_PAUSE = 1, E1000_FC_TX_PAUSE = 2, E1000_FC_FULL = 3, E1000_FC_DEFAULT = 255 } ; typedef enum ldv_34714 e1000_fc_type; struct e1000_shadow_ram { u16 eeprom_word ; bool modified ; }; typedef int e1000_bus_type; typedef int e1000_bus_speed; typedef int e1000_bus_width; typedef int e1000_cable_length; typedef int e1000_10bt_ext_dist_enable; typedef int e1000_rev_polarity; typedef int e1000_downshift; typedef int e1000_smart_speed; typedef int e1000_polarity_reversal; typedef int e1000_auto_x_mode; typedef int e1000_1000t_rx_status; typedef int e1000_phy_type; typedef int e1000_ms_type; typedef int e1000_ffe_config; typedef int e1000_dsp_config; struct e1000_phy_info { e1000_cable_length cable_length ; e1000_10bt_ext_dist_enable extended_10bt_distance ; e1000_rev_polarity cable_polarity ; e1000_downshift downshift ; e1000_polarity_reversal polarity_correction ; e1000_auto_x_mode mdix_mode ; e1000_1000t_rx_status local_rx ; e1000_1000t_rx_status remote_rx ; }; struct e1000_phy_stats { u32 idle_errors ; u32 receive_errors ; }; struct e1000_eeprom_info { e1000_eeprom_type type ; u16 word_size ; u16 opcode_bits ; u16 address_bits ; u16 delay_usec ; u16 page_size ; }; struct e1000_host_mng_dhcp_cookie { u32 signature ; u8 status ; u8 reserved0 ; u16 vlan_id ; u32 reserved1 ; u16 reserved2 ; u8 reserved3 ; u8 checksum ; }; struct e1000_rx_desc { __le64 buffer_addr ; __le16 length ; __le16 csum ; u8 status ; u8 errors ; __le16 special ; }; struct __anonstruct_flags_290 { __le16 length ; u8 cso ; u8 cmd ; }; union __anonunion_lower_289 { __le32 data ; struct __anonstruct_flags_290 flags ; }; struct __anonstruct_fields_292 { u8 status ; u8 css ; __le16 special ; }; union __anonunion_upper_291 { __le32 data ; struct __anonstruct_fields_292 fields ; }; struct e1000_tx_desc { __le64 buffer_addr ; union __anonunion_lower_289 lower ; union __anonunion_upper_291 upper ; }; struct __anonstruct_ip_fields_294 { u8 ipcss ; u8 ipcso ; __le16 ipcse ; }; union __anonunion_lower_setup_293 { __le32 ip_config ; struct __anonstruct_ip_fields_294 ip_fields ; }; struct __anonstruct_tcp_fields_296 { u8 tucss ; u8 tucso ; __le16 tucse ; }; union __anonunion_upper_setup_295 { __le32 tcp_config ; struct __anonstruct_tcp_fields_296 tcp_fields ; }; struct __anonstruct_fields_298 { u8 status ; u8 hdr_len ; __le16 mss ; }; union __anonunion_tcp_seg_setup_297 { __le32 data ; struct __anonstruct_fields_298 fields ; }; struct e1000_context_desc { union __anonunion_lower_setup_293 lower_setup ; union __anonunion_upper_setup_295 upper_setup ; __le32 cmd_and_length ; union __anonunion_tcp_seg_setup_297 tcp_seg_setup ; }; struct e1000_hw_stats { u64 crcerrs ; u64 algnerrc ; u64 symerrs ; u64 rxerrc ; u64 txerrc ; u64 mpc ; u64 scc ; u64 ecol ; u64 mcc ; u64 latecol ; u64 colc ; u64 dc ; u64 tncrs ; u64 sec ; u64 cexterr ; u64 rlec ; u64 xonrxc ; u64 xontxc ; u64 xoffrxc ; u64 xofftxc ; u64 fcruc ; u64 prc64 ; u64 prc127 ; u64 prc255 ; u64 prc511 ; u64 prc1023 ; u64 prc1522 ; u64 gprc ; u64 bprc ; u64 mprc ; u64 gptc ; u64 gorcl ; u64 gorch ; u64 gotcl ; u64 gotch ; u64 rnbc ; u64 ruc ; u64 rfc ; u64 roc ; u64 rlerrc ; u64 rjc ; u64 mgprc ; u64 mgpdc ; u64 mgptc ; u64 torl ; u64 torh ; u64 totl ; u64 toth ; u64 tpr ; u64 tpt ; u64 ptc64 ; u64 ptc127 ; u64 ptc255 ; u64 ptc511 ; u64 ptc1023 ; u64 ptc1522 ; u64 mptc ; u64 bptc ; u64 tsctc ; u64 tsctfc ; u64 iac ; u64 icrxptc ; u64 icrxatc ; u64 ictxptc ; u64 ictxatc ; u64 ictxqec ; u64 ictxqmtc ; u64 icrxdmtc ; u64 icrxoc ; }; struct e1000_hw { u8 *hw_addr ; u8 *flash_address ; void *ce4100_gbe_mdio_base_virt ; e1000_mac_type mac_type ; e1000_phy_type phy_type ; u32 phy_init_script ; e1000_media_type media_type ; void *back ; struct e1000_shadow_ram *eeprom_shadow_ram ; u32 flash_bank_size ; u32 flash_base_addr ; e1000_fc_type fc ; e1000_bus_speed bus_speed ; e1000_bus_width bus_width ; e1000_bus_type bus_type ; struct e1000_eeprom_info eeprom ; e1000_ms_type master_slave ; e1000_ms_type original_master_slave ; e1000_ffe_config ffe_config_state ; u32 asf_firmware_present ; u32 eeprom_semaphore_present ; unsigned long io_base ; u32 phy_id ; u32 phy_revision ; u32 phy_addr ; u32 original_fc ; u32 txcw ; u32 autoneg_failed ; u32 max_frame_size ; u32 min_frame_size ; u32 mc_filter_type ; u32 num_mc_addrs ; u32 collision_delta ; u32 tx_packet_delta ; u32 ledctl_default ; u32 ledctl_mode1 ; u32 ledctl_mode2 ; bool tx_pkt_filtering ; struct e1000_host_mng_dhcp_cookie mng_cookie ; u16 phy_spd_default ; u16 autoneg_advertised ; u16 pci_cmd_word ; u16 fc_high_water ; u16 fc_low_water ; u16 fc_pause_time ; u16 current_ifs_val ; u16 ifs_min_val ; u16 ifs_max_val ; u16 ifs_step_size ; u16 ifs_ratio ; u16 device_id ; u16 vendor_id ; u16 subsystem_id ; u16 subsystem_vendor_id ; u8 revision_id ; u8 autoneg ; u8 mdix ; u8 forced_speed_duplex ; u8 wait_autoneg_complete ; u8 dma_fairness ; u8 mac_addr[6U] ; u8 perm_mac_addr[6U] ; bool disable_polarity_correction ; bool speed_downgraded ; e1000_smart_speed smart_speed ; e1000_dsp_config dsp_config_state ; bool get_link_status ; bool serdes_has_link ; bool tbi_compatibility_en ; bool tbi_compatibility_on ; bool laa_is_present ; bool phy_reset_disable ; bool initialize_hw_bits_disable ; bool fc_send_xon ; bool fc_strict_ieee ; bool report_tx_early ; bool adaptive_ifs ; bool ifs_params_forced ; bool in_ifs_mode ; bool mng_reg_access_disabled ; bool leave_av_bit_off ; bool bad_tx_carr_stats_fd ; bool has_smbus ; }; struct e1000_buffer { struct sk_buff *skb ; dma_addr_t dma ; struct page *page ; unsigned long time_stamp ; u16 length ; u16 next_to_watch ; unsigned int segs ; unsigned int bytecount ; u16 mapped_as_page ; }; struct e1000_tx_ring { void *desc ; dma_addr_t dma ; unsigned int size ; unsigned int count ; unsigned int next_to_use ; unsigned int next_to_clean ; struct e1000_buffer *buffer_info ; u16 tdh ; u16 tdt ; bool last_tx_tso ; }; struct e1000_rx_ring { void *desc ; dma_addr_t dma ; unsigned int size ; unsigned int count ; unsigned int next_to_use ; unsigned int next_to_clean ; struct e1000_buffer *buffer_info ; struct sk_buff *rx_skb_top ; int cpu ; u16 rdh ; u16 rdt ; }; struct e1000_adapter { unsigned long active_vlans[64U] ; u16 mng_vlan_id ; u32 bd_number ; u32 rx_buffer_len ; u32 wol ; u32 smartspeed ; u32 en_mng_pt ; u16 link_speed ; u16 link_duplex ; spinlock_t stats_lock ; unsigned int total_tx_bytes ; unsigned int total_tx_packets ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; u32 itr ; u32 itr_setting ; u16 tx_itr ; u16 rx_itr ; u8 fc_autoneg ; struct e1000_tx_ring *tx_ring ; unsigned int restart_queue ; u32 txd_cmd ; u32 tx_int_delay ; u32 tx_abs_int_delay ; u32 gotcl ; u64 gotcl_old ; u64 tpt_old ; u64 colc_old ; u32 tx_timeout_count ; u32 tx_fifo_head ; u32 tx_head_addr ; u32 tx_fifo_size ; u8 tx_timeout_factor ; atomic_t tx_fifo_stall ; bool pcix_82544 ; bool detect_tx_hung ; bool dump_buffers ; bool (*clean_rx)(struct e1000_adapter * , struct e1000_rx_ring * , int * , int ) ; void (*alloc_rx_buf)(struct e1000_adapter * , struct e1000_rx_ring * , int ) ; struct e1000_rx_ring *rx_ring ; struct napi_struct napi ; int num_tx_queues ; int num_rx_queues ; u64 hw_csum_err ; u64 hw_csum_good ; u32 alloc_rx_buff_failed ; u32 rx_int_delay ; u32 rx_abs_int_delay ; bool rx_csum ; u32 gorcl ; u64 gorcl_old ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_hw hw ; struct e1000_hw_stats stats ; struct e1000_phy_info phy_info ; struct e1000_phy_stats phy_stats ; u32 test_icr ; struct e1000_tx_ring test_tx_ring ; struct e1000_rx_ring test_rx_ring ; int msg_enable ; bool tso_force ; bool smart_power_down ; bool quad_port_a ; unsigned long flags ; u32 eeprom_wol ; int bars ; int need_ioport ; bool discarding ; struct work_struct reset_task ; struct delayed_work watchdog_task ; struct delayed_work fifo_stall_task ; struct delayed_work phy_info_task ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_304 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_304 __annonCompField87 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_305 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_307 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_306 { struct __anonstruct____missing_field_name_307 __annonCompField89 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_305 __annonCompField88 ; union __anonunion____missing_field_name_306 __annonCompField90 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct my_u { __le64 a ; __le64 b ; }; struct my_u___0 { __le64 a ; __le64 b ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef struct net_device *ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; enum hrtimer_restart; enum hrtimer_restart; struct e1000_stats { char stat_string[32U] ; int type ; int sizeof_stat ; int stat_offset ; }; enum hrtimer_restart; enum ldv_35267 { enable_option = 0, range_option = 1, list_option = 2 } ; struct e1000_opt_list { int i ; char *str ; }; struct __anonstruct_r_304 { int min ; int max ; }; struct __anonstruct_l_305 { int nr ; struct e1000_opt_list const *p ; }; union __anonunion_arg_303 { struct __anonstruct_r_304 r ; struct __anonstruct_l_305 l ; }; struct e1000_option { enum ldv_35267 type ; char const *name ; char const *err ; int def ; union __anonunion_arg_303 arg ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void ldv_check_alloc_nonatomic(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } __inline static int fls(int x ) { int r ; { __asm__ ("bsrl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; extern unsigned long find_first_bit(unsigned long const * , unsigned long ) ; extern int printk(char const * , ...) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern void __might_sleep(char const * , int , int ) ; extern enum system_states system_state ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_118(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_120(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_122(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_124(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_stats_lock_of_e1000_adapter(void) ; void ldv_spin_unlock_stats_lock_of_e1000_adapter(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6617; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6617; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6617; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6617; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6617: ; return (pfo_ret__ & 2147483647); } } __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6674; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6674; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6674; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6674; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6674: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6686; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6686; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6686; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6686; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6686: ; return; } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern bool cancel_work_sync(struct work_struct * ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work(system_wq, dwork, delay); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; static void *ldv_vzalloc_115(unsigned long ldv_func_arg1 ) ; static void *ldv_vzalloc_116(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; __inline static void outl(unsigned int value , int port ) { { __asm__ volatile ("outl %0, %w1": : "a" (value), "Nd" (port)); return; } } extern int cpu_number ; extern void __bad_size_call_parameter(void) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head(struct page *page ) { struct page *head ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { head = page->__annonCompField46.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)page); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { return (head); } else { } } else { } return (page); } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { { tmp = ldv__builtin_expect(count > 268435455U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); __builtin_unreachable(); } } else { } dql->num_queued = dql->num_queued + count; dql->last_obj_cnt = count; return; } } __inline static int dql_avail(struct dql const *dql ) { { return ((int )((unsigned int )dql->adj_limit - (unsigned int )dql->num_queued)); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern int net_ratelimit(void) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { { tmp = dma_set_mask(dev, mask); rc = tmp; } if (rc == 0) { { dma_set_coherent_mask(dev, mask); } } else { } return (rc); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern void consume_skb(struct sk_buff * ) ; static int ldv_pskb_expand_head_117(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); } if ((int )page->__annonCompField43.__annonCompField38.pfmemalloc && (unsigned long )page->__annonCompField37.mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; } return; } } __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } __inline static void skb_reset_tail_pointer(struct sk_buff *skb ) { { skb->tail = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_tail_pointer(struct sk_buff *skb , int const offset ) { { { skb_reset_tail_pointer(skb); skb->tail = skb->tail + (sk_buff_data_t )offset; } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static int pskb_may_pull(struct sk_buff *skb , unsigned int len ) { unsigned int tmp ; long tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; { { tmp = skb_headlen((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(len <= tmp, 1L); } if (tmp___0 != 0L) { return (1); } else { } { tmp___1 = ldv__builtin_expect(len > skb->len, 0L); } if (tmp___1 != 0L) { return (0); } else { } { tmp___2 = skb_headlen((struct sk_buff const *)skb); tmp___3 = __pskb_pull_tail(skb, (int )(len - tmp___2)); } return ((unsigned long )tmp___3 != (unsigned long )((unsigned char *)0U)); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static int skb_tailroom(struct sk_buff const *skb ) { bool tmp ; { { tmp = skb_is_nonlinear(skb); } return ((int )tmp ? 0 : (int )((unsigned int )skb->end - (unsigned int )skb->tail)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern int ___pskb_trim(struct sk_buff * , unsigned int ) ; __inline static void __skb_trim(struct sk_buff *skb , unsigned int len ) { int __ret_warn_on ; long tmp ; bool tmp___0 ; long tmp___1 ; { { tmp___0 = skb_is_nonlinear((struct sk_buff const *)skb); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/skbuff.h", 1839); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return; } else { } { skb->len = len; skb_set_tail_pointer(skb, (int const )len); } return; } } extern void skb_trim(struct sk_buff * , unsigned int ) ; __inline static int __pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; { if (skb->data_len != 0U) { { tmp = ___pskb_trim(skb, len); } return (tmp); } else { } { __skb_trim(skb, len); } return (0); } } __inline static int pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; int tmp___0 ; { if (len < skb->len) { { tmp = __pskb_trim(skb, len); tmp___0 = tmp; } } else { tmp___0 = 0; } return (tmp___0); } } void *ldv_malloc(size_t size ) ; static struct sk_buff *ldv___netdev_alloc_skb_59(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_59(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static void skb_copy_to_linear_data_offset(struct sk_buff *skb , int const offset , void const *from , unsigned int const len ) { { { memcpy((void *)skb->data + (unsigned long )offset, from, (size_t )len); } return; } } extern void skb_clone_tx_timestamp(struct sk_buff * ) ; extern void skb_tstamp_tx(struct sk_buff * , struct skb_shared_hwtstamps * ) ; __inline static void sw_tx_timestamp(struct sk_buff *skb ) { unsigned char *tmp ; unsigned char *tmp___0 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp)->tx_flags & 2) != 0) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp___0)->tx_flags & 4) == 0) { { skb_tstamp_tx(skb, (struct skb_shared_hwtstamps *)0); } } else { } } else { } return; } } __inline static void skb_tx_timestamp(struct sk_buff *skb ) { { { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); } return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } extern void synchronize_irq(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38594; ldv_38593: { msleep(1U); } ldv_38594: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38593; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_112(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_114(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_schedule_queue(struct netdev_queue *txq ) { { if ((txq->state & 3UL) == 0UL) { { __netif_schedule(txq->qdisc); } } else { } return; } } __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); } if (tmp___0 != 0L) { return; } else { } { set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); } if (tmp___2 != 0L) { { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } } else { } return; } } __inline static void netdev_sent_queue(struct net_device *dev , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_sent_queue(tmp, bytes); } return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect(bytes == 0U, 0L); } if (tmp != 0L) { return; } else { } { dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); } if (tmp___0 < 0) { return; } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___1 != 0) { { netif_schedule_queue(dev_queue); } } else { } return; } } __inline static void netdev_completed_queue(struct net_device *dev , unsigned int pkts , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_completed_queue(tmp, pkts, bytes); } return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); } return; } } __inline static void netdev_reset_queue(struct net_device *dev_queue ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev_queue, 0U); netdev_tx_reset_queue(tmp); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_69(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_72(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40048; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40048; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40048; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40048; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_40048: pscr_ret__ = pfo_ret__; goto ldv_40054; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40058; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40058; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40058; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40058; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_40058: pscr_ret__ = pfo_ret_____0; goto ldv_40054; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40067; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40067; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40067; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40067; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_40067: pscr_ret__ = pfo_ret_____1; goto ldv_40054; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40076; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40076; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40076; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40076; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_40076: pscr_ret__ = pfo_ret_____2; goto ldv_40054; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_40054; switch_break: /* CIL Label */ ; } ldv_40054: cpu = pscr_ret__; i = 0U; goto ldv_40086; ldv_40085: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_40086: ; if (i < dev->num_tx_queues) { goto ldv_40085; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_111(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_113(struct net_device *ldv_func_arg1 ) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; __inline static int pci_channel_offline(struct pci_dev *pdev ) { { return (pdev->error_state != 1U); } } extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_mwi(struct pci_dev * ) ; extern void pci_clear_mwi(struct pci_dev * ) ; extern int pcix_get_mmrbc(struct pci_dev * ) ; extern int pcix_set_mmrbc(struct pci_dev * , int ) ; extern int pci_select_bars(struct pci_dev * , unsigned long ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; extern int pci_prepare_to_sleep(struct pci_dev * ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_selected_regions(struct pci_dev * , int , char const * ) ; extern void pci_release_selected_regions(struct pci_dev * , int ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_106(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_107(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_110(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_108(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_109(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; __inline static void pagefault_disable(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void pagefault_enable(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { { pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); } return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { { pagefault_enable(); } return; } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } s32 e1000_reset_hw(struct e1000_hw *hw ) ; s32 e1000_init_hw(struct e1000_hw *hw ) ; s32 e1000_set_mac_type(struct e1000_hw *hw ) ; void e1000_set_media_type(struct e1000_hw *hw ) ; s32 e1000_phy_setup_autoneg(struct e1000_hw *hw ) ; void e1000_config_collision_dist(struct e1000_hw *hw ) ; s32 e1000_check_for_link(struct e1000_hw *hw ) ; s32 e1000_get_speed_and_duplex(struct e1000_hw *hw , u16 *speed , u16 *duplex ) ; s32 e1000_read_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) ; s32 e1000_write_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) ; s32 e1000_phy_hw_reset(struct e1000_hw *hw ) ; s32 e1000_phy_reset(struct e1000_hw *hw ) ; s32 e1000_phy_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) ; s32 e1000_init_eeprom_params(struct e1000_hw *hw ) ; u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw ) ; s32 e1000_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw ) ; s32 e1000_read_mac_addr(struct e1000_hw *hw ) ; u32 e1000_hash_mc_addr(struct e1000_hw *hw , u8 *mc_addr ) ; void e1000_rar_set(struct e1000_hw *hw , u8 *addr , u32 index ) ; void e1000_write_vfta(struct e1000_hw *hw , u32 offset , u32 value ) ; void e1000_reset_adaptive(struct e1000_hw *hw ) ; void e1000_update_adaptive(struct e1000_hw *hw ) ; void e1000_tbi_adjust_stats(struct e1000_hw *hw , struct e1000_hw_stats *stats , u32 frame_len , u8 *mac_addr ) ; void e1000_get_bus_info(struct e1000_hw *hw ) ; void e1000_pci_set_mwi(struct e1000_hw *hw ) ; void e1000_pci_clear_mwi(struct e1000_hw *hw ) ; void e1000_pcix_set_mmrbc(struct e1000_hw *hw , int mmrbc ) ; int e1000_pcix_get_mmrbc(struct e1000_hw *hw ) ; void e1000_io_write(struct e1000_hw *hw , unsigned long port , u32 value ) ; struct net_device *e1000_get_hw_dev(struct e1000_hw *hw ) ; char e1000_driver_name[6U] ; char const e1000_driver_version[15U] ; int e1000_up(struct e1000_adapter *adapter ) ; void e1000_down(struct e1000_adapter *adapter ) ; void e1000_reinit_locked(struct e1000_adapter *adapter ) ; void e1000_reset(struct e1000_adapter *adapter ) ; int e1000_set_spd_dplx(struct e1000_adapter *adapter , u32 spd , u8 dplx ) ; int e1000_setup_all_rx_resources(struct e1000_adapter *adapter ) ; int e1000_setup_all_tx_resources(struct e1000_adapter *adapter ) ; void e1000_free_all_rx_resources(struct e1000_adapter *adapter ) ; void e1000_free_all_tx_resources(struct e1000_adapter *adapter ) ; void e1000_update_stats(struct e1000_adapter *adapter ) ; bool e1000_has_link(struct e1000_adapter *adapter ) ; void e1000_power_up_phy(struct e1000_adapter *adapter ) ; void e1000_set_ethtool_ops(struct net_device *netdev ) ; void e1000_check_options(struct e1000_adapter *adapter ) ; char e1000_driver_name[6U] = { 'e', '1', '0', '0', '0', '\000'}; static char e1000_driver_string[33U] = { 'I', 'n', 't', 'e', 'l', '(', 'R', ')', ' ', 'P', 'R', 'O', '/', '1', '0', '0', '0', ' ', 'N', 'e', 't', 'w', 'o', 'r', 'k', ' ', 'D', 'r', 'i', 'v', 'e', 'r', '\000'}; char const e1000_driver_version[15U] = { '7', '.', '3', '.', '2', '1', '-', 'k', '8', '-', 'N', 'A', 'P', 'I', '\000'}; static char const e1000_copyright[43U] = { 'C', 'o', 'p', 'y', 'r', 'i', 'g', 'h', 't', ' ', '(', 'c', ')', ' ', '1', '9', '9', '9', '-', '2', '0', '0', '6', ' ', 'I', 'n', 't', 'e', 'l', ' ', 'C', 'o', 'r', 'p', 'o', 'r', 'a', 't', 'i', 'o', 'n', '.', '\000'}; static struct pci_device_id const e1000_pci_tbl[38U] = { {32902U, 4096U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4097U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4100U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4104U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4105U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4108U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4109U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4110U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4111U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4112U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4113U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4114U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4115U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4116U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4117U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4118U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4119U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4120U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4121U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4122U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4125U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4126U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4134U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4135U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4136U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4213U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4214U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4215U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4216U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4217U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4218U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4219U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4220U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4234U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4249U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4277U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 11886U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int e1000_setup_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *txdr ) ; static int e1000_setup_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rxdr ) ; static void e1000_free_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) ; static void e1000_free_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) ; static int e1000_init_module(void) ; static void e1000_exit_module(void) ; static int e1000_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) ; static void e1000_remove(struct pci_dev *pdev ) ; static int e1000_alloc_queues(struct e1000_adapter *adapter ) ; static int e1000_sw_init(struct e1000_adapter *adapter ) ; static int e1000_open(struct net_device *netdev ) ; static int e1000_close(struct net_device *netdev ) ; static void e1000_configure_tx(struct e1000_adapter *adapter ) ; static void e1000_configure_rx(struct e1000_adapter *adapter ) ; static void e1000_setup_rctl(struct e1000_adapter *adapter ) ; static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter ) ; static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter ) ; static void e1000_clean_tx_ring(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) ; static void e1000_clean_rx_ring(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) ; static void e1000_set_rx_mode(struct net_device *netdev ) ; static void e1000_update_phy_info_task(struct work_struct *work ) ; static void e1000_watchdog(struct work_struct *work ) ; static void e1000_82547_tx_fifo_stall_task(struct work_struct *work ) ; static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) ; static struct net_device_stats *e1000_get_stats(struct net_device *netdev ) ; static int e1000_change_mtu(struct net_device *netdev , int new_mtu ) ; static int e1000_set_mac(struct net_device *netdev , void *p ) ; static irqreturn_t e1000_intr(int irq , void *data ) ; static bool e1000_clean_tx_irq(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) ; static int e1000_clean(struct napi_struct *napi , int budget ) ; static bool e1000_clean_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) ; static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) ; static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) ; static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) ; static int e1000_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) ; static int e1000_mii_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) ; static void e1000_enter_82542_rst(struct e1000_adapter *adapter ) ; static void e1000_leave_82542_rst(struct e1000_adapter *adapter ) ; static void e1000_tx_timeout(struct net_device *netdev ) ; static void e1000_reset_task(struct work_struct *work ) ; static void e1000_smartspeed(struct e1000_adapter *adapter ) ; static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter , struct sk_buff *skb ) ; static bool e1000_vlan_used(struct e1000_adapter *adapter ) ; static void e1000_vlan_mode(struct net_device *netdev , netdev_features_t features ) ; static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter , bool filter_on ) ; static int e1000_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; static int e1000_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; static void e1000_restore_vlan(struct e1000_adapter *adapter ) ; static int e1000_suspend(struct pci_dev *pdev , pm_message_t state ) ; static int e1000_resume(struct pci_dev *pdev ) ; static void e1000_shutdown(struct pci_dev *pdev ) ; static void e1000_netpoll(struct net_device *netdev ) ; static unsigned int copybreak = 256U; static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) ; static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev ) ; static void e1000_io_resume(struct pci_dev *pdev ) ; static struct pci_error_handlers const e1000_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& e1000_io_error_detected), 0, 0, & e1000_io_slot_reset, & e1000_io_resume}; static struct pci_driver e1000_driver = {{0, 0}, (char const *)(& e1000_driver_name), (struct pci_device_id const *)(& e1000_pci_tbl), & e1000_probe, & e1000_remove, & e1000_suspend, 0, 0, & e1000_resume, & e1000_shutdown, 0, & e1000_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int debug = -1; struct net_device *e1000_get_hw_dev(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; { adapter = (struct e1000_adapter *)hw->back; return (adapter->netdev); } } static int e1000_init_module(void) { int ret ; { { printk("\016e1000: %s - version %s\n", (char *)(& e1000_driver_string), (char const *)(& e1000_driver_version)); printk("\016e1000: %s\n", (char const *)(& e1000_copyright)); ret = ldv___pci_register_driver_106(& e1000_driver, & __this_module, "e1000"); } if (copybreak != 256U) { if (copybreak == 0U) { { printk("\016e1000: copybreak disabled\n"); } } else { { printk("\016e1000: copybreak enabled for packets <= %u bytes\n", copybreak); } } } else { } return (ret); } } static void e1000_exit_module(void) { { { ldv_pci_unregister_driver_107(& e1000_driver); } return; } } static int e1000_request_irq(struct e1000_adapter *adapter ) { struct net_device *netdev ; irqreturn_t (*handler)(int , void * ) ; int irq_flags ; int err ; { { netdev = adapter->netdev; handler = & e1000_intr; irq_flags = 128; err = ldv_request_irq_108((adapter->pdev)->irq, handler, (unsigned long )irq_flags, (char const *)(& netdev->name), (void *)netdev); } if (err != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate interrupt Error: %d\n", err); } } else { } } else { } return (err); } } static void e1000_free_irq(struct e1000_adapter *adapter ) { struct net_device *netdev ; { { netdev = adapter->netdev; ldv_free_irq_109((adapter->pdev)->irq, (void *)netdev); } return; } } static void e1000_irq_disable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { { hw = & adapter->hw; writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); synchronize_irq((adapter->pdev)->irq); } return; } } static void e1000_irq_enable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { { hw = & adapter->hw; writel(157U, (void volatile *)hw->hw_addr + 208U); readl((void const volatile *)hw->hw_addr + 8U); } return; } } static void e1000_update_mng_vlan(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u16 vid ; u16 old_vid ; bool tmp ; int tmp___0 ; int tmp___2 ; int tmp___4 ; { { hw = & adapter->hw; netdev = adapter->netdev; vid = hw->mng_cookie.vlan_id; old_vid = adapter->mng_vlan_id; tmp = e1000_vlan_used(adapter); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { tmp___4 = variable_test_bit((long )vid, (unsigned long const volatile *)(& adapter->active_vlans)); } if (tmp___4 == 0) { if (((int )hw->mng_cookie.status & 2) != 0) { { e1000_vlan_rx_add_vid(netdev, 129, (int )vid); adapter->mng_vlan_id = vid; } } else { adapter->mng_vlan_id = 65535U; } if ((unsigned int )old_vid != 65535U && (int )vid != (int )old_vid) { { tmp___2 = variable_test_bit((long )old_vid, (unsigned long const volatile *)(& adapter->active_vlans)); } if (tmp___2 == 0) { { e1000_vlan_rx_kill_vid(netdev, 129, (int )old_vid); } } else { } } else { } } else { adapter->mng_vlan_id = vid; } return; } } static void e1000_init_manageability(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 manc ; unsigned int tmp ; { hw = & adapter->hw; if (adapter->en_mng_pt != 0U) { { tmp = readl((void const volatile *)hw->hw_addr + 22560U); manc = tmp; manc = manc & 4294959103U; writel(manc, (void volatile *)hw->hw_addr + 22560U); } } else { } return; } } static void e1000_release_manageability(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 manc ; unsigned int tmp ; { hw = & adapter->hw; if (adapter->en_mng_pt != 0U) { { tmp = readl((void const volatile *)hw->hw_addr + 22560U); manc = tmp; manc = manc | 8192U; writel(manc, (void volatile *)hw->hw_addr + 22560U); } } else { } return; } } static void e1000_configure(struct e1000_adapter *adapter ) { struct net_device *netdev ; int i ; struct e1000_rx_ring *ring ; { { netdev = adapter->netdev; e1000_set_rx_mode(netdev); e1000_restore_vlan(adapter); e1000_init_manageability(adapter); e1000_configure_tx(adapter); e1000_setup_rctl(adapter); e1000_configure_rx(adapter); i = 0; } goto ldv_53196; ldv_53195: { ring = adapter->rx_ring + (unsigned long )i; (*(adapter->alloc_rx_buf))(adapter, ring, (int )((((ring->next_to_clean <= ring->next_to_use ? ring->count : 0U) + ring->next_to_clean) - ring->next_to_use) - 1U)); i = i + 1; } ldv_53196: ; if (i < adapter->num_rx_queues) { goto ldv_53195; } else { } return; } } int e1000_up(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { { hw = & adapter->hw; e1000_configure(adapter); clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); napi_enable(& adapter->napi); e1000_irq_enable(adapter); netif_wake_queue(adapter->netdev); writel(4U, (void volatile *)hw->hw_addr + 200U); } return (0); } } void e1000_power_up_phy(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 mii_reg ; { hw = & adapter->hw; mii_reg = 0U; if ((unsigned int )hw->media_type == 0U) { { e1000_read_phy_reg(hw, 0U, & mii_reg); mii_reg = (unsigned int )mii_reg & 63487U; e1000_write_phy_reg(hw, 0U, (int )mii_reg); } } else { } return; } } static void e1000_power_down_phy(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 mii_reg ; unsigned int tmp ; { hw = & adapter->hw; if ((adapter->wol == 0U && (unsigned int )hw->mac_type > 4U) && (unsigned int )hw->media_type == 0U) { mii_reg = 0U; { if ((unsigned int )hw->mac_type == 5U) { goto case_5; } else { } if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 9U) { goto case_9; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ { tmp = readl((void const volatile *)hw->hw_addr + 22560U); } if ((int )tmp & 1) { goto out; } else { } goto ldv_53223; switch_default: /* CIL Label */ ; goto out; switch_break: /* CIL Label */ ; } ldv_53223: { e1000_read_phy_reg(hw, 0U, & mii_reg); mii_reg = (u16 )((unsigned int )mii_reg | 2048U); e1000_write_phy_reg(hw, 0U, (int )mii_reg); msleep(1U); } } else { } out: ; return; } } static void e1000_down_and_stop(struct e1000_adapter *adapter ) { int tmp ; { { set_bit(2L, (unsigned long volatile *)(& adapter->flags)); cancel_delayed_work_sync(& adapter->watchdog_task); cancel_delayed_work_sync(& adapter->phy_info_task); cancel_delayed_work_sync(& adapter->fifo_stall_task); tmp = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp == 0) { { cancel_work_sync(& adapter->reset_task); } } else { } return; } } void e1000_down(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u32 rctl ; u32 tctl ; { { hw = & adapter->hw; netdev = adapter->netdev; rctl = readl((void const volatile *)hw->hw_addr + 256U); writel(rctl & 4294967293U, (void volatile *)hw->hw_addr + 256U); netif_tx_disable(netdev); tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl & 4294967293U; writel(tctl, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); napi_disable(& adapter->napi); e1000_irq_disable(adapter); e1000_down_and_stop(adapter); adapter->link_speed = 0U; adapter->link_duplex = 0U; netif_carrier_off(netdev); e1000_reset(adapter); e1000_clean_all_tx_rings(adapter); e1000_clean_all_rx_rings(adapter); } return; } } void e1000_reinit_locked(struct e1000_adapter *adapter ) { int __ret_warn_on ; int tmp ; long tmp___0 ; int tmp___1 ; { { tmp = preempt_count(); __ret_warn_on = ((unsigned long )tmp & 2096896UL) != 0UL; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/e1000/e1000_main.c", 556); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_53241; ldv_53240: { msleep(1U); } ldv_53241: { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); } if (tmp___1 != 0) { goto ldv_53240; } else { } { e1000_down(adapter); e1000_up(adapter); clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); } return; } } void e1000_reset(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 pba ; u32 tx_space ; u32 min_tx_space ; u32 min_rx_space ; bool legacy_pba_adjust ; u16 hwm ; u32 _min1 ; u32 _min2 ; s32 tmp ; u32 ctrl ; unsigned int tmp___0 ; { hw = & adapter->hw; pba = 0U; legacy_pba_adjust = 0; { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 5U) { goto case_5; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 9U) { goto case_9; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } if ((unsigned int )hw->mac_type == 0U) { goto case_0; } else { } if ((unsigned int )hw->mac_type == 15U) { goto case_15; } else { } goto switch_break; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ legacy_pba_adjust = 1; pba = 48U; goto ldv_53260; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ pba = 48U; goto ldv_53260; case_13: /* CIL Label */ ; case_14: /* CIL Label */ legacy_pba_adjust = 1; pba = 30U; goto ldv_53260; case_0: /* CIL Label */ ; case_15: /* CIL Label */ ; goto ldv_53260; switch_break: /* CIL Label */ ; } ldv_53260: ; if ((int )legacy_pba_adjust) { if (hw->max_frame_size > 8192U) { pba = pba - 8U; } else { } if ((unsigned int )hw->mac_type == 13U) { { adapter->tx_fifo_head = 0U; adapter->tx_head_addr = pba << 7; adapter->tx_fifo_size = (40U - pba) << 10; atomic_set(& adapter->tx_fifo_stall, 0); } } else { } } else if (hw->max_frame_size > 1518U) { { writel(pba, (void volatile *)hw->hw_addr + 4096U); pba = readl((void const volatile *)hw->hw_addr + 4096U); tx_space = pba >> 16; pba = pba & 65535U; min_tx_space = (u32 )((unsigned long )hw->max_frame_size + 12UL) * 2U; min_tx_space = (min_tx_space + 1023U) & 4294966272U; min_tx_space = min_tx_space >> 10; min_rx_space = hw->max_frame_size; min_rx_space = (min_rx_space + 1023U) & 4294966272U; min_rx_space = min_rx_space >> 10; } if (tx_space < min_tx_space && min_tx_space - tx_space < pba) { pba = pba + (tx_space - min_tx_space); { if (((((unsigned int )hw->mac_type == 10U || (unsigned int )hw->mac_type == 9U) || (unsigned int )hw->mac_type == 8U) || (unsigned int )hw->mac_type == 7U) || (unsigned int )hw->mac_type == 6U) { goto case_10___0; } else { } goto switch_default; case_10___0: /* CIL Label */ case_9___0: /* CIL Label */ case_8___0: /* CIL Label */ case_7___0: /* CIL Label */ case_6___0: /* CIL Label */ pba = pba & 4294967288U; goto ldv_53271; switch_default: /* CIL Label */ ; goto ldv_53271; switch_break___0: /* CIL Label */ ; } ldv_53271: ; if (pba < min_rx_space) { pba = min_rx_space; } else { } } else { } } else { } { writel(pba, (void volatile *)hw->hw_addr + 4096U); _min1 = (pba * 9216U) / 10U; _min2 = (pba << 10) - hw->max_frame_size; hwm = (u16 )(_min1 < _min2 ? _min1 : _min2); hw->fc_high_water = (unsigned int )hwm & 65528U; hw->fc_low_water = (unsigned int )hw->fc_high_water + 65528U; hw->fc_pause_time = 65535U; hw->fc_send_xon = 1; hw->fc = (e1000_fc_type )hw->original_fc; e1000_reset_hw(hw); } if ((unsigned int )hw->mac_type > 3U) { { writel(0U, (void volatile *)hw->hw_addr + 22528U); } } else { } { tmp = e1000_init_hw(hw); } if (tmp != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Hardware Error\n"); } } else { } { e1000_update_mng_vlan(adapter); } if (((unsigned int )hw->mac_type > 3U && (unsigned int )hw->autoneg == 1U) && (unsigned int )hw->autoneg_advertised == 32U) { { tmp___0 = readl((void const volatile *)hw->hw_addr); ctrl = tmp___0; ctrl = ctrl & 4292870143U; writel(ctrl, (void volatile *)hw->hw_addr); } } else { } { writel(33024U, (void volatile *)hw->hw_addr + 56U); e1000_reset_adaptive(hw); e1000_phy_get_info(hw, & adapter->phy_info); e1000_release_manageability(adapter); } return; } } static void e1000_dump_eeprom(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct ethtool_eeprom eeprom ; struct ethtool_ops const *ops ; u8 *data ; int i ; u16 csum_old ; u16 csum_new ; int tmp ; void *tmp___0 ; { { netdev = adapter->netdev; ops = netdev->ethtool_ops; csum_new = 0U; tmp = (*(ops->get_eeprom_len))(netdev); eeprom.len = (__u32 )tmp; eeprom.offset = 0U; tmp___0 = kmalloc((size_t )eeprom.len, 208U); data = (u8 *)tmp___0; } if ((unsigned long )data == (unsigned long )((u8 *)0U)) { return; } else { } { (*(ops->get_eeprom))(netdev, & eeprom, data); csum_old = (int )((u16 )*(data + 126UL)) + ((int )((u16 )*(data + 127UL)) << 8U); i = 0; } goto ldv_53288; ldv_53287: csum_new = (int )csum_new + ((int )((u16 )*(data + (unsigned long )i)) + ((int )((u16 )*(data + ((unsigned long )i + 1UL))) << 8U)); i = i + 2; ldv_53288: ; if (i <= 125) { goto ldv_53287; } else { } { csum_new = 47802U - (unsigned int )csum_new; printk("\ve1000: /*********************/\n"); printk("\ve1000: Current EEPROM Checksum : 0x%04x\n", (int )csum_old); printk("\ve1000: Calculated : 0x%04x\n", (int )csum_new); printk("\ve1000: Offset Values\n"); printk("\ve1000: ======== ======\n"); print_hex_dump("\v", "", 2, 16, 1, (void const *)data, 128UL, 0); printk("\ve1000: Include this output when contacting your support provider.\n"); printk("\ve1000: This is not a software error! Something bad happened to\n"); printk("\ve1000: your hardware or EEPROM image. Ignoring this problem could\n"); printk("\ve1000: result in further problems, possibly loss of data,\n"); printk("\ve1000: corruption or system hangs!\n"); printk("\ve1000: The MAC Address will be reset to 00:00:00:00:00:00,\n"); printk("\ve1000: which is invalid and requires you to set the proper MAC\n"); printk("\ve1000: address manually before continuing to enable this network\n"); printk("\ve1000: device. Please inspect the EEPROM dump and report the\n"); printk("\ve1000: issue to your hardware vendor or Intel Customer Support.\n"); printk("\ve1000: /*********************/\n"); kfree((void const *)data); } return; } } static int e1000_is_need_ioport(struct pci_dev *pdev ) { { { if ((int )pdev->device == 4110) { goto case_4110; } else { } if ((int )pdev->device == 4117) { goto case_4117; } else { } if ((int )pdev->device == 4119) { goto case_4119; } else { } if ((int )pdev->device == 4118) { goto case_4118; } else { } if ((int )pdev->device == 4126) { goto case_4126; } else { } if ((int )pdev->device == 4115) { goto case_4115; } else { } if ((int )pdev->device == 4120) { goto case_4120; } else { } if ((int )pdev->device == 4216) { goto case_4216; } else { } if ((int )pdev->device == 4116) { goto case_4116; } else { } if ((int )pdev->device == 4214) { goto case_4214; } else { } if ((int )pdev->device == 4220) { goto case_4220; } else { } if ((int )pdev->device == 4215) { goto case_4215; } else { } if ((int )pdev->device == 4104) { goto case_4104; } else { } if ((int )pdev->device == 4105) { goto case_4105; } else { } if ((int )pdev->device == 4108) { goto case_4108; } else { } if ((int )pdev->device == 4109) { goto case_4109; } else { } if ((int )pdev->device == 4111) { goto case_4111; } else { } if ((int )pdev->device == 4113) { goto case_4113; } else { } if ((int )pdev->device == 4112) { goto case_4112; } else { } if ((int )pdev->device == 4114) { goto case_4114; } else { } if ((int )pdev->device == 4125) { goto case_4125; } else { } goto switch_default; case_4110: /* CIL Label */ ; case_4117: /* CIL Label */ ; case_4119: /* CIL Label */ ; case_4118: /* CIL Label */ ; case_4126: /* CIL Label */ ; case_4115: /* CIL Label */ ; case_4120: /* CIL Label */ ; case_4216: /* CIL Label */ ; case_4116: /* CIL Label */ ; case_4214: /* CIL Label */ ; case_4220: /* CIL Label */ ; case_4215: /* CIL Label */ ; case_4104: /* CIL Label */ ; case_4105: /* CIL Label */ ; case_4108: /* CIL Label */ ; case_4109: /* CIL Label */ ; case_4111: /* CIL Label */ ; case_4113: /* CIL Label */ ; case_4112: /* CIL Label */ ; case_4114: /* CIL Label */ ; case_4125: /* CIL Label */ ; return (1); switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } } } static netdev_features_t e1000_fix_features(struct net_device *netdev , netdev_features_t features ) { { if ((features & 256ULL) != 0ULL) { features = features | 128ULL; } else { features = features & 0xffffffffffffff7fULL; } return (features); } } static int e1000_set_features(struct net_device *netdev , netdev_features_t features ) { struct e1000_adapter *adapter ; void *tmp ; netdev_features_t changed ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; changed = features ^ netdev->features; } if ((changed & 256ULL) != 0ULL) { { e1000_vlan_mode(netdev, features); } } else { } if ((changed & 73014444032ULL) == 0ULL) { return (0); } else { } { netdev->features = features; adapter->rx_csum = (features & 4294967296ULL) != 0ULL; tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { e1000_reinit_locked(adapter); } } else { { e1000_reset(adapter); } } return (0); } } static struct net_device_ops const e1000_netdev_ops = {0, 0, & e1000_open, & e1000_close, & e1000_xmit_frame, 0, 0, & e1000_set_rx_mode, & e1000_set_mac, & eth_validate_addr, & e1000_ioctl, 0, & e1000_change_mtu, 0, & e1000_tx_timeout, 0, & e1000_get_stats, & e1000_vlan_rx_add_vid, & e1000_vlan_rx_kill_vid, & e1000_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & e1000_fix_features, & e1000_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int e1000_init_hw_struct(struct e1000_adapter *adapter , struct e1000_hw *hw ) { struct pci_dev *pdev ; s32 tmp ; { { pdev = adapter->pdev; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; hw->revision_id = pdev->revision; pci_read_config_word((struct pci_dev const *)pdev, 4, & hw->pci_cmd_word); hw->max_frame_size = (adapter->netdev)->mtu + 18U; hw->min_frame_size = 64U; tmp = e1000_set_mac_type(hw); } if (tmp != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Unknown MAC Type\n"); } } else { } return (-5); } else { } { if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; switch_default: /* CIL Label */ ; goto ldv_53332; case_11: /* CIL Label */ ; case_13: /* CIL Label */ ; case_12: /* CIL Label */ ; case_14: /* CIL Label */ hw->phy_init_script = 1U; goto ldv_53332; switch_break: /* CIL Label */ ; } ldv_53332: { e1000_set_media_type(hw); e1000_get_bus_info(hw); hw->wait_autoneg_complete = 0U; hw->tbi_compatibility_en = 1; hw->adaptive_ifs = 1; } if ((unsigned int )hw->media_type == 0U) { hw->mdix = 0U; hw->disable_polarity_correction = 0; hw->master_slave = 0; } else { } return (0); } } static int e1000_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct e1000_adapter *adapter ; struct e1000_hw *hw ; int cards_found ; int global_quad_port_a ; int i ; int err ; int pci_using_dac ; u16 eeprom_data ; u16 tmp ; u16 eeprom_apme_mask ; int bars ; int need_ioport ; void *tmp___0 ; u32 tmp___1 ; void *tmp___2 ; int tmp___3 ; char const *tmp___4 ; s32 tmp___5 ; s32 tmp___6 ; s32 tmp___7 ; bool tmp___8 ; int tmp___9 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___4 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_3 ; unsigned int tmp___10 ; unsigned int tmp___11 ; { { cards_found = 0; global_quad_port_a = 0; eeprom_data = 0U; tmp = 0U; eeprom_apme_mask = 1024U; need_ioport = e1000_is_need_ioport(pdev); } if (need_ioport != 0) { { bars = pci_select_bars(pdev, 768UL); err = pci_enable_device(pdev); } } else { { bars = pci_select_bars(pdev, 512UL); err = pci_enable_device_mem(pdev); } } if (err != 0) { return (err); } else { } { err = pci_request_selected_regions(pdev, bars, (char const *)(& e1000_driver_name)); } if (err != 0) { goto err_pci_reg; } else { } { pci_set_master(pdev); err = pci_save_state(pdev); } if (err != 0) { goto err_alloc_etherdev; } else { } { err = -12; netdev = ldv_alloc_etherdev_mqs_110(2792, 1U, 1U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { goto err_alloc_etherdev; } else { } { netdev->dev.parent = & pdev->dev; pci_set_drvdata(pdev, (void *)netdev); tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; adapter->netdev = netdev; adapter->pdev = pdev; tmp___1 = netif_msg_init(debug, 7); adapter->msg_enable = (int )tmp___1; adapter->bars = bars; adapter->need_ioport = need_ioport; hw = & adapter->hw; hw->back = (void *)adapter; err = -5; tmp___2 = pci_ioremap_bar(pdev, 0); hw->hw_addr = (u8 *)tmp___2; } if ((unsigned long )hw->hw_addr == (unsigned long )((u8 *)0U)) { goto err_ioremap; } else { } if (adapter->need_ioport != 0) { i = 1; goto ldv_53360; ldv_53359: ; if ((pdev->resource[i].start == 0ULL && pdev->resource[i].end == pdev->resource[i].start) || pdev->resource[i].end - pdev->resource[i].start == 0xffffffffffffffffULL) { goto ldv_53357; } else { } if ((pdev->resource[i].flags & 256UL) != 0UL) { hw->io_base = (unsigned long )pdev->resource[i].start; goto ldv_53358; } else { } ldv_53357: i = i + 1; ldv_53360: ; if (i <= 5) { goto ldv_53359; } else { } ldv_53358: ; } else { } { err = e1000_init_hw_struct(adapter, hw); } if (err != 0) { goto err_sw_init; } else { } pci_using_dac = 0; if ((unsigned int )hw->bus_type == 2U) { { tmp___3 = dma_set_mask_and_coherent(& pdev->dev, 0xffffffffffffffffULL); } if (tmp___3 == 0) { pci_using_dac = 1; } else { goto _L; } } else { _L: /* CIL Label */ { err = dma_set_mask_and_coherent(& pdev->dev, 4294967295ULL); } if (err != 0) { { printk("\ve1000: No usable DMA config, aborting\n"); } goto err_dma; } else { } } { netdev->netdev_ops = & e1000_netdev_ops; e1000_set_ethtool_ops(netdev); netdev->watchdog_timeo = 1250; netif_napi_add(netdev, & adapter->napi, & e1000_clean, 64); tmp___4 = pci_name((struct pci_dev const *)pdev); strncpy((char *)(& netdev->name), tmp___4, 15UL); adapter->bd_number = (u32 )cards_found; err = e1000_sw_init(adapter); } if (err != 0) { goto err_sw_init; } else { } err = -5; if ((unsigned int )hw->mac_type == 9U) { { hw->ce4100_gbe_mdio_base_virt = ioremap(pdev->resource[1].start, pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (unsigned long )((pdev->resource[1].end - pdev->resource[1].start) + 1ULL) : 0UL); } if ((unsigned long )hw->ce4100_gbe_mdio_base_virt == (unsigned long )((void *)0)) { goto err_mdio_ioremap; } else { } } else { } if ((unsigned int )hw->mac_type > 2U) { netdev->hw_features = 265ULL; netdev->features = 640ULL; } else { } if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 13U) { netdev->hw_features = netdev->hw_features | 65536ULL; } else { } netdev->priv_flags = netdev->priv_flags | 524288U; netdev->features = netdev->features | netdev->hw_features; netdev->hw_features = netdev->hw_features | 107374182400ULL; if (pci_using_dac != 0) { netdev->features = netdev->features | 32ULL; netdev->vlan_features = netdev->vlan_features | 32ULL; } else { } { netdev->vlan_features = netdev->vlan_features | 65545ULL; netdev->priv_flags = netdev->priv_flags | 131072U; adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); tmp___5 = e1000_init_eeprom_params(hw); } if (tmp___5 != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "EEPROM initialization failed\n"); } } else { } goto err_eeprom; } else { } { e1000_reset_hw(hw); tmp___7 = e1000_validate_eeprom_checksum(hw); } if (tmp___7 < 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "The EEPROM Checksum Is Not Valid\n"); } } else { } { e1000_dump_eeprom(adapter); memset((void *)(& hw->mac_addr), 0, (size_t )netdev->addr_len); } } else { { tmp___6 = e1000_read_mac_addr(hw); } if (tmp___6 != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "EEPROM Read Error\n"); } } else { } } else { } } { memcpy((void *)netdev->dev_addr, (void const *)(& hw->mac_addr), (size_t )netdev->addr_len); tmp___8 = is_valid_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Invalid MAC Address\n"); } } else { } } else { } { __init_work(& adapter->watchdog_task.work, 0); __constr_expr_0.counter = 137438953408L; adapter->watchdog_task.work.data = __constr_expr_0; lockdep_init_map(& adapter->watchdog_task.work.lockdep_map, "(&(&adapter->watchdog_task)->work)", & __key, 0); INIT_LIST_HEAD(& adapter->watchdog_task.work.entry); adapter->watchdog_task.work.func = & e1000_watchdog; init_timer_key(& adapter->watchdog_task.timer, 2U, "(&(&adapter->watchdog_task)->timer)", & __key___0); adapter->watchdog_task.timer.function = & delayed_work_timer_fn; adapter->watchdog_task.timer.data = (unsigned long )(& adapter->watchdog_task); __init_work(& adapter->fifo_stall_task.work, 0); __constr_expr_1.counter = 137438953408L; adapter->fifo_stall_task.work.data = __constr_expr_1; lockdep_init_map(& adapter->fifo_stall_task.work.lockdep_map, "(&(&adapter->fifo_stall_task)->work)", & __key___1, 0); INIT_LIST_HEAD(& adapter->fifo_stall_task.work.entry); adapter->fifo_stall_task.work.func = & e1000_82547_tx_fifo_stall_task; init_timer_key(& adapter->fifo_stall_task.timer, 2U, "(&(&adapter->fifo_stall_task)->timer)", & __key___2); adapter->fifo_stall_task.timer.function = & delayed_work_timer_fn; adapter->fifo_stall_task.timer.data = (unsigned long )(& adapter->fifo_stall_task); __init_work(& adapter->phy_info_task.work, 0); __constr_expr_2.counter = 137438953408L; adapter->phy_info_task.work.data = __constr_expr_2; lockdep_init_map(& adapter->phy_info_task.work.lockdep_map, "(&(&adapter->phy_info_task)->work)", & __key___3, 0); INIT_LIST_HEAD(& adapter->phy_info_task.work.entry); adapter->phy_info_task.work.func = & e1000_update_phy_info_task; init_timer_key(& adapter->phy_info_task.timer, 2U, "(&(&adapter->phy_info_task)->timer)", & __key___4); adapter->phy_info_task.timer.function = & delayed_work_timer_fn; adapter->phy_info_task.timer.data = (unsigned long )(& adapter->phy_info_task); __init_work(& adapter->reset_task, 0); __constr_expr_3.counter = 137438953408L; adapter->reset_task.data = __constr_expr_3; lockdep_init_map(& adapter->reset_task.lockdep_map, "(&adapter->reset_task)", & __key___5, 0); INIT_LIST_HEAD(& adapter->reset_task.entry); adapter->reset_task.func = & e1000_reset_task; e1000_check_options(adapter); } { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; goto ldv_53379; case_4: /* CIL Label */ { e1000_read_eeprom(hw, 15, 1, & eeprom_data); eeprom_apme_mask = 4U; } goto ldv_53379; case_8: /* CIL Label */ ; case_10: /* CIL Label */ { tmp___10 = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp___10 & 4U) != 0U) { { e1000_read_eeprom(hw, 20, 1, & eeprom_data); } goto ldv_53379; } else { } switch_default: /* CIL Label */ { e1000_read_eeprom(hw, 36, 1, & eeprom_data); } goto ldv_53379; switch_break: /* CIL Label */ ; } ldv_53379: ; if ((unsigned int )((int )eeprom_data & (int )eeprom_apme_mask) != 0U) { adapter->eeprom_wol = adapter->eeprom_wol | 2U; } else { } { if ((int )pdev->device == 4234) { goto case_4234; } else { } if ((int )pdev->device == 4114) { goto case_4114; } else { } if ((int )pdev->device == 4218) { goto case_4218; } else { } if ((int )pdev->device == 4277) { goto case_4277; } else { } goto switch_break___0; case_4234: /* CIL Label */ adapter->eeprom_wol = 0U; goto ldv_53385; case_4114: /* CIL Label */ ; case_4218: /* CIL Label */ { tmp___11 = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp___11 & 4U) != 0U) { adapter->eeprom_wol = 0U; } else { } goto ldv_53385; case_4277: /* CIL Label */ ; if (global_quad_port_a != 0) { adapter->eeprom_wol = 0U; } else { adapter->quad_port_a = 1; } global_quad_port_a = global_quad_port_a + 1; if (global_quad_port_a == 4) { global_quad_port_a = 0; } else { } goto ldv_53385; switch_break___0: /* CIL Label */ ; } ldv_53385: { adapter->wol = adapter->eeprom_wol; device_set_wakeup_enable(& (adapter->pdev)->dev, adapter->wol != 0U); } if ((unsigned int )hw->mac_type == 9U) { i = 0; goto ldv_53392; ldv_53391: { hw->phy_addr = (u32 )i; e1000_read_phy_reg(hw, 3U, & tmp); } if ((unsigned int )tmp == 0U || (unsigned int )tmp == 255U) { if (i == 31) { goto err_eeprom; } else { } goto ldv_53389; } else { goto ldv_53390; } ldv_53389: i = i + 1; ldv_53392: ; if (i <= 31) { goto ldv_53391; } else { } ldv_53390: ; } else { } { e1000_reset(adapter); strcpy((char *)(& netdev->name), "eth%d"); err = ldv_register_netdev_111(netdev); } if (err != 0) { goto err_register; } else { } { e1000_vlan_filter_on_off(adapter, 0); } if ((adapter->msg_enable & 2) != 0) { { netdev_info((struct net_device const *)adapter->netdev, "(PCI%s:%dMHz:%d-bit) %pM\n", (unsigned int )hw->bus_type == 2U ? (char *)"-X" : (char *)"", (unsigned int )hw->bus_speed != 5U ? ((unsigned int )hw->bus_speed != 4U ? ((unsigned int )hw->bus_speed != 3U ? ((unsigned int )hw->bus_speed == 2U ? 66 : 33) : 100) : 120) : 133, (unsigned int )hw->bus_width == 2U ? 64 : 32, netdev->dev_addr); } } else { } { netif_carrier_off(netdev); } if ((adapter->msg_enable & 2) != 0) { { netdev_info((struct net_device const *)adapter->netdev, "Intel(R) PRO/1000 Network Connection\n"); } } else { } cards_found = cards_found + 1; return (0); err_register: ; err_eeprom: { e1000_phy_hw_reset(hw); } if ((unsigned long )hw->flash_address != (unsigned long )((u8 *)0U)) { { iounmap((void volatile *)hw->flash_address); } } else { } { kfree((void const *)adapter->tx_ring); kfree((void const *)adapter->rx_ring); } err_dma: ; err_sw_init: ; err_mdio_ioremap: { iounmap((void volatile *)hw->ce4100_gbe_mdio_base_virt); iounmap((void volatile *)hw->hw_addr); } err_ioremap: { ldv_free_netdev_112(netdev); } err_alloc_etherdev: { pci_release_selected_regions(pdev, bars); } err_pci_reg: { pci_disable_device(pdev); } return (err); } } static void e1000_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; e1000_down_and_stop(adapter); e1000_release_manageability(adapter); ldv_unregister_netdev_113(netdev); e1000_phy_hw_reset(hw); kfree((void const *)adapter->tx_ring); kfree((void const *)adapter->rx_ring); } if ((unsigned int )hw->mac_type == 9U) { { iounmap((void volatile *)hw->ce4100_gbe_mdio_base_virt); } } else { } { iounmap((void volatile *)hw->hw_addr); } if ((unsigned long )hw->flash_address != (unsigned long )((u8 *)0U)) { { iounmap((void volatile *)hw->flash_address); } } else { } { pci_release_selected_regions(pdev, adapter->bars); ldv_free_netdev_114(netdev); pci_disable_device(pdev); } return; } } static int e1000_sw_init(struct e1000_adapter *adapter ) { int tmp ; struct lock_class_key __key ; { { adapter->rx_buffer_len = 1522U; adapter->num_tx_queues = 1; adapter->num_rx_queues = 1; tmp = e1000_alloc_queues(adapter); } if (tmp != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate memory for queues\n"); } } else { } return (-12); } else { } { e1000_irq_disable(adapter); spinlock_check(& adapter->stats_lock); __raw_spin_lock_init(& adapter->stats_lock.__annonCompField19.rlock, "&(&adapter->stats_lock)->rlock", & __key); set_bit(2L, (unsigned long volatile *)(& adapter->flags)); } return (0); } } static int e1000_alloc_queues(struct e1000_adapter *adapter ) { void *tmp ; void *tmp___0 ; { { tmp = kcalloc((size_t )adapter->num_tx_queues, 48UL, 208U); adapter->tx_ring = (struct e1000_tx_ring *)tmp; } if ((unsigned long )adapter->tx_ring == (unsigned long )((struct e1000_tx_ring *)0)) { return (-12); } else { } { tmp___0 = kcalloc((size_t )adapter->num_rx_queues, 56UL, 208U); adapter->rx_ring = (struct e1000_rx_ring *)tmp___0; } if ((unsigned long )adapter->rx_ring == (unsigned long )((struct e1000_rx_ring *)0)) { { kfree((void const *)adapter->tx_ring); } return (-12); } else { } return (0); } } static int e1000_open(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int err ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 != 0) { return (-16); } else { } { netif_carrier_off(netdev); err = e1000_setup_all_tx_resources(adapter); } if (err != 0) { goto err_setup_tx; } else { } { err = e1000_setup_all_rx_resources(adapter); } if (err != 0) { goto err_setup_rx; } else { } { e1000_power_up_phy(adapter); adapter->mng_vlan_id = 65535U; } if (((int )hw->mng_cookie.status & 2) != 0) { { e1000_update_mng_vlan(adapter); } } else { } { e1000_configure(adapter); err = e1000_request_irq(adapter); } if (err != 0) { goto err_req_irq; } else { } { clear_bit(2L, (unsigned long volatile *)(& adapter->flags)); napi_enable(& adapter->napi); e1000_irq_enable(adapter); netif_start_queue(netdev); writel(4U, (void volatile *)hw->hw_addr + 200U); } return (0); err_req_irq: { e1000_power_down_phy(adapter); e1000_free_all_rx_resources(adapter); } err_setup_rx: { e1000_free_all_tx_resources(adapter); } err_setup_tx: { e1000_reset(adapter); } return (err); } } static int e1000_close(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int count ; int tmp___0 ; int tmp___1 ; int __ret_warn_on ; int tmp___2 ; long tmp___3 ; int tmp___5 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; count = 50; } goto ldv_53423; ldv_53422: { usleep_range(10000UL, 20000UL); } ldv_53423: { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 != 0) { tmp___1 = count; count = count - 1; if (tmp___1 != 0) { goto ldv_53422; } else { goto ldv_53424; } } else { } ldv_53424: { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___2 != 0; tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___3 != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/e1000/e1000_main.c", 1441); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); e1000_down(adapter); e1000_power_down_phy(adapter); e1000_free_irq(adapter); e1000_free_all_tx_resources(adapter); e1000_free_all_rx_resources(adapter); } if (((int )hw->mng_cookie.status & 2) != 0) { { tmp___5 = variable_test_bit((long )adapter->mng_vlan_id, (unsigned long const volatile *)(& adapter->active_vlans)); } if (tmp___5 == 0) { { e1000_vlan_rx_kill_vid(netdev, 129, (int )adapter->mng_vlan_id); } } else { } } else { } return (0); } } static bool e1000_check_64k_bound(struct e1000_adapter *adapter , void *start , unsigned long len ) { struct e1000_hw *hw ; unsigned long begin ; unsigned long end ; { hw = & adapter->hw; begin = (unsigned long )start; end = begin + len; if (((unsigned int )hw->mac_type == 6U || (unsigned int )hw->mac_type == 9U) || (unsigned int )hw->mac_type == 8U) { return ((begin ^ (end - 1UL)) >> 16 == 0UL); } else { } return (1); } } static int e1000_setup_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *txdr ) { struct pci_dev *pdev ; int size ; void *tmp ; void *olddesc ; dma_addr_t olddma ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { pdev = adapter->pdev; size = (int )(txdr->count * 48U); tmp = ldv_vzalloc_115((unsigned long )size); txdr->buffer_info = (struct e1000_buffer *)tmp; } if ((unsigned long )txdr->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { return (-12); } else { } { txdr->size = txdr->count * 16U; txdr->size = (txdr->size + 4095U) & 4294963200U; txdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )txdr->size, & txdr->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )txdr->desc == (unsigned long )((void *)0)) { setup_tx_desc_die: { vfree((void const *)txdr->buffer_info); } return (-12); } else { } { tmp___2 = e1000_check_64k_bound(adapter, txdr->desc, (unsigned long )txdr->size); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { olddesc = txdr->desc; olddma = txdr->dma; if ((adapter->msg_enable & 128) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "txdr align check failed: %u bytes at %p\n", txdr->size, txdr->desc); } } else { } { txdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )txdr->size, & txdr->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )txdr->desc == (unsigned long )((void *)0)) { { dma_free_attrs(& pdev->dev, (size_t )txdr->size, olddesc, olddma, (struct dma_attrs *)0); } goto setup_tx_desc_die; } else { } { tmp___0 = e1000_check_64k_bound(adapter, txdr->desc, (unsigned long )txdr->size); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { dma_free_attrs(& pdev->dev, (size_t )txdr->size, txdr->desc, txdr->dma, (struct dma_attrs *)0); dma_free_attrs(& pdev->dev, (size_t )txdr->size, olddesc, olddma, (struct dma_attrs *)0); } if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate aligned memory for the transmit descriptor ring\n"); } } else { } { vfree((void const *)txdr->buffer_info); } return (-12); } else { { dma_free_attrs(& pdev->dev, (size_t )txdr->size, olddesc, olddma, (struct dma_attrs *)0); } } } else { } { memset(txdr->desc, 0, (size_t )txdr->size); txdr->next_to_use = 0U; txdr->next_to_clean = 0U; } return (0); } } int e1000_setup_all_tx_resources(struct e1000_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_53454; ldv_53453: { err = e1000_setup_tx_resources(adapter, adapter->tx_ring + (unsigned long )i); } if (err != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Allocation for Tx Queue %u failed\n", i); } } else { } i = i - 1; goto ldv_53450; ldv_53449: { e1000_free_tx_resources(adapter, adapter->tx_ring + (unsigned long )i); i = i - 1; } ldv_53450: ; if (i >= 0) { goto ldv_53449; } else { } goto ldv_53452; } else { } i = i + 1; ldv_53454: ; if (i < adapter->num_tx_queues) { goto ldv_53453; } else { } ldv_53452: ; return (err); } } static void e1000_configure_tx(struct e1000_adapter *adapter ) { u64 tdba ; struct e1000_hw *hw ; u32 tdlen ; u32 tctl ; u32 tipg ; u32 ipgr1 ; u32 ipgr2 ; { hw = & adapter->hw; { if (adapter->num_tx_queues == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; switch_default: /* CIL Label */ { tdba = (adapter->tx_ring)->dma; tdlen = (adapter->tx_ring)->count * 16U; writel(tdlen, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); writel((unsigned int )(tdba >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14340UL : 1060UL))); writel((unsigned int )tdba, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14336UL : 1056UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); (adapter->tx_ring)->tdh = (unsigned int )hw->mac_type > 2U ? 14352U : 1072U; (adapter->tx_ring)->tdt = (unsigned int )hw->mac_type > 2U ? 14360U : 1080U; } goto ldv_53467; switch_break: /* CIL Label */ ; } ldv_53467: ; if ((unsigned int )hw->media_type - 1U <= 1U) { tipg = 9U; } else { tipg = 8U; } { if ((unsigned int )hw->mac_type == 1U) { goto case_1___0; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; case_2: /* CIL Label */ tipg = 10U; ipgr1 = 2U; ipgr2 = 10U; goto ldv_53470; switch_default___0: /* CIL Label */ ipgr1 = 8U; ipgr2 = 6U; goto ldv_53470; switch_break___0: /* CIL Label */ ; } ldv_53470: { tipg = tipg | (ipgr1 << 10); tipg = tipg | (ipgr2 << 20); writel(tipg, (void volatile *)hw->hw_addr + 1040U); writel(adapter->tx_int_delay, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14368UL : 1088UL))); } if ((unsigned int )hw->mac_type > 4U) { { writel(adapter->tx_abs_int_delay, (void volatile *)hw->hw_addr + 14380U); } } else { } { tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl & 4294963215U; tctl = tctl | 16777464U; e1000_config_collision_dist(hw); adapter->txd_cmd = 50331648U; } if (adapter->tx_int_delay != 0U) { adapter->txd_cmd = adapter->txd_cmd | 2147483648U; } else { } if ((unsigned int )hw->mac_type <= 2U) { adapter->txd_cmd = adapter->txd_cmd | 268435456U; } else { adapter->txd_cmd = adapter->txd_cmd | 134217728U; } if ((unsigned int )hw->mac_type == 4U && (unsigned int )hw->bus_type == 2U) { adapter->pcix_82544 = 1; } else { } { writel(tctl, (void volatile *)hw->hw_addr + 1024U); } return; } } static int e1000_setup_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rxdr ) { struct pci_dev *pdev ; int size ; int desc_len ; void *tmp ; void *olddesc ; dma_addr_t olddma ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { pdev = adapter->pdev; size = (int )(rxdr->count * 48U); tmp = ldv_vzalloc_116((unsigned long )size); rxdr->buffer_info = (struct e1000_buffer *)tmp; } if ((unsigned long )rxdr->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { return (-12); } else { } { desc_len = 16; rxdr->size = rxdr->count * (unsigned int )desc_len; rxdr->size = (rxdr->size + 4095U) & 4294963200U; rxdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )rxdr->size, & rxdr->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )rxdr->desc == (unsigned long )((void *)0)) { setup_rx_desc_die: { vfree((void const *)rxdr->buffer_info); } return (-12); } else { } { tmp___2 = e1000_check_64k_bound(adapter, rxdr->desc, (unsigned long )rxdr->size); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { olddesc = rxdr->desc; olddma = rxdr->dma; if ((adapter->msg_enable & 64) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "rxdr align check failed: %u bytes at %p\n", rxdr->size, rxdr->desc); } } else { } { rxdr->desc = dma_alloc_attrs(& pdev->dev, (size_t )rxdr->size, & rxdr->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )rxdr->desc == (unsigned long )((void *)0)) { { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, olddesc, olddma, (struct dma_attrs *)0); } goto setup_rx_desc_die; } else { } { tmp___0 = e1000_check_64k_bound(adapter, rxdr->desc, (unsigned long )rxdr->size); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, rxdr->desc, rxdr->dma, (struct dma_attrs *)0); dma_free_attrs(& pdev->dev, (size_t )rxdr->size, olddesc, olddma, (struct dma_attrs *)0); } if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate aligned memory for the Rx descriptor ring\n"); } } else { } goto setup_rx_desc_die; } else { { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, olddesc, olddma, (struct dma_attrs *)0); } } } else { } { memset(rxdr->desc, 0, (size_t )rxdr->size); rxdr->next_to_clean = 0U; rxdr->next_to_use = 0U; rxdr->rx_skb_top = (struct sk_buff *)0; } return (0); } } int e1000_setup_all_rx_resources(struct e1000_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_53492; ldv_53491: { err = e1000_setup_rx_resources(adapter, adapter->rx_ring + (unsigned long )i); } if (err != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Allocation for Rx Queue %u failed\n", i); } } else { } i = i - 1; goto ldv_53488; ldv_53487: { e1000_free_rx_resources(adapter, adapter->rx_ring + (unsigned long )i); i = i - 1; } ldv_53488: ; if (i >= 0) { goto ldv_53487; } else { } goto ldv_53490; } else { } i = i + 1; ldv_53492: ; if (i < adapter->num_rx_queues) { goto ldv_53491; } else { } ldv_53490: ; return (err); } } static void e1000_setup_rctl(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; { { hw = & adapter->hw; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294955007U; rctl = (rctl | (hw->mc_filter_type << 12)) | 32768U; } if ((int )hw->tbi_compatibility_on) { rctl = rctl | 4U; } else { rctl = rctl & 4294967291U; } if ((adapter->netdev)->mtu <= 1500U) { rctl = rctl & 4294967263U; } else { rctl = rctl | 32U; } rctl = rctl & 4294770687U; rctl = rctl | 33554432U; { if (adapter->rx_buffer_len == 2048U) { goto case_2048; } else { } if (adapter->rx_buffer_len == 4096U) { goto case_4096; } else { } if (adapter->rx_buffer_len == 8192U) { goto case_8192; } else { } if (adapter->rx_buffer_len == 16384U) { goto case_16384; } else { } goto switch_default; case_2048: /* CIL Label */ ; switch_default: /* CIL Label */ rctl = rctl; rctl = rctl & 4261412863U; goto ldv_53500; case_4096: /* CIL Label */ rctl = rctl | 196608U; goto ldv_53500; case_8192: /* CIL Label */ rctl = rctl | 131072U; goto ldv_53500; case_16384: /* CIL Label */ rctl = rctl | 65536U; goto ldv_53500; switch_break: /* CIL Label */ ; } ldv_53500: ; if (((adapter->netdev)->features & 68719476736ULL) != 0ULL) { rctl = rctl | 8421380U; rctl = rctl & 4289986559U; } else { } { writel(rctl, (void volatile *)hw->hw_addr + 256U); } return; } } static void e1000_configure_rx(struct e1000_adapter *adapter ) { u64 rdba ; struct e1000_hw *hw ; u32 rdlen ; u32 rctl ; u32 rxcsum ; { hw = & adapter->hw; if ((adapter->netdev)->mtu > 1500U) { rdlen = (adapter->rx_ring)->count * 16U; adapter->clean_rx = & e1000_clean_jumbo_rx_irq; adapter->alloc_rx_buf = & e1000_alloc_jumbo_rx_buffers; } else { rdlen = (adapter->rx_ring)->count * 16U; adapter->clean_rx = & e1000_clean_rx_irq; adapter->alloc_rx_buf = & e1000_alloc_rx_buffers; } { rctl = readl((void const volatile *)hw->hw_addr + 256U); writel(rctl & 4294967293U, (void volatile *)hw->hw_addr + 256U); writel(adapter->rx_int_delay, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10272UL : 264UL))); } if ((unsigned int )hw->mac_type > 4U) { { writel(adapter->rx_abs_int_delay, (void volatile *)hw->hw_addr + 10284U); } if (adapter->itr_setting != 0U) { { writel(1000000000U / (adapter->itr * 256U), (void volatile *)hw->hw_addr + 196U); } } else { } } else { } { if (adapter->num_rx_queues == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; switch_default: /* CIL Label */ { rdba = (adapter->rx_ring)->dma; writel(rdlen, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); writel((unsigned int )(rdba >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10244UL : 276UL))); writel((unsigned int )rdba, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10240UL : 272UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); (adapter->rx_ring)->rdh = (unsigned int )hw->mac_type > 2U ? 10256U : 288U; (adapter->rx_ring)->rdt = (unsigned int )hw->mac_type > 2U ? 10264U : 296U; } goto ldv_53514; switch_break: /* CIL Label */ ; } ldv_53514: ; if ((unsigned int )hw->mac_type > 2U) { { rxcsum = readl((void const volatile *)hw->hw_addr + 20480U); } if ((int )adapter->rx_csum) { rxcsum = rxcsum | 512U; } else { rxcsum = rxcsum & 4294966783U; } { writel(rxcsum, (void volatile *)hw->hw_addr + 20480U); } } else { } { writel(rctl | 2U, (void volatile *)hw->hw_addr + 256U); } return; } } static void e1000_free_tx_resources(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) { struct pci_dev *pdev ; { { pdev = adapter->pdev; e1000_clean_tx_ring(adapter, tx_ring); vfree((void const *)tx_ring->buffer_info); tx_ring->buffer_info = (struct e1000_buffer *)0; dma_free_attrs(& pdev->dev, (size_t )tx_ring->size, tx_ring->desc, tx_ring->dma, (struct dma_attrs *)0); tx_ring->desc = (void *)0; } return; } } void e1000_free_all_tx_resources(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_53525; ldv_53524: { e1000_free_tx_resources(adapter, adapter->tx_ring + (unsigned long )i); i = i + 1; } ldv_53525: ; if (i < adapter->num_tx_queues) { goto ldv_53524; } else { } return; } } static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter , struct e1000_buffer *buffer_info ) { { if (buffer_info->dma != 0ULL) { if ((unsigned int )buffer_info->mapped_as_page != 0U) { { dma_unmap_page(& (adapter->pdev)->dev, buffer_info->dma, (size_t )buffer_info->length, 1); } } else { { dma_unmap_single_attrs(& (adapter->pdev)->dev, buffer_info->dma, (size_t )buffer_info->length, 1, (struct dma_attrs *)0); } } buffer_info->dma = 0ULL; } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(buffer_info->skb); buffer_info->skb = (struct sk_buff *)0; } } else { } buffer_info->time_stamp = 0UL; return; } } static void e1000_clean_tx_ring(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) { struct e1000_hw *hw ; struct e1000_buffer *buffer_info ; unsigned long size ; unsigned int i ; { hw = & adapter->hw; i = 0U; goto ldv_53540; ldv_53539: { buffer_info = tx_ring->buffer_info + (unsigned long )i; e1000_unmap_and_free_tx_resource(adapter, buffer_info); i = i + 1U; } ldv_53540: ; if (i < tx_ring->count) { goto ldv_53539; } else { } { netdev_reset_queue(adapter->netdev); size = (unsigned long )tx_ring->count * 48UL; memset((void *)tx_ring->buffer_info, 0, size); memset(tx_ring->desc, 0, (size_t )tx_ring->size); tx_ring->next_to_use = 0U; tx_ring->next_to_clean = 0U; tx_ring->last_tx_tso = 0; writel(0U, (void volatile *)hw->hw_addr + (unsigned long )tx_ring->tdh); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )tx_ring->tdt); } return; } } static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_53547; ldv_53546: { e1000_clean_tx_ring(adapter, adapter->tx_ring + (unsigned long )i); i = i + 1; } ldv_53547: ; if (i < adapter->num_tx_queues) { goto ldv_53546; } else { } return; } } static void e1000_free_rx_resources(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) { struct pci_dev *pdev ; { { pdev = adapter->pdev; e1000_clean_rx_ring(adapter, rx_ring); vfree((void const *)rx_ring->buffer_info); rx_ring->buffer_info = (struct e1000_buffer *)0; dma_free_attrs(& pdev->dev, (size_t )rx_ring->size, rx_ring->desc, rx_ring->dma, (struct dma_attrs *)0); rx_ring->desc = (void *)0; } return; } } void e1000_free_all_rx_resources(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_53559; ldv_53558: { e1000_free_rx_resources(adapter, adapter->rx_ring + (unsigned long )i); i = i + 1; } ldv_53559: ; if (i < adapter->num_rx_queues) { goto ldv_53558; } else { } return; } } static void e1000_clean_rx_ring(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring ) { struct e1000_hw *hw ; struct e1000_buffer *buffer_info ; struct pci_dev *pdev ; unsigned long size ; unsigned int i ; { hw = & adapter->hw; pdev = adapter->pdev; i = 0U; goto ldv_53571; ldv_53570: buffer_info = rx_ring->buffer_info + (unsigned long )i; if (buffer_info->dma != 0ULL && (unsigned long )adapter->clean_rx == (unsigned long )(& e1000_clean_rx_irq)) { { dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, (size_t )buffer_info->length, 2, (struct dma_attrs *)0); } } else if (buffer_info->dma != 0ULL && (unsigned long )adapter->clean_rx == (unsigned long )(& e1000_clean_jumbo_rx_irq)) { { dma_unmap_page(& pdev->dev, buffer_info->dma, (size_t )buffer_info->length, 2); } } else { } buffer_info->dma = 0ULL; if ((unsigned long )buffer_info->page != (unsigned long )((struct page *)0)) { { put_page(buffer_info->page); buffer_info->page = (struct page *)0; } } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { { consume_skb(buffer_info->skb); buffer_info->skb = (struct sk_buff *)0; } } else { } i = i + 1U; ldv_53571: ; if (i < rx_ring->count) { goto ldv_53570; } else { } if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { { consume_skb(rx_ring->rx_skb_top); rx_ring->rx_skb_top = (struct sk_buff *)0; } } else { } { size = (unsigned long )rx_ring->count * 48UL; memset((void *)rx_ring->buffer_info, 0, size); memset(rx_ring->desc, 0, (size_t )rx_ring->size); rx_ring->next_to_clean = 0U; rx_ring->next_to_use = 0U; writel(0U, (void volatile *)hw->hw_addr + (unsigned long )rx_ring->rdh); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )rx_ring->rdt); } return; } } static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter ) { int i ; { i = 0; goto ldv_53578; ldv_53577: { e1000_clean_rx_ring(adapter, adapter->rx_ring + (unsigned long )i); i = i + 1; } ldv_53578: ; if (i < adapter->num_rx_queues) { goto ldv_53577; } else { } return; } } static void e1000_enter_82542_rst(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u32 rctl ; unsigned long __ms ; unsigned long tmp ; bool tmp___0 ; { { hw = & adapter->hw; netdev = adapter->netdev; e1000_pci_clear_mwi(hw); rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl | 1U; writel(rctl, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); } if (1) { { __const_udelay(21475000UL); } } else { __ms = 5UL; goto ldv_53588; ldv_53587: { __const_udelay(4295000UL); } ldv_53588: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_53587; } else { } } { tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { e1000_clean_all_rx_rings(adapter); } } else { } return; } } static void e1000_leave_82542_rst(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u32 rctl ; unsigned long __ms ; unsigned long tmp ; struct e1000_rx_ring *ring ; bool tmp___0 ; { { hw = & adapter->hw; netdev = adapter->netdev; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294967294U; writel(rctl, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); } if (1) { { __const_udelay(21475000UL); } } else { __ms = 5UL; goto ldv_53598; ldv_53597: { __const_udelay(4295000UL); } ldv_53598: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_53597; } else { } } if (((int )hw->pci_cmd_word & 16) != 0) { { e1000_pci_set_mwi(hw); } } else { } { tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { ring = adapter->rx_ring; e1000_configure_rx(adapter); (*(adapter->alloc_rx_buf))(adapter, ring, (int )((((ring->next_to_clean <= ring->next_to_use ? ring->count : 0U) + ring->next_to_clean) - ring->next_to_use) - 1U)); } } else { } return; } } static int e1000_set_mac(struct net_device *netdev , void *p ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } if ((unsigned int )hw->mac_type == 1U) { { e1000_enter_82542_rst(adapter); } } else { } { memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), (size_t )netdev->addr_len); memcpy((void *)(& hw->mac_addr), (void const *)(& addr->sa_data), (size_t )netdev->addr_len); e1000_rar_set(hw, (u8 *)(& hw->mac_addr), 0U); } if ((unsigned int )hw->mac_type == 1U) { { e1000_leave_82542_rst(adapter); } } else { } return (0); } } static void e1000_set_rx_mode(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct netdev_hw_addr *ha ; bool use_uc ; u32 rctl ; u32 hash_value ; int i ; int rar_entries ; int mta_reg_count ; u32 *mcarray ; void *tmp___0 ; bool tmp___1 ; struct list_head const *__mptr ; int tmp___2 ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; u32 hash_reg ; u32 hash_bit ; u32 mta ; int tmp___3 ; struct list_head const *__mptr___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; use_uc = 0; rar_entries = 15; mta_reg_count = 128; tmp___0 = kcalloc((size_t )mta_reg_count, 4UL, 32U); mcarray = (u32 *)tmp___0; } if ((unsigned long )mcarray == (unsigned long )((u32 *)0U)) { return; } else { } { rctl = readl((void const volatile *)hw->hw_addr + 256U); } if ((netdev->flags & 256U) != 0U) { rctl = rctl | 24U; rctl = rctl & 4294705151U; } else { if ((netdev->flags & 512U) != 0U) { rctl = rctl | 16U; } else { rctl = rctl & 4294967279U; } { tmp___1 = e1000_vlan_used(adapter); } if ((int )tmp___1) { rctl = rctl | 262144U; } else { } } if (netdev->uc.count > rar_entries + -1) { rctl = rctl | 8U; } else if ((netdev->flags & 256U) == 0U) { rctl = rctl & 4294967287U; use_uc = 1; } else { } { writel(rctl, (void volatile *)hw->hw_addr + 256U); } if ((unsigned int )hw->mac_type == 1U) { { e1000_enter_82542_rst(adapter); } } else { } i = 1; if ((int )use_uc) { __mptr = (struct list_head const *)netdev->uc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_53627; ldv_53626: ; if (i == rar_entries) { goto ldv_53625; } else { } { tmp___2 = i; i = i + 1; e1000_rar_set(hw, (u8 *)(& ha->addr), (u32 )tmp___2); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_53627: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->uc.list)) { goto ldv_53626; } else { } ldv_53625: ; } else { } __mptr___1 = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr___1; goto ldv_53636; ldv_53635: ; if (i == rar_entries) { { hash_value = e1000_hash_mc_addr(hw, (u8 *)(& ha->addr)); hash_reg = (hash_value >> 5) & 127U; hash_bit = hash_value & 31U; mta = (u32 )(1 << (int )hash_bit); *(mcarray + (unsigned long )hash_reg) = *(mcarray + (unsigned long )hash_reg) | mta; } } else { { tmp___3 = i; i = i + 1; e1000_rar_set(hw, (u8 *)(& ha->addr), (u32 )tmp___3); } } __mptr___2 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___2; ldv_53636: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_53635; } else { } goto ldv_53639; ldv_53638: { writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(i << 3)))); readl((void const volatile *)hw->hw_addr + 8U); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(((i << 1) + 1) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); i = i + 1; } ldv_53639: ; if (i < rar_entries) { goto ldv_53638; } else { } i = mta_reg_count + -1; goto ldv_53642; ldv_53641: { writel(*(mcarray + (unsigned long )i), (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 20992U : 512U) + (unsigned long )(i << 2)))); i = i - 1; } ldv_53642: ; if (i >= 0) { goto ldv_53641; } else { } { readl((void const volatile *)hw->hw_addr + 8U); } if ((unsigned int )hw->mac_type == 1U) { { e1000_leave_82542_rst(adapter); } } else { } { kfree((void const *)mcarray); } return; } } static void e1000_update_phy_info_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; { { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff5f8UL; e1000_phy_get_info(& adapter->hw, & adapter->phy_info); } return; } } static void e1000_82547_tx_fifo_stall_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct e1000_hw *hw ; struct net_device *netdev ; u32 tctl ; int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; { { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff6d8UL; hw = & adapter->hw; netdev = adapter->netdev; tmp___6 = atomic_read((atomic_t const *)(& adapter->tx_fifo_stall)); } if (tmp___6 != 0) { { tmp___0 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); tmp___1 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); } if (tmp___0 == tmp___1) { { tmp___2 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13336UL : 32792UL))); tmp___3 = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13328UL : 32784UL))); } if (tmp___2 == tmp___3) { { tmp___4 = readl((void const volatile *)hw->hw_addr + 13352U); tmp___5 = readl((void const volatile *)hw->hw_addr + 13344U); } if (tmp___4 == tmp___5) { { tctl = readl((void const volatile *)hw->hw_addr + 1024U); writel(tctl & 4294967293U, (void volatile *)hw->hw_addr + 1024U); writel(adapter->tx_head_addr, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13336UL : 32792UL))); writel(adapter->tx_head_addr, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13328UL : 32784UL))); writel(adapter->tx_head_addr, (void volatile *)hw->hw_addr + 13352U); writel(adapter->tx_head_addr, (void volatile *)hw->hw_addr + 13344U); writel(tctl, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); adapter->tx_fifo_head = 0U; atomic_set(& adapter->tx_fifo_stall, 0); netif_wake_queue(netdev); } } else { goto _L___0; } } else { goto _L___0; } } else { _L___0: /* CIL Label */ { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp == 0) { { schedule_delayed_work(& adapter->fifo_stall_task, 1UL); } } else { } } } else { } return; } } bool e1000_has_link(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; bool link_active ; unsigned int tmp ; { hw = & adapter->hw; link_active = 0; { if ((unsigned int )hw->media_type == 0U) { goto case_0; } else { } if ((unsigned int )hw->media_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->media_type == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )hw->mac_type == 9U) { hw->get_link_status = 1; } else { } if ((int )hw->get_link_status) { { e1000_check_for_link(hw); link_active = (bool )(! ((int )hw->get_link_status != 0)); } } else { link_active = 1; } goto ldv_53665; case_1: /* CIL Label */ { e1000_check_for_link(hw); tmp = readl((void const volatile *)hw->hw_addr + 8U); link_active = (tmp & 2U) != 0U; } goto ldv_53665; case_2: /* CIL Label */ { e1000_check_for_link(hw); link_active = hw->serdes_has_link; } goto ldv_53665; switch_default: /* CIL Label */ ; goto ldv_53665; switch_break: /* CIL Label */ ; } ldv_53665: ; return (link_active); } } static void e1000_watchdog(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct e1000_hw *hw ; struct net_device *netdev ; struct e1000_tx_ring *txdr ; u32 link ; u32 tctl ; bool tmp ; bool tmp___0 ; u32 ctrl ; bool txb2b ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; bool tmp___5 ; bool tmp___6 ; int tmp___7 ; u32 goc ; u32 dif ; u32 itr ; int tmp___8 ; { { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff7b8UL; hw = & adapter->hw; netdev = adapter->netdev; txdr = adapter->tx_ring; tmp = e1000_has_link(adapter); link = (u32 )tmp; tmp___0 = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp___0 && link != 0U) { goto link_up; } else { } if (link != 0U) { { tmp___2 = netif_carrier_ok((struct net_device const *)netdev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { txb2b = 1; e1000_get_speed_and_duplex(hw, & adapter->link_speed, & adapter->link_duplex); ctrl = readl((void const volatile *)hw->hw_addr); printk("\016e1000: %s NIC Link is Up %d Mbps %s, Flow Control: %s\n", (char *)(& netdev->name), (int )adapter->link_speed, (unsigned int )adapter->link_duplex == 2U ? (char *)"Full Duplex" : (char *)"Half Duplex", (ctrl & 402653184U) != 402653184U ? ((ctrl & 134217728U) == 0U ? ((ctrl & 268435456U) != 0U ? (char *)"TX" : (char *)"None") : (char *)"RX") : (char *)"RX/TX"); adapter->tx_timeout_factor = 1U; } { if ((int )adapter->link_speed == 10) { goto case_10; } else { } if ((int )adapter->link_speed == 100) { goto case_100; } else { } goto switch_break; case_10: /* CIL Label */ txb2b = 0; adapter->tx_timeout_factor = 16U; goto ldv_53684; case_100: /* CIL Label */ txb2b = 0; goto ldv_53684; switch_break: /* CIL Label */ ; } ldv_53684: { tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl | 2U; writel(tctl, (void volatile *)hw->hw_addr + 1024U); netif_carrier_on(netdev); tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___1 == 0) { { schedule_delayed_work(& adapter->phy_info_task, 500UL); } } else { } adapter->smartspeed = 0U; } else { } } else { { tmp___5 = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp___5) { { adapter->link_speed = 0U; adapter->link_duplex = 0U; printk("\016e1000: %s NIC Link is Down\n", (char *)(& netdev->name)); netif_carrier_off(netdev); tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___4 == 0) { { schedule_delayed_work(& adapter->phy_info_task, 500UL); } } else { } } else { } { e1000_smartspeed(adapter); } } link_up: { e1000_update_stats(adapter); hw->tx_packet_delta = (u32 )adapter->stats.tpt - (u32 )adapter->tpt_old; adapter->tpt_old = adapter->stats.tpt; hw->collision_delta = (u32 )adapter->stats.colc - (u32 )adapter->colc_old; adapter->colc_old = adapter->stats.colc; adapter->gorcl = (u32 )adapter->stats.gorcl - (u32 )adapter->gorcl_old; adapter->gorcl_old = adapter->stats.gorcl; adapter->gotcl = (u32 )adapter->stats.gotcl - (u32 )adapter->gotcl_old; adapter->gotcl_old = adapter->stats.gotcl; e1000_update_adaptive(hw); tmp___6 = netif_carrier_ok((struct net_device const *)netdev); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { if (((txdr->next_to_clean <= txdr->next_to_use ? txdr->count : 0U) + txdr->next_to_clean) - txdr->next_to_use < txdr->count) { { adapter->tx_timeout_count = adapter->tx_timeout_count + 1U; schedule_work(& adapter->reset_task); } return; } else { } } else { } if ((unsigned int )hw->mac_type > 4U && adapter->itr_setting == 4U) { { goc = (adapter->gotcl + adapter->gorcl) / 10000U; dif = adapter->gotcl > adapter->gorcl ? (adapter->gotcl - adapter->gorcl) / 10000U : (adapter->gorcl - adapter->gotcl) / 10000U; itr = goc != 0U ? (dif * 6000U) / goc + 2000U : 8000U; writel(1000000000U / (itr * 256U), (void volatile *)hw->hw_addr + 196U); } } else { } { writel(16U, (void volatile *)hw->hw_addr + 200U); adapter->detect_tx_hung = 1; tmp___8 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___8 == 0) { { schedule_delayed_work(& adapter->watchdog_task, 500UL); } } else { } return; } } static unsigned int e1000_update_itr(struct e1000_adapter *adapter , u16 itr_setting , int packets , int bytes ) { unsigned int retval ; struct e1000_hw *hw ; long tmp ; { { retval = (unsigned int )itr_setting; hw = & adapter->hw; tmp = ldv__builtin_expect((unsigned int )hw->mac_type <= 4U, 0L); } if (tmp != 0L) { goto update_itr_done; } else { } if (packets == 0) { goto update_itr_done; } else { } { if ((int )itr_setting == 0) { goto case_0; } else { } if ((int )itr_setting == 1) { goto case_1; } else { } if ((int )itr_setting == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ ; if (bytes / packets > 8000) { retval = 2U; } else if (packets <= 4 && bytes > 512) { retval = 1U; } else { } goto ldv_53704; case_1: /* CIL Label */ ; if (bytes > 10000) { if (bytes / packets > 8000) { retval = 2U; } else if (packets <= 9 || bytes / packets > 1200) { retval = 2U; } else if (packets > 35) { retval = 0U; } else { } } else if (bytes / packets > 2000) { retval = 2U; } else if (packets <= 2 && bytes <= 511) { retval = 0U; } else { } goto ldv_53704; case_2: /* CIL Label */ ; if (bytes > 25000) { if (packets > 35) { retval = 1U; } else { } } else if (bytes <= 5999) { retval = 1U; } else { } goto ldv_53704; switch_break: /* CIL Label */ ; } ldv_53704: ; update_itr_done: ; return (retval); } } static void e1000_set_itr(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 current_itr ; u32 new_itr ; long tmp ; long tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; u16 _max1 ; u16 _max2 ; u32 _min1 ; u32 _min2 ; { { hw = & adapter->hw; new_itr = adapter->itr; tmp = ldv__builtin_expect((unsigned int )hw->mac_type <= 4U, 0L); } if (tmp != 0L) { return; } else { } { tmp___0 = ldv__builtin_expect((unsigned int )adapter->link_speed != 1000U, 0L); } if (tmp___0 != 0L) { current_itr = 0U; new_itr = 4000U; goto set_itr_now; } else { } { tmp___1 = e1000_update_itr(adapter, (int )adapter->tx_itr, (int )adapter->total_tx_packets, (int )adapter->total_tx_bytes); adapter->tx_itr = (u16 )tmp___1; } if (adapter->itr_setting == 3U && (unsigned int )adapter->tx_itr == 0U) { adapter->tx_itr = 1U; } else { } { tmp___2 = e1000_update_itr(adapter, (int )adapter->rx_itr, (int )adapter->total_rx_packets, (int )adapter->total_rx_bytes); adapter->rx_itr = (u16 )tmp___2; } if (adapter->itr_setting == 3U && (unsigned int )adapter->rx_itr == 0U) { adapter->rx_itr = 1U; } else { } _max1 = adapter->rx_itr; _max2 = adapter->tx_itr; current_itr = (u16 )((int )_max1 > (int )_max2 ? _max1 : _max2); { if ((int )current_itr == 0) { goto case_0; } else { } if ((int )current_itr == 1) { goto case_1; } else { } if ((int )current_itr == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ new_itr = 70000U; goto ldv_53718; case_1: /* CIL Label */ new_itr = 20000U; goto ldv_53718; case_2: /* CIL Label */ new_itr = 4000U; goto ldv_53718; switch_default: /* CIL Label */ ; goto ldv_53718; switch_break: /* CIL Label */ ; } ldv_53718: ; set_itr_now: ; if (new_itr != adapter->itr) { if (new_itr > adapter->itr) { _min1 = adapter->itr + (new_itr >> 2); _min2 = new_itr; new_itr = _min1 < _min2 ? _min1 : _min2; } else { new_itr = new_itr; } { adapter->itr = new_itr; writel(1000000000U / (new_itr * 256U), (void volatile *)hw->hw_addr + 196U); } } else { } return; } } static int e1000_tso(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , struct sk_buff *skb ) { struct e1000_context_desc *context_desc ; struct e1000_buffer *buffer_info ; unsigned int i ; u32 cmd_length ; u16 ipcse ; u16 tucse ; u16 mss ; u8 ipcss ; u8 ipcso ; u8 tucss ; u8 tucso ; u8 hdr_len ; int err ; int tmp ; int tmp___0 ; unsigned int tmp___1 ; unsigned char *tmp___2 ; struct iphdr *iph ; struct iphdr *tmp___3 ; struct tcphdr *tmp___4 ; __sum16 tmp___5 ; int tmp___6 ; struct ipv6hdr *tmp___7 ; struct tcphdr *tmp___8 ; struct ipv6hdr *tmp___9 ; struct ipv6hdr *tmp___10 ; __sum16 tmp___11 ; int tmp___12 ; struct iphdr *tmp___13 ; int tmp___14 ; struct tcphdr *tmp___15 ; bool tmp___16 ; { { cmd_length = 0U; ipcse = 0U; tmp___16 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___16) { { tmp = skb_header_cloned((struct sk_buff const *)skb); } if (tmp != 0) { { err = ldv_pskb_expand_head_117(skb, 0, 0, 32U); } if (err != 0) { return (err); } else { } } else { } { tmp___0 = skb_transport_offset((struct sk_buff const *)skb); tmp___1 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp___0) + (int )((u8 )tmp___1); tmp___2 = skb_end_pointer((struct sk_buff const *)skb); mss = ((struct skb_shared_info *)tmp___2)->gso_size; } if ((unsigned int )skb->protocol == 8U) { { tmp___3 = ip_hdr((struct sk_buff const *)skb); iph = tmp___3; iph->tot_len = 0U; iph->check = 0U; tmp___4 = tcp_hdr((struct sk_buff const *)skb); tmp___5 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tmp___4->check = ~ ((int )tmp___5); cmd_length = 33554432U; tmp___6 = skb_transport_offset((struct sk_buff const *)skb); ipcse = (unsigned int )((u16 )tmp___6) + 65535U; } } else if ((unsigned int )skb->protocol == 56710U) { { tmp___7 = ipv6_hdr((struct sk_buff const *)skb); tmp___7->payload_len = 0U; tmp___8 = tcp_hdr((struct sk_buff const *)skb); tmp___9 = ipv6_hdr((struct sk_buff const *)skb); tmp___10 = ipv6_hdr((struct sk_buff const *)skb); tmp___11 = csum_ipv6_magic((struct in6_addr const *)(& tmp___10->saddr), (struct in6_addr const *)(& tmp___9->daddr), 0U, 6, 0U); tmp___8->check = ~ ((int )tmp___11); ipcse = 0U; } } else { } { tmp___12 = skb_network_offset((struct sk_buff const *)skb); ipcss = (u8 )tmp___12; tmp___13 = ip_hdr((struct sk_buff const *)skb); ipcso = (int )((u8 )((long )(& tmp___13->check))) - (int )((u8 )((long )skb->data)); tmp___14 = skb_transport_offset((struct sk_buff const *)skb); tucss = (u8 )tmp___14; tmp___15 = tcp_hdr((struct sk_buff const *)skb); tucso = (int )((u8 )((long )(& tmp___15->check))) - (int )((u8 )((long )skb->data)); tucse = 0U; cmd_length = (cmd_length | (skb->len - (unsigned int )hdr_len)) | 620756992U; i = tx_ring->next_to_use; context_desc = (struct e1000_context_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; context_desc->lower_setup.ip_fields.ipcss = ipcss; context_desc->lower_setup.ip_fields.ipcso = ipcso; context_desc->lower_setup.ip_fields.ipcse = ipcse; context_desc->upper_setup.tcp_fields.tucss = tucss; context_desc->upper_setup.tcp_fields.tucso = tucso; context_desc->upper_setup.tcp_fields.tucse = tucse; context_desc->tcp_seg_setup.fields.mss = mss; context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; context_desc->cmd_and_length = cmd_length; buffer_info->time_stamp = jiffies; buffer_info->next_to_watch = (u16 )i; i = i + 1U; } if (i == tx_ring->count) { i = 0U; } else { } tx_ring->next_to_use = i; return (1); } else { } return (0); } } static bool e1000_tx_csum(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , struct sk_buff *skb ) { struct e1000_context_desc *context_desc ; struct e1000_buffer *buffer_info ; unsigned int i ; u8 css ; u32 cmd_len ; struct iphdr *tmp ; struct ipv6hdr *tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { cmd_len = 536870912U; if ((unsigned int )*((unsigned char *)skb + 124UL) != 12U) { return (0); } else { } { if ((int )skb->protocol == 8) { goto case_8; } else { } if ((int )skb->protocol == 56710) { goto case_56710; } else { } goto switch_default; case_8: /* CIL Label */ { tmp = ip_hdr((struct sk_buff const *)skb); } if ((unsigned int )tmp->protocol == 6U) { cmd_len = cmd_len | 16777216U; } else { } goto ldv_53755; case_56710: /* CIL Label */ { tmp___0 = ipv6_hdr((struct sk_buff const *)skb); } if ((unsigned int )tmp___0->nexthdr == 6U) { cmd_len = cmd_len | 16777216U; } else { } goto ldv_53755; switch_default: /* CIL Label */ { tmp___1 = net_ratelimit(); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { if (adapter->msg_enable & 1) { { netdev_warn((struct net_device const *)adapter->netdev, "checksum_partial proto=%x!\n", (int )skb->protocol); } } else { } } else { } goto ldv_53755; switch_break: /* CIL Label */ ; } ldv_53755: { tmp___3 = skb_checksum_start_offset((struct sk_buff const *)skb); css = (u8 )tmp___3; i = tx_ring->next_to_use; buffer_info = tx_ring->buffer_info + (unsigned long )i; context_desc = (struct e1000_context_desc *)tx_ring->desc + (unsigned long )i; context_desc->lower_setup.ip_config = 0U; context_desc->upper_setup.tcp_fields.tucss = css; context_desc->upper_setup.tcp_fields.tucso = (int )css + (int )((u8 )skb->__annonCompField68.__annonCompField67.csum_offset); context_desc->upper_setup.tcp_fields.tucse = 0U; context_desc->tcp_seg_setup.data = 0U; context_desc->cmd_and_length = cmd_len; buffer_info->time_stamp = jiffies; buffer_info->next_to_watch = (u16 )i; i = i + 1U; tmp___4 = ldv__builtin_expect(i == tx_ring->count, 0L); } if (tmp___4 != 0L) { i = 0U; } else { } tx_ring->next_to_use = i; return (1); } } static int e1000_tx_map(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , struct sk_buff *skb , unsigned int first , unsigned int max_per_txd , unsigned int nr_frags , unsigned int mss ) { struct e1000_hw *hw ; struct pci_dev *pdev ; struct e1000_buffer *buffer_info ; unsigned int len ; unsigned int tmp ; unsigned int offset ; unsigned int size ; unsigned int count ; unsigned int i ; unsigned int f ; unsigned int bytecount ; unsigned int segs ; unsigned int _min1 ; unsigned int _min2 ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; int tmp___8 ; long tmp___9 ; struct skb_frag_struct const *frag ; unsigned char *tmp___10 ; unsigned long bufend ; long tmp___11 ; unsigned int _min1___0 ; unsigned int _min2___0 ; long tmp___12 ; long tmp___13 ; int tmp___14 ; long tmp___15 ; struct page *tmp___16 ; long tmp___17 ; long tmp___18 ; int tmp___19 ; unsigned char *tmp___21 ; unsigned char *tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; { { hw = & adapter->hw; pdev = adapter->pdev; tmp = skb_headlen((struct sk_buff const *)skb); len = tmp; offset = 0U; count = 0U; i = tx_ring->next_to_use; } goto ldv_53783; ldv_53782: buffer_info = tx_ring->buffer_info + (unsigned long )i; _min1 = len; _min2 = max_per_txd; size = _min1 < _min2 ? _min1 : _min2; if (skb->data_len == 0U && (int )tx_ring->last_tx_tso) { { tmp___0 = skb_is_gso((struct sk_buff const *)skb); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { tx_ring->last_tx_tso = 0; size = size - 4U; } else { } } else { } { tmp___2 = ldv__builtin_expect((long )(mss != 0U && nr_frags == 0U), 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect((long )(size == len && size > 8U), 0L); } if (tmp___3 != 0L) { size = size - 4U; } else { } } else { } { tmp___4 = ldv__builtin_expect((long )((unsigned int )hw->bus_type == 2U && size > 2015U), 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect(count == 0U, 0L); } if (tmp___5 != 0L) { size = 2015U; } else { } } else { } { tmp___6 = ldv__builtin_expect((long )adapter->pcix_82544, 0L); } if (tmp___6 != 0L) { { tmp___7 = ldv__builtin_expect((long )(((unsigned long )(skb->data + (((unsigned long )offset + (unsigned long )size) + 0xffffffffffffffffUL)) & 4UL) == 0UL && size > 4U), 0L); } if (tmp___7 != 0L) { size = size - 4U; } else { } } else { } { buffer_info->length = (u16 )size; buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = 0U; buffer_info->dma = dma_map_single_attrs(& pdev->dev, (void *)skb->data + (unsigned long )offset, (size_t )size, 1, (struct dma_attrs *)0); tmp___8 = dma_mapping_error(& pdev->dev, buffer_info->dma); } if (tmp___8 != 0) { goto dma_error; } else { } buffer_info->next_to_watch = (u16 )i; len = len - size; offset = offset + size; count = count + 1U; if (len != 0U) { { i = i + 1U; tmp___9 = ldv__builtin_expect(i == tx_ring->count, 0L); } if (tmp___9 != 0L) { i = 0U; } else { } } else { } ldv_53783: ; if (len != 0U) { goto ldv_53782; } else { } f = 0U; goto ldv_53794; ldv_53793: { tmp___10 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct const *)(& ((struct skb_shared_info *)tmp___10)->frags) + (unsigned long )f; len = skb_frag_size(frag); offset = 0U; } goto ldv_53791; ldv_53790: { i = i + 1U; tmp___11 = ldv__builtin_expect(i == tx_ring->count, 0L); } if (tmp___11 != 0L) { i = 0U; } else { } { buffer_info = tx_ring->buffer_info + (unsigned long )i; _min1___0 = len; _min2___0 = max_per_txd; size = _min1___0 < _min2___0 ? _min1___0 : _min2___0; tmp___12 = ldv__builtin_expect(mss != 0U, 0L); } if (tmp___12 != 0L) { { tmp___13 = ldv__builtin_expect((long )(f == nr_frags - 1U && size == len), 0L); } if (tmp___13 != 0L) { tmp___14 = 1; } else { tmp___14 = 0; } } else { tmp___14 = 0; } if (tmp___14 != 0) { { tmp___15 = ldv__builtin_expect(size > 8U, 0L); } if (tmp___15 != 0L) { size = size - 4U; } else { } } else { } { tmp___16 = skb_frag_page(frag); bufend = (unsigned long )((unsigned long long )(((long )tmp___16 + 24189255811072L) / 64L) << 12); bufend = bufend + (unsigned long )((offset + size) - 1U); tmp___17 = ldv__builtin_expect((long )adapter->pcix_82544, 0L); } if (tmp___17 != 0L) { { tmp___18 = ldv__builtin_expect((long )((bufend & 4UL) == 0UL && size > 4U), 0L); } if (tmp___18 != 0L) { size = size - 4U; } else { } } else { } { buffer_info->length = (u16 )size; buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = 1U; buffer_info->dma = skb_frag_dma_map(& pdev->dev, frag, (size_t )offset, (size_t )size, 1); tmp___19 = dma_mapping_error(& pdev->dev, buffer_info->dma); } if (tmp___19 != 0) { goto dma_error; } else { } buffer_info->next_to_watch = (u16 )i; len = len - size; offset = offset + size; count = count + 1U; ldv_53791: ; if (len != 0U) { goto ldv_53790; } else { } f = f + 1U; ldv_53794: ; if (f < nr_frags) { goto ldv_53793; } else { } { tmp___22 = skb_end_pointer((struct sk_buff const *)skb); } if ((int )((struct skb_shared_info *)tmp___22)->gso_segs != 0) { { tmp___21 = skb_end_pointer((struct sk_buff const *)skb); segs = (unsigned int )((int )((struct skb_shared_info *)tmp___21)->gso_segs); } } else { segs = 1U; } { tmp___23 = skb_headlen((struct sk_buff const *)skb); bytecount = (segs - 1U) * tmp___23 + skb->len; (tx_ring->buffer_info + (unsigned long )i)->skb = skb; (tx_ring->buffer_info + (unsigned long )i)->segs = segs; (tx_ring->buffer_info + (unsigned long )i)->bytecount = bytecount; (tx_ring->buffer_info + (unsigned long )first)->next_to_watch = (u16 )i; } return ((int )count); dma_error: { dev_err((struct device const *)(& pdev->dev), "TX DMA map failed\n"); buffer_info->dma = 0ULL; } if (count != 0U) { count = count - 1U; } else { } goto ldv_53797; ldv_53796: ; if (i == 0U) { i = i + tx_ring->count; } else { } { i = i - 1U; buffer_info = tx_ring->buffer_info + (unsigned long )i; e1000_unmap_and_free_tx_resource(adapter, buffer_info); } ldv_53797: tmp___24 = count; count = count - 1U; if (tmp___24 != 0U) { goto ldv_53796; } else { } return (0); } } static void e1000_tx_queue(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring , int tx_flags , int count ) { struct e1000_hw *hw ; struct e1000_tx_desc *tx_desc ; struct e1000_buffer *buffer_info ; u32 txd_upper ; u32 txd_lower ; unsigned int i ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; { { hw = & adapter->hw; tx_desc = (struct e1000_tx_desc *)0; txd_upper = 0U; txd_lower = 33554432U; tmp___0 = ldv__builtin_expect((tx_flags & 4) != 0, 1L); } if (tmp___0 != 0L) { { txd_lower = txd_lower | 605028352U; txd_upper = txd_upper | 512U; tmp = ldv__builtin_expect((tx_flags & 8) != 0, 1L); } if (tmp != 0L) { txd_upper = txd_upper | 256U; } else { } } else { } { tmp___1 = ldv__builtin_expect((long )tx_flags & 1L, 1L); } if (tmp___1 != 0L) { txd_lower = txd_lower | 537919488U; txd_upper = txd_upper | 512U; } else { } { tmp___2 = ldv__builtin_expect((tx_flags & 2) != 0, 0L); } if (tmp___2 != 0L) { txd_lower = txd_lower | 1073741824U; txd_upper = txd_upper | ((u32 )tx_flags & 4294901760U); } else { } { tmp___3 = ldv__builtin_expect((tx_flags & 16) != 0, 0L); } if (tmp___3 != 0L) { txd_lower = txd_lower & 4261412863U; } else { } i = tx_ring->next_to_use; goto ldv_53812; ldv_53811: { buffer_info = tx_ring->buffer_info + (unsigned long )i; tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; tx_desc->buffer_addr = buffer_info->dma; tx_desc->lower.data = txd_lower | (u32 )buffer_info->length; tx_desc->upper.data = txd_upper; i = i + 1U; tmp___4 = ldv__builtin_expect(i == tx_ring->count, 0L); } if (tmp___4 != 0L) { i = 0U; } else { } ldv_53812: tmp___5 = count; count = count - 1; if (tmp___5 != 0) { goto ldv_53811; } else { } { tx_desc->lower.data = tx_desc->lower.data | adapter->txd_cmd; tmp___6 = ldv__builtin_expect((tx_flags & 16) != 0, 0L); } if (tmp___6 != 0L) { tx_desc->lower.data = tx_desc->lower.data & 4261412863U; } else { } { __asm__ volatile ("sfence": : : "memory"); tx_ring->next_to_use = i; writel(i, (void volatile *)hw->hw_addr + (unsigned long )tx_ring->tdt); __asm__ volatile ("": : : "memory"); } return; } } static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter , struct sk_buff *skb ) { u32 fifo_space ; u32 skb_fifo_len ; int tmp ; { fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; skb_fifo_len = skb->len + 16U; skb_fifo_len = (skb_fifo_len + 15U) & 4294967280U; if ((unsigned int )adapter->link_duplex != 1U) { goto no_fifo_stall_required; } else { } { tmp = atomic_read((atomic_t const *)(& adapter->tx_fifo_stall)); } if (tmp != 0) { return (1); } else { } if (skb_fifo_len >= fifo_space + 992U) { { atomic_set(& adapter->tx_fifo_stall, 1); } return (1); } else { } no_fifo_stall_required: adapter->tx_fifo_head = adapter->tx_fifo_head + skb_fifo_len; if (adapter->tx_fifo_head >= adapter->tx_fifo_size) { adapter->tx_fifo_head = adapter->tx_fifo_head - adapter->tx_fifo_size; } else { } return (0); } } static int __e1000_maybe_stop_tx(struct net_device *netdev , int size ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_tx_ring *tx_ring ; long tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tx_ring = adapter->tx_ring; netif_stop_queue(netdev); __asm__ volatile ("mfence": : : "memory"); tmp___0 = ldv__builtin_expect((((tx_ring->next_to_clean <= tx_ring->next_to_use ? tx_ring->count : 0U) + tx_ring->next_to_clean) - tx_ring->next_to_use) - 1U < (unsigned int )size, 1L); } if (tmp___0 != 0L) { return (-16); } else { } { netif_start_queue(netdev); adapter->restart_queue = adapter->restart_queue + 1U; } return (0); } } static int e1000_maybe_stop_tx(struct net_device *netdev , struct e1000_tx_ring *tx_ring , int size ) { long tmp ; int tmp___0 ; { { tmp = ldv__builtin_expect((((tx_ring->next_to_clean <= tx_ring->next_to_use ? tx_ring->count : 0U) + tx_ring->next_to_clean) - tx_ring->next_to_use) - 1U >= (unsigned int )size, 1L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = __e1000_maybe_stop_tx(netdev, size); } return (tmp___0); } } static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct e1000_tx_ring *tx_ring ; unsigned int first ; unsigned int max_per_txd ; unsigned int max_txd_pwr ; unsigned int tx_flags ; unsigned int len ; unsigned int tmp___0 ; unsigned int nr_frags ; unsigned int mss ; int count ; int tso ; unsigned int f ; long tmp___1 ; int tmp___2 ; unsigned char *tmp___3 ; u8 hdr_len ; unsigned int _min1 ; unsigned int _min2 ; int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; unsigned int pull_size ; unsigned char *tmp___7 ; unsigned int _min1___0 ; unsigned int _min2___0 ; unsigned char *tmp___8 ; bool tmp___9 ; int tmp___10 ; long tmp___11 ; unsigned char *tmp___12 ; unsigned char *tmp___13 ; unsigned int tmp___14 ; int tmp___15 ; long tmp___16 ; int tmp___17 ; long tmp___18 ; int tmp___19 ; long tmp___20 ; long tmp___21 ; bool tmp___22 ; long tmp___23 ; long tmp___24 ; long tmp___25 ; long tmp___26 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; max_per_txd = 4096U; max_txd_pwr = 12U; tx_flags = 0U; tmp___0 = skb_headlen((struct sk_buff const *)skb); len = tmp___0; count = 0; tx_ring = adapter->tx_ring; tmp___1 = ldv__builtin_expect(skb->len == 0U, 0L); } if (tmp___1 != 0L) { { dev_kfree_skb_any(skb); } return (0); } else { } if (skb->len <= 59U) { { tmp___2 = skb_pad(skb, (int )(60U - skb->len)); } if (tmp___2 != 0) { return (0); } else { } { skb->len = 60U; skb_set_tail_pointer(skb, 60); } } else { } { tmp___3 = skb_end_pointer((struct sk_buff const *)skb); mss = (unsigned int )((struct skb_shared_info *)tmp___3)->gso_size; } if (mss != 0U) { { _min1 = mss << 2; _min2 = max_per_txd; max_per_txd = _min1 < _min2 ? _min1 : _min2; tmp___4 = fls((int )max_per_txd); max_txd_pwr = (unsigned int )(tmp___4 + -1); tmp___5 = skb_transport_offset((struct sk_buff const *)skb); tmp___6 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp___5) + (int )((u8 )tmp___6); } if (skb->data_len != 0U && (unsigned int )hdr_len == len) { { if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } goto switch_default; case_4: /* CIL Label */ { tmp___7 = skb_tail_pointer((struct sk_buff const *)skb); } if (((unsigned long )(tmp___7 + 0xffffffffffffffffUL) & 4UL) != 0UL) { goto ldv_53855; } else { } { _min1___0 = 4U; _min2___0 = skb->data_len; pull_size = _min1___0 < _min2___0 ? _min1___0 : _min2___0; tmp___8 = __pskb_pull_tail(skb, (int )pull_size); } if ((unsigned long )tmp___8 == (unsigned long )((unsigned char *)0U)) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "__pskb_pull_tail failed.\n"); } } else { } { dev_kfree_skb_any(skb); } return (0); } else { } { len = skb_headlen((struct sk_buff const *)skb); } goto ldv_53855; switch_default: /* CIL Label */ ; goto ldv_53855; switch_break: /* CIL Label */ ; } ldv_53855: ; } else { } } else { } if (mss != 0U || (unsigned int )*((unsigned char *)skb + 124UL) == 12U) { count = count + 1; } else { } count = count + 1; if (skb->data_len == 0U && (int )tx_ring->last_tx_tso) { { tmp___9 = skb_is_gso((struct sk_buff const *)skb); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { count = count + 1; } else { } } else { } count = (int )(((unsigned int )count + (len >> (int )max_txd_pwr)) + 1U); if ((int )adapter->pcix_82544) { count = count + 1; } else { } { tmp___11 = ldv__builtin_expect((long )((unsigned int )hw->bus_type == 2U && len > 2015U), 0L); } if (tmp___11 != 0L) { count = count + 1; } else { } { tmp___12 = skb_end_pointer((struct sk_buff const *)skb); nr_frags = (unsigned int )((struct skb_shared_info *)tmp___12)->nr_frags; f = 0U; } goto ldv_53861; ldv_53860: { tmp___13 = skb_end_pointer((struct sk_buff const *)skb); tmp___14 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___13)->frags) + (unsigned long )f); count = (int )(((unsigned int )count + (tmp___14 >> (int )max_txd_pwr)) + 1U); f = f + 1U; } ldv_53861: ; if (f < nr_frags) { goto ldv_53860; } else { } if ((int )adapter->pcix_82544) { count = (int )((unsigned int )count + nr_frags); } else { } { tmp___15 = e1000_maybe_stop_tx(netdev, tx_ring, count + 2); tmp___16 = ldv__builtin_expect(tmp___15 != 0, 0L); } if (tmp___16 != 0L) { return (16); } else { } { tmp___18 = ldv__builtin_expect((unsigned int )hw->mac_type == 13U, 0L); } if (tmp___18 != 0L) { { tmp___19 = e1000_82547_fifo_workaround(adapter, skb); tmp___20 = ldv__builtin_expect(tmp___19 != 0, 0L); } if (tmp___20 != 0L) { { netif_stop_queue(netdev); tmp___17 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___17 == 0) { { schedule_delayed_work(& adapter->fifo_stall_task, 1UL); } } else { } return (16); } else { } } else { } if (((int )skb->vlan_tci & 4096) != 0) { tx_flags = tx_flags | 2U; tx_flags = tx_flags | (unsigned int )(((int )skb->vlan_tci & -4097) << 16); } else { } { first = tx_ring->next_to_use; tso = e1000_tso(adapter, tx_ring, skb); } if (tso < 0) { { dev_kfree_skb_any(skb); } return (0); } else { } { tmp___24 = ldv__builtin_expect(tso != 0, 1L); } if (tmp___24 != 0L) { { tmp___21 = ldv__builtin_expect((unsigned int )hw->mac_type != 4U, 1L); } if (tmp___21 != 0L) { tx_ring->last_tx_tso = 1; } else { } tx_flags = tx_flags | 4U; } else { { tmp___22 = e1000_tx_csum(adapter, tx_ring, skb); tmp___23 = ldv__builtin_expect((long )tmp___22, 1L); } if (tmp___23 != 0L) { tx_flags = tx_flags | 1U; } else { } } { tmp___25 = ldv__builtin_expect((unsigned int )skb->protocol == 8U, 1L); } if (tmp___25 != 0L) { tx_flags = tx_flags | 8U; } else { } { tmp___26 = ldv__builtin_expect((int )((signed char )*((unsigned char *)skb + 170UL)) < 0, 0L); } if (tmp___26 != 0L) { tx_flags = tx_flags | 16U; } else { } { count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, nr_frags, mss); } if (count != 0) { { netdev_sent_queue(netdev, skb->len); skb_tx_timestamp(skb); e1000_tx_queue(adapter, tx_ring, (int )tx_flags, count); e1000_maybe_stop_tx(netdev, tx_ring, 19); } } else { { dev_kfree_skb_any(skb); (tx_ring->buffer_info + (unsigned long )first)->time_stamp = 0UL; tx_ring->next_to_use = first; } } return (0); } } static void e1000_regdump(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 regs[38U] ; u32 *regs_buff ; int i ; char const *reg_name[38U] ; { { hw = & adapter->hw; regs_buff = (u32 *)(& regs); i = 0; reg_name[0] = "CTRL"; reg_name[1] = "STATUS"; reg_name[2] = "RCTL"; reg_name[3] = "RDLEN"; reg_name[4] = "RDH"; reg_name[5] = "RDT"; reg_name[6] = "RDTR"; reg_name[7] = "TCTL"; reg_name[8] = "TDBAL"; reg_name[9] = "TDBAH"; reg_name[10] = "TDLEN"; reg_name[11] = "TDH"; reg_name[12] = "TDT"; reg_name[13] = "TIDV"; reg_name[14] = "TXDCTL"; reg_name[15] = "TADV"; reg_name[16] = "TARC0"; reg_name[17] = "TDBAL1"; reg_name[18] = "TDBAH1"; reg_name[19] = "TDLEN1"; reg_name[20] = "TDH1"; reg_name[21] = "TDT1"; reg_name[22] = "TXDCTL1"; reg_name[23] = "TARC1"; reg_name[24] = "CTRL_EXT"; reg_name[25] = "ERT"; reg_name[26] = "RDBAL"; reg_name[27] = "RDBAH"; reg_name[28] = "TDFH"; reg_name[29] = "TDFT"; reg_name[30] = "TDFHS"; reg_name[31] = "TDFTS"; reg_name[32] = "TDFPC"; reg_name[33] = "RDFH"; reg_name[34] = "RDFT"; reg_name[35] = "RDFHS"; reg_name[36] = "RDFTS"; reg_name[37] = "RDFPC"; *regs_buff = readl((void const volatile *)hw->hw_addr); *(regs_buff + 1UL) = readl((void const volatile *)hw->hw_addr + 8U); *(regs_buff + 2UL) = readl((void const volatile *)hw->hw_addr + 256U); *(regs_buff + 3UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); *(regs_buff + 4UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); *(regs_buff + 5UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); *(regs_buff + 6UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10272UL : 264UL))); *(regs_buff + 7UL) = readl((void const volatile *)hw->hw_addr + 1024U); *(regs_buff + 8UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14336UL : 1056UL))); *(regs_buff + 9UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14340UL : 1060UL))); *(regs_buff + 10UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); *(regs_buff + 11UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); *(regs_buff + 12UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); *(regs_buff + 13UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14368UL : 1088UL))); *(regs_buff + 14UL) = readl((void const volatile *)hw->hw_addr + 14376U); *(regs_buff + 15UL) = readl((void const volatile *)hw->hw_addr + 14380U); *(regs_buff + 16UL) = readl((void const volatile *)hw->hw_addr + 14400U); *(regs_buff + 17UL) = readl((void const volatile *)hw->hw_addr + 14592U); *(regs_buff + 18UL) = readl((void const volatile *)hw->hw_addr + 14596U); *(regs_buff + 19UL) = readl((void const volatile *)hw->hw_addr + 14600U); *(regs_buff + 20UL) = readl((void const volatile *)hw->hw_addr + 14608U); *(regs_buff + 21UL) = readl((void const volatile *)hw->hw_addr + 14616U); *(regs_buff + 22UL) = readl((void const volatile *)hw->hw_addr + 14632U); *(regs_buff + 23UL) = readl((void const volatile *)hw->hw_addr + 14656U); *(regs_buff + 24UL) = readl((void const volatile *)hw->hw_addr + 24U); *(regs_buff + 25UL) = readl((void const volatile *)hw->hw_addr + 8200U); *(regs_buff + 26UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10240UL : 272UL))); *(regs_buff + 27UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10244UL : 276UL))); *(regs_buff + 28UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13328UL : 32784UL))); *(regs_buff + 29UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 13336UL : 32792UL))); *(regs_buff + 30UL) = readl((void const volatile *)hw->hw_addr + 13344U); *(regs_buff + 31UL) = readl((void const volatile *)hw->hw_addr + 13352U); *(regs_buff + 32UL) = readl((void const volatile *)hw->hw_addr + 13360U); *(regs_buff + 33UL) = readl((void const volatile *)hw->hw_addr + 9232U); *(regs_buff + 34UL) = readl((void const volatile *)hw->hw_addr + 9240U); *(regs_buff + 35UL) = readl((void const volatile *)hw->hw_addr + 9248U); *(regs_buff + 36UL) = readl((void const volatile *)hw->hw_addr + 9256U); *(regs_buff + 37UL) = readl((void const volatile *)hw->hw_addr + 9264U); printk("\016e1000: Register dump\n"); i = 0; } goto ldv_53872; ldv_53871: { printk("\016e1000: %-15s %08x\n", reg_name[i], *(regs_buff + (unsigned long )i)); i = i + 1; } ldv_53872: ; if (i <= 37) { goto ldv_53871; } else { } return; } } static void e1000_dump(struct e1000_adapter *adapter ) { struct e1000_tx_ring *tx_ring ; struct e1000_rx_ring *rx_ring ; int i ; struct e1000_tx_desc *tx_desc ; struct e1000_buffer *buffer_info ; struct my_u *u ; char const *type ; struct e1000_rx_desc *rx_desc ; struct e1000_buffer *buffer_info___0 ; struct my_u___0 *u___0 ; char const *type___0 ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; { tx_ring = adapter->tx_ring; rx_ring = adapter->rx_ring; if ((adapter->msg_enable & 8192) == 0) { return; } else { } { e1000_regdump(adapter); printk("\016e1000: TX Desc ring0 dump\n"); printk("\016e1000: Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); printk("\016e1000: Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); } if ((adapter->msg_enable & 1024) == 0) { goto rx_ring_summary; } else { } i = 0; goto ldv_53889; ldv_53888: tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; u = (struct my_u *)tx_desc; if ((unsigned int )i == tx_ring->next_to_use && (unsigned int )i == tx_ring->next_to_clean) { type = "NTC/U"; } else if ((unsigned int )i == tx_ring->next_to_use) { type = "NTU"; } else if ((unsigned int )i == tx_ring->next_to_clean) { type = "NTC"; } else { type = ""; } { printk("\016e1000: T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", (u->b & 1048576ULL) != 0ULL ? 100 : 99, i, u->a, u->b, buffer_info->dma, (int )buffer_info->length, (int )buffer_info->next_to_watch, (unsigned long long )buffer_info->time_stamp, buffer_info->skb, type); i = i + 1; } ldv_53889: ; if ((unsigned long )tx_ring->desc != (unsigned long )((void *)0) && (unsigned int )i < tx_ring->count) { goto ldv_53888; } else { } rx_ring_summary: { printk("\016e1000: \nRX Desc ring dump\n"); printk("\016e1000: R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); } if ((adapter->msg_enable & 2048) == 0) { goto exit; } else { } i = 0; goto ldv_53900; ldv_53899: rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; buffer_info___0 = rx_ring->buffer_info + (unsigned long )i; u___0 = (struct my_u___0 *)rx_desc; if ((unsigned int )i == rx_ring->next_to_use) { type___0 = "NTU"; } else if ((unsigned int )i == rx_ring->next_to_clean) { type___0 = "NTC"; } else { type___0 = ""; } { printk("\016e1000: R[0x%03X] %016llX %016llX %016llX %p %s\n", i, u___0->a, u___0->b, buffer_info___0->dma, buffer_info___0->skb, type___0); i = i + 1; } ldv_53900: ; if ((unsigned long )rx_ring->desc != (unsigned long )((void *)0) && (unsigned int )i < rx_ring->count) { goto ldv_53899; } else { } { printk("\016e1000: Rx descriptor cache in 64bit format\n"); i = 24576; } goto ldv_53903; ldv_53902: { tmp = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 8UL))); tmp___0 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 12UL))); tmp___1 = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )i); tmp___2 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 4UL))); printk("\016e1000: R%04X: %08X|%08X %08X|%08X\n", i, tmp___2, tmp___1, tmp___0, tmp); i = i + 16; } ldv_53903: ; if (i <= 25599) { goto ldv_53902; } else { } { printk("\016e1000: Tx descriptor cache in 64bit format\n"); i = 28672; } goto ldv_53906; ldv_53905: { tmp___3 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 8UL))); tmp___4 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 12UL))); tmp___5 = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )i); tmp___6 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )i + 4UL))); printk("\016e1000: T%04X: %08X|%08X %08X|%08X\n", i, tmp___6, tmp___5, tmp___4, tmp___3); i = i + 16; } ldv_53906: ; if (i <= 29695) { goto ldv_53905; } else { } exit: ; return; } } static void e1000_tx_timeout(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; adapter->tx_timeout_count = adapter->tx_timeout_count + 1U; schedule_work(& adapter->reset_task); } return; } } static void e1000_reset_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffff808UL; if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "Reset adapter\n"); } } else { } { e1000_reinit_locked(adapter); } return; } } static struct net_device_stats *e1000_get_stats(struct net_device *netdev ) { { return (& netdev->stats); } } static int e1000_change_mtu(struct net_device *netdev , int new_mtu ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int max_frame ; int tmp___0 ; bool tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; max_frame = new_mtu + 18; } if ((unsigned int )max_frame - 64U > 16064U) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Invalid MTU setting\n"); } } else { } return (-22); } else { } { if (((unsigned int )hw->mac_type == 2U || (unsigned int )hw->mac_type == 1U) || (unsigned int )hw->mac_type == 0U) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ case_1: /* CIL Label */ case_0: /* CIL Label */ ; if (max_frame > 1518) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Jumbo Frames not supported.\n"); } } else { } return (-22); } else { } goto ldv_53929; switch_default: /* CIL Label */ ; goto ldv_53929; switch_break: /* CIL Label */ ; } ldv_53929: ; goto ldv_53932; ldv_53931: { msleep(1U); } ldv_53932: { tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_53931; } else { } { hw->max_frame_size = (u32 )max_frame; tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { e1000_down(adapter); } } else { } if (max_frame <= 2048) { adapter->rx_buffer_len = 2048U; } else { adapter->rx_buffer_len = 4096U; } if (! hw->tbi_compatibility_on && (max_frame == 1518 || max_frame == 1522)) { adapter->rx_buffer_len = 1522U; } else { } { printk("\016e1000: %s changing MTU from %d to %d\n", (char *)(& netdev->name), netdev->mtu, new_mtu); netdev->mtu = (unsigned int )new_mtu; tmp___2 = netif_running((struct net_device const *)netdev); } if ((int )tmp___2) { { e1000_up(adapter); } } else { { e1000_reset(adapter); } } { clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); } return (0); } } void e1000_update_stats(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct e1000_hw *hw ; struct pci_dev *pdev ; unsigned long flags ; u16 phy_tmp ; int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; unsigned int tmp___21 ; unsigned int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; unsigned int tmp___25 ; unsigned int tmp___26 ; unsigned int tmp___27 ; unsigned int tmp___28 ; unsigned int tmp___29 ; unsigned int tmp___30 ; unsigned int tmp___31 ; unsigned int tmp___32 ; unsigned int tmp___33 ; unsigned int tmp___34 ; unsigned int tmp___35 ; unsigned int tmp___36 ; unsigned int tmp___37 ; unsigned int tmp___38 ; unsigned int tmp___39 ; unsigned int tmp___40 ; unsigned int tmp___41 ; unsigned int tmp___42 ; unsigned int tmp___43 ; unsigned int tmp___44 ; unsigned int tmp___45 ; unsigned int tmp___46 ; unsigned int tmp___47 ; unsigned int tmp___48 ; unsigned int tmp___49 ; unsigned int tmp___50 ; unsigned int tmp___51 ; unsigned int tmp___52 ; s32 tmp___53 ; s32 tmp___54 ; unsigned int tmp___55 ; unsigned int tmp___56 ; unsigned int tmp___57 ; { netdev = adapter->netdev; hw = & adapter->hw; pdev = adapter->pdev; if ((unsigned int )adapter->link_speed == 0U) { return; } else { } { tmp = pci_channel_offline(pdev); } if (tmp != 0) { return; } else { } { ldv___ldv_spin_lock_118(& adapter->stats_lock); tmp___0 = readl((void const volatile *)hw->hw_addr + 16384U); adapter->stats.crcerrs = adapter->stats.crcerrs + (u64 )tmp___0; tmp___1 = readl((void const volatile *)hw->hw_addr + 16500U); adapter->stats.gprc = adapter->stats.gprc + (u64 )tmp___1; tmp___2 = readl((void const volatile *)hw->hw_addr + 16520U); adapter->stats.gorcl = adapter->stats.gorcl + (u64 )tmp___2; tmp___3 = readl((void const volatile *)hw->hw_addr + 16524U); adapter->stats.gorch = adapter->stats.gorch + (u64 )tmp___3; tmp___4 = readl((void const volatile *)hw->hw_addr + 16504U); adapter->stats.bprc = adapter->stats.bprc + (u64 )tmp___4; tmp___5 = readl((void const volatile *)hw->hw_addr + 16508U); adapter->stats.mprc = adapter->stats.mprc + (u64 )tmp___5; tmp___6 = readl((void const volatile *)hw->hw_addr + 16556U); adapter->stats.roc = adapter->stats.roc + (u64 )tmp___6; tmp___7 = readl((void const volatile *)hw->hw_addr + 16476U); adapter->stats.prc64 = adapter->stats.prc64 + (u64 )tmp___7; tmp___8 = readl((void const volatile *)hw->hw_addr + 16480U); adapter->stats.prc127 = adapter->stats.prc127 + (u64 )tmp___8; tmp___9 = readl((void const volatile *)hw->hw_addr + 16484U); adapter->stats.prc255 = adapter->stats.prc255 + (u64 )tmp___9; tmp___10 = readl((void const volatile *)hw->hw_addr + 16488U); adapter->stats.prc511 = adapter->stats.prc511 + (u64 )tmp___10; tmp___11 = readl((void const volatile *)hw->hw_addr + 16492U); adapter->stats.prc1023 = adapter->stats.prc1023 + (u64 )tmp___11; tmp___12 = readl((void const volatile *)hw->hw_addr + 16496U); adapter->stats.prc1522 = adapter->stats.prc1522 + (u64 )tmp___12; tmp___13 = readl((void const volatile *)hw->hw_addr + 16392U); adapter->stats.symerrs = adapter->stats.symerrs + (u64 )tmp___13; tmp___14 = readl((void const volatile *)hw->hw_addr + 16400U); adapter->stats.mpc = adapter->stats.mpc + (u64 )tmp___14; tmp___15 = readl((void const volatile *)hw->hw_addr + 16404U); adapter->stats.scc = adapter->stats.scc + (u64 )tmp___15; tmp___16 = readl((void const volatile *)hw->hw_addr + 16408U); adapter->stats.ecol = adapter->stats.ecol + (u64 )tmp___16; tmp___17 = readl((void const volatile *)hw->hw_addr + 16412U); adapter->stats.mcc = adapter->stats.mcc + (u64 )tmp___17; tmp___18 = readl((void const volatile *)hw->hw_addr + 16416U); adapter->stats.latecol = adapter->stats.latecol + (u64 )tmp___18; tmp___19 = readl((void const volatile *)hw->hw_addr + 16432U); adapter->stats.dc = adapter->stats.dc + (u64 )tmp___19; tmp___20 = readl((void const volatile *)hw->hw_addr + 16440U); adapter->stats.sec = adapter->stats.sec + (u64 )tmp___20; tmp___21 = readl((void const volatile *)hw->hw_addr + 16448U); adapter->stats.rlec = adapter->stats.rlec + (u64 )tmp___21; tmp___22 = readl((void const volatile *)hw->hw_addr + 16456U); adapter->stats.xonrxc = adapter->stats.xonrxc + (u64 )tmp___22; tmp___23 = readl((void const volatile *)hw->hw_addr + 16460U); adapter->stats.xontxc = adapter->stats.xontxc + (u64 )tmp___23; tmp___24 = readl((void const volatile *)hw->hw_addr + 16464U); adapter->stats.xoffrxc = adapter->stats.xoffrxc + (u64 )tmp___24; tmp___25 = readl((void const volatile *)hw->hw_addr + 16468U); adapter->stats.xofftxc = adapter->stats.xofftxc + (u64 )tmp___25; tmp___26 = readl((void const volatile *)hw->hw_addr + 16472U); adapter->stats.fcruc = adapter->stats.fcruc + (u64 )tmp___26; tmp___27 = readl((void const volatile *)hw->hw_addr + 16512U); adapter->stats.gptc = adapter->stats.gptc + (u64 )tmp___27; tmp___28 = readl((void const volatile *)hw->hw_addr + 16528U); adapter->stats.gotcl = adapter->stats.gotcl + (u64 )tmp___28; tmp___29 = readl((void const volatile *)hw->hw_addr + 16532U); adapter->stats.gotch = adapter->stats.gotch + (u64 )tmp___29; tmp___30 = readl((void const volatile *)hw->hw_addr + 16544U); adapter->stats.rnbc = adapter->stats.rnbc + (u64 )tmp___30; tmp___31 = readl((void const volatile *)hw->hw_addr + 16548U); adapter->stats.ruc = adapter->stats.ruc + (u64 )tmp___31; tmp___32 = readl((void const volatile *)hw->hw_addr + 16552U); adapter->stats.rfc = adapter->stats.rfc + (u64 )tmp___32; tmp___33 = readl((void const volatile *)hw->hw_addr + 16560U); adapter->stats.rjc = adapter->stats.rjc + (u64 )tmp___33; tmp___34 = readl((void const volatile *)hw->hw_addr + 16576U); adapter->stats.torl = adapter->stats.torl + (u64 )tmp___34; tmp___35 = readl((void const volatile *)hw->hw_addr + 16580U); adapter->stats.torh = adapter->stats.torh + (u64 )tmp___35; tmp___36 = readl((void const volatile *)hw->hw_addr + 16584U); adapter->stats.totl = adapter->stats.totl + (u64 )tmp___36; tmp___37 = readl((void const volatile *)hw->hw_addr + 16588U); adapter->stats.toth = adapter->stats.toth + (u64 )tmp___37; tmp___38 = readl((void const volatile *)hw->hw_addr + 16592U); adapter->stats.tpr = adapter->stats.tpr + (u64 )tmp___38; tmp___39 = readl((void const volatile *)hw->hw_addr + 16600U); adapter->stats.ptc64 = adapter->stats.ptc64 + (u64 )tmp___39; tmp___40 = readl((void const volatile *)hw->hw_addr + 16604U); adapter->stats.ptc127 = adapter->stats.ptc127 + (u64 )tmp___40; tmp___41 = readl((void const volatile *)hw->hw_addr + 16608U); adapter->stats.ptc255 = adapter->stats.ptc255 + (u64 )tmp___41; tmp___42 = readl((void const volatile *)hw->hw_addr + 16612U); adapter->stats.ptc511 = adapter->stats.ptc511 + (u64 )tmp___42; tmp___43 = readl((void const volatile *)hw->hw_addr + 16616U); adapter->stats.ptc1023 = adapter->stats.ptc1023 + (u64 )tmp___43; tmp___44 = readl((void const volatile *)hw->hw_addr + 16620U); adapter->stats.ptc1522 = adapter->stats.ptc1522 + (u64 )tmp___44; tmp___45 = readl((void const volatile *)hw->hw_addr + 16624U); adapter->stats.mptc = adapter->stats.mptc + (u64 )tmp___45; tmp___46 = readl((void const volatile *)hw->hw_addr + 16628U); adapter->stats.bptc = adapter->stats.bptc + (u64 )tmp___46; hw->tx_packet_delta = readl((void const volatile *)hw->hw_addr + 16596U); adapter->stats.tpt = adapter->stats.tpt + (u64 )hw->tx_packet_delta; hw->collision_delta = readl((void const volatile *)hw->hw_addr + 16424U); adapter->stats.colc = adapter->stats.colc + (u64 )hw->collision_delta; } if ((unsigned int )hw->mac_type > 2U) { { tmp___47 = readl((void const volatile *)hw->hw_addr + 16388U); adapter->stats.algnerrc = adapter->stats.algnerrc + (u64 )tmp___47; tmp___48 = readl((void const volatile *)hw->hw_addr + 16396U); adapter->stats.rxerrc = adapter->stats.rxerrc + (u64 )tmp___48; tmp___49 = readl((void const volatile *)hw->hw_addr + 16436U); adapter->stats.tncrs = adapter->stats.tncrs + (u64 )tmp___49; tmp___50 = readl((void const volatile *)hw->hw_addr + 16444U); adapter->stats.cexterr = adapter->stats.cexterr + (u64 )tmp___50; tmp___51 = readl((void const volatile *)hw->hw_addr + 16632U); adapter->stats.tsctc = adapter->stats.tsctc + (u64 )tmp___51; tmp___52 = readl((void const volatile *)hw->hw_addr + 16636U); adapter->stats.tsctfc = adapter->stats.tsctfc + (u64 )tmp___52; } } else { } netdev->stats.multicast = (unsigned long )adapter->stats.mprc; netdev->stats.collisions = (unsigned long )adapter->stats.colc; netdev->stats.rx_errors = (unsigned long )(((((adapter->stats.rxerrc + adapter->stats.crcerrs) + adapter->stats.algnerrc) + adapter->stats.ruc) + adapter->stats.roc) + adapter->stats.cexterr); adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; netdev->stats.rx_length_errors = (unsigned long )adapter->stats.rlerrc; netdev->stats.rx_crc_errors = (unsigned long )adapter->stats.crcerrs; netdev->stats.rx_frame_errors = (unsigned long )adapter->stats.algnerrc; netdev->stats.rx_missed_errors = (unsigned long )adapter->stats.mpc; adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; netdev->stats.tx_errors = (unsigned long )adapter->stats.txerrc; netdev->stats.tx_aborted_errors = (unsigned long )adapter->stats.ecol; netdev->stats.tx_window_errors = (unsigned long )adapter->stats.latecol; netdev->stats.tx_carrier_errors = (unsigned long )adapter->stats.tncrs; if ((int )hw->bad_tx_carr_stats_fd && (unsigned int )adapter->link_duplex == 2U) { netdev->stats.tx_carrier_errors = 0UL; adapter->stats.tncrs = 0ULL; } else { } if ((unsigned int )hw->media_type == 0U) { if ((unsigned int )adapter->link_speed == 1000U) { { tmp___53 = e1000_read_phy_reg(hw, 10U, & phy_tmp); } if (tmp___53 == 0) { phy_tmp = (unsigned int )phy_tmp & 255U; adapter->phy_stats.idle_errors = adapter->phy_stats.idle_errors + (u32 )phy_tmp; } else { } } else { } if ((unsigned int )hw->mac_type <= 8U && (unsigned int )hw->phy_type == 0U) { { tmp___54 = e1000_read_phy_reg(hw, 21U, & phy_tmp); } if (tmp___54 == 0) { adapter->phy_stats.receive_errors = adapter->phy_stats.receive_errors + (u32 )phy_tmp; } else { } } else { } } else { } if ((int )hw->has_smbus) { { tmp___55 = readl((void const volatile *)hw->hw_addr + 16572U); adapter->stats.mgptc = adapter->stats.mgptc + (u64 )tmp___55; tmp___56 = readl((void const volatile *)hw->hw_addr + 16564U); adapter->stats.mgprc = adapter->stats.mgprc + (u64 )tmp___56; tmp___57 = readl((void const volatile *)hw->hw_addr + 16568U); adapter->stats.mgpdc = adapter->stats.mgpdc + (u64 )tmp___57; } } else { } { ldv_spin_unlock_irqrestore_119(& adapter->stats_lock, flags); } return; } } static irqreturn_t e1000_intr(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 icr ; unsigned int tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; bool tmp___7 ; long tmp___8 ; { { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = readl((void const volatile *)hw->hw_addr + 192U); icr = tmp___0; tmp___1 = ldv__builtin_expect(icr == 0U, 0L); } if (tmp___1 != 0L) { return (0); } else { } { tmp___2 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); tmp___3 = ldv__builtin_expect(tmp___2 != 0, 0L); } if (tmp___3 != 0L) { return (1); } else { } { tmp___5 = ldv__builtin_expect((icr & 12U) != 0U, 0L); } if (tmp___5 != 0L) { { hw->get_link_status = 1; tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___4 == 0) { { schedule_delayed_work(& adapter->watchdog_task, 1UL); } } else { } } else { } { writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); tmp___7 = napi_schedule_prep(& adapter->napi); tmp___8 = ldv__builtin_expect((long )tmp___7, 1L); } if (tmp___8 != 0L) { { adapter->total_tx_bytes = 0U; adapter->total_tx_packets = 0U; adapter->total_rx_bytes = 0U; adapter->total_rx_packets = 0U; __napi_schedule(& adapter->napi); } } else { { tmp___6 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___6 == 0) { { e1000_irq_enable(adapter); } } else { } } return (1); } } static int e1000_clean(struct napi_struct *napi , int budget ) { struct e1000_adapter *adapter ; struct napi_struct const *__mptr ; int tx_clean_complete ; int work_done ; bool tmp ; long tmp___0 ; int tmp___1 ; { { __mptr = (struct napi_struct const *)napi; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffffd08UL; tx_clean_complete = 0; work_done = 0; tmp = e1000_clean_tx_irq(adapter, adapter->tx_ring); tx_clean_complete = (int )tmp; (*(adapter->clean_rx))(adapter, adapter->rx_ring, & work_done, budget); } if (tx_clean_complete == 0) { work_done = budget; } else { } if (work_done < budget) { { tmp___0 = ldv__builtin_expect((adapter->itr_setting & 3U) != 0U, 1L); } if (tmp___0 != 0L) { { e1000_set_itr(adapter); } } else { } { napi_complete(napi); tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___1 == 0) { { e1000_irq_enable(adapter); } } else { } } else { } return (work_done); } } static bool e1000_clean_tx_irq(struct e1000_adapter *adapter , struct e1000_tx_ring *tx_ring ) { struct e1000_hw *hw ; struct net_device *netdev ; struct e1000_tx_desc *tx_desc ; struct e1000_tx_desc *eop_desc ; struct e1000_buffer *buffer_info ; unsigned int i ; unsigned int eop ; unsigned int count ; unsigned int total_tx_bytes ; unsigned int total_tx_packets ; unsigned int bytes_compl ; unsigned int pkts_compl ; bool cleaned ; long tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; bool tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; { hw = & adapter->hw; netdev = adapter->netdev; count = 0U; total_tx_bytes = 0U; total_tx_packets = 0U; bytes_compl = 0U; pkts_compl = 0U; i = tx_ring->next_to_clean; eop = (unsigned int )(tx_ring->buffer_info + (unsigned long )i)->next_to_watch; eop_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )eop; goto ldv_53980; ldv_53979: cleaned = 0; __asm__ volatile ("lfence": : : "memory"); goto ldv_53977; ldv_53976: tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; cleaned = i == eop; if ((int )cleaned) { total_tx_packets = total_tx_packets + buffer_info->segs; total_tx_bytes = total_tx_bytes + buffer_info->bytecount; if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { bytes_compl = bytes_compl + (buffer_info->skb)->len; pkts_compl = pkts_compl + 1U; } else { } } else { } { e1000_unmap_and_free_tx_resource(adapter, buffer_info); tx_desc->upper.data = 0U; i = i + 1U; tmp = ldv__builtin_expect(i == tx_ring->count, 0L); } if (tmp != 0L) { i = 0U; } else { } count = count + 1U; ldv_53977: ; if (! cleaned) { goto ldv_53976; } else { } eop = (unsigned int )(tx_ring->buffer_info + (unsigned long )i)->next_to_watch; eop_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )eop; ldv_53980: ; if ((int )eop_desc->upper.data & 1 && count < tx_ring->count) { goto ldv_53979; } else { } { tx_ring->next_to_clean = i; netdev_completed_queue(netdev, pkts_compl, bytes_compl); tmp___2 = ldv__builtin_expect(count != 0U, 0L); } if (tmp___2 != 0L) { { tmp___3 = netif_carrier_ok((struct net_device const *)netdev); tmp___4 = ldv__builtin_expect((long )tmp___3, 0L); } if (tmp___4 != 0L) { tmp___5 = 1; } else { tmp___5 = 0; } } else { tmp___5 = 0; } if (tmp___5 != 0) { { tmp___6 = ldv__builtin_expect((((tx_ring->next_to_clean <= tx_ring->next_to_use ? tx_ring->count : 0U) + tx_ring->next_to_clean) - tx_ring->next_to_use) - 1U > 31U, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("mfence": : : "memory"); tmp___0 = netif_queue_stopped((struct net_device const *)netdev); } if ((int )tmp___0) { { tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___1 == 0) { { netif_wake_queue(netdev); adapter->restart_queue = adapter->restart_queue + 1U; } } else { } } else { } } else { } } else { } if ((int )adapter->detect_tx_hung) { adapter->detect_tx_hung = 0; if ((tx_ring->buffer_info + (unsigned long )eop)->time_stamp != 0UL && (long )(((tx_ring->buffer_info + (unsigned long )eop)->time_stamp + (unsigned long )((int )adapter->tx_timeout_factor * 250)) - (unsigned long )jiffies) < 0L) { { tmp___9 = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp___9 & 16U) == 0U) { if (adapter->msg_enable & 1) { { tmp___7 = readl((void const volatile *)hw->hw_addr + (unsigned long )tx_ring->tdt); tmp___8 = readl((void const volatile *)hw->hw_addr + (unsigned long )tx_ring->tdh); netdev_err((struct net_device const *)adapter->netdev, "Detected Tx Unit Hang\n Tx Queue <%lu>\n TDH <%x>\n TDT <%x>\n next_to_use <%x>\n next_to_clean <%x>\nbuffer_info[next_to_clean]\n time_stamp <%lx>\n next_to_watch <%x>\n jiffies <%lx>\n next_to_watch.status <%x>\n", (unsigned long )(((long )tx_ring - (long )adapter->tx_ring) / 48L), tmp___8, tmp___7, tx_ring->next_to_use, tx_ring->next_to_clean, (tx_ring->buffer_info + (unsigned long )eop)->time_stamp, eop, jiffies, (int )eop_desc->upper.fields.status); } } else { } { e1000_dump(adapter); netif_stop_queue(netdev); } } else { } } else { } } else { } adapter->total_tx_bytes = adapter->total_tx_bytes + total_tx_bytes; adapter->total_tx_packets = adapter->total_tx_packets + total_tx_packets; netdev->stats.tx_bytes = netdev->stats.tx_bytes + (unsigned long )total_tx_bytes; netdev->stats.tx_packets = netdev->stats.tx_packets + (unsigned long )total_tx_packets; return (count < tx_ring->count); } } static void e1000_rx_checksum(struct e1000_adapter *adapter , u32 status_err , u32 csum , struct sk_buff *skb ) { struct e1000_hw *hw ; u16 status ; u8 errors ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { hw = & adapter->hw; status = (unsigned short )status_err; errors = (unsigned char )(status_err >> 24); skb_checksum_none_assert((struct sk_buff const *)skb); tmp = ldv__builtin_expect((unsigned int )hw->mac_type <= 2U, 0L); } if (tmp != 0L) { return; } else { } { tmp___0 = ldv__builtin_expect(((int )status & 4) != 0, 0L); } if (tmp___0 != 0L) { return; } else { } { tmp___1 = ldv__builtin_expect(((int )errors & 32) != 0, 0L); } if (tmp___1 != 0L) { adapter->hw_csum_err = adapter->hw_csum_err + 1ULL; return; } else { } if (((int )status & 32) == 0) { return; } else { } { tmp___2 = ldv__builtin_expect(((int )status & 32) != 0, 1L); } if (tmp___2 != 0L) { skb->ip_summed = 1U; } else { } adapter->hw_csum_good = adapter->hw_csum_good + 1ULL; return; } } static void e1000_consume_page(struct e1000_buffer *bi , struct sk_buff *skb , u16 length ) { { bi->page = (struct page *)0; skb->len = skb->len + (unsigned int )length; skb->data_len = skb->data_len + (unsigned int )length; skb->truesize = skb->truesize + 4096U; return; } } static void e1000_receive_skb(struct e1000_adapter *adapter , u8 status , __le16 vlan , struct sk_buff *skb ) { u16 vid ; { { skb->protocol = eth_type_trans(skb, adapter->netdev); } if (((int )status & 8) != 0) { { vid = (unsigned int )vlan & 4095U; __vlan_hwaccel_put_tag(skb, 129, (int )vid); } } else { } { napi_gro_receive(& adapter->napi, skb); } return; } } extern void __compiletime_assert_4117(void) ; static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) { struct e1000_hw *hw ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_rx_desc *next_rxd ; struct e1000_buffer *buffer_info ; struct e1000_buffer *next_buffer ; unsigned long irq_flags ; u32 length ; unsigned int i ; int cleaned_count ; bool cleaned ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct sk_buff *skb ; u8 status ; u8 *mapped ; u8 last_byte ; void *tmp ; long tmp___0 ; long tmp___1 ; unsigned char *tmp___2 ; unsigned char *tmp___3 ; u8 *vaddr ; void *tmp___4 ; unsigned char *tmp___5 ; bool __cond ; int tmp___6 ; long tmp___7 ; int tmp___8 ; long tmp___9 ; { hw = & adapter->hw; netdev = adapter->netdev; pdev = adapter->pdev; cleaned_count = 0; cleaned = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = rx_ring->next_to_clean; rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_54042; ldv_54041: ; if (*work_done >= work_to_do) { goto ldv_54031; } else { } *work_done = *work_done + 1; __asm__ volatile ("lfence": : : "memory"); status = rx_desc->status; skb = buffer_info->skb; buffer_info->skb = (struct sk_buff *)0; i = i + 1U; if (i == rx_ring->count) { i = 0U; } else { } { next_rxd = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); next_buffer = rx_ring->buffer_info + (unsigned long )i; cleaned = 1; cleaned_count = cleaned_count + 1; dma_unmap_page(& pdev->dev, buffer_info->dma, (size_t )buffer_info->length, 2); buffer_info->dma = 0ULL; length = (u32 )rx_desc->length; tmp___0 = ldv__builtin_expect(((int )status & 2) != 0, 0L); } if (tmp___0 != 0L) { { tmp___1 = ldv__builtin_expect(((int )rx_desc->errors & 151) != 0, 0L); } if (tmp___1 != 0L) { { tmp = lowmem_page_address((struct page const *)buffer_info->page); mapped = (u8 *)tmp; last_byte = *(mapped + ((unsigned long )length + 0xffffffffffffffffUL)); } if (((int )hw->tbi_compatibility_on && (((int )rx_desc->errors & 151) == 1 && (unsigned int )last_byte == 15U)) && (((int )status & 8) != 0 ? length > hw->min_frame_size - 4U && length <= hw->max_frame_size + 1U : length > hw->min_frame_size && length <= hw->max_frame_size + 5U)) { { ldv___ldv_spin_lock_120(& adapter->stats_lock); e1000_tbi_adjust_stats(hw, & adapter->stats, length, mapped); ldv_spin_unlock_irqrestore_119(& adapter->stats_lock, irq_flags); length = length - 1U; } } else { if ((netdev->features & 68719476736ULL) != 0ULL) { goto process_skb; } else { } buffer_info->skb = skb; if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { { consume_skb(rx_ring->rx_skb_top); } } else { } rx_ring->rx_skb_top = (struct sk_buff *)0; goto next_desc; } } else { } } else { } process_skb: ; if (((int )status & 2) == 0) { if ((unsigned long )rx_ring->rx_skb_top == (unsigned long )((struct sk_buff *)0)) { { rx_ring->rx_skb_top = skb; skb_fill_page_desc(rx_ring->rx_skb_top, 0, buffer_info->page, 0, (int )length); } } else { { tmp___2 = skb_end_pointer((struct sk_buff const *)rx_ring->rx_skb_top); skb_fill_page_desc(rx_ring->rx_skb_top, (int )((struct skb_shared_info *)tmp___2)->nr_frags, buffer_info->page, 0, (int )length); buffer_info->skb = skb; } } { e1000_consume_page(buffer_info, rx_ring->rx_skb_top, (int )((u16 )length)); } goto next_desc; } else if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { { tmp___3 = skb_end_pointer((struct sk_buff const *)rx_ring->rx_skb_top); skb_fill_page_desc(rx_ring->rx_skb_top, (int )((struct skb_shared_info *)tmp___3)->nr_frags, buffer_info->page, 0, (int )length); buffer_info->skb = skb; skb = rx_ring->rx_skb_top; rx_ring->rx_skb_top = (struct sk_buff *)0; e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } } else if (length <= copybreak) { { tmp___6 = skb_tailroom((struct sk_buff const *)skb); } if ((u32 )tmp___6 >= length) { { tmp___4 = kmap_atomic(buffer_info->page); vaddr = (u8 *)tmp___4; tmp___5 = skb_tail_pointer((struct sk_buff const *)skb); memcpy((void *)tmp___5, (void const *)vaddr, (size_t )length); __cond = 0; } if ((int )__cond) { { __compiletime_assert_4117(); } } else { } { __kunmap_atomic((void *)vaddr); skb_put(skb, length); } } else { { skb_fill_page_desc(skb, 0, buffer_info->page, 0, (int )length); e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } } } else { { skb_fill_page_desc(skb, 0, buffer_info->page, 0, (int )length); e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } } { e1000_rx_checksum(adapter, (unsigned int )status | ((unsigned int )rx_desc->errors << 24), (u32 )rx_desc->csum, skb); total_rx_bytes = (total_rx_bytes + skb->len) - 4U; tmp___7 = ldv__builtin_expect((netdev->features & 34359738368ULL) == 0ULL, 1L); } if (tmp___7 != 0L) { { pskb_trim(skb, skb->len - 4U); } } else { } { total_rx_packets = total_rx_packets + 1U; tmp___8 = pskb_may_pull(skb, 14U); } if (tmp___8 == 0) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "pskb_may_pull failed.\n"); } } else { } { consume_skb(skb); } goto next_desc; } else { } { e1000_receive_skb(adapter, (int )status, (int )rx_desc->special, skb); } next_desc: { rx_desc->status = 0U; tmp___9 = ldv__builtin_expect(cleaned_count > 15, 0L); } if (tmp___9 != 0L) { { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); cleaned_count = 0; } } else { } rx_desc = next_rxd; buffer_info = next_buffer; ldv_54042: ; if ((int )rx_desc->status & 1) { goto ldv_54041; } else { } ldv_54031: rx_ring->next_to_clean = i; cleaned_count = (int )((((rx_ring->next_to_clean <= rx_ring->next_to_use ? rx_ring->count : 0U) + rx_ring->next_to_clean) - rx_ring->next_to_use) - 1U); if (cleaned_count != 0) { { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); } } else { } adapter->total_rx_packets = adapter->total_rx_packets + total_rx_packets; adapter->total_rx_bytes = adapter->total_rx_bytes + total_rx_bytes; netdev->stats.rx_bytes = netdev->stats.rx_bytes + (unsigned long )total_rx_bytes; netdev->stats.rx_packets = netdev->stats.rx_packets + (unsigned long )total_rx_packets; return (cleaned); } } static void e1000_check_copybreak(struct net_device *netdev , struct e1000_buffer *buffer_info , u32 length , struct sk_buff **skb ) { struct sk_buff *new_skb ; { if (length > copybreak) { return; } else { } { new_skb = netdev_alloc_skb_ip_align(netdev, length); } if ((unsigned long )new_skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } { skb_copy_to_linear_data_offset(new_skb, 0, (void const *)(*skb)->data, length); buffer_info->skb = *skb; *skb = new_skb; } return; } } static bool e1000_clean_rx_irq(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int *work_done , int work_to_do ) { struct e1000_hw *hw ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_rx_desc *next_rxd ; struct e1000_buffer *buffer_info ; struct e1000_buffer *next_buffer ; unsigned long flags ; u32 length ; unsigned int i ; int cleaned_count ; bool cleaned ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct sk_buff *skb ; u8 status ; long tmp ; struct _ddebug descriptor ; struct net_device *tmp___0 ; long tmp___1 ; u8 last_byte ; long tmp___2 ; long tmp___3 ; long tmp___4 ; { hw = & adapter->hw; netdev = adapter->netdev; pdev = adapter->pdev; cleaned_count = 0; cleaned = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = rx_ring->next_to_clean; rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_54079; ldv_54078: ; if (*work_done >= work_to_do) { goto ldv_54072; } else { } { *work_done = *work_done + 1; __asm__ volatile ("lfence": : : "memory"); status = rx_desc->status; skb = buffer_info->skb; buffer_info->skb = (struct sk_buff *)0; __builtin_prefetch((void const *)skb->data); i = i + 1U; } if (i == rx_ring->count) { i = 0U; } else { } { next_rxd = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); next_buffer = rx_ring->buffer_info + (unsigned long )i; cleaned = 1; cleaned_count = cleaned_count + 1; dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, (size_t )buffer_info->length, 2, (struct dma_attrs *)0); buffer_info->dma = 0ULL; length = (u32 )rx_desc->length; tmp = ldv__builtin_expect(((int )status & 2) == 0, 0L); } if (tmp != 0L) { adapter->discarding = 1; } else { } if ((int )adapter->discarding) { { descriptor.modname = "e1000"; descriptor.function = "e1000_clean_rx_irq"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_main.c"; descriptor.format = "Receive packet consumed multiple buffers\n"; descriptor.lineno = 4268U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp___0, "Receive packet consumed multiple buffers\n"); } } else { } buffer_info->skb = skb; if (((int )status & 2) != 0) { adapter->discarding = 0; } else { } goto next_desc; } else { } { tmp___2 = ldv__builtin_expect(((int )rx_desc->errors & 151) != 0, 0L); } if (tmp___2 != 0L) { last_byte = *(skb->data + ((unsigned long )length + 0xffffffffffffffffUL)); if (((int )hw->tbi_compatibility_on && (((int )rx_desc->errors & 151) == 1 && (unsigned int )last_byte == 15U)) && (((int )status & 8) != 0 ? length > hw->min_frame_size - 4U && length <= hw->max_frame_size + 1U : length > hw->min_frame_size && length <= hw->max_frame_size + 5U)) { { ldv___ldv_spin_lock_122(& adapter->stats_lock); e1000_tbi_adjust_stats(hw, & adapter->stats, length, skb->data); ldv_spin_unlock_irqrestore_119(& adapter->stats_lock, flags); length = length - 1U; } } else { if ((netdev->features & 68719476736ULL) != 0ULL) { goto process_skb; } else { } buffer_info->skb = skb; goto next_desc; } } else { } process_skb: { total_rx_bytes = (total_rx_bytes + length) - 4U; total_rx_packets = total_rx_packets + 1U; tmp___3 = ldv__builtin_expect((netdev->features & 34359738368ULL) == 0ULL, 1L); } if (tmp___3 != 0L) { length = length - 4U; } else { } { e1000_check_copybreak(netdev, buffer_info, length, & skb); skb_put(skb, length); e1000_rx_checksum(adapter, (unsigned int )status | ((unsigned int )rx_desc->errors << 24), (u32 )rx_desc->csum, skb); e1000_receive_skb(adapter, (int )status, (int )rx_desc->special, skb); } next_desc: { rx_desc->status = 0U; tmp___4 = ldv__builtin_expect(cleaned_count > 15, 0L); } if (tmp___4 != 0L) { { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); cleaned_count = 0; } } else { } rx_desc = next_rxd; buffer_info = next_buffer; ldv_54079: ; if ((int )rx_desc->status & 1) { goto ldv_54078; } else { } ldv_54072: rx_ring->next_to_clean = i; cleaned_count = (int )((((rx_ring->next_to_clean <= rx_ring->next_to_use ? rx_ring->count : 0U) + rx_ring->next_to_clean) - rx_ring->next_to_use) - 1U); if (cleaned_count != 0) { { (*(adapter->alloc_rx_buf))(adapter, rx_ring, cleaned_count); } } else { } adapter->total_rx_packets = adapter->total_rx_packets + total_rx_packets; adapter->total_rx_bytes = adapter->total_rx_bytes + total_rx_bytes; netdev->stats.rx_bytes = netdev->stats.rx_bytes + (unsigned long )total_rx_bytes; netdev->stats.rx_packets = netdev->stats.rx_packets + (unsigned long )total_rx_packets; return (cleaned); } } static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) { struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_buffer *buffer_info ; struct sk_buff *skb ; unsigned int i ; unsigned int bufsz ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; long tmp___5 ; long tmp___6 ; { netdev = adapter->netdev; pdev = adapter->pdev; bufsz = 240U; i = rx_ring->next_to_use; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_54095; ldv_54094: skb = buffer_info->skb; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { skb_trim(skb, 0U); } goto check_page; } else { } { skb = netdev_alloc_skb_ip_align(netdev, bufsz); tmp = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp != 0L) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_54093; } else { } buffer_info->skb = skb; buffer_info->length = (u16 )adapter->rx_buffer_len; check_page: ; if ((unsigned long )buffer_info->page == (unsigned long )((struct page *)0)) { { buffer_info->page = alloc_pages(32U, 0U); tmp___0 = ldv__builtin_expect((unsigned long )buffer_info->page == (unsigned long )((struct page *)0), 0L); } if (tmp___0 != 0L) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_54093; } else { } } else { } if (buffer_info->dma == 0ULL) { { buffer_info->dma = dma_map_page(& pdev->dev, buffer_info->page, 0UL, (size_t )buffer_info->length, 2); tmp___1 = dma_mapping_error(& pdev->dev, buffer_info->dma); } if (tmp___1 != 0) { { put_page(buffer_info->page); consume_skb(skb); buffer_info->page = (struct page *)0; buffer_info->skb = (struct sk_buff *)0; buffer_info->dma = 0ULL; adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; } goto ldv_54093; } else { } } else { } { rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; rx_desc->buffer_addr = buffer_info->dma; i = i + 1U; tmp___2 = ldv__builtin_expect(i == rx_ring->count, 0L); } if (tmp___2 != 0L) { i = 0U; } else { } buffer_info = rx_ring->buffer_info + (unsigned long )i; ldv_54095: tmp___3 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___3 != 0) { goto ldv_54094; } else { } ldv_54093: { tmp___6 = ldv__builtin_expect(rx_ring->next_to_use != i, 1L); } if (tmp___6 != 0L) { { rx_ring->next_to_use = i; tmp___4 = i; i = i - 1U; tmp___5 = ldv__builtin_expect(tmp___4 == 0U, 0L); } if (tmp___5 != 0L) { i = rx_ring->count - 1U; } else { } { __asm__ volatile ("sfence": : : "memory"); writel(i, (void volatile *)adapter->hw.hw_addr + (unsigned long )rx_ring->rdt); } } else { } return; } } static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter , struct e1000_rx_ring *rx_ring , int cleaned_count ) { struct e1000_hw *hw ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_rx_desc *rx_desc ; struct e1000_buffer *buffer_info ; struct sk_buff *skb ; unsigned int i ; unsigned int bufsz ; long tmp ; struct sk_buff *oldskb ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; long tmp___7 ; int tmp___8 ; unsigned int tmp___9 ; long tmp___10 ; long tmp___11 ; { hw = & adapter->hw; netdev = adapter->netdev; pdev = adapter->pdev; bufsz = adapter->rx_buffer_len; i = rx_ring->next_to_use; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_54113; ldv_54112: skb = buffer_info->skb; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { skb_trim(skb, 0U); } goto map_skb; } else { } { skb = netdev_alloc_skb_ip_align(netdev, bufsz); tmp = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp != 0L) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_54110; } else { } { tmp___2 = e1000_check_64k_bound(adapter, (void *)skb->data, (unsigned long )bufsz); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { oldskb = skb; if ((adapter->msg_enable & 64) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "skb align check failed: %u bytes at %p\n", bufsz, skb->data); } } else { } { skb = netdev_alloc_skb_ip_align(netdev, bufsz); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { consume_skb(oldskb); adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; } goto ldv_54110; } else { } { tmp___0 = e1000_check_64k_bound(adapter, (void *)skb->data, (unsigned long )bufsz); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { consume_skb(skb); consume_skb(oldskb); adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; } goto ldv_54110; } else { } { consume_skb(oldskb); } } else { } buffer_info->skb = skb; buffer_info->length = (u16 )adapter->rx_buffer_len; map_skb: { buffer_info->dma = dma_map_single_attrs(& pdev->dev, (void *)skb->data, (size_t )buffer_info->length, 2, (struct dma_attrs *)0); tmp___4 = dma_mapping_error(& pdev->dev, buffer_info->dma); } if (tmp___4 != 0) { { consume_skb(skb); buffer_info->skb = (struct sk_buff *)0; buffer_info->dma = 0ULL; adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; } goto ldv_54110; } else { } { tmp___5 = e1000_check_64k_bound(adapter, (void *)buffer_info->dma, (unsigned long )adapter->rx_buffer_len); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { if ((adapter->msg_enable & 64) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "dma align check failed: %u bytes at %p\n", adapter->rx_buffer_len, (void *)buffer_info->dma); } } else { } { consume_skb(skb); buffer_info->skb = (struct sk_buff *)0; dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2, (struct dma_attrs *)0); buffer_info->dma = 0ULL; adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; } goto ldv_54110; } else { } { rx_desc = (struct e1000_rx_desc *)rx_ring->desc + (unsigned long )i; rx_desc->buffer_addr = buffer_info->dma; i = i + 1U; tmp___7 = ldv__builtin_expect(i == rx_ring->count, 0L); } if (tmp___7 != 0L) { i = 0U; } else { } buffer_info = rx_ring->buffer_info + (unsigned long )i; ldv_54113: tmp___8 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___8 != 0) { goto ldv_54112; } else { } ldv_54110: { tmp___11 = ldv__builtin_expect(rx_ring->next_to_use != i, 1L); } if (tmp___11 != 0L) { { rx_ring->next_to_use = i; tmp___9 = i; i = i - 1U; tmp___10 = ldv__builtin_expect(tmp___9 == 0U, 0L); } if (tmp___10 != 0L) { i = rx_ring->count - 1U; } else { } { __asm__ volatile ("sfence": : : "memory"); writel(i, (void volatile *)hw->hw_addr + (unsigned long )rx_ring->rdt); } } else { } return; } } static void e1000_smartspeed(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 phy_status ; u16 phy_ctrl ; s32 tmp ; s32 tmp___0 ; s32 tmp___1 ; s32 tmp___2 ; u32 tmp___3 ; { hw = & adapter->hw; if (((unsigned int )hw->phy_type != 1U || (unsigned int )hw->autoneg == 0U) || ((int )hw->autoneg_advertised & 32) == 0) { return; } else { } if (adapter->smartspeed == 0U) { { e1000_read_phy_reg(hw, 10U, & phy_status); } if ((int )((short )phy_status) >= 0) { return; } else { } { e1000_read_phy_reg(hw, 10U, & phy_status); } if ((int )((short )phy_status) >= 0) { return; } else { } { e1000_read_phy_reg(hw, 9U, & phy_ctrl); } if (((int )phy_ctrl & 4096) != 0) { { phy_ctrl = (unsigned int )phy_ctrl & 61439U; e1000_write_phy_reg(hw, 9U, (int )phy_ctrl); adapter->smartspeed = adapter->smartspeed + 1U; tmp = e1000_phy_setup_autoneg(hw); } if (tmp == 0) { { tmp___0 = e1000_read_phy_reg(hw, 0U, & phy_ctrl); } if (tmp___0 == 0) { { phy_ctrl = (u16 )((unsigned int )phy_ctrl | 4608U); e1000_write_phy_reg(hw, 0U, (int )phy_ctrl); } } else { } } else { } } else { } return; } else if (adapter->smartspeed == 3U) { { e1000_read_phy_reg(hw, 9U, & phy_ctrl); phy_ctrl = (u16 )((unsigned int )phy_ctrl | 4096U); e1000_write_phy_reg(hw, 9U, (int )phy_ctrl); tmp___1 = e1000_phy_setup_autoneg(hw); } if (tmp___1 == 0) { { tmp___2 = e1000_read_phy_reg(hw, 0U, & phy_ctrl); } if (tmp___2 == 0) { { phy_ctrl = (u16 )((unsigned int )phy_ctrl | 4608U); e1000_write_phy_reg(hw, 0U, (int )phy_ctrl); } } else { } } else { } } else { } tmp___3 = adapter->smartspeed; adapter->smartspeed = adapter->smartspeed + 1U; if (tmp___3 == 15U) { adapter->smartspeed = 0U; } else { } return; } } static int e1000_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { int tmp ; { { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_default; case_35143: /* CIL Label */ ; case_35144: /* CIL Label */ ; case_35145: /* CIL Label */ { tmp = e1000_mii_ioctl(netdev, ifr, cmd); } return (tmp); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static int e1000_mii_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; int retval ; u16 mii_reg ; unsigned long flags ; s32 tmp___1 ; s32 tmp___2 ; u32 speed ; bool tmp___3 ; s32 tmp___4 ; bool tmp___5 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = if_mii(ifr); data = tmp___0; } if ((unsigned int )hw->media_type != 0U) { return (-95); } else { } { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_default; case_35143: /* CIL Label */ data->phy_id = (__u16 )hw->phy_addr; goto ldv_54141; case_35144: /* CIL Label */ { ldv___ldv_spin_lock_124(& adapter->stats_lock); tmp___1 = e1000_read_phy_reg(hw, (u32 )data->reg_num & 31U, & data->val_out); } if (tmp___1 != 0) { { ldv_spin_unlock_irqrestore_119(& adapter->stats_lock, flags); } return (-5); } else { } { ldv_spin_unlock_irqrestore_119(& adapter->stats_lock, flags); } goto ldv_54141; case_35145: /* CIL Label */ ; if (((int )data->reg_num & -32) != 0) { return (-14); } else { } { mii_reg = data->val_in; ldv___ldv_spin_lock_127(& adapter->stats_lock); tmp___2 = e1000_write_phy_reg(hw, (u32 )data->reg_num, (int )mii_reg); } if (tmp___2 != 0) { { ldv_spin_unlock_irqrestore_119(& adapter->stats_lock, flags); } return (-5); } else { } { ldv_spin_unlock_irqrestore_119(& adapter->stats_lock, flags); } if ((unsigned int )hw->media_type == 0U) { { if ((int )data->reg_num == 0) { goto case_0; } else { } if ((int )data->reg_num == 16) { goto case_16; } else { } if ((int )data->reg_num == 20) { goto case_20; } else { } goto switch_break___0; case_0: /* CIL Label */ ; if (((int )mii_reg & 2048) != 0) { goto ldv_54145; } else { } if (((int )mii_reg & 4096) != 0) { hw->autoneg = 1U; hw->autoneg_advertised = 47U; } else { if (((int )mii_reg & 64) != 0) { speed = 1000U; } else if (((int )mii_reg & 8192) != 0) { speed = 100U; } else { speed = 10U; } { retval = e1000_set_spd_dplx(adapter, speed, ((int )mii_reg & 256) != 0); } if (retval != 0) { return (retval); } else { } } { tmp___3 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___3) { { e1000_reinit_locked(adapter); } } else { { e1000_reset(adapter); } } goto ldv_54145; case_16: /* CIL Label */ ; case_20: /* CIL Label */ { tmp___4 = e1000_phy_reset(hw); } if (tmp___4 != 0) { return (-5); } else { } goto ldv_54145; switch_break___0: /* CIL Label */ ; } ldv_54145: ; } else { { if ((int )data->reg_num == 0) { goto case_0___0; } else { } goto switch_break___1; case_0___0: /* CIL Label */ ; if (((int )mii_reg & 2048) != 0) { goto ldv_54150; } else { } { tmp___5 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___5) { { e1000_reinit_locked(adapter); } } else { { e1000_reset(adapter); } } goto ldv_54150; switch_break___1: /* CIL Label */ ; } ldv_54150: ; } goto ldv_54141; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_54141: ; return (0); } } void e1000_pci_set_mwi(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; int ret_val ; int tmp ; { { adapter = (struct e1000_adapter *)hw->back; tmp = pci_set_mwi(adapter->pdev); ret_val = tmp; } if (ret_val != 0) { if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Error in setting MWI\n"); } } else { } } else { } return; } } void e1000_pci_clear_mwi(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; { { adapter = (struct e1000_adapter *)hw->back; pci_clear_mwi(adapter->pdev); } return; } } int e1000_pcix_get_mmrbc(struct e1000_hw *hw ) { struct e1000_adapter *adapter ; int tmp ; { { adapter = (struct e1000_adapter *)hw->back; tmp = pcix_get_mmrbc(adapter->pdev); } return (tmp); } } void e1000_pcix_set_mmrbc(struct e1000_hw *hw , int mmrbc ) { struct e1000_adapter *adapter ; { { adapter = (struct e1000_adapter *)hw->back; pcix_set_mmrbc(adapter->pdev, mmrbc); } return; } } void e1000_io_write(struct e1000_hw *hw , unsigned long port , u32 value ) { { { outl(value, (int )port); } return; } } static bool e1000_vlan_used(struct e1000_adapter *adapter ) { u16 vid ; unsigned long tmp ; unsigned long tmp___0 ; { { tmp = find_first_bit((unsigned long const *)(& adapter->active_vlans), 4096UL); vid = (u16 )tmp; } goto ldv_54180; ldv_54179: ; return (1); { tmp___0 = find_next_bit((unsigned long const *)(& adapter->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___0; } ldv_54180: ; if ((unsigned int )vid <= 4095U) { goto ldv_54179; } else { } return (0); } } static void __e1000_vlan_mode(struct e1000_adapter *adapter , netdev_features_t features ) { struct e1000_hw *hw ; u32 ctrl ; { { hw = & adapter->hw; ctrl = readl((void const volatile *)hw->hw_addr); } if ((features & 256ULL) != 0ULL) { ctrl = ctrl | 1073741824U; } else { ctrl = ctrl & 3221225471U; } { writel(ctrl, (void volatile *)hw->hw_addr); } return; } } static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter , bool filter_on ) { struct e1000_hw *hw ; u32 rctl ; int tmp ; int tmp___0 ; { { hw = & adapter->hw; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp == 0) { { e1000_irq_disable(adapter); } } else { } { __e1000_vlan_mode(adapter, (adapter->netdev)->features); } if ((int )filter_on) { { rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294443007U; } if (((adapter->netdev)->flags & 256U) == 0U) { rctl = rctl | 262144U; } else { } { writel(rctl, (void volatile *)hw->hw_addr + 256U); e1000_update_mng_vlan(adapter); } } else { { rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294705151U; writel(rctl, (void volatile *)hw->hw_addr + 256U); } } { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 == 0) { { e1000_irq_enable(adapter); } } else { } return; } } static void e1000_vlan_mode(struct net_device *netdev , netdev_features_t features ) { struct e1000_adapter *adapter ; void *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 == 0) { { e1000_irq_disable(adapter); } } else { } { __e1000_vlan_mode(adapter, features); tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___1 == 0) { { e1000_irq_enable(adapter); } } else { } return; } } static int e1000_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 vfta ; u32 index ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; } if (((int )hw->mng_cookie.status & 2) != 0 && (int )vid == (int )adapter->mng_vlan_id) { return (0); } else { } { tmp___0 = e1000_vlan_used(adapter); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { e1000_vlan_filter_on_off(adapter, 1); } } else { } { index = (u32 )((int )vid >> 5) & 127U; vfta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(index << 2)))); vfta = vfta | (u32 )(1 << ((int )vid & 31)); e1000_write_vfta(hw, index, vfta); set_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); } return (0); } } static int e1000_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 vfta ; u32 index ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 == 0) { { e1000_irq_disable(adapter); } } else { } { tmp___1 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___1 == 0) { { e1000_irq_enable(adapter); } } else { } { index = (u32 )((int )vid >> 5) & 127U; vfta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(index << 2)))); vfta = vfta & (u32 )(~ (1 << ((int )vid & 31))); e1000_write_vfta(hw, index, vfta); clear_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); tmp___2 = e1000_vlan_used(adapter); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { e1000_vlan_filter_on_off(adapter, 0); } } else { } return (0); } } static void e1000_restore_vlan(struct e1000_adapter *adapter ) { u16 vid ; bool tmp ; int tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; { { tmp = e1000_vlan_used(adapter); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { e1000_vlan_filter_on_off(adapter, 1); tmp___1 = find_first_bit((unsigned long const *)(& adapter->active_vlans), 4096UL); vid = (u16 )tmp___1; } goto ldv_54222; ldv_54221: { e1000_vlan_rx_add_vid(adapter->netdev, 129, (int )vid); tmp___2 = find_next_bit((unsigned long const *)(& adapter->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___2; } ldv_54222: ; if ((unsigned int )vid <= 4095U) { goto ldv_54221; } else { } return; } } int e1000_set_spd_dplx(struct e1000_adapter *adapter , u32 spd , u8 dplx ) { struct e1000_hw *hw ; { hw = & adapter->hw; hw->autoneg = 0U; if ((int )spd & 1 || ((int )dplx & -2) != 0) { goto err_inval; } else { } if (((unsigned int )hw->media_type == 1U && spd != 1000U) && (unsigned int )dplx != 1U) { goto err_inval; } else { } { if (spd + (u32 )dplx == 10U) { goto case_10; } else { } if (spd + (u32 )dplx == 11U) { goto case_11; } else { } if (spd + (u32 )dplx == 100U) { goto case_100; } else { } if (spd + (u32 )dplx == 101U) { goto case_101; } else { } if (spd + (u32 )dplx == 1001U) { goto case_1001; } else { } if (spd + (u32 )dplx == 1000U) { goto case_1000; } else { } goto switch_default; case_10: /* CIL Label */ hw->forced_speed_duplex = 0U; goto ldv_54232; case_11: /* CIL Label */ hw->forced_speed_duplex = 1U; goto ldv_54232; case_100: /* CIL Label */ hw->forced_speed_duplex = 2U; goto ldv_54232; case_101: /* CIL Label */ hw->forced_speed_duplex = 3U; goto ldv_54232; case_1001: /* CIL Label */ hw->autoneg = 1U; hw->autoneg_advertised = 32U; goto ldv_54232; case_1000: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto err_inval; switch_break: /* CIL Label */ ; } ldv_54232: hw->mdix = 0U; return (0); err_inval: ; if ((adapter->msg_enable & 2) != 0) { { netdev_err((struct net_device const *)adapter->netdev, "Unsupported Speed/Duplex configuration\n"); } } else { } return (-22); } } static int __e1000_shutdown(struct pci_dev *pdev , bool *enable_wake ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; u32 ctrl ; u32 ctrl_ext ; u32 rctl ; u32 status ; u32 wufc ; int retval ; int count ; int tmp___1 ; int tmp___2 ; int __ret_warn_on ; int tmp___3 ; long tmp___4 ; bool tmp___5 ; bool tmp___6 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; wufc = adapter->wol; retval = 0; netif_device_detach(netdev); tmp___5 = netif_running((struct net_device const *)netdev); } if ((int )tmp___5) { count = 50; goto ldv_54254; ldv_54253: { usleep_range(10000UL, 20000UL); } ldv_54254: { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___1 != 0) { tmp___2 = count; count = count - 1; if (tmp___2 != 0) { goto ldv_54253; } else { goto ldv_54255; } } else { } ldv_54255: { tmp___3 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___3 != 0; tmp___4 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___4 != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/e1000/e1000_main.c", 4952); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); e1000_down(adapter); } } else { } { retval = pci_save_state(pdev); } if (retval != 0) { return (retval); } else { } { status = readl((void const volatile *)hw->hw_addr + 8U); } if ((status & 2U) != 0U) { wufc = wufc & 4294967294U; } else { } if (wufc != 0U) { { e1000_setup_rctl(adapter); e1000_set_rx_mode(netdev); rctl = readl((void const volatile *)hw->hw_addr + 256U); } if ((wufc & 8U) != 0U) { rctl = rctl | 16U; } else { } { writel(rctl | 2U, (void volatile *)hw->hw_addr + 256U); } if ((unsigned int )hw->mac_type > 4U) { { ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 3145728U; writel(ctrl, (void volatile *)hw->hw_addr); } } else { } if ((unsigned int )hw->media_type - 1U <= 1U) { { ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 128U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); } } else { } { writel(2U, (void volatile *)hw->hw_addr + 22528U); writel(wufc, (void volatile *)hw->hw_addr + 22536U); } } else { { writel(0U, (void volatile *)hw->hw_addr + 22528U); writel(0U, (void volatile *)hw->hw_addr + 22536U); } } { e1000_release_manageability(adapter); *enable_wake = wufc != 0U; } if (adapter->en_mng_pt != 0U) { *enable_wake = 1; } else { } { tmp___6 = netif_running((struct net_device const *)netdev); } if ((int )tmp___6) { { e1000_free_irq(adapter); } } else { } { pci_disable_device(pdev); } return (0); } } static int e1000_suspend(struct pci_dev *pdev , pm_message_t state ) { int retval ; bool wake ; { { retval = __e1000_shutdown(pdev, & wake); } if (retval != 0) { return (retval); } else { } if ((int )wake) { { pci_prepare_to_sleep(pdev); } } else { { pci_wake_from_d3(pdev, 0); pci_set_power_state(pdev, 3); } } return (0); } } static int e1000_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; u32 err ; int tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; bool tmp___5 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; pci_set_power_state(pdev, 0); pci_restore_state(pdev); pci_save_state(pdev); } if (adapter->need_ioport != 0) { { tmp___1 = pci_enable_device(pdev); err = (u32 )tmp___1; } } else { { tmp___2 = pci_enable_device_mem(pdev); err = (u32 )tmp___2; } } if (err != 0U) { { printk("\ve1000: Cannot enable PCI device from suspend\n"); } return ((int )err); } else { } { pci_set_master(pdev); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); tmp___4 = netif_running((struct net_device const *)netdev); } if ((int )tmp___4) { { tmp___3 = e1000_request_irq(adapter); err = (u32 )tmp___3; } if (err != 0U) { return ((int )err); } else { } } else { } { e1000_power_up_phy(adapter); e1000_reset(adapter); writel(4294967295U, (void volatile *)hw->hw_addr + 22544U); e1000_init_manageability(adapter); tmp___5 = netif_running((struct net_device const *)netdev); } if ((int )tmp___5) { { e1000_up(adapter); } } else { } { netif_device_attach(netdev); } return (0); } } static void e1000_shutdown(struct pci_dev *pdev ) { bool wake ; { { __e1000_shutdown(pdev, & wake); } if ((unsigned int )system_state == 3U) { { pci_wake_from_d3(pdev, (int )wake); pci_set_power_state(pdev, 3); } } else { } return; } } static void e1000_netpoll(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; disable_irq((adapter->pdev)->irq); e1000_intr((int )(adapter->pdev)->irq, (void *)netdev); enable_irq((adapter->pdev)->irq); } return; } } static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; netif_device_detach(netdev); } if (state == 3U) { return (4U); } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { e1000_down(adapter); } } else { } { pci_disable_device(pdev); } return (3U); } } static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; int err ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; } if (adapter->need_ioport != 0) { { err = pci_enable_device(pdev); } } else { { err = pci_enable_device_mem(pdev); } } if (err != 0) { { printk("\ve1000: Cannot re-enable PCI device after reset.\n"); } return (4U); } else { } { pci_set_master(pdev); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); e1000_reset(adapter); writel(4294967295U, (void volatile *)hw->hw_addr + 22544U); } return (5U); } } static void e1000_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; e1000_init_manageability(adapter); tmp___2 = netif_running((struct net_device const *)netdev); } if ((int )tmp___2) { { tmp___1 = e1000_up(adapter); } if (tmp___1 != 0) { { printk("\016e1000: can\'t bring device back up after reset\n"); } return; } else { } } else { } { netif_device_attach(netdev); } return; } } void ldv_EMGentry_exit_e1000_exit_module_13_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_e1000_init_module_13_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_10_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_11_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_13_13_4(void) ; void ldv_dispatch_instance_deregister_4_2(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_4_3(struct timer_list *arg0 ) ; void ldv_dispatch_register_12_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_8_4(struct net_device *arg0 ) ; void ldv_dispatch_register_dummy_factory_13_13_5(void) ; void ldv_dummy_resourceless_instance_callback_1_11(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_17(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_28(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_29(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_33(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_36(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_39(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_40(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_41(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_44(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_45(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_46(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_47(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_48(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_49(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_55(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_56(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_59(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_60(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_63(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_66(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_67(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_68(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_69(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_70(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_8(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_entry_EMGentry_13(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_8_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_3(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_4(void) ; void ldv_timer_dummy_factory_4(void *arg0 ) ; void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_3(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_10_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_13_exit_e1000_exit_module_default)(void) ; int (*ldv_13_init_e1000_init_module_default)(void) ; int ldv_13_ret_default ; int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_1_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_1_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_1_callback_nway_reset)(struct net_device * ) ; void (*ldv_1_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; int (*ldv_1_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; enum ethtool_phys_id_state ldv_1_container_enum_ethtool_phys_id_state ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_1_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct ethtool_pauseparam *ldv_1_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_1_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_1_container_struct_ethtool_test_ptr ; struct ethtool_ts_info *ldv_1_container_struct_ethtool_ts_info_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; unsigned long long *ldv_1_ldv_param_12_2_default ; int ldv_1_ldv_param_22_1_default ; unsigned int ldv_1_ldv_param_25_1_default ; unsigned char *ldv_1_ldv_param_25_2_default ; int ldv_1_ldv_param_30_1_default ; int ldv_1_ldv_param_33_2_default ; unsigned long long ldv_1_ldv_param_36_1_default ; unsigned long long ldv_1_ldv_param_41_1_default ; unsigned short ldv_1_ldv_param_49_1_default ; unsigned short ldv_1_ldv_param_49_2_default ; unsigned short ldv_1_ldv_param_52_1_default ; unsigned short ldv_1_ldv_param_52_2_default ; unsigned long long *ldv_1_ldv_param_56_2_default ; unsigned char *ldv_1_ldv_param_60_2_default ; unsigned int ldv_1_ldv_param_63_1_default ; unsigned char *ldv_1_ldv_param_8_2_default ; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; enum pci_channel_state ldv_2_resource_enum_pci_channel_state ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct timer_list *ldv_3_container_timer_list ; struct timer_list *ldv_4_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_13 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; void (*ldv_13_exit_e1000_exit_module_default)(void) = & e1000_exit_module; int (*ldv_13_init_e1000_init_module_default)(void) = & e1000_init_module; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & e1000_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & e1000_ioctl; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) = & e1000_fix_features; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) = & e1000_get_stats; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) = & e1000_netpoll; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & e1000_set_features; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & e1000_set_mac; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & e1000_set_rx_mode; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & e1000_xmit_frame; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & e1000_tx_timeout; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; int (*ldv_1_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) = & e1000_vlan_rx_add_vid; int (*ldv_1_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) = & e1000_vlan_rx_kill_vid; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) = (unsigned int (*)(struct pci_dev * , enum pci_channel_state ))(& e1000_io_error_detected); void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) = & e1000_io_resume; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) = & e1000_io_slot_reset; void ldv_EMGentry_exit_e1000_exit_module_13_2(void (*arg0)(void) ) { { { e1000_exit_module(); } return; } } int ldv_EMGentry_init_e1000_init_module_13_9(int (*arg0)(void) ) { int tmp ; { { tmp = e1000_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_12_2(ldv_12_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_5_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_5_netdev_net_device = (struct net_device *)tmp; } return (ldv_5_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_1_container_struct_ethtool_cmd_ptr = ldv_malloc(sizeof(struct ethtool_cmd)); ldv_1_container_struct_ethtool_coalesce_ptr = ldv_malloc(sizeof(struct ethtool_coalesce)); ldv_1_container_struct_ethtool_drvinfo_ptr = ldv_malloc(sizeof(struct ethtool_drvinfo)); ldv_1_container_struct_ethtool_eeprom_ptr = ldv_malloc(sizeof(struct ethtool_eeprom)); ldv_1_container_struct_ethtool_pauseparam_ptr = ldv_malloc(sizeof(struct ethtool_pauseparam)); ldv_1_container_struct_ethtool_regs_ptr = ldv_malloc(sizeof(struct ethtool_regs)); ldv_1_container_struct_ethtool_ringparam_ptr = ldv_malloc(sizeof(struct ethtool_ringparam)); ldv_1_container_struct_ethtool_stats_ptr = ldv_malloc(sizeof(struct ethtool_stats)); ldv_1_container_struct_ethtool_test_ptr = ldv_malloc(sizeof(struct ethtool_test)); ldv_1_container_struct_ethtool_ts_info_ptr = ldv_malloc(sizeof(struct ethtool_ts_info)); ldv_1_container_struct_ethtool_wolinfo_ptr = ldv_malloc(sizeof(struct ethtool_wolinfo)); ldv_1_container_struct_ifreq_ptr = ldv_malloc(sizeof(struct ifreq)); ldv_1_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_1_ldv_param_12_2_default = ldv_malloc(sizeof(unsigned long long)); ldv_1_ldv_param_25_2_default = ldv_malloc(sizeof(unsigned char)); ldv_1_ldv_param_56_2_default = ldv_malloc(sizeof(unsigned long long)); ldv_1_ldv_param_60_2_default = ldv_malloc(sizeof(unsigned char)); ldv_1_ldv_param_8_2_default = ldv_malloc(sizeof(unsigned char)); ldv_2_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_3_container_timer_list = ldv_malloc(sizeof(struct timer_list)); ldv_4_container_timer_list = ldv_malloc(sizeof(struct timer_list)); } return; } } void ldv_dispatch_deregister_10_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_11_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_dummy_factory_13_13_4(void) { { { ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_instance_deregister_4_2(struct timer_list *arg0 ) { { { ldv_3_container_timer_list = arg0; ldv_switch_automaton_state_3_1(); } return; } } void ldv_dispatch_instance_register_4_3(struct timer_list *arg0 ) { { { ldv_3_container_timer_list = arg0; ldv_switch_automaton_state_3_3(); } return; } } void ldv_dispatch_register_12_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_8_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_dummy_factory_13_13_5(void) { { { ldv_switch_automaton_state_4_4(); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { e1000_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_33(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { e1000_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_36(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { e1000_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_39(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_40(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_41(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { e1000_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_44(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { e1000_set_mac(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_45(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_46(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { e1000_xmit_frame(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_47(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_48(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_49(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { e1000_vlan_rx_add_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { e1000_vlan_rx_kill_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_entry_EMGentry_13(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_13 == 2) { goto case_2; } else { } if (ldv_statevar_13 == 3) { goto case_3; } else { } if (ldv_statevar_13 == 4) { goto case_4; } else { } if (ldv_statevar_13 == 5) { goto case_5; } else { } if (ldv_statevar_13 == 6) { goto case_6; } else { } if (ldv_statevar_13 == 8) { goto case_8; } else { } if (ldv_statevar_13 == 9) { goto case_9; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_e1000_exit_module_13_2(ldv_13_exit_e1000_exit_module_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_13 = 9; } goto ldv_55076; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_e1000_exit_module_13_2(ldv_13_exit_e1000_exit_module_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_13 = 9; } goto ldv_55076; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 2); ldv_dispatch_deregister_dummy_factory_13_13_4(); ldv_statevar_13 = 2; } goto ldv_55076; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 4); ldv_dispatch_register_dummy_factory_13_13_5(); ldv_statevar_13 = 4; } goto ldv_55076; case_6: /* CIL Label */ { ldv_assume(ldv_13_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_13 = 3; } else { ldv_statevar_13 = 5; } goto ldv_55076; case_8: /* CIL Label */ { ldv_assume(ldv_13_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_13 = 9; } goto ldv_55076; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_13_ret_default = ldv_EMGentry_init_e1000_init_module_13_9(ldv_13_init_e1000_init_module_default); ldv_13_ret_default = ldv_post_init(ldv_13_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_13 = 6; } else { ldv_statevar_13 = 8; } goto ldv_55076; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55076: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_13 = 9; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 3; ldv_statevar_4 = 4; } ldv_55094: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_13((void *)0); } goto ldv_55087; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_55087; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_55087; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_55087; case_4: /* CIL Label */ { ldv_timer_timer_instance_3((void *)0); } goto ldv_55087; case_5: /* CIL Label */ { ldv_timer_dummy_factory_4((void *)0); } goto ldv_55087; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55087: ; goto ldv_55094; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_7_netdev_net_device ; { { ldv_7_netdev_net_device = arg1; ldv_free((void *)ldv_7_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 7) { goto case_7; } else { } if (ldv_statevar_1 == 9) { goto case_9; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } if (ldv_statevar_1 == 16) { goto case_16; } else { } if (ldv_statevar_1 == 17) { goto case_17; } else { } if (ldv_statevar_1 == 18) { goto case_18; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } if (ldv_statevar_1 == 20) { goto case_20; } else { } if (ldv_statevar_1 == 21) { goto case_21; } else { } if (ldv_statevar_1 == 23) { goto case_23; } else { } if (ldv_statevar_1 == 26) { goto case_26; } else { } if (ldv_statevar_1 == 28) { goto case_28; } else { } if (ldv_statevar_1 == 29) { goto case_29; } else { } if (ldv_statevar_1 == 31) { goto case_31; } else { } if (ldv_statevar_1 == 34) { goto case_34; } else { } if (ldv_statevar_1 == 37) { goto case_37; } else { } if (ldv_statevar_1 == 39) { goto case_39; } else { } if (ldv_statevar_1 == 40) { goto case_40; } else { } if (ldv_statevar_1 == 42) { goto case_42; } else { } if (ldv_statevar_1 == 44) { goto case_44; } else { } if (ldv_statevar_1 == 45) { goto case_45; } else { } if (ldv_statevar_1 == 46) { goto case_46; } else { } if (ldv_statevar_1 == 47) { goto case_47; } else { } if (ldv_statevar_1 == 48) { goto case_48; } else { } if (ldv_statevar_1 == 50) { goto case_50; } else { } if (ldv_statevar_1 == 53) { goto case_53; } else { } if (ldv_statevar_1 == 55) { goto case_55; } else { } if (ldv_statevar_1 == 57) { goto case_57; } else { } if (ldv_statevar_1 == 59) { goto case_59; } else { } if (ldv_statevar_1 == 61) { goto case_61; } else { } if (ldv_statevar_1 == 64) { goto case_64; } else { } if (ldv_statevar_1 == 66) { goto case_66; } else { } if (ldv_statevar_1 == 67) { goto case_67; } else { } if (ldv_statevar_1 == 68) { goto case_68; } else { } if (ldv_statevar_1 == 69) { goto case_69; } else { } if (ldv_statevar_1 == 70) { goto case_70; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_55113; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_55113; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_55113; case_5: /* CIL Label */ ; goto ldv_55113; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_9: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_1_ldv_param_8_2_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_1_8(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_8_2_default); ldv_free((void *)ldv_1_ldv_param_8_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_13: /* CIL Label */ { tmp___0 = ldv_xmalloc(8UL); ldv_1_ldv_param_12_2_default = (unsigned long long *)tmp___0; ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_12_2_default); ldv_free((void *)ldv_1_ldv_param_12_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_get_msglevel, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_get_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_get_regs_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_get_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_21(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_22(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_22_1_default); ldv_statevar_1 = 2; } goto ldv_55113; case_26: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_1_ldv_param_25_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_1_25(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_25_1_default, ldv_1_ldv_param_25_2_default); ldv_free((void *)ldv_1_ldv_param_25_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_28(ldv_1_callback_get_ts_info, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ts_info_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_29(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_30_1_default); ldv_statevar_1 = 2; } goto ldv_55113; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_33(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_33_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_36(ldv_1_callback_ndo_fix_features, ldv_1_container_net_device, ldv_1_ldv_param_36_1_default); ldv_statevar_1 = 2; } goto ldv_55113; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_39(ldv_1_callback_ndo_get_stats, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_40(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_41(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_41_1_default); ldv_statevar_1 = 2; } goto ldv_55113; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_44(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_45(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_46: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_46(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_47: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_47(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_48: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_48(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_50: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_49(ldv_1_callback_ndo_vlan_rx_add_vid, ldv_1_container_net_device, (int )ldv_1_ldv_param_49_1_default, (int )ldv_1_ldv_param_49_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_53: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_52(ldv_1_callback_ndo_vlan_rx_kill_vid, ldv_1_container_net_device, (int )ldv_1_ldv_param_52_1_default, (int )ldv_1_ldv_param_52_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_55: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_55(ldv_1_callback_nway_reset, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_55113; case_57: /* CIL Label */ { tmp___2 = ldv_xmalloc(8UL); ldv_1_ldv_param_56_2_default = (unsigned long long *)tmp___2; ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_0 == 2); ldv_dummy_resourceless_instance_callback_1_56(ldv_1_callback_self_test, ldv_1_container_net_device, ldv_1_container_struct_ethtool_test_ptr, ldv_1_ldv_param_56_2_default); ldv_free((void *)ldv_1_ldv_param_56_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_59: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_59(ldv_1_callback_set_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_61: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_1_ldv_param_60_2_default = (unsigned char *)tmp___3; ldv_dummy_resourceless_instance_callback_1_60(ldv_1_callback_set_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_60_2_default); ldv_free((void *)ldv_1_ldv_param_60_2_default); ldv_statevar_1 = 2; } goto ldv_55113; case_64: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_63(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_63_1_default); ldv_statevar_1 = 2; } goto ldv_55113; case_66: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_66(ldv_1_callback_set_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_67: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_67(ldv_1_callback_set_phys_id, ldv_1_container_net_device, ldv_1_container_enum_ethtool_phys_id_state); ldv_statevar_1 = 2; } goto ldv_55113; case_68: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_68(ldv_1_callback_set_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_69: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_69(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_55113; case_70: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_70(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_55113; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55113: ; return; } } void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { e1000_io_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { e1000_io_resume(arg1); } return; } } void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { e1000_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = e1000_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { e1000_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { e1000_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { e1000_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = e1000_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 24) { goto case_24; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_55219; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_55219; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2); ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_statevar_2 = 2; } goto ldv_55219; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_55219; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6); ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); ldv_statevar_2 = 4; } goto ldv_55219; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_55219; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_55219; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2); ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_55219; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_55219; case_10: /* CIL Label */ { ldv_pci_instance_callback_2_10(ldv_2_callback_error_detected, ldv_2_resource_dev, ldv_2_resource_enum_pci_channel_state); ldv_statevar_2 = 9; } goto ldv_55219; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_55219; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_55219; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_55219; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_55219; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_55219; case_20: /* CIL Label */ ; goto ldv_55219; case_23: /* CIL Label */ { ldv_pci_instance_callback_2_23(ldv_2_callback_func_1_ptr, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_55219; case_24: /* CIL Label */ { ldv_pci_instance_callback_2_24(ldv_2_callback_slot_reset, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_55219; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55219: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_11_pci_driver_pci_driver ; { { ldv_11_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_11_1(ldv_11_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_8_netdev_net_device ; int ldv_8_ret_default ; int tmp ; int tmp___0 ; { { ldv_8_ret_default = 1; ldv_8_ret_default = ldv_pre_register_netdev(); ldv_8_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_8_ret_default == 0); ldv_assume(ldv_statevar_0 == 6); ldv_8_ret_default = ldv_register_netdev_open_8_6((ldv_8_netdev_net_device->netdev_ops)->ndo_open, ldv_8_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_8_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_8_4(ldv_8_netdev_net_device); } } else { { ldv_assume(ldv_8_ret_default != 0); } } } else { { ldv_assume(ldv_8_ret_default != 0); } } return (ldv_8_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_8_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = e1000_open(arg1); } return (tmp); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } if (tmp == 33) { goto case_33; } else { } if (tmp == 34) { goto case_34; } else { } if (tmp == 35) { goto case_35; } else { } if (tmp == 36) { goto case_36; } else { } if (tmp == 37) { goto case_37; } else { } if (tmp == 38) { goto case_38; } else { } if (tmp == 39) { goto case_39; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (9); case_4: /* CIL Label */ ; return (11); case_5: /* CIL Label */ ; return (13); case_6: /* CIL Label */ ; return (15); case_7: /* CIL Label */ ; return (16); case_8: /* CIL Label */ ; return (17); case_9: /* CIL Label */ ; return (18); case_10: /* CIL Label */ ; return (19); case_11: /* CIL Label */ ; return (20); case_12: /* CIL Label */ ; return (21); case_13: /* CIL Label */ ; return (23); case_14: /* CIL Label */ ; return (26); case_15: /* CIL Label */ ; return (28); case_16: /* CIL Label */ ; return (29); case_17: /* CIL Label */ ; return (31); case_18: /* CIL Label */ ; return (34); case_19: /* CIL Label */ ; return (37); case_20: /* CIL Label */ ; return (39); case_21: /* CIL Label */ ; return (40); case_22: /* CIL Label */ ; return (42); case_23: /* CIL Label */ ; return (44); case_24: /* CIL Label */ ; return (45); case_25: /* CIL Label */ ; return (46); case_26: /* CIL Label */ ; return (47); case_27: /* CIL Label */ ; return (48); case_28: /* CIL Label */ ; return (50); case_29: /* CIL Label */ ; return (53); case_30: /* CIL Label */ ; return (55); case_31: /* CIL Label */ ; return (57); case_32: /* CIL Label */ ; return (59); case_33: /* CIL Label */ ; return (61); case_34: /* CIL Label */ ; return (64); case_35: /* CIL Label */ ; return (66); case_36: /* CIL Label */ ; return (67); case_37: /* CIL Label */ ; return (68); case_38: /* CIL Label */ ; return (69); case_39: /* CIL Label */ ; return (70); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (23); case_4: /* CIL Label */ ; return (24); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 3; return; } } void ldv_switch_automaton_state_3_3(void) { { ldv_statevar_3 = 2; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_4_4(void) { { ldv_statevar_4 = 3; return; } } void ldv_timer_dummy_factory_4(void *arg0 ) { { { if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 2); ldv_dispatch_instance_deregister_4_2(ldv_4_container_timer_list); ldv_statevar_4 = 4; } goto ldv_55325; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 3); ldv_dispatch_instance_register_4_3(ldv_4_container_timer_list); ldv_statevar_4 = 2; } goto ldv_55325; case_4: /* CIL Label */ ; goto ldv_55325; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55325: ; return; } } void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_3(void *arg0 ) { { { if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_3_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_3_2(ldv_3_container_timer_list->function, ldv_3_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_3 = 3; } goto ldv_55338; case_3: /* CIL Label */ ; goto ldv_55338; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55338: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_10_netdev_net_device ; { { ldv_10_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_unregister_netdev_stop_10_2((ldv_10_netdev_net_device->netdev_ops)->ndo_stop, ldv_10_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_10_1(ldv_10_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_10_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_close(arg1); } return; } } void *ldv_malloc(size_t size ) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct page)); } return ((struct page *)tmp); } } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_calloc(n, size); ldv_after_alloc(res); } return (res); } } static struct sk_buff *ldv___netdev_alloc_skb_59(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static int ldv___pci_register_driver_106(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_107(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } __inline static int ldv_request_irq_108(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_109(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_110(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_111(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_112(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_113(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_114(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } void *ldv_zalloc(size_t size ) ; static void *ldv_vzalloc_115(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_zalloc(ldv_func_arg1); } return (tmp); } } static void *ldv_vzalloc_116(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_zalloc(ldv_func_arg1); } return (tmp); } } static int ldv_pskb_expand_head_117(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { { ldv_check_alloc_flags(flags); } return __VERIFIER_nondet_int(); } } static void ldv___ldv_spin_lock_118(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_stats_lock_of_e1000_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_119(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_stats_lock_of_e1000_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_120(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_stats_lock_of_e1000_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_122(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_stats_lock_of_e1000_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_124(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_stats_lock_of_e1000_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_stats_lock_of_e1000_adapter(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_106(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_109(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_e1000_eeprom_lock(void) ; void ldv_spin_unlock_e1000_eeprom_lock(void) ; void ldv_spin_lock_e1000_phy_lock(void) ; void ldv_spin_unlock_e1000_phy_lock(void) ; __inline static void ldv_spin_lock_112(spinlock_t *lock ) ; __inline static void ldv_spin_lock_112(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_113(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_113(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void *phys_to_virt(phys_addr_t address ) { { return ((void *)((unsigned long )address + 0xffff880000000000UL)); } } extern void ioread16_rep(void * , void * , unsigned long ) ; extern void iowrite16_rep(void * , void const * , unsigned long ) ; extern void __udelay(unsigned long ) ; s32 e1000_setup_link(struct e1000_hw *hw ) ; s32 e1000_force_mac_fc(struct e1000_hw *hw ) ; s32 e1000_validate_mdi_setting(struct e1000_hw *hw ) ; s32 e1000_update_eeprom_checksum(struct e1000_hw *hw ) ; s32 e1000_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; s32 e1000_setup_led(struct e1000_hw *hw ) ; s32 e1000_cleanup_led(struct e1000_hw *hw ) ; s32 e1000_led_on(struct e1000_hw *hw ) ; s32 e1000_led_off(struct e1000_hw *hw ) ; static s32 e1000_check_downshift(struct e1000_hw *hw ) ; static s32 e1000_check_polarity(struct e1000_hw *hw , e1000_rev_polarity *polarity ) ; static void e1000_clear_hw_cntrs(struct e1000_hw *hw ) ; static void e1000_clear_vfta(struct e1000_hw *hw ) ; static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw , bool link_up ) ; static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw ) ; static s32 e1000_detect_gig_phy(struct e1000_hw *hw ) ; static s32 e1000_get_auto_rd_done(struct e1000_hw *hw ) ; static s32 e1000_get_cable_length(struct e1000_hw *hw , u16 *min_length , u16 *max_length ) ; static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw ) ; static s32 e1000_id_led_init(struct e1000_hw *hw ) ; static void e1000_init_rx_addrs(struct e1000_hw *hw ) ; static s32 e1000_phy_igp_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) ; static s32 e1000_phy_m88_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) ; static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw , bool active ) ; static s32 e1000_wait_autoneg(struct e1000_hw *hw ) ; static void e1000_write_reg_io(struct e1000_hw *hw , u32 offset , u32 value ) ; static s32 e1000_set_phy_type(struct e1000_hw *hw ) ; static void e1000_phy_init_script(struct e1000_hw *hw ) ; static s32 e1000_setup_copper_link(struct e1000_hw *hw ) ; static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw ) ; static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw ) ; static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw ) ; static s32 e1000_config_mac_to_phy(struct e1000_hw *hw ) ; static void e1000_raise_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) ; static void e1000_lower_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) ; static void e1000_shift_out_mdi_bits(struct e1000_hw *hw , u32 data , u16 count ) ; static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw ) ; static s32 e1000_phy_reset_dsp(struct e1000_hw *hw ) ; static s32 e1000_write_eeprom_spi(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw ) ; static void e1000_raise_ee_clk(struct e1000_hw *hw , u32 *eecd ) ; static void e1000_lower_ee_clk(struct e1000_hw *hw , u32 *eecd ) ; static void e1000_shift_out_ee_bits(struct e1000_hw *hw , u16 data , u16 count ) ; static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) ; static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) ; static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw , u16 count ) ; static s32 e1000_acquire_eeprom(struct e1000_hw *hw ) ; static void e1000_release_eeprom(struct e1000_hw *hw ) ; static void e1000_standby_eeprom(struct e1000_hw *hw ) ; static s32 e1000_set_vco_speed(struct e1000_hw *hw ) ; static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw ) ; static s32 e1000_set_phy_mode(struct e1000_hw *hw ) ; static s32 e1000_do_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static s32 e1000_do_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static u16 const e1000_igp_cable_length_table[128U] = { 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 5U, 10U, 10U, 10U, 10U, 10U, 10U, 10U, 20U, 20U, 20U, 20U, 20U, 25U, 25U, 25U, 25U, 25U, 25U, 25U, 30U, 30U, 30U, 30U, 40U, 40U, 40U, 40U, 40U, 40U, 40U, 40U, 40U, 50U, 50U, 50U, 50U, 50U, 50U, 50U, 60U, 60U, 60U, 60U, 60U, 60U, 60U, 60U, 60U, 70U, 70U, 70U, 70U, 70U, 70U, 80U, 80U, 80U, 80U, 80U, 80U, 90U, 90U, 90U, 90U, 90U, 90U, 90U, 90U, 90U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 100U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 110U, 120U, 120U, 120U, 120U, 120U, 120U, 120U, 120U, 120U, 120U}; static spinlock_t e1000_eeprom_lock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "e1000_eeprom_lock", 0, 0UL}}}}; static spinlock_t e1000_phy_lock = {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "e1000_phy_lock", 0, 0UL}}}}; static s32 e1000_set_phy_type(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_set_phy_type"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_set_phy_type"; descriptor.lineno = 118U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_set_phy_type"); } } else { } if ((unsigned int )hw->mac_type == 0U) { return (-6); } else { } { if (hw->phy_id == 21040208U) { goto case_21040208; } else { } if (hw->phy_id == 21040176U) { goto case_21040176; } else { } if (hw->phy_id == 21040160U) { goto case_21040160; } else { } if (hw->phy_id == 21040320U) { goto case_21040320; } else { } if (hw->phy_id == 21040704U) { goto case_21040704; } else { } if (hw->phy_id == 44565376U) { goto case_44565376; } else { } if (hw->phy_id == 1886480U) { goto case_1886480; } else { } if (hw->phy_id == 33280U) { goto case_33280; } else { } goto switch_default; case_21040208: /* CIL Label */ ; case_21040176: /* CIL Label */ ; case_21040160: /* CIL Label */ ; case_21040320: /* CIL Label */ ; case_21040704: /* CIL Label */ hw->phy_type = 0; goto ldv_51357; case_44565376: /* CIL Label */ ; if ((unsigned int )hw->mac_type - 11U <= 3U) { hw->phy_type = 1; } else { } goto ldv_51357; case_1886480: /* CIL Label */ hw->phy_type = 2; goto ldv_51357; case_33280: /* CIL Label */ hw->phy_type = 3; goto ldv_51357; switch_default: /* CIL Label */ hw->phy_type = 255; return (-6); switch_break: /* CIL Label */ ; } ldv_51357: ; return (0); } } static void e1000_phy_init_script(struct e1000_hw *hw ) { u32 ret_val ; u16 phy_saved_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; u16 fused ; u16 fine ; u16 coarse ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_init_script"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_init_script"; descriptor.lineno = 162U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_init_script"); } } else { } if (hw->phy_init_script != 0U) { { msleep(20U); tmp___1 = e1000_read_phy_reg(hw, 12123U, & phy_saved_data); ret_val = (u32 )tmp___1; e1000_write_phy_reg(hw, 12123U, 3); msleep(20U); e1000_write_phy_reg(hw, 0U, 320); msleep(5U); } { if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; case_11: /* CIL Label */ ; case_13: /* CIL Label */ { e1000_write_phy_reg(hw, 8085U, 1); e1000_write_phy_reg(hw, 8049U, 48417); e1000_write_phy_reg(hw, 8057U, 24); e1000_write_phy_reg(hw, 7984U, 5632); e1000_write_phy_reg(hw, 7985U, 20); e1000_write_phy_reg(hw, 7986U, 5660); e1000_write_phy_reg(hw, 8084U, 3); e1000_write_phy_reg(hw, 8086U, 63); e1000_write_phy_reg(hw, 8208U, 8); } goto ldv_51371; case_12: /* CIL Label */ ; case_14: /* CIL Label */ { e1000_write_phy_reg(hw, 8051U, 153); } goto ldv_51371; switch_default: /* CIL Label */ ; goto ldv_51371; switch_break: /* CIL Label */ ; } ldv_51371: { e1000_write_phy_reg(hw, 0U, 13056); msleep(20U); e1000_write_phy_reg(hw, 12123U, (int )phy_saved_data); } if ((unsigned int )hw->mac_type == 13U) { { e1000_read_phy_reg(hw, 8401U, & fused); } if (((int )fused & 256) == 0) { { e1000_read_phy_reg(hw, 8400U, & fused); fine = (unsigned int )fused & 3968U; coarse = (unsigned int )fused & 112U; } if ((unsigned int )coarse > 64U) { coarse = (unsigned int )coarse + 65520U; fine = (unsigned int )fine + 65408U; } else if ((unsigned int )coarse == 64U) { fine = (unsigned int )fine + 64256U; } else { } { fused = (u16 )((((int )((short )fused) & -4096) | ((int )((short )fine) & 3968)) | ((int )((short )coarse) & 112)); e1000_write_phy_reg(hw, 8412U, (int )fused); e1000_write_phy_reg(hw, 8414U, 2); } } else { } } else { } } else { } return; } } s32 e1000_set_mac_type(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_set_mac_type"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_set_mac_type"; descriptor.lineno = 256U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_set_mac_type"); } } else { } { if ((int )hw->device_id == 4096) { goto case_4096; } else { } if ((int )hw->device_id == 4097) { goto case_4097; } else { } if ((int )hw->device_id == 4100) { goto case_4100; } else { } if ((int )hw->device_id == 4104) { goto case_4104; } else { } if ((int )hw->device_id == 4105) { goto case_4105; } else { } if ((int )hw->device_id == 4108) { goto case_4108; } else { } if ((int )hw->device_id == 4109) { goto case_4109; } else { } if ((int )hw->device_id == 4110) { goto case_4110; } else { } if ((int )hw->device_id == 4117) { goto case_4117; } else { } if ((int )hw->device_id == 4119) { goto case_4119; } else { } if ((int )hw->device_id == 4118) { goto case_4118; } else { } if ((int )hw->device_id == 4126) { goto case_4126; } else { } if ((int )hw->device_id == 4111) { goto case_4111; } else { } if ((int )hw->device_id == 4113) { goto case_4113; } else { } if ((int )hw->device_id == 4134) { goto case_4134; } else { } if ((int )hw->device_id == 4135) { goto case_4135; } else { } if ((int )hw->device_id == 4136) { goto case_4136; } else { } if ((int )hw->device_id == 4112) { goto case_4112; } else { } if ((int )hw->device_id == 4114) { goto case_4114; } else { } if ((int )hw->device_id == 4125) { goto case_4125; } else { } if ((int )hw->device_id == 4217) { goto case_4217; } else { } if ((int )hw->device_id == 4218) { goto case_4218; } else { } if ((int )hw->device_id == 4219) { goto case_4219; } else { } if ((int )hw->device_id == 4234) { goto case_4234; } else { } if ((int )hw->device_id == 4249) { goto case_4249; } else { } if ((int )hw->device_id == 4277) { goto case_4277; } else { } if ((int )hw->device_id == 4115) { goto case_4115; } else { } if ((int )hw->device_id == 4120) { goto case_4120; } else { } if ((int )hw->device_id == 4116) { goto case_4116; } else { } if ((int )hw->device_id == 4216) { goto case_4216; } else { } if ((int )hw->device_id == 4214) { goto case_4214; } else { } if ((int )hw->device_id == 4220) { goto case_4220; } else { } if ((int )hw->device_id == 4215) { goto case_4215; } else { } if ((int )hw->device_id == 4121) { goto case_4121; } else { } if ((int )hw->device_id == 4122) { goto case_4122; } else { } if ((int )hw->device_id == 4213) { goto case_4213; } else { } if ((int )hw->device_id == 11886) { goto case_11886; } else { } goto switch_default___0; case_4096: /* CIL Label */ ; { if ((int )hw->revision_id == 2) { goto case_2; } else { } if ((int )hw->revision_id == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ hw->mac_type = 1; goto ldv_51385; case_3: /* CIL Label */ hw->mac_type = 2; goto ldv_51385; switch_default: /* CIL Label */ ; return (-5); switch_break___0: /* CIL Label */ ; } ldv_51385: ; goto ldv_51388; case_4097: /* CIL Label */ ; case_4100: /* CIL Label */ hw->mac_type = 3; goto ldv_51388; case_4104: /* CIL Label */ ; case_4105: /* CIL Label */ ; case_4108: /* CIL Label */ ; case_4109: /* CIL Label */ hw->mac_type = 4; goto ldv_51388; case_4110: /* CIL Label */ ; case_4117: /* CIL Label */ ; case_4119: /* CIL Label */ ; case_4118: /* CIL Label */ ; case_4126: /* CIL Label */ hw->mac_type = 5; goto ldv_51388; case_4111: /* CIL Label */ ; case_4113: /* CIL Label */ hw->mac_type = 6; goto ldv_51388; case_4134: /* CIL Label */ ; case_4135: /* CIL Label */ ; case_4136: /* CIL Label */ hw->mac_type = 7; goto ldv_51388; case_4112: /* CIL Label */ ; case_4114: /* CIL Label */ ; case_4125: /* CIL Label */ hw->mac_type = 8; goto ldv_51388; case_4217: /* CIL Label */ ; case_4218: /* CIL Label */ ; case_4219: /* CIL Label */ ; case_4234: /* CIL Label */ ; case_4249: /* CIL Label */ ; case_4277: /* CIL Label */ hw->mac_type = 10; goto ldv_51388; case_4115: /* CIL Label */ ; case_4120: /* CIL Label */ ; case_4116: /* CIL Label */ hw->mac_type = 11; goto ldv_51388; case_4216: /* CIL Label */ ; case_4214: /* CIL Label */ ; case_4220: /* CIL Label */ ; case_4215: /* CIL Label */ hw->mac_type = 12; goto ldv_51388; case_4121: /* CIL Label */ ; case_4122: /* CIL Label */ hw->mac_type = 13; goto ldv_51388; case_4213: /* CIL Label */ hw->mac_type = 14; goto ldv_51388; case_11886: /* CIL Label */ hw->mac_type = 9; goto ldv_51388; switch_default___0: /* CIL Label */ ; return (-5); switch_break: /* CIL Label */ ; } ldv_51388: ; { if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default___1; case_11: /* CIL Label */ ; case_13: /* CIL Label */ ; case_12: /* CIL Label */ ; case_14: /* CIL Label */ hw->asf_firmware_present = 1U; goto ldv_51430; switch_default___1: /* CIL Label */ ; goto ldv_51430; switch_break___1: /* CIL Label */ ; } ldv_51430: ; if ((unsigned int )hw->mac_type == 3U) { hw->bad_tx_carr_stats_fd = 1; } else { } if ((unsigned int )hw->mac_type > 4U) { hw->has_smbus = 1; } else { } return (0); } } void e1000_set_media_type(struct e1000_hw *hw ) { u32 status ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_set_media_type"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_set_media_type"; descriptor.lineno = 368U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_set_media_type"); } } else { } if ((unsigned int )hw->mac_type != 3U) { hw->tbi_compatibility_en = 0; } else { } { if ((int )hw->device_id == 4136) { goto case_4136; } else { } if ((int )hw->device_id == 4219) { goto case_4219; } else { } goto switch_default; case_4136: /* CIL Label */ ; case_4219: /* CIL Label */ hw->media_type = 2; goto ldv_51440; switch_default: /* CIL Label */ ; { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 9U) { goto case_9; } else { } goto switch_default___0; case_1: /* CIL Label */ ; case_2: /* CIL Label */ hw->media_type = 1; goto ldv_51444; case_9: /* CIL Label */ hw->media_type = 0; goto ldv_51444; switch_default___0: /* CIL Label */ { status = readl((void const volatile *)hw->hw_addr + 8U); } if ((status & 32U) != 0U) { hw->media_type = 1; hw->tbi_compatibility_en = 0; } else { hw->media_type = 0; } goto ldv_51444; switch_break___0: /* CIL Label */ ; } ldv_51444: ; switch_break: /* CIL Label */ ; } ldv_51440: ; return; } } s32 e1000_reset_hw(struct e1000_hw *hw ) { u32 ctrl ; u32 ctrl_ext ; u32 icr ; u32 manc ; u32 led_ctrl ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_reset_hw"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_reset_hw"; descriptor.lineno = 418U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_reset_hw"); } } else { } if ((unsigned int )hw->mac_type == 1U) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_reset_hw"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Disabling MWI on 82542 rev 2.0\n"; descriptor___0.lineno = 422U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Disabling MWI on 82542 rev 2.0\n"); } } else { } { e1000_pci_clear_mwi(hw); } } else { } { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_reset_hw"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Masking off all interrupts\n"; descriptor___1.lineno = 427U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Masking off all interrupts\n"); } } else { } { writel(4294967295U, (void volatile *)hw->hw_addr + 216U); writel(0U, (void volatile *)hw->hw_addr + 256U); writel(8U, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); hw->tbi_compatibility_on = 0; msleep(10U); ctrl = readl((void const volatile *)hw->hw_addr); } if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { { writel(ctrl | 2147483648U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); msleep(5U); } } else { } { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_reset_hw"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Issuing a global reset to MAC\n"; descriptor___2.lineno = 460U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Issuing a global reset to MAC\n"); } } else { } { if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 5U) { goto case_5; } else { } if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } if ((unsigned int )hw->mac_type == 9U) { goto case_9; } else { } goto switch_default; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_8: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ { e1000_write_reg_io(hw, 0U, ctrl | 67108864U); } goto ldv_51467; case_7: /* CIL Label */ ; case_10: /* CIL Label */ { writel(ctrl | 67108864U, (void volatile *)hw->hw_addr + 4U); } goto ldv_51467; case_9: /* CIL Label */ ; switch_default: /* CIL Label */ { writel(ctrl | 67108864U, (void volatile *)hw->hw_addr); } goto ldv_51467; switch_break: /* CIL Label */ ; } ldv_51467: ; { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4___0; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11___0; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12___0; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default___0; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4___0: /* CIL Label */ { __const_udelay(42950UL); ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 8192U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); readl((void const volatile *)hw->hw_addr + 8U); msleep(2U); } goto ldv_51476; case_11___0: /* CIL Label */ ; case_12___0: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ { msleep(20U); } goto ldv_51476; switch_default___0: /* CIL Label */ { ret_val = e1000_get_auto_rd_done(hw); } if (ret_val != 0) { return (ret_val); } else { } goto ldv_51476; switch_break___0: /* CIL Label */ ; } ldv_51476: ; if ((unsigned int )hw->mac_type > 4U) { { manc = readl((void const volatile *)hw->hw_addr + 22560U); manc = manc & 4294959103U; writel(manc, (void volatile *)hw->hw_addr + 22560U); } } else { } if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { { e1000_phy_init_script(hw); led_ctrl = readl((void const volatile *)hw->hw_addr + 3584U); led_ctrl = led_ctrl & 4294963455U; led_ctrl = led_ctrl | 117441280U; writel(led_ctrl, (void volatile *)hw->hw_addr + 3584U); } } else { } { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_reset_hw"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Masking off all interrupts\n"; descriptor___3.lineno = 536U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Masking off all interrupts\n"); } } else { } { writel(4294967295U, (void volatile *)hw->hw_addr + 216U); icr = readl((void const volatile *)hw->hw_addr + 192U); } if ((unsigned int )hw->mac_type == 1U) { if (((int )hw->pci_cmd_word & 16) != 0) { { e1000_pci_set_mwi(hw); } } else { } } else { } return (0); } } s32 e1000_init_hw(struct e1000_hw *hw ) { u32 ctrl ; u32 i ; s32 ret_val ; u32 mta_size ; u32 ctrl_ext ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; int tmp___9 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_init_hw"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_init_hw"; descriptor.lineno = 569U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_init_hw"); } } else { } { ret_val = e1000_id_led_init(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_init_hw"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error Initializing Identification LED\n"; descriptor___0.lineno = 574U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error Initializing Identification LED\n"); } } else { } return (ret_val); } else { } { e1000_set_media_type(hw); descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_init_hw"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Initializing the IEEE VLAN\n"; descriptor___1.lineno = 582U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Initializing the IEEE VLAN\n"); } } else { } if ((unsigned int )hw->mac_type <= 6U) { { writel(0U, (void volatile *)hw->hw_addr + 56U); } } else { } { e1000_clear_vfta(hw); } if ((unsigned int )hw->mac_type == 1U) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_init_hw"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Disabling MWI on 82542 rev 2.0\n"; descriptor___2.lineno = 589U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Disabling MWI on 82542 rev 2.0\n"); } } else { } { e1000_pci_clear_mwi(hw); writel(1U, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); msleep(5U); } } else { } { e1000_init_rx_addrs(hw); } if ((unsigned int )hw->mac_type == 1U) { { writel(0U, (void volatile *)hw->hw_addr + 256U); readl((void const volatile *)hw->hw_addr + 8U); msleep(1U); } if (((int )hw->pci_cmd_word & 16) != 0) { { e1000_pci_set_mwi(hw); } } else { } } else { } { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_init_hw"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Zeroing the MTA\n"; descriptor___3.lineno = 611U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Zeroing the MTA\n"); } } else { } mta_size = 128U; i = 0U; goto ldv_51498; ldv_51497: { writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 20992U : 512U) + (unsigned long )(i << 2)))); readl((void const volatile *)hw->hw_addr + 8U); i = i + 1U; } ldv_51498: ; if (i < mta_size) { goto ldv_51497; } else { } if ((unsigned int )hw->dma_fairness != 0U && (unsigned int )hw->mac_type <= 3U) { { ctrl = readl((void const volatile *)hw->hw_addr); writel(ctrl | 4U, (void volatile *)hw->hw_addr); } } else { } { if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } goto switch_default; case_7: /* CIL Label */ ; case_10: /* CIL Label */ ; goto ldv_51502; switch_default: /* CIL Label */ ; if ((unsigned int )hw->bus_type == 2U) { { tmp___9 = e1000_pcix_get_mmrbc(hw); } if (tmp___9 > 2048) { { e1000_pcix_set_mmrbc(hw, 2048); } } else { } } else { } goto ldv_51502; switch_break: /* CIL Label */ ; } ldv_51502: { ret_val = e1000_setup_link(hw); } if ((unsigned int )hw->mac_type > 4U) { { ctrl = readl((void const volatile *)hw->hw_addr + 14376U); ctrl = (ctrl & 4274061311U) | 16842752U; writel(ctrl, (void volatile *)hw->hw_addr + 14376U); } } else { } { e1000_clear_hw_cntrs(hw); } if ((unsigned int )hw->device_id == 4249U || (unsigned int )hw->device_id == 4277U) { { ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 131072U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); } } else { } return (ret_val); } } static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw ) { u16 eeprom_data ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_adjust_serdes_amplitude"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_adjust_serdes_amplitude"; descriptor.lineno = 686U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_adjust_serdes_amplitude"); } } else { } if ((unsigned int )hw->media_type != 2U) { return (0); } else { } { if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } goto switch_default; case_7: /* CIL Label */ ; case_10: /* CIL Label */ ; goto ldv_51513; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_51513: { ret_val = e1000_read_eeprom(hw, 6, 1, & eeprom_data); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )eeprom_data != 65535U) { { eeprom_data = (unsigned int )eeprom_data & 15U; ret_val = e1000_write_phy_reg(hw, 26U, (int )eeprom_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } s32 e1000_setup_link(struct e1000_hw *hw ) { u32 ctrl_ext ; s32 ret_val ; u16 eeprom_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; s32 tmp___7 ; s32 tmp___8 ; struct _ddebug descriptor___3 ; struct net_device *tmp___9 ; long tmp___10 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_setup_link"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_setup_link"; descriptor.lineno = 733U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_setup_link"); } } else { } if ((unsigned int )hw->fc == 255U) { { ret_val = e1000_read_eeprom(hw, 15, 1, & eeprom_data); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_setup_link"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Read Error\n"; descriptor___0.lineno = 747U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "EEPROM Read Error\n"); } } else { } return (-1); } else { } if (((int )eeprom_data & 12288) == 0) { hw->fc = 0; } else if (((int )eeprom_data & 12288) == 8192) { hw->fc = 2; } else { hw->fc = 3; } } else { } if ((unsigned int )hw->mac_type == 1U) { hw->fc = (e1000_fc_type )((unsigned int )hw->fc & 4294967293U); } else { } if ((unsigned int )hw->mac_type <= 2U && (int )hw->report_tx_early) { hw->fc = (e1000_fc_type )((unsigned int )hw->fc & 4294967294U); } else { } { hw->original_fc = (u32 )hw->fc; descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_setup_link"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "After fix-ups FlowControl is now = %x\n"; descriptor___1.lineno = 771U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "After fix-ups FlowControl is now = %x\n", (unsigned int )hw->fc); } } else { } if ((unsigned int )hw->mac_type == 3U) { { ret_val = e1000_read_eeprom(hw, 15, 1, & eeprom_data); } if (ret_val != 0) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_setup_link"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "EEPROM Read Error\n"; descriptor___2.lineno = 784U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "EEPROM Read Error\n"); } } else { } return (-1); } else { } { ctrl_ext = (u32 )(((int )eeprom_data & 240) << 4); writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); } } else { } if ((unsigned int )hw->media_type == 0U) { { tmp___7 = e1000_setup_copper_link(hw); ret_val = tmp___7; } } else { { tmp___8 = e1000_setup_fiber_serdes_link(hw); ret_val = tmp___8; } } { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_setup_link"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Initializing the Flow Control address, type and timer regs\n"; descriptor___3.lineno = 801U; descriptor___3.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___9, "Initializing the Flow Control address, type and timer regs\n"); } } else { } { writel(34824U, (void volatile *)hw->hw_addr + 48U); writel(256U, (void volatile *)hw->hw_addr + 44U); writel(12746753U, (void volatile *)hw->hw_addr + 40U); writel((unsigned int )hw->fc_pause_time, (void volatile *)hw->hw_addr + 368U); } if (((unsigned int )hw->fc & 2U) == 0U) { { writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8544UL : 360UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8552UL : 352UL))); } } else if ((int )hw->fc_send_xon) { { writel((unsigned int )hw->fc_low_water | 2147483648U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8544UL : 360UL))); writel((unsigned int )hw->fc_high_water, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8552UL : 352UL))); } } else { { writel((unsigned int )hw->fc_low_water, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8544UL : 360UL))); writel((unsigned int )hw->fc_high_water, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 8552UL : 352UL))); } } return (ret_val); } } static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw ) { u32 ctrl ; u32 status ; u32 txcw ; u32 i ; u32 signal ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; struct _ddebug descriptor___6 ; struct net_device *tmp___13 ; long tmp___14 ; unsigned int tmp___15 ; { { txcw = 0U; signal = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_setup_fiber_serdes_link"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_setup_fiber_serdes_link"; descriptor.lineno = 851U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_setup_fiber_serdes_link"); } } else { } { ctrl = readl((void const volatile *)hw->hw_addr); } if ((unsigned int )hw->media_type == 1U) { signal = (unsigned int )hw->mac_type > 4U ? 524288U : 0U; } else { } { ret_val = e1000_adjust_serdes_amplitude(hw); } if (ret_val != 0) { return (ret_val); } else { } { ctrl = ctrl & 4294967287U; ret_val = e1000_set_vco_speed(hw); } if (ret_val != 0) { return (ret_val); } else { } { e1000_config_collision_dist(hw); } { if ((unsigned int )hw->fc == 0U) { goto case_0; } else { } if ((unsigned int )hw->fc == 1U) { goto case_1; } else { } if ((unsigned int )hw->fc == 2U) { goto case_2; } else { } if ((unsigned int )hw->fc == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ txcw = 2147483680U; goto ldv_51539; case_1: /* CIL Label */ txcw = 2147484064U; goto ldv_51539; case_2: /* CIL Label */ txcw = 2147483936U; goto ldv_51539; case_3: /* CIL Label */ txcw = 2147484064U; goto ldv_51539; switch_default: /* CIL Label */ { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_setup_fiber_serdes_link"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Flow control param set incorrectly\n"; descriptor___0.lineno = 921U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Flow control param set incorrectly\n"); } } else { } return (-3); switch_break: /* CIL Label */ ; } ldv_51539: { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_setup_fiber_serdes_link"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Auto-negotiation enabled\n"; descriptor___1.lineno = 932U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Auto-negotiation enabled\n"); } } else { } { writel(txcw, (void volatile *)hw->hw_addr + 376U); writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); hw->txcw = txcw; msleep(1U); } if ((unsigned int )hw->media_type == 2U) { goto _L; } else { { tmp___15 = readl((void const volatile *)hw->hw_addr); } if ((tmp___15 & 524288U) == signal) { _L: /* CIL Label */ { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_setup_fiber_serdes_link"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Looking for Link\n"; descriptor___2.lineno = 950U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Looking for Link\n"); } } else { } i = 0U; goto ldv_51549; ldv_51548: { msleep(10U); status = readl((void const volatile *)hw->hw_addr + 8U); } if ((status & 2U) != 0U) { goto ldv_51547; } else { } i = i + 1U; ldv_51549: ; if (i <= 49U) { goto ldv_51548; } else { } ldv_51547: ; if (i == 50U) { { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_setup_fiber_serdes_link"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Never got a valid link from auto-neg!!!\n"; descriptor___3.lineno = 958U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Never got a valid link from auto-neg!!!\n"); } } else { } { hw->autoneg_failed = 1U; ret_val = e1000_check_for_link(hw); } if (ret_val != 0) { { descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_setup_fiber_serdes_link"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Error while checking for link\n"; descriptor___4.lineno = 967U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Error while checking for link\n"); } } else { } return (ret_val); } else { } hw->autoneg_failed = 0U; } else { { hw->autoneg_failed = 0U; descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_setup_fiber_serdes_link"; descriptor___5.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "Valid Link Found\n"; descriptor___5.lineno = 973U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___12 != 0L) { { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "Valid Link Found\n"); } } else { } } } else { { descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_setup_fiber_serdes_link"; descriptor___6.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "No Signal Detected\n"; descriptor___6.lineno = 976U; descriptor___6.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___14 != 0L) { { tmp___13 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___13, "No Signal Detected\n"); } } else { } } } return (0); } } static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw ) { s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { ret_val = e1000_phy_reset(hw); } if (ret_val != 0) { { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_rtl_setup"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "Error Resetting the PHY\n"; descriptor.lineno = 994U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "Error Resetting the PHY\n"); } } else { } return (ret_val); } else { } return (0); } } static s32 gbe_dhg_phy_setup(struct e1000_hw *hw ) { s32 ret_val ; u32 ctrl_aux ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { { if ((unsigned int )hw->phy_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->phy_type == 3U) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ret_val = e1000_copper_link_rtl_setup(hw); } if (ret_val != 0) { { descriptor.modname = "e1000"; descriptor.function = "gbe_dhg_phy_setup"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_copper_link_rtl_setup failed!\n"; descriptor.lineno = 1010U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_copper_link_rtl_setup failed!\n"); } } else { } return (ret_val); } else { } goto ldv_51568; case_3: /* CIL Label */ { ctrl_aux = readl((void const volatile *)hw->hw_addr + 224U); ctrl_aux = ctrl_aux | 1U; writel(ctrl_aux, (void volatile *)hw->hw_addr + 224U); readl((void const volatile *)hw->hw_addr + 8U); ctrl_aux = readl((void const volatile *)hw->hw_addr + 224U); ctrl_aux = ctrl_aux | 4U; ctrl_aux = ctrl_aux & 4294967293U; writel(ctrl_aux, (void volatile *)hw->hw_addr + 224U); readl((void const volatile *)hw->hw_addr + 8U); ret_val = e1000_copper_link_rtl_setup(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "gbe_dhg_phy_setup"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "e1000_copper_link_rtl_setup failed!\n"; descriptor___0.lineno = 1030U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "e1000_copper_link_rtl_setup failed!\n"); } } else { } return (ret_val); } else { } goto ldv_51568; switch_default: /* CIL Label */ { descriptor___1.modname = "e1000"; descriptor___1.function = "gbe_dhg_phy_setup"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error Resetting the PHY\n"; descriptor___1.lineno = 1035U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error Resetting the PHY\n"); } } else { } return (6); switch_break: /* CIL Label */ ; } ldv_51568: ; return (0); } } static s32 e1000_copper_link_preconfig(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_preconfig"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_copper_link_preconfig"; descriptor.lineno = 1054U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_copper_link_preconfig"); } } else { } { ctrl = readl((void const volatile *)hw->hw_addr); } if ((unsigned int )hw->mac_type > 3U) { { ctrl = ctrl | 64U; ctrl = ctrl & 4294961151U; writel(ctrl, (void volatile *)hw->hw_addr); } } else { { ctrl = ctrl | 6208U; writel(ctrl, (void volatile *)hw->hw_addr); ret_val = e1000_phy_hw_reset(hw); } if (ret_val != 0) { return (ret_val); } else { } } { ret_val = e1000_detect_gig_phy(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_preconfig"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error, did not detect valid phy.\n"; descriptor___0.lineno = 1077U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error, did not detect valid phy.\n"); } } else { } return (ret_val); } else { } { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_copper_link_preconfig"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Phy ID = %x\n"; descriptor___1.lineno = 1080U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Phy ID = %x\n", hw->phy_id); } } else { } { ret_val = e1000_set_phy_mode(hw); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->mac_type == 7U || (unsigned int )hw->mac_type == 10U) { { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); phy_data = (u16 )((unsigned int )phy_data | 8U); ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } } else { } if (((((unsigned int )hw->mac_type <= 3U || (unsigned int )hw->mac_type == 11U) || (unsigned int )hw->mac_type == 13U) || (unsigned int )hw->mac_type == 12U) || (unsigned int )hw->mac_type == 14U) { hw->phy_reset_disable = 0; } else { } return (0); } } static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw ) { u32 led_ctrl ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; e1000_ms_type phy_ms_setting ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_igp_setup"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_copper_link_igp_setup"; descriptor.lineno = 1115U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_copper_link_igp_setup"); } } else { } if ((int )hw->phy_reset_disable) { return (0); } else { } { ret_val = e1000_phy_reset(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_igp_setup"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error Resetting the PHY\n"; descriptor___0.lineno = 1122U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error Resetting the PHY\n"); } } else { } return (ret_val); } else { } { msleep(15U); led_ctrl = readl((void const volatile *)hw->hw_addr + 3584U); led_ctrl = led_ctrl & 4294963455U; led_ctrl = led_ctrl | 117441280U; writel(led_ctrl, (void volatile *)hw->hw_addr + 3584U); } if ((unsigned int )hw->phy_type == 1U) { { ret_val = e1000_set_d3_lplu_state(hw, 0); } if (ret_val != 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_copper_link_igp_setup"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error Disabling LPLU D3\n"; descriptor___1.lineno = 1139U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error Disabling LPLU D3\n"); } } else { } return (ret_val); } else { } } else { } { ret_val = e1000_read_phy_reg(hw, 18U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { hw->dsp_config_state = 0; phy_data = (unsigned int )phy_data & 53247U; hw->mdix = 1U; } else { hw->dsp_config_state = 1; phy_data = (unsigned int )phy_data & 61439U; { if ((int )hw->mdix == 1) { goto case_1; } else { } if ((int )hw->mdix == 2) { goto case_2; } else { } if ((int )hw->mdix == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ phy_data = (unsigned int )phy_data & 57343U; goto ldv_51594; case_2: /* CIL Label */ phy_data = (u16 )((unsigned int )phy_data | 8192U); goto ldv_51594; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ phy_data = (u16 )((unsigned int )phy_data | 4096U); goto ldv_51594; switch_break: /* CIL Label */ ; } ldv_51594: ; } { ret_val = e1000_write_phy_reg(hw, 18U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->autoneg != 0U) { phy_ms_setting = hw->master_slave; if ((unsigned int )hw->ffe_config_state == 1U) { hw->ffe_config_state = 0; } else { } if ((unsigned int )hw->dsp_config_state == 2U) { hw->dsp_config_state = 1; } else { } if ((unsigned int )hw->autoneg_advertised == 32U) { { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 65407U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 9U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 61439U; ret_val = e1000_write_phy_reg(hw, 9U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } { ret_val = e1000_read_phy_reg(hw, 9U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } hw->original_master_slave = ((int )phy_data & 4096) != 0 ? (((int )phy_data & 2048) != 0 ? 1 : 2) : 3; { if ((unsigned int )phy_ms_setting == 1U) { goto case_1___0; } else { } if ((unsigned int )phy_ms_setting == 2U) { goto case_2___0; } else { } if ((unsigned int )phy_ms_setting == 3U) { goto case_3; } else { } goto switch_default___0; case_1___0: /* CIL Label */ phy_data = (u16 )((unsigned int )phy_data | 6144U); goto ldv_51600; case_2___0: /* CIL Label */ phy_data = (u16 )((unsigned int )phy_data | 4096U); phy_data = (unsigned int )phy_data & 63487U; goto ldv_51600; case_3: /* CIL Label */ phy_data = (unsigned int )phy_data & 61439U; switch_default___0: /* CIL Label */ ; goto ldv_51600; switch_break___0: /* CIL Label */ ; } ldv_51600: { ret_val = e1000_write_phy_reg(hw, 9U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_mgp_setup"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_copper_link_mgp_setup"; descriptor.lineno = 1257U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_copper_link_mgp_setup"); } } else { } if ((int )hw->phy_reset_disable) { return (0); } else { } { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 2048U); phy_data = (unsigned int )phy_data & 65439U; { if ((int )hw->mdix == 1) { goto case_1; } else { } if ((int )hw->mdix == 2) { goto case_2; } else { } if ((int )hw->mdix == 3) { goto case_3; } else { } if ((int )hw->mdix == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ phy_data = phy_data; goto ldv_51612; case_2: /* CIL Label */ phy_data = (u16 )((unsigned int )phy_data | 32U); goto ldv_51612; case_3: /* CIL Label */ phy_data = (u16 )((unsigned int )phy_data | 64U); goto ldv_51612; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ phy_data = (u16 )((unsigned int )phy_data | 96U); goto ldv_51612; switch_break: /* CIL Label */ ; } ldv_51612: phy_data = (unsigned int )phy_data & 65533U; if ((int )hw->disable_polarity_correction) { phy_data = (u16 )((unsigned int )phy_data | 2U); } else { } { ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (hw->phy_revision <= 3U) { { ret_val = e1000_read_phy_reg(hw, 20U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 112U); if (*((unsigned long *)hw + 16UL) == 8610974912UL) { { phy_data = (unsigned int )phy_data & 61951U; phy_data = (u16 )((unsigned int )phy_data | 2048U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { { phy_data = (unsigned int )phy_data & 61695U; phy_data = (u16 )((unsigned int )phy_data | 256U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } } else { } { ret_val = e1000_phy_reset(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_mgp_setup"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error Resetting the PHY\n"; descriptor___0.lineno = 1346U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error Resetting the PHY\n"); } } else { } return (ret_val); } else { } return (0); } } static s32 e1000_copper_link_autoneg(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_autoneg"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_copper_link_autoneg"; descriptor.lineno = 1365U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_copper_link_autoneg"); } } else { } hw->autoneg_advertised = (unsigned int )hw->autoneg_advertised & 47U; if ((unsigned int )hw->autoneg_advertised == 0U) { hw->autoneg_advertised = 47U; } else { } if ((unsigned int )hw->phy_type == 3U) { hw->autoneg_advertised = (unsigned int )hw->autoneg_advertised & 15U; } else { } { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_autoneg"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Reconfiguring auto-neg advertisement params\n"; descriptor___0.lineno = 1382U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Reconfiguring auto-neg advertisement params\n"); } } else { } { ret_val = e1000_phy_setup_autoneg(hw); } if (ret_val != 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_copper_link_autoneg"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error Setting up Auto-Negotiation\n"; descriptor___1.lineno = 1385U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error Setting up Auto-Negotiation\n"); } } else { } return (ret_val); } else { } { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_copper_link_autoneg"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Restarting Auto-Neg\n"; descriptor___2.lineno = 1388U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Restarting Auto-Neg\n"); } } else { } { ret_val = e1000_read_phy_reg(hw, 0U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (u16 )((unsigned int )phy_data | 4608U); ret_val = e1000_write_phy_reg(hw, 0U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->wait_autoneg_complete != 0U) { { ret_val = e1000_wait_autoneg(hw); } if (ret_val != 0) { { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_copper_link_autoneg"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Error while waiting for autoneg to complete\n"; descriptor___3.lineno = 1409U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Error while waiting for autoneg to complete\n"); } } else { } return (ret_val); } else { } } else { } hw->get_link_status = 1; return (0); } } static s32 e1000_copper_link_postconfig(struct e1000_hw *hw ) { s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_copper_link_postconfig"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_copper_link_postconfig"; descriptor.lineno = 1435U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_copper_link_postconfig"); } } else { } if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 9U) { { e1000_config_collision_dist(hw); } } else { { ret_val = e1000_config_mac_to_phy(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_copper_link_postconfig"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error configuring MAC to PHY settings\n"; descriptor___0.lineno = 1442U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error configuring MAC to PHY settings\n"); } } else { } return (ret_val); } else { } } { ret_val = e1000_config_fc_after_link_up(hw); } if (ret_val != 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_copper_link_postconfig"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error Configuring Flow Control\n"; descriptor___1.lineno = 1448U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error Configuring Flow Control\n"); } } else { } return (ret_val); } else { } if ((unsigned int )hw->phy_type == 1U) { { ret_val = e1000_config_dsp_after_link_change(hw, 1); } if (ret_val != 0) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_copper_link_postconfig"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Error Configuring DSP after link up\n"; descriptor___2.lineno = 1456U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Error Configuring DSP after link up\n"); } } else { } return (ret_val); } else { } } else { } return (0); } } static s32 e1000_setup_copper_link(struct e1000_hw *hw ) { s32 ret_val ; u16 i ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_setup_copper_link"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_setup_copper_link"; descriptor.lineno = 1476U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_setup_copper_link"); } } else { } { ret_val = e1000_copper_link_preconfig(hw); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->phy_type == 1U) { { ret_val = e1000_copper_link_igp_setup(hw); } if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )hw->phy_type == 0U) { { ret_val = e1000_copper_link_mgp_setup(hw); } if (ret_val != 0) { return (ret_val); } else { } } else { { ret_val = gbe_dhg_phy_setup(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_setup_copper_link"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "gbe_dhg_phy_setup failed!\n"; descriptor___0.lineno = 1494U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "gbe_dhg_phy_setup failed!\n"); } } else { } return (ret_val); } else { } } if ((unsigned int )hw->autoneg != 0U) { { ret_val = e1000_copper_link_autoneg(hw); } if (ret_val != 0) { return (ret_val); } else { } } else { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_setup_copper_link"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Forcing speed and duplex\n"; descriptor___1.lineno = 1510U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Forcing speed and duplex\n"); } } else { } { ret_val = e1000_phy_force_speed_duplex(hw); } if (ret_val != 0) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_setup_copper_link"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Error Forcing Speed and Duplex\n"; descriptor___2.lineno = 1513U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Error Forcing Speed and Duplex\n"); } } else { } return (ret_val); } else { } } i = 0U; goto ldv_51651; ldv_51650: { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 4) != 0) { { ret_val = e1000_copper_link_postconfig(hw); } if (ret_val != 0) { return (ret_val); } else { } { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_setup_copper_link"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Valid link established!!!\n"; descriptor___3.lineno = 1535U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Valid link established!!!\n"); } } else { } return (0); } else { } { __const_udelay(42950UL); i = (u16 )((int )i + 1); } ldv_51651: ; if ((unsigned int )i <= 9U) { goto ldv_51650; } else { } { descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_setup_copper_link"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Unable to establish link!!!\n"; descriptor___4.lineno = 1541U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Unable to establish link!!!\n"); } } else { } return (0); } } s32 e1000_phy_setup_autoneg(struct e1000_hw *hw ) { s32 ret_val ; u16 mii_autoneg_adv_reg ; u16 mii_1000t_ctrl_reg ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; struct _ddebug descriptor___6 ; struct net_device *tmp___13 ; long tmp___14 ; struct _ddebug descriptor___7 ; struct net_device *tmp___15 ; long tmp___16 ; struct _ddebug descriptor___8 ; struct net_device *tmp___17 ; long tmp___18 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_setup_autoneg"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_setup_autoneg"; descriptor.lineno = 1557U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_setup_autoneg"); } } else { } { ret_val = e1000_read_phy_reg(hw, 4U, & mii_autoneg_adv_reg); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 9U, & mii_1000t_ctrl_reg); } if (ret_val != 0) { return (ret_val); } else if ((unsigned int )hw->phy_type == 3U) { mii_1000t_ctrl_reg = (unsigned int )mii_1000t_ctrl_reg & 64767U; } else { } { mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 65055U; mii_1000t_ctrl_reg = (unsigned int )mii_1000t_ctrl_reg & 64767U; descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_phy_setup_autoneg"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "autoneg_advertised %x\n"; descriptor___0.lineno = 1585U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "autoneg_advertised %x\n", (int )hw->autoneg_advertised); } } else { } if ((int )hw->autoneg_advertised & 1) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_phy_setup_autoneg"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Advertise 10mb Half duplex\n"; descriptor___1.lineno = 1589U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Advertise 10mb Half duplex\n"); } } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 32U); } else { } if (((int )hw->autoneg_advertised & 2) != 0) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_phy_setup_autoneg"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Advertise 10mb Full duplex\n"; descriptor___2.lineno = 1595U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Advertise 10mb Full duplex\n"); } } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 64U); } else { } if (((int )hw->autoneg_advertised & 4) != 0) { { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_phy_setup_autoneg"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Advertise 100mb Half duplex\n"; descriptor___3.lineno = 1601U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Advertise 100mb Half duplex\n"); } } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 128U); } else { } if (((int )hw->autoneg_advertised & 8) != 0) { { descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_phy_setup_autoneg"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Advertise 100mb Full duplex\n"; descriptor___4.lineno = 1607U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Advertise 100mb Full duplex\n"); } } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 256U); } else { } if (((int )hw->autoneg_advertised & 16) != 0) { { descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_phy_setup_autoneg"; descriptor___5.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "Advertise 1000mb Half duplex requested, request denied!\n"; descriptor___5.lineno = 1614U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___12 != 0L) { { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "Advertise 1000mb Half duplex requested, request denied!\n"); } } else { } } else { } if (((int )hw->autoneg_advertised & 32) != 0) { { descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_phy_setup_autoneg"; descriptor___6.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "Advertise 1000mb Full duplex\n"; descriptor___6.lineno = 1619U; descriptor___6.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___14 != 0L) { { tmp___13 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___13, "Advertise 1000mb Full duplex\n"); } } else { } mii_1000t_ctrl_reg = (u16 )((unsigned int )mii_1000t_ctrl_reg | 512U); } else { } { if ((unsigned int )hw->fc == 0U) { goto case_0; } else { } if ((unsigned int )hw->fc == 1U) { goto case_1; } else { } if ((unsigned int )hw->fc == 2U) { goto case_2; } else { } if ((unsigned int )hw->fc == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 62463U; goto ldv_51670; case_1: /* CIL Label */ mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 3072U); goto ldv_51670; case_2: /* CIL Label */ mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 2048U); mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 64511U; goto ldv_51670; case_3: /* CIL Label */ mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 3072U); goto ldv_51670; switch_default: /* CIL Label */ { descriptor___7.modname = "e1000"; descriptor___7.function = "e1000_phy_setup_autoneg"; descriptor___7.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___7.format = "Flow control param set incorrectly\n"; descriptor___7.lineno = 1673U; descriptor___7.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___16 != 0L) { { tmp___15 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)tmp___15, "Flow control param set incorrectly\n"); } } else { } return (-3); switch_break: /* CIL Label */ ; } ldv_51670: { ret_val = e1000_write_phy_reg(hw, 4U, (int )mii_autoneg_adv_reg); } if (ret_val != 0) { return (ret_val); } else { } { descriptor___8.modname = "e1000"; descriptor___8.function = "e1000_phy_setup_autoneg"; descriptor___8.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___8.format = "Auto-Neg Advertising %x\n"; descriptor___8.lineno = 1681U; descriptor___8.flags = 0U; tmp___18 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); } if (tmp___18 != 0L) { { tmp___17 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___8, (struct net_device const *)tmp___17, "Auto-Neg Advertising %x\n", (int )mii_autoneg_adv_reg); } } else { } if ((unsigned int )hw->phy_type == 3U) { mii_1000t_ctrl_reg = 0U; } else { { ret_val = e1000_write_phy_reg(hw, 9U, (int )mii_1000t_ctrl_reg); } if (ret_val != 0) { return (ret_val); } else { } } return (0); } } static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 mii_ctrl_reg ; u16 mii_status_reg ; u16 phy_data ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; struct _ddebug descriptor___6 ; struct net_device *tmp___13 ; long tmp___14 ; struct _ddebug descriptor___7 ; struct net_device *tmp___15 ; long tmp___16 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_force_speed_duplex"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_force_speed_duplex"; descriptor.lineno = 1710U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_force_speed_duplex"); } } else { } { hw->fc = 0; descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_phy_force_speed_duplex"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "hw->fc = %d\n"; descriptor___0.lineno = 1715U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "hw->fc = %d\n", (unsigned int )hw->fc); } } else { } { ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 6144U; ctrl = ctrl & 4294966527U; ctrl = ctrl & 4294967263U; ret_val = e1000_read_phy_reg(hw, 0U, & mii_ctrl_reg); } if (ret_val != 0) { return (ret_val); } else { } mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 61439U; if ((unsigned int )hw->forced_speed_duplex == 3U || (unsigned int )hw->forced_speed_duplex == 1U) { { ctrl = ctrl | 1U; mii_ctrl_reg = (u16 )((unsigned int )mii_ctrl_reg | 256U); descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_phy_force_speed_duplex"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Full Duplex\n"; descriptor___1.lineno = 1744U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Full Duplex\n"); } } else { } } else { { ctrl = ctrl & 4294967294U; mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 65279U; descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_phy_force_speed_duplex"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Half Duplex\n"; descriptor___2.lineno = 1751U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Half Duplex\n"); } } else { } } if ((unsigned int )hw->forced_speed_duplex - 2U <= 1U) { { ctrl = ctrl | 256U; mii_ctrl_reg = (u16 )((unsigned int )mii_ctrl_reg | 8192U); mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 65471U; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_phy_force_speed_duplex"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Forcing 100mb "; descriptor___3.lineno = 1761U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Forcing 100mb "); } } else { } } else { { ctrl = ctrl & 4294966527U; mii_ctrl_reg = mii_ctrl_reg; mii_ctrl_reg = (unsigned int )mii_ctrl_reg & 57279U; descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_phy_force_speed_duplex"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Forcing 10mb "; descriptor___4.lineno = 1767U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Forcing 10mb "); } } else { } } { e1000_config_collision_dist(hw); writel(ctrl, (void volatile *)hw->hw_addr); } if ((unsigned int )hw->phy_type == 0U) { { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 65439U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } { descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_phy_force_speed_duplex"; descriptor___5.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "M88E1000 PSCR: %x\n"; descriptor___5.lineno = 1790U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___12 != 0L) { { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "M88E1000 PSCR: %x\n", (int )phy_data); } } else { } mii_ctrl_reg = (u16 )((unsigned int )mii_ctrl_reg | 32768U); } else { { ret_val = e1000_read_phy_reg(hw, 18U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 61439U; phy_data = (unsigned int )phy_data & 57343U; ret_val = e1000_write_phy_reg(hw, 18U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } { ret_val = e1000_write_phy_reg(hw, 0U, (int )mii_ctrl_reg); } if (ret_val != 0) { return (ret_val); } else { } { __const_udelay(4295UL); } if ((unsigned int )hw->wait_autoneg_complete != 0U) { { descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_phy_force_speed_duplex"; descriptor___6.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "Waiting for forced speed/duplex link.\n"; descriptor___6.lineno = 1830U; descriptor___6.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___14 != 0L) { { tmp___13 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___13, "Waiting for forced speed/duplex link.\n"); } } else { } mii_status_reg = 0U; i = 20U; goto ldv_51697; ldv_51696: { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & 4) != 0) { goto ldv_51695; } else { } { msleep(100U); i = (u16 )((int )i - 1); } ldv_51697: ; if ((unsigned int )i != 0U) { goto ldv_51696; } else { } ldv_51695: ; if ((unsigned int )i == 0U && (unsigned int )hw->phy_type == 0U) { { ret_val = e1000_phy_reset_dsp(hw); } if (ret_val != 0) { { descriptor___7.modname = "e1000"; descriptor___7.function = "e1000_phy_force_speed_duplex"; descriptor___7.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___7.format = "Error Resetting PHY DSP\n"; descriptor___7.lineno = 1858U; descriptor___7.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___16 != 0L) { { tmp___15 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)tmp___15, "Error Resetting PHY DSP\n"); } } else { } return (ret_val); } else { } } else { } i = 20U; goto ldv_51701; ldv_51700: ; if (((int )mii_status_reg & 4) != 0) { goto ldv_51699; } else { } { msleep(100U); ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } i = (u16 )((int )i - 1); ldv_51701: ; if ((unsigned int )i != 0U) { goto ldv_51700; } else { } ldv_51699: ; } else { } if ((unsigned int )hw->phy_type == 0U) { { ret_val = e1000_read_phy_reg(hw, 20U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (u16 )((unsigned int )phy_data | 112U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (u16 )((unsigned int )phy_data | 2048U); ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((unsigned int )hw->mac_type - 3U <= 1U && (unsigned int )hw->autoneg == 0U) && (unsigned int )hw->forced_speed_duplex <= 1U) { { ret_val = e1000_polarity_reversal_workaround(hw); } if (ret_val != 0) { return (ret_val); } else { } } else { } } else { } return (0); } } void e1000_config_collision_dist(struct e1000_hw *hw ) { u32 tctl ; u32 coll_dist ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_config_collision_dist"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_config_collision_dist"; descriptor.lineno = 1942U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_config_collision_dist"); } } else { } if ((unsigned int )hw->mac_type <= 2U) { coll_dist = 64U; } else { coll_dist = 63U; } { tctl = readl((void const volatile *)hw->hw_addr + 1024U); tctl = tctl & 4290777087U; tctl = tctl | (coll_dist << 12); writel(tctl, (void volatile *)hw->hw_addr + 1024U); readl((void const volatile *)hw->hw_addr + 8U); } return; } } static s32 e1000_config_mac_to_phy(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_config_mac_to_phy"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_config_mac_to_phy"; descriptor.lineno = 1973U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_config_mac_to_phy"); } } else { } if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 9U) { return (0); } else { } { ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 6144U; ctrl = ctrl & 4294966399U; } { if ((unsigned int )hw->phy_type == 3U) { goto case_3; } else { } goto switch_default; case_3: /* CIL Label */ { ret_val = e1000_read_phy_reg(hw, 0U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 256) != 0) { ctrl = ctrl | 1U; } else { ctrl = ctrl & 4294967294U; } if (((int )phy_data & 2097152) != 0) { ctrl = ctrl | 256U; } else { ctrl = ctrl; } { e1000_config_collision_dist(hw); } goto ldv_51718; switch_default: /* CIL Label */ { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 8192) != 0) { ctrl = ctrl | 1U; } else { ctrl = ctrl & 4294967294U; } { e1000_config_collision_dist(hw); } if (((int )phy_data & 49152) == 32768) { ctrl = ctrl | 512U; } else if (((int )phy_data & 49152) == 16384) { ctrl = ctrl | 256U; } else { } switch_break: /* CIL Label */ ; } ldv_51718: { writel(ctrl, (void volatile *)hw->hw_addr); } return (0); } } s32 e1000_force_mac_fc(struct e1000_hw *hw ) { u32 ctrl ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_force_mac_fc"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_force_mac_fc"; descriptor.lineno = 2052U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_force_mac_fc"); } } else { } { ctrl = readl((void const volatile *)hw->hw_addr); } { if ((unsigned int )hw->fc == 0U) { goto case_0; } else { } if ((unsigned int )hw->fc == 1U) { goto case_1; } else { } if ((unsigned int )hw->fc == 2U) { goto case_2; } else { } if ((unsigned int )hw->fc == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ctrl = ctrl & 3892314111U; goto ldv_51727; case_1: /* CIL Label */ ctrl = ctrl & 4026531839U; ctrl = ctrl | 134217728U; goto ldv_51727; case_2: /* CIL Label */ ctrl = ctrl & 4160749567U; ctrl = ctrl | 268435456U; goto ldv_51727; case_3: /* CIL Label */ ctrl = ctrl | 402653184U; goto ldv_51727; switch_default: /* CIL Label */ { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_force_mac_fc"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Flow control param set incorrectly\n"; descriptor___0.lineno = 2091U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Flow control param set incorrectly\n"); } } else { } return (-3); switch_break: /* CIL Label */ ; } ldv_51727: ; if ((unsigned int )hw->mac_type == 1U) { ctrl = ctrl & 4026531839U; } else { } { writel(ctrl, (void volatile *)hw->hw_addr); } return (0); } } static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw ) { s32 ret_val ; u16 mii_status_reg ; u16 mii_nway_adv_reg ; u16 mii_nway_lp_ability_reg ; u16 speed ; u16 duplex ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; struct _ddebug descriptor___6 ; struct net_device *tmp___13 ; long tmp___14 ; struct _ddebug descriptor___7 ; struct net_device *tmp___15 ; long tmp___16 ; struct _ddebug descriptor___8 ; struct net_device *tmp___17 ; long tmp___18 ; struct _ddebug descriptor___9 ; struct net_device *tmp___19 ; long tmp___20 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_config_fc_after_link_up"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_config_fc_after_link_up"; descriptor.lineno = 2123U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_config_fc_after_link_up"); } } else { } if (((unsigned int )hw->media_type - 1U <= 1U && hw->autoneg_failed != 0U) || ((unsigned int )hw->media_type == 0U && (unsigned int )hw->autoneg == 0U)) { { ret_val = e1000_force_mac_fc(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_config_fc_after_link_up"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error forcing flow control settings\n"; descriptor___0.lineno = 2136U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error forcing flow control settings\n"); } } else { } return (ret_val); } else { } } else { } if ((unsigned int )hw->media_type == 0U && (unsigned int )hw->autoneg != 0U) { { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & 32) != 0) { { ret_val = e1000_read_phy_reg(hw, 4U, & mii_nway_adv_reg); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 5U, & mii_nway_lp_ability_reg); } if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_nway_adv_reg & 1024) != 0 && ((int )mii_nway_lp_ability_reg & 1024) != 0) { if (hw->original_fc == 3U) { { hw->fc = 3; descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_config_fc_after_link_up"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Flow Control = FULL.\n"; descriptor___1.lineno = 2220U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Flow Control = FULL.\n"); } } else { } } else { { hw->fc = 1; descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_config_fc_after_link_up"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Flow Control = RX PAUSE frames only.\n"; descriptor___2.lineno = 2224U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Flow Control = RX PAUSE frames only.\n"); } } else { } } } else if (((unsigned int )mii_nway_adv_reg & 3072U) == 2048U && ((unsigned int )mii_nway_lp_ability_reg & 3072U) == 3072U) { { hw->fc = 2; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_config_fc_after_link_up"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Flow Control = TX PAUSE frames only.\n"; descriptor___3.lineno = 2242U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Flow Control = TX PAUSE frames only.\n"); } } else { } } else if (((unsigned int )mii_nway_adv_reg & 3072U) == 3072U && ((unsigned int )mii_nway_lp_ability_reg & 3072U) == 2048U) { { hw->fc = 1; descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_config_fc_after_link_up"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "Flow Control = RX PAUSE frames only.\n"; descriptor___4.lineno = 2259U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "Flow Control = RX PAUSE frames only.\n"); } } else { } } else if ((hw->original_fc == 0U || hw->original_fc == 2U) || (int )hw->fc_strict_ieee) { { hw->fc = 0; descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_config_fc_after_link_up"; descriptor___5.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "Flow Control = NONE.\n"; descriptor___5.lineno = 2287U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___12 != 0L) { { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "Flow Control = NONE.\n"); } } else { } } else { { hw->fc = 1; descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_config_fc_after_link_up"; descriptor___6.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "Flow Control = RX PAUSE frames only.\n"; descriptor___6.lineno = 2291U; descriptor___6.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___14 != 0L) { { tmp___13 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___13, "Flow Control = RX PAUSE frames only.\n"); } } else { } } { ret_val = e1000_get_speed_and_duplex(hw, & speed, & duplex); } if (ret_val != 0) { { descriptor___7.modname = "e1000"; descriptor___7.function = "e1000_config_fc_after_link_up"; descriptor___7.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___7.format = "Error getting link speed and duplex\n"; descriptor___7.lineno = 2302U; descriptor___7.flags = 0U; tmp___16 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___16 != 0L) { { tmp___15 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)tmp___15, "Error getting link speed and duplex\n"); } } else { } return (ret_val); } else { } if ((unsigned int )duplex == 1U) { hw->fc = 0; } else { } { ret_val = e1000_force_mac_fc(hw); } if (ret_val != 0) { { descriptor___8.modname = "e1000"; descriptor___8.function = "e1000_config_fc_after_link_up"; descriptor___8.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___8.format = "Error forcing flow control settings\n"; descriptor___8.lineno = 2315U; descriptor___8.flags = 0U; tmp___18 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); } if (tmp___18 != 0L) { { tmp___17 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___8, (struct net_device const *)tmp___17, "Error forcing flow control settings\n"); } } else { } return (ret_val); } else { } } else { { descriptor___9.modname = "e1000"; descriptor___9.function = "e1000_config_fc_after_link_up"; descriptor___9.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___9.format = "Copper PHY and Auto Neg has not completed.\n"; descriptor___9.lineno = 2320U; descriptor___9.flags = 0U; tmp___20 = ldv__builtin_expect((long )descriptor___9.flags & 1L, 0L); } if (tmp___20 != 0L) { { tmp___19 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___9, (struct net_device const *)tmp___19, "Copper PHY and Auto Neg has not completed.\n"); } } else { } } } else { } return (0); } } static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw ) { u32 rxcw ; u32 ctrl ; u32 status ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; unsigned int tmp___11 ; struct _ddebug descriptor___5 ; struct net_device *tmp___12 ; long tmp___13 ; struct _ddebug descriptor___6 ; struct net_device *tmp___14 ; long tmp___15 ; struct _ddebug descriptor___7 ; struct net_device *tmp___16 ; long tmp___17 ; struct _ddebug descriptor___8 ; struct net_device *tmp___18 ; long tmp___19 ; unsigned int tmp___20 ; { { ret_val = 0; descriptor.modname = "e1000"; descriptor.function = "e1000_check_for_serdes_link_generic"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_check_for_serdes_link_generic"; descriptor.lineno = 2340U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_check_for_serdes_link_generic"); } } else { } { ctrl = readl((void const volatile *)hw->hw_addr); status = readl((void const volatile *)hw->hw_addr + 8U); rxcw = readl((void const volatile *)hw->hw_addr + 384U); } if ((status & 2U) == 0U && (rxcw & 536870912U) == 0U) { if (hw->autoneg_failed == 0U) { hw->autoneg_failed = 1U; goto out; } else { } { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_check_for_serdes_link_generic"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "NOT RXing /C/, disable AutoNeg and force link.\n"; descriptor___0.lineno = 2358U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "NOT RXing /C/, disable AutoNeg and force link.\n"); } } else { } { writel(hw->txcw & 2147483647U, (void volatile *)hw->hw_addr + 376U); ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 65U; writel(ctrl, (void volatile *)hw->hw_addr); ret_val = e1000_config_fc_after_link_up(hw); } if (ret_val != 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_check_for_serdes_link_generic"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error configuring flow control\n"; descriptor___1.lineno = 2371U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error configuring flow control\n"); } } else { } goto out; } else { } } else if ((ctrl & 64U) != 0U && (rxcw & 536870912U) != 0U) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_check_for_serdes_link_generic"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "RXing /C/, enable AutoNeg and stop forcing link.\n"; descriptor___2.lineno = 2380U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "RXing /C/, enable AutoNeg and stop forcing link.\n"); } } else { } { writel(hw->txcw, (void volatile *)hw->hw_addr + 376U); writel(ctrl & 4294967231U, (void volatile *)hw->hw_addr); hw->serdes_has_link = 1; } } else { { tmp___11 = readl((void const volatile *)hw->hw_addr + 376U); } if ((int )tmp___11 >= 0) { { __const_udelay(42950UL); rxcw = readl((void const volatile *)hw->hw_addr + 384U); } if ((rxcw & 1073741824U) != 0U) { if ((rxcw & 134217728U) == 0U) { { hw->serdes_has_link = 1; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_check_for_serdes_link_generic"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "SERDES: Link up - forced.\n"; descriptor___3.lineno = 2396U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "SERDES: Link up - forced.\n"); } } else { } } else { } } else { { hw->serdes_has_link = 0; descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_check_for_serdes_link_generic"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "SERDES: Link down - force failed.\n"; descriptor___4.lineno = 2400U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "SERDES: Link down - force failed.\n"); } } else { } } } else { } } { tmp___20 = readl((void const volatile *)hw->hw_addr + 376U); } if ((int )tmp___20 < 0) { { status = readl((void const volatile *)hw->hw_addr + 8U); } if ((status & 2U) != 0U) { { __const_udelay(42950UL); rxcw = readl((void const volatile *)hw->hw_addr + 384U); } if ((rxcw & 1073741824U) != 0U) { if ((rxcw & 134217728U) == 0U) { { hw->serdes_has_link = 1; descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_check_for_serdes_link_generic"; descriptor___5.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "SERDES: Link up - autoneg completed successfully.\n"; descriptor___5.lineno = 2414U; descriptor___5.flags = 0U; tmp___13 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___13 != 0L) { { tmp___12 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___12, "SERDES: Link up - autoneg completed successfully.\n"); } } else { } } else { { hw->serdes_has_link = 0; descriptor___6.modname = "e1000"; descriptor___6.function = "e1000_check_for_serdes_link_generic"; descriptor___6.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___6.format = "SERDES: Link down - invalidcodewords detected in autoneg.\n"; descriptor___6.lineno = 2418U; descriptor___6.flags = 0U; tmp___15 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___15 != 0L) { { tmp___14 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)tmp___14, "SERDES: Link down - invalidcodewords detected in autoneg.\n"); } } else { } } } else { { hw->serdes_has_link = 0; descriptor___7.modname = "e1000"; descriptor___7.function = "e1000_check_for_serdes_link_generic"; descriptor___7.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___7.format = "SERDES: Link down - no sync.\n"; descriptor___7.lineno = 2422U; descriptor___7.flags = 0U; tmp___17 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___17 != 0L) { { tmp___16 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)tmp___16, "SERDES: Link down - no sync.\n"); } } else { } } } else { { hw->serdes_has_link = 0; descriptor___8.modname = "e1000"; descriptor___8.function = "e1000_check_for_serdes_link_generic"; descriptor___8.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___8.format = "SERDES: Link down - autoneg failed\n"; descriptor___8.lineno = 2426U; descriptor___8.flags = 0U; tmp___19 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); } if (tmp___19 != 0L) { { tmp___18 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___8, (struct net_device const *)tmp___18, "SERDES: Link down - autoneg failed\n"); } } else { } } } else { } out: ; return (ret_val); } } s32 e1000_check_for_link(struct e1000_hw *hw ) { u32 rxcw ; u32 ctrl ; u32 status ; u32 rctl ; u32 icr ; u32 signal ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; u16 speed ; u16 duplex ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; { { rxcw = 0U; signal = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_check_for_link"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_check_for_link"; descriptor.lineno = 2452U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_check_for_link"); } } else { } { ctrl = readl((void const volatile *)hw->hw_addr); status = readl((void const volatile *)hw->hw_addr + 8U); } if ((unsigned int )hw->media_type - 1U <= 1U) { { rxcw = readl((void const volatile *)hw->hw_addr + 384U); } if ((unsigned int )hw->media_type == 1U) { signal = (unsigned int )hw->mac_type > 4U ? 524288U : 0U; if ((status & 2U) != 0U) { hw->get_link_status = 0; } else { } } else { } } else { } if ((unsigned int )hw->media_type == 0U && (int )hw->get_link_status) { { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 4) != 0) { { hw->get_link_status = 0; e1000_check_downshift(hw); } if (((unsigned int )hw->mac_type - 3U <= 1U && (unsigned int )hw->autoneg == 0U) && (unsigned int )hw->forced_speed_duplex <= 1U) { { writel(4294967295U, (void volatile *)hw->hw_addr + 216U); ret_val = e1000_polarity_reversal_workaround(hw); icr = readl((void const volatile *)hw->hw_addr + 192U); writel(icr & 4294967291U, (void volatile *)hw->hw_addr + 200U); writel(157U, (void volatile *)hw->hw_addr + 208U); } } else { } } else { { e1000_config_dsp_after_link_change(hw, 0); } return (0); } if ((unsigned int )hw->autoneg == 0U) { return (-3); } else { } { e1000_config_dsp_after_link_change(hw, 1); } if ((unsigned int )hw->mac_type > 3U && (unsigned int )hw->mac_type != 9U) { { e1000_config_collision_dist(hw); } } else { { ret_val = e1000_config_mac_to_phy(hw); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_check_for_link"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error configuring MAC to PHY settings\n"; descriptor___0.lineno = 2551U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error configuring MAC to PHY settings\n"); } } else { } return (ret_val); } else { } } { ret_val = e1000_config_fc_after_link_up(hw); } if (ret_val != 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_check_for_link"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Error configuring flow control\n"; descriptor___1.lineno = 2563U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Error configuring flow control\n"); } } else { } return (ret_val); } else { } if ((int )hw->tbi_compatibility_en) { { ret_val = e1000_get_speed_and_duplex(hw, & speed, & duplex); } if (ret_val != 0) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_check_for_link"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Error getting link speed and duplex\n"; descriptor___2.lineno = 2581U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Error getting link speed and duplex\n"); } } else { } return (ret_val); } else { } if ((unsigned int )speed != 1000U) { if ((int )hw->tbi_compatibility_on) { { rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294967291U; writel(rctl, (void volatile *)hw->hw_addr + 256U); hw->tbi_compatibility_on = 0; } } else { } } else if (! hw->tbi_compatibility_on) { { hw->tbi_compatibility_on = 1; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl | 4U; writel(rctl, (void volatile *)hw->hw_addr + 256U); } } else { } } else { } } else { } if ((unsigned int )hw->media_type - 1U <= 1U) { { e1000_check_for_serdes_link_generic(hw); } } else { } return (0); } } s32 e1000_get_speed_and_duplex(struct e1000_hw *hw , u16 *speed , u16 *duplex ) { u32 status ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; struct _ddebug descriptor___5 ; struct net_device *tmp___11 ; long tmp___12 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_get_speed_and_duplex"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_get_speed_and_duplex"; descriptor.lineno = 2635U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_get_speed_and_duplex"); } } else { } if ((unsigned int )hw->mac_type > 2U) { { status = readl((void const volatile *)hw->hw_addr + 8U); } if ((status & 128U) != 0U) { { *speed = 1000U; descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_get_speed_and_duplex"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "1000 Mbs, "; descriptor___0.lineno = 2641U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "1000 Mbs, "); } } else { } } else if ((status & 64U) != 0U) { { *speed = 100U; descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_get_speed_and_duplex"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "100 Mbs, "; descriptor___1.lineno = 2644U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "100 Mbs, "); } } else { } } else { { *speed = 10U; descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_get_speed_and_duplex"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "10 Mbs, "; descriptor___2.lineno = 2647U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "10 Mbs, "); } } else { } } if ((int )status & 1) { { *duplex = 2U; descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_get_speed_and_duplex"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "Full Duplex\n"; descriptor___3.lineno = 2652U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "Full Duplex\n"); } } else { } } else { { *duplex = 1U; descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_get_speed_and_duplex"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = " Half Duplex\n"; descriptor___4.lineno = 2655U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, " Half Duplex\n"); } } else { } } } else { { descriptor___5.modname = "e1000"; descriptor___5.function = "e1000_get_speed_and_duplex"; descriptor___5.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___5.format = "1000 Mbs, Full Duplex\n"; descriptor___5.lineno = 2658U; descriptor___5.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___12 != 0L) { { tmp___11 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)tmp___11, "1000 Mbs, Full Duplex\n"); } } else { } *speed = 1000U; *duplex = 2U; } if ((unsigned int )hw->phy_type == 1U && (int )hw->speed_downgraded) { { ret_val = e1000_read_phy_reg(hw, 6U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 1) == 0) { *duplex = 1U; } else { { ret_val = e1000_read_phy_reg(hw, 5U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((unsigned int )*speed == 100U && ((int )phy_data & 256) == 0) || ((unsigned int )*speed == 10U && ((int )phy_data & 64) == 0)) { *duplex = 1U; } else { } } } else { } return (0); } } static s32 e1000_wait_autoneg(struct e1000_hw *hw ) { s32 ret_val ; u16 i ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_wait_autoneg"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_wait_autoneg"; descriptor.lineno = 2702U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_wait_autoneg"); } } else { } { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_wait_autoneg"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Waiting for Auto-Neg to complete.\n"; descriptor___0.lineno = 2703U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Waiting for Auto-Neg to complete.\n"); } } else { } i = 45U; goto ldv_51817; ldv_51816: { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 32) != 0) { return (0); } else { } { msleep(100U); i = (u16 )((int )i - 1); } ldv_51817: ; if ((unsigned int )i != 0U) { goto ldv_51816; } else { } return (0); } } static void e1000_raise_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) { { { writel(*ctrl | 2097152U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(42950UL); } return; } } static void e1000_lower_mdi_clk(struct e1000_hw *hw , u32 *ctrl ) { { { writel(*ctrl & 4292870143U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(42950UL); } return; } } static void e1000_shift_out_mdi_bits(struct e1000_hw *hw , u32 data , u16 count ) { u32 ctrl ; u32 mask ; { { mask = 1U; mask = mask << ((int )count + -1); ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl | 50331648U; } goto ldv_51835; ldv_51834: ; if ((data & mask) != 0U) { ctrl = ctrl | 1048576U; } else { ctrl = ctrl & 4293918719U; } { writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(42950UL); e1000_raise_mdi_clk(hw, & ctrl); e1000_lower_mdi_clk(hw, & ctrl); mask = mask >> 1; } ldv_51835: ; if (mask != 0U) { goto ldv_51834; } else { } return; } } static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw ) { u32 ctrl ; u16 data ; u8 i ; { { data = 0U; ctrl = readl((void const volatile *)hw->hw_addr); ctrl = ctrl & 4278190079U; ctrl = ctrl & 4293918719U; writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); e1000_raise_mdi_clk(hw, & ctrl); e1000_lower_mdi_clk(hw, & ctrl); data = 0U; i = 0U; } goto ldv_51844; ldv_51843: { data = (int )data << 1U; e1000_raise_mdi_clk(hw, & ctrl); ctrl = readl((void const volatile *)hw->hw_addr); } if ((ctrl & 1048576U) != 0U) { data = (u16 )((unsigned int )data | 1U); } else { } { e1000_lower_mdi_clk(hw, & ctrl); i = (u8 )((int )i + 1); } ldv_51844: ; if ((unsigned int )i <= 15U) { goto ldv_51843; } else { } { e1000_raise_mdi_clk(hw, & ctrl); e1000_lower_mdi_clk(hw, & ctrl); } return (data); } } s32 e1000_read_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) { u32 ret_val ; unsigned long flags ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; s32 tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_read_phy_reg"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_read_phy_reg"; descriptor.lineno = 2869U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_read_phy_reg"); } } else { } { ldv___ldv_spin_lock_106(& e1000_phy_lock); } if ((unsigned int )hw->phy_type == 1U && reg_addr > 15U) { { tmp___1 = e1000_write_phy_reg_ex(hw, 31U, (int )((unsigned short )reg_addr)); ret_val = (u32 )tmp___1; } if (ret_val != 0U) { { ldv_spin_unlock_irqrestore_107(& e1000_phy_lock, flags); } return ((s32 )ret_val); } else { } } else { } { tmp___2 = e1000_read_phy_reg_ex(hw, reg_addr & 31U, phy_data); ret_val = (u32 )tmp___2; ldv_spin_unlock_irqrestore_107(& e1000_phy_lock, flags); } return ((s32 )ret_val); } } static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 *phy_data ) { u32 i ; u32 mdic ; u32 phy_addr ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; struct _ddebug descriptor___3 ; struct net_device *tmp___7 ; long tmp___8 ; struct _ddebug descriptor___4 ; struct net_device *tmp___9 ; long tmp___10 ; { { mdic = 0U; phy_addr = (unsigned int )hw->mac_type == 9U ? hw->phy_addr : 1U; descriptor.modname = "e1000"; descriptor.function = "e1000_read_phy_reg_ex"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_read_phy_reg_ex"; descriptor.lineno = 2897U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_read_phy_reg_ex"); } } else { } if (reg_addr > 31U) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_read_phy_reg_ex"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "PHY Address %d is out of range\n"; descriptor___0.lineno = 2900U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "PHY Address %d is out of range\n", reg_addr); } } else { } return (-4); } else { } if ((unsigned int )hw->mac_type > 3U) { if ((unsigned int )hw->mac_type == 9U) { { mdic = ((reg_addr << 16) | (phy_addr << 21)) | 2147483648U; writel(mdic, (void volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); i = 0U; } goto ldv_51868; ldv_51867: { __const_udelay(214750UL); mdic = readl((void const volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); } if ((int )mdic >= 0) { goto ldv_51866; } else { } i = i + 1U; ldv_51868: ; if (i <= 63U) { goto ldv_51867; } else { } ldv_51866: ; if ((int )mdic < 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_read_phy_reg_ex"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "MDI Read did not complete\n"; descriptor___1.lineno = 2928U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "MDI Read did not complete\n"); } } else { } return (-2); } else { } { mdic = readl((void const volatile *)hw->ce4100_gbe_mdio_base_virt); } if ((int )mdic < 0) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_read_phy_reg_ex"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "MDI Read Error\n"; descriptor___2.lineno = 2934U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "MDI Read Error\n"); } } else { } return (-2); } else { } *phy_data = (unsigned short )mdic; } else { { mdic = ((reg_addr << 16) | (phy_addr << 21)) | 134217728U; writel(mdic, (void volatile *)hw->hw_addr + 32U); i = 0U; } goto ldv_51873; ldv_51872: { __const_udelay(214750UL); mdic = readl((void const volatile *)hw->hw_addr + 32U); } if ((mdic & 268435456U) != 0U) { goto ldv_51871; } else { } i = i + 1U; ldv_51873: ; if (i <= 63U) { goto ldv_51872; } else { } ldv_51871: ; if ((mdic & 268435456U) == 0U) { { descriptor___3.modname = "e1000"; descriptor___3.function = "e1000_read_phy_reg_ex"; descriptor___3.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___3.format = "MDI Read did not complete\n"; descriptor___3.lineno = 2955U; descriptor___3.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)tmp___7, "MDI Read did not complete\n"); } } else { } return (-2); } else { } if ((mdic & 1073741824U) != 0U) { { descriptor___4.modname = "e1000"; descriptor___4.function = "e1000_read_phy_reg_ex"; descriptor___4.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___4.format = "MDI Error\n"; descriptor___4.lineno = 2959U; descriptor___4.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___10 != 0L) { { tmp___9 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)tmp___9, "MDI Error\n"); } } else { } return (-2); } else { } *phy_data = (unsigned short )mdic; } } else { { e1000_shift_out_mdi_bits(hw, 4294967295U, 32); mdic = (reg_addr | (phy_addr << 5)) | 6144U; e1000_shift_out_mdi_bits(hw, mdic, 14); *phy_data = e1000_shift_in_mdi_bits(hw); } } return (0); } } s32 e1000_write_phy_reg(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) { u32 ret_val ; unsigned long flags ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; s32 tmp___1 ; s32 tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_write_phy_reg"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_write_phy_reg"; descriptor.lineno = 3011U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_write_phy_reg"); } } else { } { ldv___ldv_spin_lock_109(& e1000_phy_lock); } if ((unsigned int )hw->phy_type == 1U && reg_addr > 15U) { { tmp___1 = e1000_write_phy_reg_ex(hw, 31U, (int )((unsigned short )reg_addr)); ret_val = (u32 )tmp___1; } if (ret_val != 0U) { { ldv_spin_unlock_irqrestore_107(& e1000_phy_lock, flags); } return ((s32 )ret_val); } else { } } else { } { tmp___2 = e1000_write_phy_reg_ex(hw, reg_addr & 31U, (int )phy_data); ret_val = (u32 )tmp___2; ldv_spin_unlock_irqrestore_107(& e1000_phy_lock, flags); } return ((s32 )ret_val); } } static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw , u32 reg_addr , u16 phy_data ) { u32 i ; u32 mdic ; u32 phy_addr ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; { { mdic = 0U; phy_addr = (unsigned int )hw->mac_type == 9U ? hw->phy_addr : 1U; descriptor.modname = "e1000"; descriptor.function = "e1000_write_phy_reg_ex"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_write_phy_reg_ex"; descriptor.lineno = 3039U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_write_phy_reg_ex"); } } else { } if (reg_addr > 31U) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_write_phy_reg_ex"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "PHY Address %d is out of range\n"; descriptor___0.lineno = 3042U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "PHY Address %d is out of range\n", reg_addr); } } else { } return (-4); } else { } if ((unsigned int )hw->mac_type > 3U) { if ((unsigned int )hw->mac_type == 9U) { { mdic = (((unsigned int )phy_data | (reg_addr << 16)) | (phy_addr << 21)) | 2214592512U; writel(mdic, (void volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); i = 0U; } goto ldv_51898; ldv_51897: { __const_udelay(21475UL); mdic = readl((void const volatile *)hw->ce4100_gbe_mdio_base_virt + 4U); } if ((int )mdic >= 0) { goto ldv_51896; } else { } i = i + 1U; ldv_51898: ; if (i <= 639U) { goto ldv_51897; } else { } ldv_51896: ; if ((int )mdic < 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_write_phy_reg_ex"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "MDI Write did not complete\n"; descriptor___1.lineno = 3071U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "MDI Write did not complete\n"); } } else { } return (-2); } else { } } else { { mdic = (((unsigned int )phy_data | (reg_addr << 16)) | (phy_addr << 21)) | 67108864U; writel(mdic, (void volatile *)hw->hw_addr + 32U); i = 0U; } goto ldv_51902; ldv_51901: { __const_udelay(21475UL); mdic = readl((void const volatile *)hw->hw_addr + 32U); } if ((mdic & 268435456U) != 0U) { goto ldv_51900; } else { } i = i + 1U; ldv_51902: ; if (i <= 640U) { goto ldv_51901; } else { } ldv_51900: ; if ((mdic & 268435456U) == 0U) { { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_write_phy_reg_ex"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "MDI Write did not complete\n"; descriptor___2.lineno = 3092U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "MDI Write did not complete\n"); } } else { } return (-2); } else { } } } else { { e1000_shift_out_mdi_bits(hw, 4294967295U, 32); mdic = ((reg_addr << 2) | (phy_addr << 7)) | 20482U; mdic = mdic << 16; mdic = mdic | (u32 )phy_data; e1000_shift_out_mdi_bits(hw, mdic, 32); } } return (0); } } s32 e1000_phy_hw_reset(struct e1000_hw *hw ) { u32 ctrl ; u32 ctrl_ext ; u32 led_ctrl ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; s32 tmp___3 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_hw_reset"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_hw_reset"; descriptor.lineno = 3132U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_hw_reset"); } } else { } { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_phy_hw_reset"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Resetting Phy...\n"; descriptor___0.lineno = 3134U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Resetting Phy...\n"); } } else { } if ((unsigned int )hw->mac_type > 3U) { { ctrl = readl((void const volatile *)hw->hw_addr); writel(ctrl | 2147483648U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); writel(ctrl, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); } } else { { ctrl_ext = readl((void const volatile *)hw->hw_addr + 24U); ctrl_ext = ctrl_ext | 256U; ctrl_ext = ctrl_ext & 4294967279U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); ctrl_ext = ctrl_ext | 16U; writel(ctrl_ext, (void volatile *)hw->hw_addr + 24U); readl((void const volatile *)hw->hw_addr + 8U); } } { __const_udelay(644250UL); } if ((unsigned int )hw->mac_type == 11U || (unsigned int )hw->mac_type == 13U) { { led_ctrl = readl((void const volatile *)hw->hw_addr + 3584U); led_ctrl = led_ctrl & 4294963455U; led_ctrl = led_ctrl | 117441280U; writel(led_ctrl, (void volatile *)hw->hw_addr + 3584U); } } else { } { tmp___3 = e1000_get_phy_cfg_done(hw); } return (tmp___3); } } s32 e1000_phy_reset(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_reset"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_reset"; descriptor.lineno = 3192U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_reset"); } } else { } { if ((unsigned int )hw->phy_type == 1U) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ { ret_val = e1000_phy_hw_reset(hw); } if (ret_val != 0) { return (ret_val); } else { } goto ldv_51921; switch_default: /* CIL Label */ { ret_val = e1000_read_phy_reg(hw, 0U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (u16 )((unsigned int )phy_data | 32768U); ret_val = e1000_write_phy_reg(hw, 0U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } { __const_udelay(4295UL); } goto ldv_51921; switch_break: /* CIL Label */ ; } ldv_51921: ; if ((unsigned int )hw->phy_type == 1U) { { e1000_phy_init_script(hw); } } else { } return (0); } } static s32 e1000_detect_gig_phy(struct e1000_hw *hw ) { s32 phy_init_status ; s32 ret_val ; u16 phy_id_high ; u16 phy_id_low ; bool match ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; struct _ddebug descriptor___2 ; struct net_device *tmp___5 ; long tmp___6 ; { { match = 0; descriptor.modname = "e1000"; descriptor.function = "e1000_detect_gig_phy"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_detect_gig_phy"; descriptor.lineno = 3232U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_detect_gig_phy"); } } else { } if (hw->phy_id != 0U) { return (0); } else { } { ret_val = e1000_read_phy_reg(hw, 2U, & phy_id_high); } if (ret_val != 0) { return (ret_val); } else { } { hw->phy_id = (unsigned int )((int )phy_id_high << 16); __const_udelay(85900UL); ret_val = e1000_read_phy_reg(hw, 3U, & phy_id_low); } if (ret_val != 0) { return (ret_val); } else { } hw->phy_id = hw->phy_id | ((u32 )phy_id_low & 4294967280U); hw->phy_revision = (unsigned int )phy_id_low & 15U; { if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 5U) { goto case_5; } else { } if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } if ((unsigned int )hw->mac_type == 9U) { goto case_9; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; case_3: /* CIL Label */ ; if (hw->phy_id == 21040208U) { match = 1; } else { } goto ldv_51934; case_4: /* CIL Label */ ; if (hw->phy_id == 21040176U) { match = 1; } else { } goto ldv_51934; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_10: /* CIL Label */ ; if (hw->phy_id == 21040160U) { match = 1; } else { } goto ldv_51934; case_9: /* CIL Label */ ; if ((hw->phy_id == 1886480U || hw->phy_id == 33280U) || hw->phy_id == 21040704U) { match = 1; } else { } goto ldv_51934; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ ; if (hw->phy_id == 44565376U) { match = 1; } else { } goto ldv_51934; switch_default: /* CIL Label */ { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_detect_gig_phy"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Invalid MAC type %d\n"; descriptor___0.lineno = 3282U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Invalid MAC type %d\n", (unsigned int )hw->mac_type); } } else { } return (-3); switch_break: /* CIL Label */ ; } ldv_51934: { phy_init_status = e1000_set_phy_type(hw); } if ((int )match && phy_init_status == 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_detect_gig_phy"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "PHY ID 0x%X detected\n"; descriptor___1.lineno = 3288U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "PHY ID 0x%X detected\n", hw->phy_id); } } else { } return (0); } else { } { descriptor___2.modname = "e1000"; descriptor___2.function = "e1000_detect_gig_phy"; descriptor___2.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___2.format = "Invalid PHY ID 0x%X\n"; descriptor___2.lineno = 3291U; descriptor___2.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___6 != 0L) { { tmp___5 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)tmp___5, "Invalid PHY ID 0x%X\n", hw->phy_id); } } else { } return (-2); } } static s32 e1000_phy_reset_dsp(struct e1000_hw *hw ) { s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_reset_dsp"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_reset_dsp"; descriptor.lineno = 3304U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_reset_dsp"); } } else { } { ret_val = e1000_write_phy_reg(hw, 29U, 29); } if (ret_val != 0) { goto ldv_51956; } else { } { ret_val = e1000_write_phy_reg(hw, 30U, 193); } if (ret_val != 0) { goto ldv_51956; } else { } { ret_val = e1000_write_phy_reg(hw, 30U, 0); } if (ret_val != 0) { goto ldv_51956; } else { } ret_val = 0; ldv_51956: ; return (ret_val); } } static s32 e1000_phy_igp_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) { s32 ret_val ; u16 phy_data ; u16 min_length ; u16 max_length ; u16 average ; e1000_rev_polarity polarity ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_igp_get_info"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_igp_get_info"; descriptor.lineno = 3336U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_igp_get_info"); } } else { } { phy_info->downshift = (int )hw->speed_downgraded; phy_info->extended_10bt_distance = 0; phy_info->polarity_correction = 0; ret_val = e1000_check_polarity(hw, & polarity); } if (ret_val != 0) { return (ret_val); } else { } { phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } phy_info->mdix_mode = (int )(((int )phy_data & 2048) >> 11); if (((int )phy_data & 49152) == 49152) { { ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_info->local_rx = ((int )phy_data & 8192) >> 13 != 0; phy_info->remote_rx = ((int )phy_data & 4096) >> 12 != 0; ret_val = e1000_get_cable_length(hw, & min_length, & max_length); } if (ret_val != 0) { return (ret_val); } else { } average = (u16 )(((int )max_length + (int )min_length) / 2); if ((unsigned int )average <= 50U) { phy_info->cable_length = 0; } else if ((unsigned int )average <= 80U) { phy_info->cable_length = 1; } else if ((unsigned int )average <= 110U) { phy_info->cable_length = 2; } else if ((unsigned int )average <= 140U) { phy_info->cable_length = 3; } else { phy_info->cable_length = 4; } } else { } return (0); } } static s32 e1000_phy_m88_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) { s32 ret_val ; u16 phy_data ; e1000_rev_polarity polarity ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_m88_get_info"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_m88_get_info"; descriptor.lineno = 3417U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_m88_get_info"); } } else { } { phy_info->downshift = (int )hw->speed_downgraded; ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_info->extended_10bt_distance = ((int )phy_data & 128) >> 7 != 0; phy_info->polarity_correction = ((int )phy_data & 2) >> 1 != 0; ret_val = e1000_check_polarity(hw, & polarity); } if (ret_val != 0) { return (ret_val); } else { } { phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } phy_info->mdix_mode = (int )(((int )phy_data & 64) >> 6); if (((int )phy_data & 49152) == 32768) { { phy_info->cable_length = (int )(((int )phy_data & 896) >> 7); ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } phy_info->local_rx = ((int )phy_data & 8192) >> 13 != 0; phy_info->remote_rx = ((int )phy_data & 4096) >> 12 != 0; } else { } return (0); } } s32 e1000_phy_get_info(struct e1000_hw *hw , struct e1000_phy_info *phy_info ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; s32 tmp___5 ; s32 tmp___6 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_phy_get_info"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_phy_get_info"; descriptor.lineno = 3490U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_phy_get_info"); } } else { } phy_info->cable_length = 255; phy_info->extended_10bt_distance = 255; phy_info->cable_polarity = 255; phy_info->downshift = 255; phy_info->polarity_correction = 255; phy_info->mdix_mode = 255; phy_info->local_rx = 255; phy_info->remote_rx = 255; if ((unsigned int )hw->media_type != 0U) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_phy_get_info"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "PHY info is only valid for copper media\n"; descriptor___0.lineno = 3502U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "PHY info is only valid for copper media\n"); } } else { } return (-3); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 4) == 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_phy_get_info"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "PHY info is only valid if link is up\n"; descriptor___1.lineno = 3515U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "PHY info is only valid if link is up\n"); } } else { } return (-3); } else { } if ((unsigned int )hw->phy_type == 1U) { { tmp___5 = e1000_phy_igp_get_info(hw, phy_info); } return (tmp___5); } else if ((unsigned int )hw->phy_type - 2U <= 1U) { return (0); } else { { tmp___6 = e1000_phy_m88_get_info(hw, phy_info); } return (tmp___6); } } } s32 e1000_validate_mdi_setting(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_validate_mdi_setting"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_validate_mdi_settings"; descriptor.lineno = 3530U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_validate_mdi_settings"); } } else { } if ((unsigned int )hw->autoneg == 0U && ((unsigned int )hw->mdix == 0U || (unsigned int )hw->mdix == 3U)) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_validate_mdi_setting"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Invalid MDI setting detected\n"; descriptor___0.lineno = 3533U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Invalid MDI setting detected\n"); } } else { } hw->mdix = 1U; return (-3); } else { } return (0); } } s32 e1000_init_eeprom_params(struct e1000_hw *hw ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; unsigned int tmp ; s32 ret_val ; u16 eeprom_size ; struct _ddebug descriptor ; struct net_device *tmp___0 ; long tmp___1 ; { { eeprom = & hw->eeprom; tmp = readl((void const volatile *)hw->hw_addr + 16U); eecd = tmp; ret_val = 0; descriptor.modname = "e1000"; descriptor.function = "e1000_init_eeprom_params"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_init_eeprom_params"; descriptor.lineno = 3554U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp___0, "e1000_init_eeprom_params"); } } else { } { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 5U) { goto case_5; } else { } if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ eeprom->type = 2; eeprom->word_size = 64U; eeprom->opcode_bits = 3U; eeprom->address_bits = 6U; eeprom->delay_usec = 50U; goto ldv_52007; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_10: /* CIL Label */ eeprom->type = 2; eeprom->opcode_bits = 3U; eeprom->delay_usec = 50U; if ((eecd & 512U) != 0U) { eeprom->word_size = 256U; eeprom->address_bits = 8U; } else { eeprom->word_size = 64U; eeprom->address_bits = 6U; } goto ldv_52007; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ ; if ((eecd & 8192U) != 0U) { eeprom->type = 1; eeprom->opcode_bits = 8U; eeprom->delay_usec = 1U; if ((eecd & 1024U) != 0U) { eeprom->page_size = 32U; eeprom->address_bits = 16U; } else { eeprom->page_size = 8U; eeprom->address_bits = 8U; } } else { eeprom->type = 2; eeprom->opcode_bits = 3U; eeprom->delay_usec = 50U; if ((eecd & 1024U) != 0U) { eeprom->word_size = 256U; eeprom->address_bits = 8U; } else { eeprom->word_size = 64U; eeprom->address_bits = 6U; } } goto ldv_52007; switch_default: /* CIL Label */ ; goto ldv_52007; switch_break: /* CIL Label */ ; } ldv_52007: ; if ((unsigned int )eeprom->type == 1U) { { eeprom->word_size = 64U; ret_val = e1000_read_eeprom(hw, 18, 1, & eeprom_size); } if (ret_val != 0) { return (ret_val); } else { } eeprom_size = (u16 )(((int )eeprom_size & 7168) >> 10); if ((unsigned int )eeprom_size != 0U) { eeprom_size = (u16 )((int )eeprom_size + 1); } else { } eeprom->word_size = (u16 )(1 << ((int )eeprom_size + 6)); } else { } return (ret_val); } } static void e1000_raise_ee_clk(struct e1000_hw *hw , u32 *eecd ) { { { *eecd = *eecd | 1U; writel(*eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); } return; } } static void e1000_lower_ee_clk(struct e1000_hw *hw , u32 *eecd ) { { { *eecd = *eecd & 4294967294U; writel(*eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); } return; } } static void e1000_shift_out_ee_bits(struct e1000_hw *hw , u16 data , u16 count ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; u32 mask ; { { eeprom = & hw->eeprom; mask = (u32 )(1 << ((int )count + -1)); eecd = readl((void const volatile *)hw->hw_addr + 16U); } if ((unsigned int )eeprom->type == 2U) { eecd = eecd & 4294967287U; } else if ((unsigned int )eeprom->type == 1U) { eecd = eecd | 8U; } else { } ldv_52034: eecd = eecd & 4294967291U; if (((u32 )data & mask) != 0U) { eecd = eecd | 4U; } else { } { writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); e1000_raise_ee_clk(hw, & eecd); e1000_lower_ee_clk(hw, & eecd); mask = mask >> 1; } if (mask != 0U) { goto ldv_52034; } else { } { eecd = eecd & 4294967291U; writel(eecd, (void volatile *)hw->hw_addr + 16U); } return; } } static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw , u16 count ) { u32 eecd ; u32 i ; u16 data ; { { eecd = readl((void const volatile *)hw->hw_addr + 16U); eecd = eecd & 4294967283U; data = 0U; i = 0U; } goto ldv_52044; ldv_52043: { data = (int )data << 1U; e1000_raise_ee_clk(hw, & eecd); eecd = readl((void const volatile *)hw->hw_addr + 16U); eecd = eecd & 4294967291U; } if ((eecd & 8U) != 0U) { data = (u16 )((unsigned int )data | 1U); } else { } { e1000_lower_ee_clk(hw, & eecd); i = i + 1U; } ldv_52044: ; if (i < (u32 )count) { goto ldv_52043; } else { } return (data); } } static s32 e1000_acquire_eeprom(struct e1000_hw *hw ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; u32 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { eeprom = & hw->eeprom; i = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_acquire_eeprom"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_acquire_eeprom"; descriptor.lineno = 3773U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_acquire_eeprom"); } } else { } { eecd = readl((void const volatile *)hw->hw_addr + 16U); } if ((unsigned int )hw->mac_type > 4U) { { eecd = eecd | 64U; writel(eecd, (void volatile *)hw->hw_addr + 16U); eecd = readl((void const volatile *)hw->hw_addr + 16U); } goto ldv_52055; ldv_52054: { i = i + 1U; __const_udelay(21475UL); eecd = readl((void const volatile *)hw->hw_addr + 16U); } ldv_52055: ; if ((eecd & 128U) == 0U && i <= 999U) { goto ldv_52054; } else { } if ((eecd & 128U) == 0U) { { eecd = eecd & 4294967231U; writel(eecd, (void volatile *)hw->hw_addr + 16U); descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_acquire_eeprom"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Could not acquire EEPROM grant\n"; descriptor___0.lineno = 3791U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Could not acquire EEPROM grant\n"); } } else { } return (-1); } else { } } else { } if ((unsigned int )eeprom->type == 2U) { { eecd = eecd & 4294967290U; writel(eecd, (void volatile *)hw->hw_addr + 16U); eecd = eecd | 2U; writel(eecd, (void volatile *)hw->hw_addr + 16U); } } else if ((unsigned int )eeprom->type == 1U) { { eecd = eecd & 4294967292U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __const_udelay(4295UL); } } else { } return (0); } } static void e1000_standby_eeprom(struct e1000_hw *hw ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; { { eeprom = & hw->eeprom; eecd = readl((void const volatile *)hw->hw_addr + 16U); } if ((unsigned int )eeprom->type == 2U) { { eecd = eecd & 4294967292U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd | 1U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd | 2U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd & 4294967294U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); } } else if ((unsigned int )eeprom->type == 1U) { { eecd = eecd | 2U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); eecd = eecd & 4294967293U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )eeprom->delay_usec); } } else { } return; } } static void e1000_release_eeprom(struct e1000_hw *hw ) { u32 eecd ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_release_eeprom"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_release_eeprom"; descriptor.lineno = 3874U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_release_eeprom"); } } else { } { eecd = readl((void const volatile *)hw->hw_addr + 16U); } if ((unsigned int )hw->eeprom.type == 1U) { { eecd = eecd | 2U; eecd = eecd & 4294967294U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); } } else if ((unsigned int )hw->eeprom.type == 2U) { { eecd = eecd & 4294967289U; writel(eecd, (void volatile *)hw->hw_addr + 16U); eecd = eecd | 1U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); eecd = eecd & 4294967294U; writel(eecd, (void volatile *)hw->hw_addr + 16U); readl((void const volatile *)hw->hw_addr + 8U); __udelay((unsigned long )hw->eeprom.delay_usec); } } else { } if ((unsigned int )hw->mac_type > 4U) { { eecd = eecd & 4294967231U; writel(eecd, (void volatile *)hw->hw_addr + 16U); } } else { } return; } } static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw ) { u16 retry_count ; u8 spi_stat_reg ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; u16 tmp___1 ; struct _ddebug descriptor___0 ; struct net_device *tmp___2 ; long tmp___3 ; { { retry_count = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_spi_eeprom_ready"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_spi_eeprom_ready"; descriptor.lineno = 3923U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_spi_eeprom_ready"); } } else { } retry_count = 0U; ldv_52077: { e1000_shift_out_ee_bits(hw, 5, (int )hw->eeprom.opcode_bits); tmp___1 = e1000_shift_in_ee_bits(hw, 8); spi_stat_reg = (unsigned char )tmp___1; } if (((int )spi_stat_reg & 1) == 0) { goto ldv_52076; } else { } { __const_udelay(21475UL); retry_count = (unsigned int )retry_count + 5U; e1000_standby_eeprom(hw); } if ((unsigned int )retry_count <= 4999U) { goto ldv_52077; } else { } ldv_52076: ; if ((unsigned int )retry_count > 4999U) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_spi_eeprom_ready"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "SPI EEPROM Status error\n"; descriptor___0.lineno = 3948U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___3 != 0L) { { tmp___2 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___2, "SPI EEPROM Status error\n"); } } else { } return (-1); } else { } return (0); } } s32 e1000_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 ret ; { { ldv_spin_lock_112(& e1000_eeprom_lock); ret = e1000_do_read_eeprom(hw, (int )offset, (int )words, data); ldv_spin_unlock_113(& e1000_eeprom_lock); } return (ret); } } static s32 e1000_do_read_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; u32 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; void *tmp___1 ; struct _ddebug descriptor___0 ; struct net_device *tmp___2 ; long tmp___3 ; s32 tmp___4 ; u16 word_in ; u8 read_opcode ; s32 tmp___5 ; { { eeprom = & hw->eeprom; i = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_do_read_eeprom"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_read_eeprom"; descriptor.lineno = 3977U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_read_eeprom"); } } else { } if ((unsigned int )hw->mac_type == 9U) { { tmp___1 = phys_to_virt(393216ULL); ioread16_rep(tmp___1 + (unsigned long )((int )offset << 1), (void *)data, (unsigned long )words); } return (0); } else { } if ((unsigned int )eeprom->word_size == 0U) { { e1000_init_eeprom_params(hw); } } else { } if ((int )offset >= (int )eeprom->word_size || ((int )words > (int )eeprom->word_size - (int )offset || (unsigned int )words == 0U)) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_do_read_eeprom"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "\"words\" parameter out of bounds. Words = %d,size = %d\n"; descriptor___0.lineno = 3995U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___3 != 0L) { { tmp___2 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___2, "\"words\" parameter out of bounds. Words = %d,size = %d\n", (int )offset, (int )eeprom->word_size); } } else { } return (-1); } else { } { tmp___4 = e1000_acquire_eeprom(hw); } if (tmp___4 != 0) { return (-1); } else { } if ((unsigned int )eeprom->type == 1U) { { read_opcode = 3U; tmp___5 = e1000_spi_eeprom_ready(hw); } if (tmp___5 != 0) { { e1000_release_eeprom(hw); } return (-1); } else { } { e1000_standby_eeprom(hw); } if ((unsigned int )eeprom->address_bits == 8U && (unsigned int )offset > 127U) { read_opcode = (u8 )((unsigned int )read_opcode | 8U); } else { } { e1000_shift_out_ee_bits(hw, (int )read_opcode, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )((unsigned int )offset * 2U), (int )eeprom->address_bits); i = 0U; } goto ldv_52100; ldv_52099: { word_in = e1000_shift_in_ee_bits(hw, 16); *(data + (unsigned long )i) = (u16 )((int )((short )((int )word_in >> 8)) | (int )((short )((int )word_in << 8))); i = i + 1U; } ldv_52100: ; if (i < (u32 )words) { goto ldv_52099; } else { } } else if ((unsigned int )eeprom->type == 2U) { i = 0U; goto ldv_52103; ldv_52102: { e1000_shift_out_ee_bits(hw, 6, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )offset + (int )((unsigned short )i), (int )eeprom->address_bits); *(data + (unsigned long )i) = e1000_shift_in_ee_bits(hw, 16); e1000_standby_eeprom(hw); i = i + 1U; } ldv_52103: ; if (i < (u32 )words) { goto ldv_52102; } else { } } else { } { e1000_release_eeprom(hw); } return (0); } } s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw ) { u16 checksum ; u16 i ; u16 eeprom_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; s32 tmp___3 ; struct _ddebug descriptor___1 ; struct net_device *tmp___4 ; long tmp___5 ; { { checksum = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_validate_eeprom_checksum"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_validate_eeprom_checksum"; descriptor.lineno = 4079U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_validate_eeprom_checksum"); } } else { } i = 0U; goto ldv_52115; ldv_52114: { tmp___3 = e1000_read_eeprom(hw, (int )i, 1, & eeprom_data); } if (tmp___3 < 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_validate_eeprom_checksum"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Read Error\n"; descriptor___0.lineno = 4083U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "EEPROM Read Error\n"); } } else { } return (-1); } else { } checksum = (int )checksum + (int )eeprom_data; i = (u16 )((int )i + 1); ldv_52115: ; if ((unsigned int )i <= 63U) { goto ldv_52114; } else { } if ((unsigned int )checksum == 47802U) { return (0); } else { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_validate_eeprom_checksum"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "EEPROM Checksum Invalid\n"; descriptor___1.lineno = 4098U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___5 != 0L) { { tmp___4 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___4, "EEPROM Checksum Invalid\n"); } } else { } return (-1); } } } s32 e1000_update_eeprom_checksum(struct e1000_hw *hw ) { u16 checksum ; u16 i ; u16 eeprom_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; s32 tmp___3 ; struct _ddebug descriptor___1 ; struct net_device *tmp___4 ; long tmp___5 ; s32 tmp___6 ; { { checksum = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_update_eeprom_checksum"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_update_eeprom_checksum"; descriptor.lineno = 4115U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_update_eeprom_checksum"); } } else { } i = 0U; goto ldv_52128; ldv_52127: { tmp___3 = e1000_read_eeprom(hw, (int )i, 1, & eeprom_data); } if (tmp___3 < 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_update_eeprom_checksum"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Read Error\n"; descriptor___0.lineno = 4119U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "EEPROM Read Error\n"); } } else { } return (-1); } else { } checksum = (int )checksum + (int )eeprom_data; i = (u16 )((int )i + 1); ldv_52128: ; if ((unsigned int )i <= 62U) { goto ldv_52127; } else { } { checksum = 47802U - (unsigned int )checksum; tmp___6 = e1000_write_eeprom(hw, 63, 1, & checksum); } if (tmp___6 < 0) { { descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_update_eeprom_checksum"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "EEPROM Write Error\n"; descriptor___1.lineno = 4126U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___5 != 0L) { { tmp___4 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___4, "EEPROM Write Error\n"); } } else { } return (-1); } else { } return (0); } } s32 e1000_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 ret ; { { ldv_spin_lock_112(& e1000_eeprom_lock); ret = e1000_do_write_eeprom(hw, (int )offset, (int )words, data); ldv_spin_unlock_113(& e1000_eeprom_lock); } return (ret); } } static s32 e1000_do_write_eeprom(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; s32 status ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; void *tmp___1 ; struct _ddebug descriptor___0 ; struct net_device *tmp___2 ; long tmp___3 ; s32 tmp___4 ; { { eeprom = & hw->eeprom; status = 0; descriptor.modname = "e1000"; descriptor.function = "e1000_do_write_eeprom"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_write_eeprom"; descriptor.lineno = 4157U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_write_eeprom"); } } else { } if ((unsigned int )hw->mac_type == 9U) { { tmp___1 = phys_to_virt(393216ULL); iowrite16_rep(tmp___1 + (unsigned long )offset, (void const *)data, (unsigned long )words); } return (0); } else { } if ((unsigned int )eeprom->word_size == 0U) { { e1000_init_eeprom_params(hw); } } else { } if ((int )offset >= (int )eeprom->word_size || ((int )words > (int )eeprom->word_size - (int )offset || (unsigned int )words == 0U)) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_do_write_eeprom"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "\"words\" parameter out of bounds\n"; descriptor___0.lineno = 4174U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___3 != 0L) { { tmp___2 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___2, "\"words\" parameter out of bounds\n"); } } else { } return (-1); } else { } { tmp___4 = e1000_acquire_eeprom(hw); } if (tmp___4 != 0) { return (-1); } else { } if ((unsigned int )eeprom->type == 2U) { { status = e1000_write_eeprom_microwire(hw, (int )offset, (int )words, data); } } else { { status = e1000_write_eeprom_spi(hw, (int )offset, (int )words, data); msleep(10U); } } { e1000_release_eeprom(hw); } return (status); } } static s32 e1000_write_eeprom_spi(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; u16 widx ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; u8 write_opcode ; s32 tmp___1 ; u16 word_out ; { { eeprom = & hw->eeprom; widx = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_write_eeprom_spi"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_write_eeprom_spi"; descriptor.lineno = 4208U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_write_eeprom_spi"); } } else { } goto ldv_52165; ldv_52164: { write_opcode = 2U; tmp___1 = e1000_spi_eeprom_ready(hw); } if (tmp___1 != 0) { return (-1); } else { } { e1000_standby_eeprom(hw); e1000_shift_out_ee_bits(hw, 6, (int )eeprom->opcode_bits); e1000_standby_eeprom(hw); } if ((unsigned int )eeprom->address_bits == 8U && (unsigned int )offset > 127U) { write_opcode = (u8 )((unsigned int )write_opcode | 8U); } else { } { e1000_shift_out_ee_bits(hw, (int )write_opcode, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )((unsigned int )((unsigned short )((int )offset + (int )widx)) * 2U), (int )eeprom->address_bits); } goto ldv_52163; ldv_52162: { word_out = *(data + (unsigned long )widx); word_out = (u16 )((int )((short )((int )word_out >> 8)) | (int )((short )((int )word_out << 8))); e1000_shift_out_ee_bits(hw, (int )word_out, 16); widx = (u16 )((int )widx + 1); } if ((((int )offset + (int )widx) * 2) % (int )eeprom->page_size == 0) { { e1000_standby_eeprom(hw); } goto ldv_52161; } else { } ldv_52163: ; if ((int )widx < (int )words) { goto ldv_52162; } else { } ldv_52161: ; ldv_52165: ; if ((int )widx < (int )words) { goto ldv_52164; } else { } return (0); } } static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_eeprom_info *eeprom ; u32 eecd ; u16 words_written ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { eeprom = & hw->eeprom; words_written = 0U; i = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_write_eeprom_microwire"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_write_eeprom_microwire"; descriptor.lineno = 4277U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_write_eeprom_microwire"); } } else { } { e1000_shift_out_ee_bits(hw, 19, (int )((unsigned int )eeprom->opcode_bits + 2U)); e1000_shift_out_ee_bits(hw, 0, (int )((unsigned int )eeprom->address_bits - 2U)); e1000_standby_eeprom(hw); } goto ldv_52184; ldv_52183: { e1000_shift_out_ee_bits(hw, 5, (int )eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (int )offset + (int )words_written, (int )eeprom->address_bits); e1000_shift_out_ee_bits(hw, (int )*(data + (unsigned long )words_written), 16); e1000_standby_eeprom(hw); i = 0U; } goto ldv_52181; ldv_52180: { eecd = readl((void const volatile *)hw->hw_addr + 16U); } if ((eecd & 8U) != 0U) { goto ldv_52179; } else { } { __const_udelay(214750UL); i = (u16 )((int )i + 1); } ldv_52181: ; if ((unsigned int )i <= 199U) { goto ldv_52180; } else { } ldv_52179: ; if ((unsigned int )i == 200U) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_write_eeprom_microwire"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Write did not complete\n"; descriptor___0.lineno = 4321U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "EEPROM Write did not complete\n"); } } else { } return (-1); } else { } { e1000_standby_eeprom(hw); words_written = (u16 )((int )words_written + 1); } ldv_52184: ; if ((int )words_written < (int )words) { goto ldv_52183; } else { } { e1000_shift_out_ee_bits(hw, 16, (int )((unsigned int )eeprom->opcode_bits + 2U)); e1000_shift_out_ee_bits(hw, 0, (int )((unsigned int )eeprom->address_bits - 2U)); } return (0); } } s32 e1000_read_mac_addr(struct e1000_hw *hw ) { u16 offset ; u16 eeprom_data ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; s32 tmp___3 ; unsigned int tmp___4 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_read_mac_addr"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_read_mac_addr"; descriptor.lineno = 4357U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_read_mac_addr"); } } else { } i = 0U; goto ldv_52196; ldv_52195: { offset = (u16 )((int )i >> 1); tmp___3 = e1000_read_eeprom(hw, (int )offset, 1, & eeprom_data); } if (tmp___3 < 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_read_mac_addr"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Read Error\n"; descriptor___0.lineno = 4362U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "EEPROM Read Error\n"); } } else { } return (-1); } else { } hw->perm_mac_addr[(int )i] = (unsigned char )eeprom_data; hw->perm_mac_addr[(int )i + 1] = (unsigned char )((int )eeprom_data >> 8); i = (unsigned int )i + 2U; ldv_52196: ; if ((unsigned int )i <= 5U) { goto ldv_52195; } else { } { if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } goto switch_default; switch_default: /* CIL Label */ ; goto ldv_52199; case_8: /* CIL Label */ ; case_10: /* CIL Label */ { tmp___4 = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp___4 & 4U) != 0U) { hw->perm_mac_addr[5] = (u8 )((unsigned int )hw->perm_mac_addr[5] ^ 1U); } else { } goto ldv_52199; switch_break: /* CIL Label */ ; } ldv_52199: i = 0U; goto ldv_52203; ldv_52202: hw->mac_addr[(int )i] = hw->perm_mac_addr[(int )i]; i = (u16 )((int )i + 1); ldv_52203: ; if ((unsigned int )i <= 5U) { goto ldv_52202; } else { } return (0); } } static void e1000_init_rx_addrs(struct e1000_hw *hw ) { u32 i ; u32 rar_num ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___1 ; struct net_device *tmp___3 ; long tmp___4 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_init_rx_addrs"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_init_rx_addrs"; descriptor.lineno = 4397U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_init_rx_addrs"); } } else { } { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_init_rx_addrs"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Programming MAC Address into RAR[0]\n"; descriptor___0.lineno = 4400U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Programming MAC Address into RAR[0]\n"); } } else { } { e1000_rar_set(hw, (u8 *)(& hw->mac_addr), 0U); rar_num = 15U; descriptor___1.modname = "e1000"; descriptor___1.function = "e1000_init_rx_addrs"; descriptor___1.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___1.format = "Clearing RAR[1-15]\n"; descriptor___1.lineno = 4407U; descriptor___1.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)tmp___3, "Clearing RAR[1-15]\n"); } } else { } i = 1U; goto ldv_52215; ldv_52214: { writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(i << 3U)))); readl((void const volatile *)hw->hw_addr + 8U); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(((i << 1) + 1U) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); i = i + 1U; } ldv_52215: ; if (i < rar_num) { goto ldv_52214; } else { } return; } } u32 e1000_hash_mc_addr(struct e1000_hw *hw , u8 *mc_addr ) { u32 hash_value ; { hash_value = 0U; { if (hw->mc_filter_type == 0U) { goto case_0; } else { } if (hw->mc_filter_type == 1U) { goto case_1; } else { } if (hw->mc_filter_type == 2U) { goto case_2; } else { } if (hw->mc_filter_type == 3U) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ hash_value = (u32 )(((int )*(mc_addr + 4UL) >> 4) | ((int )*(mc_addr + 5UL) << 4)); goto ldv_52223; case_1: /* CIL Label */ hash_value = (u32 )(((int )*(mc_addr + 4UL) >> 3) | ((int )*(mc_addr + 5UL) << 5)); goto ldv_52223; case_2: /* CIL Label */ hash_value = (u32 )(((int )*(mc_addr + 4UL) >> 2) | ((int )*(mc_addr + 5UL) << 6)); goto ldv_52223; case_3: /* CIL Label */ hash_value = (u32 )((int )*(mc_addr + 4UL) | ((int )*(mc_addr + 5UL) << 8)); goto ldv_52223; switch_break: /* CIL Label */ ; } ldv_52223: hash_value = hash_value & 4095U; return (hash_value); } } void e1000_rar_set(struct e1000_hw *hw , u8 *addr , u32 index ) { u32 rar_low ; u32 rar_high ; { rar_low = (((unsigned int )*addr | ((unsigned int )*(addr + 1UL) << 8)) | ((unsigned int )*(addr + 2UL) << 16)) | ((unsigned int )*(addr + 3UL) << 24); rar_high = (unsigned int )*(addr + 4UL) | ((unsigned int )*(addr + 5UL) << 8); { goto switch_default; switch_default: /* CIL Label */ rar_high = rar_high | 2147483648U; goto ldv_52235; switch_break: /* CIL Label */ ; } ldv_52235: { writel(rar_low, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(index << 3U)))); readl((void const volatile *)hw->hw_addr + 8U); writel(rar_high, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 21504U : 64U) + (unsigned long )(((index << 1) + 1U) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); } return; } } void e1000_write_vfta(struct e1000_hw *hw , u32 offset , u32 value ) { u32 temp ; { if ((unsigned int )hw->mac_type == 4U && (int )offset & 1) { { temp = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )((offset - 1U) << 2)))); writel(value, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(offset << 2)))); readl((void const volatile *)hw->hw_addr + 8U); writel(temp, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )((offset - 1U) << 2)))); readl((void const volatile *)hw->hw_addr + 8U); } } else { { writel(value, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(offset << 2)))); readl((void const volatile *)hw->hw_addr + 8U); } } return; } } static void e1000_clear_vfta(struct e1000_hw *hw ) { u32 offset ; u32 vfta_value ; u32 vfta_offset ; u32 vfta_bit_in_reg ; { vfta_value = 0U; vfta_offset = 0U; vfta_bit_in_reg = 0U; offset = 0U; goto ldv_52250; ldv_52249: { vfta_value = offset == vfta_offset ? vfta_bit_in_reg : 0U; writel(vfta_value, (void volatile *)(hw->hw_addr + ((unsigned long )((unsigned int )hw->mac_type > 2U ? 22016U : 1536U) + (unsigned long )(offset << 2)))); readl((void const volatile *)hw->hw_addr + 8U); offset = offset + 1U; } ldv_52250: ; if (offset <= 127U) { goto ldv_52249; } else { } return; } } static s32 e1000_id_led_init(struct e1000_hw *hw ) { u32 ledctl ; u32 ledctl_mask ; u32 ledctl_on ; u32 ledctl_off ; u16 eeprom_data ; u16 i ; u16 temp ; u16 led_mask ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; s32 tmp___3 ; { { ledctl_mask = 255U; ledctl_on = 14U; ledctl_off = 15U; led_mask = 15U; descriptor.modname = "e1000"; descriptor.function = "e1000_id_led_init"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_id_led_init"; descriptor.lineno = 4556U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_id_led_init"); } } else { } if ((unsigned int )hw->mac_type <= 4U) { return (0); } else { } { ledctl = readl((void const volatile *)hw->hw_addr + 3584U); hw->ledctl_default = ledctl; hw->ledctl_mode1 = hw->ledctl_default; hw->ledctl_mode2 = hw->ledctl_default; tmp___3 = e1000_read_eeprom(hw, 4, 1, & eeprom_data); } if (tmp___3 < 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_id_led_init"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "EEPROM Read Error\n"; descriptor___0.lineno = 4569U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "EEPROM Read Error\n"); } } else { } return (-1); } else { } if ((unsigned int )eeprom_data - 1U > 65533U) { eeprom_data = 35089U; } else { } i = 0U; goto ldv_52283; ldv_52282: temp = (unsigned int )((u16 )((int )eeprom_data >> ((int )i << 2))) & 15U; { if ((int )temp == 4) { goto case_4; } else { } if ((int )temp == 5) { goto case_5; } else { } if ((int )temp == 6) { goto case_6; } else { } if ((int )temp == 7) { goto case_7; } else { } if ((int )temp == 8) { goto case_8; } else { } if ((int )temp == 9) { goto case_9; } else { } goto switch_default; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ hw->ledctl_mode1 = hw->ledctl_mode1 & ~ (255U << ((int )i << 3)); hw->ledctl_mode1 = hw->ledctl_mode1 | (14U << ((int )i << 3)); goto ldv_52269; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_9: /* CIL Label */ hw->ledctl_mode1 = hw->ledctl_mode1 & ~ (255U << ((int )i << 3)); hw->ledctl_mode1 = hw->ledctl_mode1 | (15U << ((int )i << 3)); goto ldv_52269; switch_default: /* CIL Label */ ; goto ldv_52269; switch_break: /* CIL Label */ ; } ldv_52269: ; { if ((int )temp == 2) { goto case_2; } else { } if ((int )temp == 5) { goto case_5___0; } else { } if ((int )temp == 8) { goto case_8___0; } else { } if ((int )temp == 3) { goto case_3; } else { } if ((int )temp == 6) { goto case_6___0; } else { } if ((int )temp == 9) { goto case_9___0; } else { } goto switch_default___0; case_2: /* CIL Label */ ; case_5___0: /* CIL Label */ ; case_8___0: /* CIL Label */ hw->ledctl_mode2 = hw->ledctl_mode2 & ~ (255U << ((int )i << 3)); hw->ledctl_mode2 = hw->ledctl_mode2 | (14U << ((int )i << 3)); goto ldv_52277; case_3: /* CIL Label */ ; case_6___0: /* CIL Label */ ; case_9___0: /* CIL Label */ hw->ledctl_mode2 = hw->ledctl_mode2 & ~ (255U << ((int )i << 3)); hw->ledctl_mode2 = hw->ledctl_mode2 | (15U << ((int )i << 3)); goto ldv_52277; switch_default___0: /* CIL Label */ ; goto ldv_52277; switch_break___0: /* CIL Label */ ; } ldv_52277: i = (u16 )((int )i + 1); ldv_52283: ; if ((unsigned int )i <= 3U) { goto ldv_52282; } else { } return (0); } } s32 e1000_setup_led(struct e1000_hw *hw ) { u32 ledctl ; s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { ret_val = 0; descriptor.modname = "e1000"; descriptor.function = "e1000_setup_led"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_setup_led"; descriptor.lineno = 4629U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_setup_led"); } } else { } { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; goto ldv_52296; case_11: /* CIL Label */ ; case_13: /* CIL Label */ ; case_12: /* CIL Label */ ; case_14: /* CIL Label */ { ret_val = e1000_read_phy_reg(hw, 20U, & hw->phy_spd_default); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 20U, (int )hw->phy_spd_default & 65503); } if (ret_val != 0) { return (ret_val); } else { } switch_default: /* CIL Label */ ; if ((unsigned int )hw->media_type == 1U) { { ledctl = readl((void const volatile *)hw->hw_addr + 3584U); hw->ledctl_default = ledctl; ledctl = ledctl & 4294967088U; ledctl = ledctl | 15U; writel(ledctl, (void volatile *)hw->hw_addr + 3584U); } } else if ((unsigned int )hw->media_type == 0U) { { writel(hw->ledctl_mode1, (void volatile *)hw->hw_addr + 3584U); } } else { } goto ldv_52296; switch_break: /* CIL Label */ ; } ldv_52296: ; return (0); } } s32 e1000_cleanup_led(struct e1000_hw *hw ) { s32 ret_val ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { ret_val = 0; descriptor.modname = "e1000"; descriptor.function = "e1000_cleanup_led"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_cleanup_led"; descriptor.lineno = 4681U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_cleanup_led"); } } else { } { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; goto ldv_52312; case_11: /* CIL Label */ ; case_13: /* CIL Label */ ; case_12: /* CIL Label */ ; case_14: /* CIL Label */ { ret_val = e1000_write_phy_reg(hw, 20U, (int )hw->phy_spd_default); } if (ret_val != 0) { return (ret_val); } else { } switch_default: /* CIL Label */ { writel(hw->ledctl_default, (void volatile *)hw->hw_addr + 3584U); } goto ldv_52312; switch_break: /* CIL Label */ ; } ldv_52312: ; return (0); } } s32 e1000_led_on(struct e1000_hw *hw ) { u32 ctrl ; unsigned int tmp ; struct _ddebug descriptor ; struct net_device *tmp___0 ; long tmp___1 ; { { tmp = readl((void const volatile *)hw->hw_addr); ctrl = tmp; descriptor.modname = "e1000"; descriptor.function = "e1000_led_on"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_led_on"; descriptor.lineno = 4717U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp___0, "e1000_led_on"); } } else { } { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; goto ldv_52327; case_4: /* CIL Label */ ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; } else { ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; } goto ldv_52327; switch_default: /* CIL Label */ ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; } else if ((unsigned int )hw->media_type == 0U) { { writel(hw->ledctl_mode2, (void volatile *)hw->hw_addr + 3584U); } return (0); } else { } goto ldv_52327; switch_break: /* CIL Label */ ; } ldv_52327: { writel(ctrl, (void volatile *)hw->hw_addr); } return (0); } } s32 e1000_led_off(struct e1000_hw *hw ) { u32 ctrl ; unsigned int tmp ; struct _ddebug descriptor ; struct net_device *tmp___0 ; long tmp___1 ; { { tmp = readl((void const volatile *)hw->hw_addr); ctrl = tmp; descriptor.modname = "e1000"; descriptor.function = "e1000_led_off"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_led_off"; descriptor.lineno = 4763U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp___0, "e1000_led_off"); } } else { } { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; goto ldv_52339; case_4: /* CIL Label */ ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; } else { ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; } goto ldv_52339; switch_default: /* CIL Label */ ; if ((unsigned int )hw->media_type == 1U) { ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; } else if ((unsigned int )hw->media_type == 0U) { { writel(hw->ledctl_mode1, (void volatile *)hw->hw_addr + 3584U); } return (0); } else { } goto ldv_52339; switch_break: /* CIL Label */ ; } ldv_52339: { writel(ctrl, (void volatile *)hw->hw_addr); } return (0); } } static void e1000_clear_hw_cntrs(struct e1000_hw *hw ) { u32 volatile temp ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; unsigned int tmp___21 ; unsigned int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; unsigned int tmp___25 ; unsigned int tmp___26 ; unsigned int tmp___27 ; unsigned int tmp___28 ; unsigned int tmp___29 ; unsigned int tmp___30 ; unsigned int tmp___31 ; unsigned int tmp___32 ; unsigned int tmp___33 ; unsigned int tmp___34 ; unsigned int tmp___35 ; unsigned int tmp___36 ; unsigned int tmp___37 ; unsigned int tmp___38 ; unsigned int tmp___39 ; unsigned int tmp___40 ; unsigned int tmp___41 ; unsigned int tmp___42 ; unsigned int tmp___43 ; unsigned int tmp___44 ; unsigned int tmp___45 ; unsigned int tmp___46 ; unsigned int tmp___47 ; unsigned int tmp___48 ; unsigned int tmp___49 ; unsigned int tmp___50 ; unsigned int tmp___51 ; unsigned int tmp___52 ; unsigned int tmp___53 ; unsigned int tmp___54 ; unsigned int tmp___55 ; unsigned int tmp___56 ; { { tmp = readl((void const volatile *)hw->hw_addr + 16384U); temp = tmp; tmp___0 = readl((void const volatile *)hw->hw_addr + 16392U); temp = tmp___0; tmp___1 = readl((void const volatile *)hw->hw_addr + 16400U); temp = tmp___1; tmp___2 = readl((void const volatile *)hw->hw_addr + 16404U); temp = tmp___2; tmp___3 = readl((void const volatile *)hw->hw_addr + 16408U); temp = tmp___3; tmp___4 = readl((void const volatile *)hw->hw_addr + 16412U); temp = tmp___4; tmp___5 = readl((void const volatile *)hw->hw_addr + 16416U); temp = tmp___5; tmp___6 = readl((void const volatile *)hw->hw_addr + 16424U); temp = tmp___6; tmp___7 = readl((void const volatile *)hw->hw_addr + 16432U); temp = tmp___7; tmp___8 = readl((void const volatile *)hw->hw_addr + 16440U); temp = tmp___8; tmp___9 = readl((void const volatile *)hw->hw_addr + 16448U); temp = tmp___9; tmp___10 = readl((void const volatile *)hw->hw_addr + 16456U); temp = tmp___10; tmp___11 = readl((void const volatile *)hw->hw_addr + 16460U); temp = tmp___11; tmp___12 = readl((void const volatile *)hw->hw_addr + 16464U); temp = tmp___12; tmp___13 = readl((void const volatile *)hw->hw_addr + 16468U); temp = tmp___13; tmp___14 = readl((void const volatile *)hw->hw_addr + 16472U); temp = tmp___14; tmp___15 = readl((void const volatile *)hw->hw_addr + 16476U); temp = tmp___15; tmp___16 = readl((void const volatile *)hw->hw_addr + 16480U); temp = tmp___16; tmp___17 = readl((void const volatile *)hw->hw_addr + 16484U); temp = tmp___17; tmp___18 = readl((void const volatile *)hw->hw_addr + 16488U); temp = tmp___18; tmp___19 = readl((void const volatile *)hw->hw_addr + 16492U); temp = tmp___19; tmp___20 = readl((void const volatile *)hw->hw_addr + 16496U); temp = tmp___20; tmp___21 = readl((void const volatile *)hw->hw_addr + 16500U); temp = tmp___21; tmp___22 = readl((void const volatile *)hw->hw_addr + 16504U); temp = tmp___22; tmp___23 = readl((void const volatile *)hw->hw_addr + 16508U); temp = tmp___23; tmp___24 = readl((void const volatile *)hw->hw_addr + 16512U); temp = tmp___24; tmp___25 = readl((void const volatile *)hw->hw_addr + 16520U); temp = tmp___25; tmp___26 = readl((void const volatile *)hw->hw_addr + 16524U); temp = tmp___26; tmp___27 = readl((void const volatile *)hw->hw_addr + 16528U); temp = tmp___27; tmp___28 = readl((void const volatile *)hw->hw_addr + 16532U); temp = tmp___28; tmp___29 = readl((void const volatile *)hw->hw_addr + 16544U); temp = tmp___29; tmp___30 = readl((void const volatile *)hw->hw_addr + 16548U); temp = tmp___30; tmp___31 = readl((void const volatile *)hw->hw_addr + 16552U); temp = tmp___31; tmp___32 = readl((void const volatile *)hw->hw_addr + 16556U); temp = tmp___32; tmp___33 = readl((void const volatile *)hw->hw_addr + 16560U); temp = tmp___33; tmp___34 = readl((void const volatile *)hw->hw_addr + 16576U); temp = tmp___34; tmp___35 = readl((void const volatile *)hw->hw_addr + 16580U); temp = tmp___35; tmp___36 = readl((void const volatile *)hw->hw_addr + 16584U); temp = tmp___36; tmp___37 = readl((void const volatile *)hw->hw_addr + 16588U); temp = tmp___37; tmp___38 = readl((void const volatile *)hw->hw_addr + 16592U); temp = tmp___38; tmp___39 = readl((void const volatile *)hw->hw_addr + 16596U); temp = tmp___39; tmp___40 = readl((void const volatile *)hw->hw_addr + 16600U); temp = tmp___40; tmp___41 = readl((void const volatile *)hw->hw_addr + 16604U); temp = tmp___41; tmp___42 = readl((void const volatile *)hw->hw_addr + 16608U); temp = tmp___42; tmp___43 = readl((void const volatile *)hw->hw_addr + 16612U); temp = tmp___43; tmp___44 = readl((void const volatile *)hw->hw_addr + 16616U); temp = tmp___44; tmp___45 = readl((void const volatile *)hw->hw_addr + 16620U); temp = tmp___45; tmp___46 = readl((void const volatile *)hw->hw_addr + 16624U); temp = tmp___46; tmp___47 = readl((void const volatile *)hw->hw_addr + 16628U); temp = tmp___47; } if ((unsigned int )hw->mac_type <= 2U) { return; } else { } { tmp___48 = readl((void const volatile *)hw->hw_addr + 16388U); temp = tmp___48; tmp___49 = readl((void const volatile *)hw->hw_addr + 16396U); temp = tmp___49; tmp___50 = readl((void const volatile *)hw->hw_addr + 16436U); temp = tmp___50; tmp___51 = readl((void const volatile *)hw->hw_addr + 16444U); temp = tmp___51; tmp___52 = readl((void const volatile *)hw->hw_addr + 16632U); temp = tmp___52; tmp___53 = readl((void const volatile *)hw->hw_addr + 16636U); temp = tmp___53; } if ((unsigned int )hw->mac_type <= 4U) { return; } else { } { tmp___54 = readl((void const volatile *)hw->hw_addr + 16564U); temp = tmp___54; tmp___55 = readl((void const volatile *)hw->hw_addr + 16568U); temp = tmp___55; tmp___56 = readl((void const volatile *)hw->hw_addr + 16572U); temp = tmp___56; } return; } } void e1000_reset_adaptive(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_reset_adaptive"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_reset_adaptive"; descriptor.lineno = 4892U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_reset_adaptive"); } } else { } if ((int )hw->adaptive_ifs) { if (! hw->ifs_params_forced) { hw->current_ifs_val = 0U; hw->ifs_min_val = 40U; hw->ifs_max_val = 80U; hw->ifs_step_size = 10U; hw->ifs_ratio = 4U; } else { } { hw->in_ifs_mode = 0; writel(0U, (void volatile *)hw->hw_addr + 1112U); } } else { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_reset_adaptive"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Not in Adaptive IFS mode!\n"; descriptor___0.lineno = 4905U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Not in Adaptive IFS mode!\n"); } } else { } } return; } } void e1000_update_adaptive(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_update_adaptive"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_update_adaptive"; descriptor.lineno = 4920U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_update_adaptive"); } } else { } if ((int )hw->adaptive_ifs) { if (hw->collision_delta * (u32 )hw->ifs_ratio > hw->tx_packet_delta) { if (hw->tx_packet_delta > 1000U) { hw->in_ifs_mode = 1; if ((int )hw->current_ifs_val < (int )hw->ifs_max_val) { if ((unsigned int )hw->current_ifs_val == 0U) { hw->current_ifs_val = hw->ifs_min_val; } else { hw->current_ifs_val = (int )hw->current_ifs_val + (int )hw->ifs_step_size; } { writel((unsigned int )hw->current_ifs_val, (void volatile *)hw->hw_addr + 1112U); } } else { } } else { } } else if ((int )hw->in_ifs_mode && hw->tx_packet_delta <= 1000U) { { hw->current_ifs_val = 0U; hw->in_ifs_mode = 0; writel(0U, (void volatile *)hw->hw_addr + 1112U); } } else { } } else { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_update_adaptive"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Not in Adaptive IFS mode!\n"; descriptor___0.lineno = 4945U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Not in Adaptive IFS mode!\n"); } } else { } } return; } } void e1000_tbi_adjust_stats(struct e1000_hw *hw , struct e1000_hw_stats *stats , u32 frame_len , u8 *mac_addr ) { u64 carry_bit ; { frame_len = frame_len - 1U; stats->crcerrs = stats->crcerrs - 1ULL; stats->gprc = stats->gprc + 1ULL; carry_bit = stats->gorcl & 2147483648ULL; stats->gorcl = stats->gorcl + (u64 )frame_len; if (carry_bit != 0ULL && (stats->gorcl & 2147483648ULL) == 0ULL) { stats->gorch = stats->gorch + 1ULL; } else { } if ((unsigned int )*mac_addr == 255U && (unsigned int )*(mac_addr + 1UL) == 255U) { stats->bprc = stats->bprc + 1ULL; } else if ((int )*mac_addr & 1) { stats->mprc = stats->mprc + 1ULL; } else { } if (frame_len == hw->max_frame_size) { if (stats->roc != 0ULL) { stats->roc = stats->roc - 1ULL; } else { } } else { } if (frame_len == 64U) { stats->prc64 = stats->prc64 + 1ULL; stats->prc127 = stats->prc127 - 1ULL; } else if (frame_len == 127U) { stats->prc127 = stats->prc127 + 1ULL; stats->prc255 = stats->prc255 - 1ULL; } else if (frame_len == 255U) { stats->prc255 = stats->prc255 + 1ULL; stats->prc511 = stats->prc511 - 1ULL; } else if (frame_len == 511U) { stats->prc511 = stats->prc511 + 1ULL; stats->prc1023 = stats->prc1023 - 1ULL; } else if (frame_len == 1023U) { stats->prc1023 = stats->prc1023 + 1ULL; stats->prc1522 = stats->prc1522 - 1ULL; } else if (frame_len == 1522U) { stats->prc1522 = stats->prc1522 + 1ULL; } else { } return; } } void e1000_get_bus_info(struct e1000_hw *hw ) { u32 status ; { { if ((unsigned int )hw->mac_type == 1U) { goto case_1; } else { } if ((unsigned int )hw->mac_type == 2U) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ hw->bus_type = 1; hw->bus_speed = 0; hw->bus_width = 0; goto ldv_52371; switch_default: /* CIL Label */ { status = readl((void const volatile *)hw->hw_addr + 8U); hw->bus_type = (status & 8192U) != 0U ? 2 : 1; } if ((unsigned int )hw->device_id == 4125U) { hw->bus_speed = (unsigned int )hw->bus_type == 1U ? 2 : 4; } else if ((unsigned int )hw->bus_type == 1U) { hw->bus_speed = (status & 2048U) != 0U ? 2 : 1; } else { { if ((status & 49152U) == 0U) { goto case_0; } else { } if ((status & 49152U) == 16384U) { goto case_16384; } else { } if ((status & 49152U) == 32768U) { goto case_32768; } else { } goto switch_default___0; case_0: /* CIL Label */ hw->bus_speed = 2; goto ldv_52374; case_16384: /* CIL Label */ hw->bus_speed = 3; goto ldv_52374; case_32768: /* CIL Label */ hw->bus_speed = 5; goto ldv_52374; switch_default___0: /* CIL Label */ hw->bus_speed = 6; goto ldv_52374; switch_break___0: /* CIL Label */ ; } ldv_52374: ; } hw->bus_width = (status & 4096U) != 0U ? 2 : 1; goto ldv_52371; switch_break: /* CIL Label */ ; } ldv_52371: ; return; } } static void e1000_write_reg_io(struct e1000_hw *hw , u32 offset , u32 value ) { unsigned long io_addr ; unsigned long io_data ; { { io_addr = hw->io_base; io_data = hw->io_base + 4UL; e1000_io_write(hw, io_addr, offset); e1000_io_write(hw, io_data, value); } return; } } static s32 e1000_get_cable_length(struct e1000_hw *hw , u16 *min_length , u16 *max_length ) { s32 ret_val ; u16 agc_value ; u16 i ; u16 phy_data ; u16 cable_length ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; u16 tmp___1 ; u16 cur_agc_value ; u16 min_agc_value ; u16 agc_reg_array[4U] ; { { agc_value = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_get_cable_length"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_get_cable_length"; descriptor.lineno = 5117U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_get_cable_length"); } } else { } tmp___1 = 0U; *max_length = tmp___1; *min_length = tmp___1; if ((unsigned int )hw->phy_type == 0U) { { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } cable_length = (u16 )(((int )phy_data & 896) >> 7); { if ((int )cable_length == 0) { goto case_0; } else { } if ((int )cable_length == 1) { goto case_1; } else { } if ((int )cable_length == 2) { goto case_2; } else { } if ((int )cable_length == 3) { goto case_3; } else { } if ((int )cable_length == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ *min_length = 0U; *max_length = 50U; goto ldv_52398; case_1: /* CIL Label */ *min_length = 50U; *max_length = 80U; goto ldv_52398; case_2: /* CIL Label */ *min_length = 80U; *max_length = 110U; goto ldv_52398; case_3: /* CIL Label */ *min_length = 110U; *max_length = 140U; goto ldv_52398; case_4: /* CIL Label */ *min_length = 140U; *max_length = 170U; goto ldv_52398; switch_default: /* CIL Label */ ; return (-2); switch_break: /* CIL Label */ ; } ldv_52398: ; } else if ((unsigned int )hw->phy_type == 1U) { min_agc_value = 128U; agc_reg_array[0] = 4466U; agc_reg_array[1] = 4722U; agc_reg_array[2] = 5234U; agc_reg_array[3] = 6258U; i = 0U; goto ldv_52408; ldv_52407: { ret_val = e1000_read_phy_reg(hw, (u32 )agc_reg_array[(int )i], & phy_data); } if (ret_val != 0) { return (ret_val); } else { } cur_agc_value = (u16 )((int )phy_data >> 7); if ((unsigned int )cur_agc_value - 1U > 125U) { return (-2); } else { } agc_value = (int )agc_value + (int )cur_agc_value; if ((int )min_agc_value > (int )cur_agc_value) { min_agc_value = cur_agc_value; } else { } i = (u16 )((int )i + 1); ldv_52408: ; if ((unsigned int )i <= 3U) { goto ldv_52407; } else { } if ((unsigned int )agc_value <= 199U) { agc_value = (int )agc_value - (int )min_agc_value; agc_value = (u16 )((unsigned int )agc_value / 3U); } else { agc_value = (u16 )((unsigned int )agc_value / 4U); } *min_length = (u16 )(0 > (int )e1000_igp_cable_length_table[(int )agc_value] + -10 ? 0 : (int )e1000_igp_cable_length_table[(int )agc_value] + -10); *max_length = (unsigned int )((u16 )e1000_igp_cable_length_table[(int )agc_value]) + 10U; } else { } return (0); } } static s32 e1000_check_polarity(struct e1000_hw *hw , e1000_rev_polarity *polarity ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_check_polarity"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_check_polarity"; descriptor.lineno = 5234U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_check_polarity"); } } else { } if ((unsigned int )hw->phy_type == 0U) { { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } *polarity = ((int )phy_data & 2) >> 1 != 0; } else if ((unsigned int )hw->phy_type == 1U) { { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } if (((int )phy_data & 49152) == 49152) { { ret_val = e1000_read_phy_reg(hw, 180U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } *polarity = ((int )phy_data & 120) != 0; } else { *polarity = ((int )phy_data & 2) != 0; } } else { } return (0); } } static s32 e1000_check_downshift(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_check_downshift"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_check_downshift"; descriptor.lineno = 5302U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_check_downshift"); } } else { } if ((unsigned int )hw->phy_type == 1U) { { ret_val = e1000_read_phy_reg(hw, 19U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } hw->speed_downgraded = (int )((short )phy_data) < 0; } else if ((unsigned int )hw->phy_type == 0U) { { ret_val = e1000_read_phy_reg(hw, 17U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } hw->speed_downgraded = ((int )phy_data & 32) >> 5 != 0; } else { } return (0); } } static u16 const dsp_reg_array[4U] = { 4465U, 4721U, 5233U, 6257U}; static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw ) { u16 min_length ; u16 max_length ; u16 phy_data ; u16 i ; s32 ret_val ; u16 ffe_idle_err_timeout ; u32 idle_errs ; { { ret_val = e1000_get_cable_length(hw, & min_length, & max_length); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->dsp_config_state != 1U) { return (0); } else { } if ((unsigned int )min_length > 49U) { i = 0U; goto ldv_52435; ldv_52434: { ret_val = e1000_read_phy_reg(hw, (u32 )dsp_reg_array[(int )i], & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 16383U; ret_val = e1000_write_phy_reg(hw, (u32 )dsp_reg_array[(int )i], (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } i = (u16 )((int )i + 1); ldv_52435: ; if ((unsigned int )i <= 3U) { goto ldv_52434; } else { } hw->dsp_config_state = 2; } else { { ffe_idle_err_timeout = 20U; idle_errs = 0U; ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } i = 0U; goto ldv_52441; ldv_52440: { __const_udelay(4295000UL); ret_val = e1000_read_phy_reg(hw, 10U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } idle_errs = idle_errs + ((u32 )phy_data & 255U); if (idle_errs > 5U) { { hw->ffe_config_state = 1; ret_val = e1000_write_phy_reg(hw, 7989U, 105); } if (ret_val != 0) { return (ret_val); } else { } goto ldv_52439; } else { } if (idle_errs != 0U) { ffe_idle_err_timeout = 100U; } else { } i = (u16 )((int )i + 1); ldv_52441: ; if ((int )i < (int )ffe_idle_err_timeout) { goto ldv_52440; } else { } ldv_52439: ; } return (0); } } static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw , bool link_up ) { s32 ret_val ; u16 phy_data ; u16 phy_saved_data ; u16 speed ; u16 duplex ; u16 i ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct net_device *tmp___1 ; long tmp___2 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_config_dsp_after_link_change"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_config_dsp_after_link_change"; descriptor.lineno = 5414U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_config_dsp_after_link_change"); } } else { } if ((unsigned int )hw->phy_type != 1U) { return (0); } else { } if ((int )link_up) { { ret_val = e1000_get_speed_and_duplex(hw, & speed, & duplex); } if (ret_val != 0) { { descriptor___0.modname = "e1000"; descriptor___0.function = "e1000_config_dsp_after_link_change"; descriptor___0.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor___0.format = "Error getting link speed and duplex\n"; descriptor___0.lineno = 5422U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)tmp___1, "Error getting link speed and duplex\n"); } } else { } return (ret_val); } else { } if ((unsigned int )speed == 1000U) { { ret_val = e1000_1000Mb_check_cable_length(hw); } if (ret_val != 0) { return (ret_val); } else { } } else { } } else { if ((unsigned int )hw->dsp_config_state == 2U) { { ret_val = e1000_read_phy_reg(hw, 12123U, & phy_saved_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 12123U, 3); } if (ret_val != 0) { return (ret_val); } else { } { msleep(20U); ret_val = e1000_write_phy_reg(hw, 0U, 320); } if (ret_val != 0) { return (ret_val); } else { } i = 0U; goto ldv_52456; ldv_52455: { ret_val = e1000_read_phy_reg(hw, (u32 )dsp_reg_array[(int )i], & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 16383U; phy_data = (u16 )((unsigned int )phy_data | 32768U); ret_val = e1000_write_phy_reg(hw, (u32 )dsp_reg_array[(int )i], (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } i = (u16 )((int )i + 1); ldv_52456: ; if ((unsigned int )i <= 3U) { goto ldv_52455; } else { } { ret_val = e1000_write_phy_reg(hw, 0U, 13056); } if (ret_val != 0) { return (ret_val); } else { } { msleep(20U); ret_val = e1000_write_phy_reg(hw, 12123U, (int )phy_saved_data); } if (ret_val != 0) { return (ret_val); } else { } hw->dsp_config_state = 1; } else { } if ((unsigned int )hw->ffe_config_state == 1U) { { ret_val = e1000_read_phy_reg(hw, 12123U, & phy_saved_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 12123U, 3); } if (ret_val != 0) { return (ret_val); } else { } { msleep(20U); ret_val = e1000_write_phy_reg(hw, 0U, 320); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 7989U, 42); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 0U, 13056); } if (ret_val != 0) { return (ret_val); } else { } { msleep(20U); ret_val = e1000_write_phy_reg(hw, 12123U, (int )phy_saved_data); } if (ret_val != 0) { return (ret_val); } else { } hw->ffe_config_state = 0; } else { } } return (0); } } static s32 e1000_set_phy_mode(struct e1000_hw *hw ) { s32 ret_val ; u16 eeprom_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_set_phy_mode"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_set_phy_mode"; descriptor.lineno = 5549U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_set_phy_mode"); } } else { } if ((unsigned int )hw->mac_type == 7U && (unsigned int )hw->media_type == 0U) { { ret_val = e1000_read_eeprom(hw, 7, 1, & eeprom_data); } if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )eeprom_data - 32768U <= 32766U) { { ret_val = e1000_write_phy_reg(hw, 29U, 11); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 30U, 33028); } if (ret_val != 0) { return (ret_val); } else { } hw->phy_reset_disable = 0; } else { } } else { } return (0); } } static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw , bool active ) { s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_set_d3_lplu_state"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_set_d3_lplu_state"; descriptor.lineno = 5597U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_set_d3_lplu_state"); } } else { } if ((unsigned int )hw->phy_type != 1U) { return (0); } else { } if ((unsigned int )hw->mac_type == 12U || (unsigned int )hw->mac_type == 14U) { { ret_val = e1000_read_phy_reg(hw, 20U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } if (! active) { if ((unsigned int )hw->mac_type == 12U || (unsigned int )hw->mac_type == 14U) { { phy_data = (unsigned int )phy_data & 65519U; ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )hw->smart_speed == 1U) { { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (u16 )((unsigned int )phy_data | 128U); ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )hw->smart_speed == 2U) { { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 65407U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } } else if (((unsigned int )hw->autoneg_advertised == 47U || (unsigned int )hw->autoneg_advertised == 3U) || (unsigned int )hw->autoneg_advertised == 15U) { if ((unsigned int )hw->mac_type == 12U || (unsigned int )hw->mac_type == 14U) { { phy_data = (u16 )((unsigned int )phy_data | 16U); ret_val = e1000_write_phy_reg(hw, 20U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } { ret_val = e1000_read_phy_reg(hw, 16U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 65407U; ret_val = e1000_write_phy_reg(hw, 16U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } static s32 e1000_set_vco_speed(struct e1000_hw *hw ) { s32 ret_val ; u16 default_page ; u16 phy_data ; struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { default_page = 0U; descriptor.modname = "e1000"; descriptor.function = "e1000_set_vco_speed"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_set_vco_speed"; descriptor.lineno = 5702U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_set_vco_speed"); } } else { } { if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } goto switch_default; case_7: /* CIL Label */ ; case_10: /* CIL Label */ ; goto ldv_52483; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_52483: { ret_val = e1000_read_phy_reg(hw, 29U, & default_page); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 29U, 5); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 30U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (unsigned int )phy_data & 65279U; ret_val = e1000_write_phy_reg(hw, 30U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 29U, 4); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 30U, & phy_data); } if (ret_val != 0) { return (ret_val); } else { } { phy_data = (u16 )((unsigned int )phy_data | 2048U); ret_val = e1000_write_phy_reg(hw, 30U, (int )phy_data); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 29U, (int )default_page); } if (ret_val != 0) { return (ret_val); } else { } return (0); } } u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw ) { u32 manc ; { if (hw->asf_firmware_present != 0U) { { manc = readl((void const volatile *)hw->hw_addr + 22560U); } if ((manc & 1179648U) != 1179648U) { return (0U); } else { } if ((manc & 3U) == 1U) { return (1U); } else { } } else { } return (0U); } } static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw ) { s32 ret_val ; u16 mii_status_reg ; u16 i ; { { ret_val = e1000_write_phy_reg(hw, 29U, 25); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 30U, 65535); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 29U, 0); } if (ret_val != 0) { return (ret_val); } else { } i = 20U; goto ldv_52497; ldv_52496: { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & -5) == 0) { goto ldv_52495; } else { } { msleep(100U); i = (u16 )((int )i - 1); } ldv_52497: ; if ((unsigned int )i != 0U) { goto ldv_52496; } else { } ldv_52495: { msleep(1000U); ret_val = e1000_write_phy_reg(hw, 29U, 25); } if (ret_val != 0) { return (ret_val); } else { } { msleep(50U); ret_val = e1000_write_phy_reg(hw, 30U, 65520); } if (ret_val != 0) { return (ret_val); } else { } { msleep(50U); ret_val = e1000_write_phy_reg(hw, 30U, 65280); } if (ret_val != 0) { return (ret_val); } else { } { msleep(50U); ret_val = e1000_write_phy_reg(hw, 30U, 0); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_write_phy_reg(hw, 29U, 0); } if (ret_val != 0) { return (ret_val); } else { } i = 20U; goto ldv_52500; ldv_52499: { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } { ret_val = e1000_read_phy_reg(hw, 1U, & mii_status_reg); } if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & 4) != 0) { goto ldv_52498; } else { } { msleep(100U); i = (u16 )((int )i - 1); } ldv_52500: ; if ((unsigned int )i != 0U) { goto ldv_52499; } else { } ldv_52498: ; return (0); } } static s32 e1000_get_auto_rd_done(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_get_auto_rd_done"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_get_auto_rd_done"; descriptor.lineno = 5875U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_get_auto_rd_done"); } } else { } { msleep(5U); } return (0); } } static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw ) { struct _ddebug descriptor ; struct net_device *tmp ; long tmp___0 ; { { descriptor.modname = "e1000"; descriptor.function = "e1000_get_phy_cfg_done"; descriptor.filename = "drivers/net/ethernet/intel/e1000/e1000_hw.c"; descriptor.format = "e1000_get_phy_cfg_done"; descriptor.lineno = 5890U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = e1000_get_hw_dev(hw); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tmp, "e1000_get_phy_cfg_done"); } } else { } { msleep(10U); } return (0); } } static void ldv___ldv_spin_lock_106(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_e1000_phy_lock(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_e1000_phy_lock(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_109(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_e1000_phy_lock(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_lock_112(spinlock_t *lock ) { { { ldv_spin_lock_e1000_eeprom_lock(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_113(spinlock_t *lock ) { { { ldv_spin_unlock_e1000_eeprom_lock(); spin_unlock(lock); } return; } } extern size_t strlcpy(char * , char const * , size_t ) ; __inline static bool device_can_wakeup(struct device *dev ) { { return ((int )dev->power.can_wakeup != 0); } } extern unsigned long msleep_interruptible(unsigned int ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } void *ldv_zalloc(size_t size ) ; __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern int ethtool_op_get_ts_info(struct net_device * , struct ethtool_ts_info * ) ; extern int dev_open(struct net_device * ) ; extern int dev_close(struct net_device * ) ; __inline static int ldv_request_irq_106(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_108(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static struct e1000_stats const e1000_gstrings_stats[46U] = { {{'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, 1, 8, 1520}, {{'t', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, 1, 8, 1544}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 1, 8, 1552}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 1, 8, 1568}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 1, 8, 1528}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 1, 8, 1760}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 1536}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 1752}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1328}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1336}, {{'t', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}, 0, 8, 320}, {{'m', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 1536}, {{'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, 1, 8, 1384}, {{'r', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1616}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 352}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1304}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 368}, {{'r', 'x', '_', 'n', 'o', '_', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 8, 1584}, {{'r', 'x', '_', 'm', 'i', 's', 's', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1344}, {{'t', 'x', '_', 'a', 'b', 'o', 'r', 't', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1360}, {{'t', 'x', '_', 'c', 'a', 'r', 'r', 'i', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1400}, {{'t', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 408}, {{'t', 'x', '_', 'h', 'e', 'a', 'r', 't', 'b', 'e', 'a', 't', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 416}, {{'t', 'x', '_', 'w', 'i', 'n', 'd', 'o', 'w', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1376}, {{'t', 'x', '_', 'a', 'b', 'o', 'r', 't', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', '\000'}, 1, 8, 1376}, {{'t', 'x', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'e', 'd', '_', 'o', 'k', '\000'}, 1, 8, 1392}, {{'t', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', '_', 'o', 'k', '\000'}, 1, 8, 1352}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', '_', 'c', 'o', 'l', 'l', '_', 'o', 'k', '\000'}, 1, 8, 1368}, {{'t', 'x', '_', 't', 'i', 'm', 'e', 'o', 'u', 't', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 4, 704}, {{'t', 'x', '_', 'r', 'e', 's', 't', 'a', 'r', 't', '_', 'q', 'u', 'e', 'u', 'e', '\000'}, 1, 4, 656}, {{'r', 'x', '_', 'l', 'o', 'n', 'g', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1608}, {{'r', 'x', '_', 's', 'h', 'o', 'r', 't', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1592}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1312}, {{'t', 'x', '_', 't', 'c', 'p', '_', 's', 'e', 'g', '_', 'g', 'o', 'o', 'd', '\000'}, 1, 8, 1768}, {{'t', 'x', '_', 't', 'c', 'p', '_', 's', 'e', 'g', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 8, 1776}, {{'r', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'n', '\000'}, 1, 8, 1432}, {{'r', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'f', 'f', '\000'}, 1, 8, 1448}, {{'t', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'n', '\000'}, 1, 8, 1440}, {{'t', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'f', 'f', '\000'}, 1, 8, 1456}, {{'r', 'x', '_', 'l', 'o', 'n', 'g', '_', 'b', 'y', 't', 'e', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 8, 1552}, {{'r', 'x', '_', 'c', 's', 'u', 'm', '_', 'o', 'f', 'f', 'l', 'o', 'a', 'd', '_', 'g', 'o', 'o', 'd', '\000'}, 1, 8, 960}, {{'r', 'x', '_', 'c', 's', 'u', 'm', '_', 'o', 'f', 'f', 'l', 'o', 'a', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 952}, {{'a', 'l', 'l', 'o', 'c', '_', 'r', 'x', '_', 'b', 'u', 'f', 'f', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 4, 968}, {{'t', 'x', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 1648}, {{'r', 'x', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 1632}, {{'d', 'r', 'o', 'p', 'p', 'e', 'd', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 1640}}; static char const e1000_gstrings_test[5U][32U] = { { 'R', 'e', 'g', 'i', 's', 't', 'e', 'r', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'E', 'e', 'p', 'r', 'o', 'm', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'I', 'n', 't', 'e', 'r', 'r', 'u', 'p', 't', ' ', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'i', 'n', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', '(', 'o', 'n', '/', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}; static int e1000_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; unsigned int tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; } if ((unsigned int )hw->media_type == 0U) { ecmd->supported = 239U; ecmd->advertising = 128U; if ((unsigned int )hw->autoneg == 1U) { ecmd->advertising = ecmd->advertising | 64U; ecmd->advertising = ecmd->advertising | (__u32 )hw->autoneg_advertised; } else { } ecmd->port = 0U; ecmd->phy_address = (__u8 )hw->phy_addr; if ((unsigned int )hw->mac_type == 3U) { ecmd->transceiver = 1U; } else { ecmd->transceiver = 0U; } } else { ecmd->supported = 1120U; ecmd->advertising = 1120U; ecmd->port = 3U; if ((unsigned int )hw->mac_type > 5U) { ecmd->transceiver = 0U; } else { ecmd->transceiver = 1U; } } { tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp___0 & 2U) != 0U) { { e1000_get_speed_and_duplex(hw, & adapter->link_speed, & adapter->link_duplex); ethtool_cmd_speed_set(ecmd, (__u32 )adapter->link_speed); } if ((unsigned int )adapter->link_duplex == 2U) { ecmd->duplex = 1U; } else { ecmd->duplex = 0U; } } else { { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = 255U; } } ecmd->autoneg = (__u8 )((unsigned int )hw->media_type == 1U || (unsigned int )hw->autoneg != 0U); if ((unsigned int )hw->media_type == 0U) { { tmp___1 = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp___1) { ecmd->eth_tp_mdix = (unsigned int )adapter->phy_info.mdix_mode != 0U ? 2U : 1U; } else { ecmd->eth_tp_mdix = 0U; } } else { ecmd->eth_tp_mdix = 0U; } if ((unsigned int )hw->mdix == 0U) { ecmd->eth_tp_mdix_ctrl = 3U; } else { ecmd->eth_tp_mdix_ctrl = hw->mdix; } return (0); } } static int e1000_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int tmp___0 ; u32 speed ; __u32 tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 0U) { if ((unsigned int )hw->media_type != 0U) { return (-95); } else { } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 3U && (unsigned int )ecmd->autoneg != 1U) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); } } else { } return (-22); } else { } } else { } goto ldv_51227; ldv_51226: { msleep(1U); } ldv_51227: { tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_51226; } else { } if ((unsigned int )ecmd->autoneg == 1U) { hw->autoneg = 1U; if ((unsigned int )hw->media_type == 1U) { hw->autoneg_advertised = 1120U; } else { hw->autoneg_advertised = (unsigned int )((u16 )ecmd->advertising) | 192U; } ecmd->advertising = (__u32 )hw->autoneg_advertised; } else { { tmp___1 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___1; tmp___2 = e1000_set_spd_dplx(adapter, speed, (int )ecmd->duplex); } if (tmp___2 != 0) { { clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); } return (-22); } else { } } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 0U) { if ((unsigned int )ecmd->eth_tp_mdix_ctrl == 3U) { hw->mdix = 0U; } else { hw->mdix = ecmd->eth_tp_mdix_ctrl; } } else { } { tmp___3 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___3) { { e1000_down(adapter); e1000_up(adapter); } } else { { e1000_reset(adapter); } } { clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); } return (0); } } static u32 e1000_get_link(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = netif_carrier_ok((struct net_device const *)netdev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { adapter->hw.get_link_status = 1; } else { } { tmp___2 = e1000_has_link(adapter); } return ((u32 )tmp___2); } } static void e1000_get_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; pause->autoneg = (unsigned int )adapter->fc_autoneg != 0U; } if ((unsigned int )hw->fc == 1U) { pause->rx_pause = 1U; } else if ((unsigned int )hw->fc == 2U) { pause->tx_pause = 1U; } else if ((unsigned int )hw->fc == 3U) { pause->rx_pause = 1U; pause->tx_pause = 1U; } else { } return; } } static int e1000_set_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int retval ; int tmp___0 ; bool tmp___1 ; s32 tmp___2 ; s32 tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; retval = 0; adapter->fc_autoneg = (u8 )pause->autoneg; } goto ldv_51248; ldv_51247: { msleep(1U); } ldv_51248: { tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_51247; } else { } if (pause->rx_pause != 0U && pause->tx_pause != 0U) { hw->fc = 3; } else if (pause->rx_pause != 0U && pause->tx_pause == 0U) { hw->fc = 1; } else if (pause->rx_pause == 0U && pause->tx_pause != 0U) { hw->fc = 2; } else if (pause->rx_pause == 0U && pause->tx_pause == 0U) { hw->fc = 0; } else { } hw->original_fc = (u32 )hw->fc; if ((unsigned int )adapter->fc_autoneg == 1U) { { tmp___1 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___1) { { e1000_down(adapter); e1000_up(adapter); } } else { { e1000_reset(adapter); } } } else if ((unsigned int )hw->media_type == 1U) { { tmp___2 = e1000_setup_link(hw); retval = tmp___2; } } else { { tmp___3 = e1000_force_mac_fc(hw); retval = tmp___3; } } { clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); } return (retval); } } static u32 e1000_get_msglevel(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; } return ((u32 )adapter->msg_enable); } } static void e1000_set_msglevel(struct net_device *netdev , u32 data ) { struct e1000_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; adapter->msg_enable = (int )data; } return; } } static int e1000_get_regs_len(struct net_device *netdev ) { { return (128); } } static void e1000_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 *regs_buff ; u16 phy_data ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; regs_buff = (u32 *)p; memset(p, 0, 128UL); regs->version = (__u32 )((((int )hw->revision_id << 16) | 16777216) | (int )hw->device_id); *regs_buff = readl((void const volatile *)hw->hw_addr); *(regs_buff + 1UL) = readl((void const volatile *)hw->hw_addr + 8U); *(regs_buff + 2UL) = readl((void const volatile *)hw->hw_addr + 256U); *(regs_buff + 3UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); *(regs_buff + 4UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); *(regs_buff + 5UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); *(regs_buff + 6UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10272UL : 264UL))); *(regs_buff + 7UL) = readl((void const volatile *)hw->hw_addr + 1024U); *(regs_buff + 8UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); *(regs_buff + 9UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); *(regs_buff + 10UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); *(regs_buff + 11UL) = readl((void const volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14368UL : 1088UL))); *(regs_buff + 12UL) = (u32 )hw->phy_type; } if ((unsigned int )hw->phy_type == 1U) { { e1000_write_phy_reg(hw, 31U, 4466); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 13UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 4722); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 14UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 5234); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 15UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 6258); e1000_read_phy_reg(hw, 18U, & phy_data); *(regs_buff + 16UL) = (unsigned int )phy_data; *(regs_buff + 17UL) = 0U; e1000_write_phy_reg(hw, 31U, 0); e1000_read_phy_reg(hw, 17U, & phy_data); *(regs_buff + 18UL) = (unsigned int )phy_data; e1000_write_phy_reg(hw, 31U, 180); e1000_read_phy_reg(hw, 20U, & phy_data); *(regs_buff + 19UL) = (unsigned int )phy_data; *(regs_buff + 20UL) = 0U; *(regs_buff + 22UL) = 0U; *(regs_buff + 23UL) = *(regs_buff + 18UL); e1000_write_phy_reg(hw, 31U, 0); } } else { { e1000_read_phy_reg(hw, 17U, & phy_data); *(regs_buff + 13UL) = (unsigned int )phy_data; *(regs_buff + 14UL) = 0U; *(regs_buff + 15UL) = 0U; *(regs_buff + 16UL) = 0U; e1000_read_phy_reg(hw, 16U, & phy_data); *(regs_buff + 17UL) = (unsigned int )phy_data; *(regs_buff + 18UL) = *(regs_buff + 13UL); *(regs_buff + 19UL) = 0U; *(regs_buff + 20UL) = *(regs_buff + 17UL); *(regs_buff + 22UL) = adapter->phy_stats.receive_errors; *(regs_buff + 23UL) = *(regs_buff + 13UL); } } { *(regs_buff + 21UL) = adapter->phy_stats.idle_errors; e1000_read_phy_reg(hw, 10U, & phy_data); *(regs_buff + 24UL) = (unsigned int )phy_data; *(regs_buff + 25UL) = *(regs_buff + 24UL); } if ((unsigned int )hw->mac_type > 4U && (unsigned int )hw->media_type == 0U) { { *(regs_buff + 26UL) = readl((void const volatile *)hw->hw_addr + 22560U); } } else { } return; } } static int e1000_get_eeprom_len(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; } return ((int )hw->eeprom.word_size * 2); } } static int e1000_get_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u16 *eeprom_buff ; int first_word ; int last_word ; int ret_val ; u16 i ; void *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; ret_val = 0; } if (eeprom->len == 0U) { return (-22); } else { } { eeprom->magic = (__u32 )((int )hw->vendor_id | ((int )hw->device_id << 16)); first_word = (int )(eeprom->offset >> 1); last_word = (int )(((eeprom->offset + eeprom->len) - 1U) >> 1); tmp___0 = kmalloc((unsigned long )((last_word - first_word) + 1) * 2UL, 208U); eeprom_buff = (u16 *)tmp___0; } if ((unsigned long )eeprom_buff == (unsigned long )((u16 *)0U)) { return (-12); } else { } if ((unsigned int )hw->eeprom.type == 1U) { { ret_val = e1000_read_eeprom(hw, (int )((u16 )first_word), (int )((unsigned int )((int )((u16 )last_word) - (int )((u16 )first_word)) + 1U), eeprom_buff); } } else { i = 0U; goto ldv_51290; ldv_51289: { ret_val = e1000_read_eeprom(hw, (int )((u16 )first_word) + (int )i, 1, eeprom_buff + (unsigned long )i); } if (ret_val != 0) { goto ldv_51288; } else { } i = (u16 )((int )i + 1); ldv_51290: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_51289; } else { } ldv_51288: ; } i = 0U; goto ldv_51292; ldv_51291: i = (u16 )((int )i + 1); ldv_51292: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_51291; } else { } { memcpy((void *)bytes, (void const *)eeprom_buff + ((unsigned long )eeprom->offset & 1UL), (size_t )eeprom->len); kfree((void const *)eeprom_buff); } return (ret_val); } } static int e1000_set_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u16 *eeprom_buff ; void *ptr ; int max_len ; int first_word ; int last_word ; int ret_val ; u16 i ; void *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; ret_val = 0; } if (eeprom->len == 0U) { return (-95); } else { } if (eeprom->magic != (__u32 )((int )hw->vendor_id | ((int )hw->device_id << 16))) { return (-14); } else { } { max_len = (int )hw->eeprom.word_size * 2; first_word = (int )(eeprom->offset >> 1); last_word = (int )(((eeprom->offset + eeprom->len) - 1U) >> 1); tmp___0 = kmalloc((size_t )max_len, 208U); eeprom_buff = (u16 *)tmp___0; } if ((unsigned long )eeprom_buff == (unsigned long )((u16 *)0U)) { return (-12); } else { } ptr = (void *)eeprom_buff; if ((int )eeprom->offset & 1) { { ret_val = e1000_read_eeprom(hw, (int )((u16 )first_word), 1, eeprom_buff); ptr = ptr + 1; } } else { } if (((int )(eeprom->offset + eeprom->len) & 1) != 0 && ret_val == 0) { { ret_val = e1000_read_eeprom(hw, (int )((u16 )last_word), 1, eeprom_buff + (unsigned long )(last_word - first_word)); } } else { } i = 0U; goto ldv_51309; ldv_51308: i = (u16 )((int )i + 1); ldv_51309: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_51308; } else { } { memcpy(ptr, (void const *)bytes, (size_t )eeprom->len); i = 0U; } goto ldv_51312; ldv_51311: *(eeprom_buff + (unsigned long )i) = *(eeprom_buff + (unsigned long )i); i = (u16 )((int )i + 1); ldv_51312: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_51311; } else { } { ret_val = e1000_write_eeprom(hw, (int )((u16 )first_word), (int )((unsigned int )((int )((u16 )last_word) - (int )((u16 )first_word)) + 1U), eeprom_buff); } if (ret_val == 0 && first_word <= 63) { { e1000_update_eeprom_checksum(hw); } } else { } { kfree((void const *)eeprom_buff); } return (ret_val); } } static void e1000_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct e1000_adapter *adapter ; void *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& e1000_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& e1000_driver_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); tmp___1 = e1000_get_regs_len(netdev); drvinfo->regdump_len = (__u32 )tmp___1; tmp___2 = e1000_get_eeprom_len(netdev); drvinfo->eedump_len = (__u32 )tmp___2; } return; } } static void e1000_get_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; e1000_mac_type mac_type ; struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; mac_type = hw->mac_type; txdr = adapter->tx_ring; rxdr = adapter->rx_ring; ring->rx_max_pending = (unsigned int )mac_type <= 3U ? 256U : 4096U; ring->tx_max_pending = (unsigned int )mac_type <= 3U ? 256U : 4096U; ring->rx_pending = rxdr->count; ring->tx_pending = txdr->count; } return; } } static int e1000_set_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; e1000_mac_type mac_type ; struct e1000_tx_ring *txdr ; struct e1000_tx_ring *tx_old ; struct e1000_rx_ring *rxdr ; struct e1000_rx_ring *rx_old ; int i ; int err ; int tmp___0 ; bool tmp___1 ; void *tmp___2 ; void *tmp___3 ; __u32 _max1 ; unsigned int _max2 ; unsigned int _min1 ; unsigned int _min2 ; __u32 _max1___0 ; unsigned int _max2___0 ; unsigned int _min1___0 ; unsigned int _min2___0 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; mac_type = hw->mac_type; } if (ring->rx_mini_pending != 0U || ring->rx_jumbo_pending != 0U) { return (-22); } else { } goto ldv_51342; ldv_51341: { msleep(1U); } ldv_51342: { tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_51341; } else { } { tmp___1 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___1) { { e1000_down(adapter); } } else { } { tx_old = adapter->tx_ring; rx_old = adapter->rx_ring; err = -12; tmp___2 = kcalloc((size_t )adapter->num_tx_queues, 48UL, 208U); txdr = (struct e1000_tx_ring *)tmp___2; } if ((unsigned long )txdr == (unsigned long )((struct e1000_tx_ring *)0)) { goto err_alloc_tx; } else { } { tmp___3 = kcalloc((size_t )adapter->num_rx_queues, 56UL, 208U); rxdr = (struct e1000_rx_ring *)tmp___3; } if ((unsigned long )rxdr == (unsigned long )((struct e1000_rx_ring *)0)) { goto err_alloc_rx; } else { } adapter->tx_ring = txdr; adapter->rx_ring = rxdr; _max1 = ring->rx_pending; _max2 = 48U; rxdr->count = _max1 > _max2 ? _max1 : _max2; _min1 = rxdr->count; _min2 = (unsigned int )mac_type <= 3U ? 256U : 4096U; rxdr->count = _min1 < _min2 ? _min1 : _min2; rxdr->count = (rxdr->count + 7U) & 4294967288U; _max1___0 = ring->tx_pending; _max2___0 = 48U; txdr->count = _max1___0 > _max2___0 ? _max1___0 : _max2___0; _min1___0 = txdr->count; _min2___0 = (unsigned int )mac_type <= 3U ? 256U : 4096U; txdr->count = _min1___0 < _min2___0 ? _min1___0 : _min2___0; txdr->count = (txdr->count + 7U) & 4294967288U; i = 0; goto ldv_51359; ldv_51358: (txdr + (unsigned long )i)->count = txdr->count; i = i + 1; ldv_51359: ; if (i < adapter->num_tx_queues) { goto ldv_51358; } else { } i = 0; goto ldv_51362; ldv_51361: (rxdr + (unsigned long )i)->count = rxdr->count; i = i + 1; ldv_51362: ; if (i < adapter->num_rx_queues) { goto ldv_51361; } else { } { tmp___4 = netif_running((struct net_device const *)adapter->netdev); } if ((int )tmp___4) { { err = e1000_setup_all_rx_resources(adapter); } if (err != 0) { goto err_setup_rx; } else { } { err = e1000_setup_all_tx_resources(adapter); } if (err != 0) { goto err_setup_tx; } else { } { adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; e1000_free_all_rx_resources(adapter); e1000_free_all_tx_resources(adapter); kfree((void const *)tx_old); kfree((void const *)rx_old); adapter->rx_ring = rxdr; adapter->tx_ring = txdr; err = e1000_up(adapter); } if (err != 0) { goto err_setup; } else { } } else { } { clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); } return (0); err_setup_tx: { e1000_free_all_rx_resources(adapter); } err_setup_rx: { adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; kfree((void const *)rxdr); } err_alloc_rx: { kfree((void const *)txdr); } err_alloc_tx: { e1000_up(adapter); } err_setup: { clear_bit(1L, (unsigned long volatile *)(& adapter->flags)); } return (err); } } static bool reg_pattern_test(struct e1000_adapter *adapter , u64 *data , int reg , u32 mask , u32 write ) { struct e1000_hw *hw ; u32 test[4U] ; u8 *address ; u32 read ; int i ; { hw = & adapter->hw; test[0] = 1515870810U; test[1] = 2779096485U; test[2] = 0U; test[3] = 4294967295U; address = hw->hw_addr + (unsigned long )reg; i = 0; goto ldv_51382; ldv_51381: { writel(write & test[i], (void volatile *)address); read = readl((void const volatile *)address); } if (read != ((write & test[i]) & mask)) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", reg, read, (write & test[i]) & mask); } } else { } *data = (u64 )reg; return (1); } else { } i = i + 1; ldv_51382: ; if ((unsigned int )i <= 3U) { goto ldv_51381; } else { } return (0); } } static bool reg_set_and_check(struct e1000_adapter *adapter , u64 *data , int reg , u32 mask , u32 write ) { struct e1000_hw *hw ; u8 *address ; u32 read ; { { hw = & adapter->hw; address = hw->hw_addr + (unsigned long )reg; writel(write & mask, (void volatile *)address); read = readl((void const volatile *)address); } if (((read ^ write) & mask) != 0U) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, read & mask, write & mask); } } else { } *data = (u64 )reg; return (1); } else { } return (0); } } static int e1000_reg_test(struct e1000_adapter *adapter , u64 *data ) { u32 value ; u32 before ; u32 after ; u32 i ; u32 toggle ; struct e1000_hw *hw ; unsigned int tmp ; unsigned int tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; bool tmp___4 ; bool tmp___5 ; bool tmp___6 ; bool tmp___7 ; bool tmp___8 ; bool tmp___9 ; bool tmp___10 ; bool tmp___11 ; bool tmp___12 ; bool tmp___13 ; bool tmp___14 ; bool tmp___15 ; bool tmp___16 ; bool tmp___17 ; bool tmp___18 ; bool tmp___19 ; bool tmp___20 ; bool tmp___21 ; bool tmp___22 ; bool tmp___23 ; bool tmp___24 ; bool tmp___25 ; bool tmp___26 ; bool tmp___27 ; bool tmp___28 ; { { hw = & adapter->hw; toggle = 4294965299U; before = readl((void const volatile *)hw->hw_addr + 8U); tmp = readl((void const volatile *)hw->hw_addr + 8U); value = tmp & toggle; writel(toggle, (void volatile *)hw->hw_addr + 8U); tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); after = tmp___0 & toggle; } if (value != after) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "failed STATUS register test got: 0x%08X expected: 0x%08X\n", after, value); } } else { } *data = 1ULL; return (1); } else { } { writel(before, (void volatile *)hw->hw_addr + 8U); tmp___1 = reg_pattern_test(adapter, data, 40, 4294967295U, 4294967295U); } if ((int )tmp___1) { return (1); } else { } { tmp___2 = reg_pattern_test(adapter, data, 44, 65535U, 4294967295U); } if ((int )tmp___2) { return (1); } else { } { tmp___3 = reg_pattern_test(adapter, data, 48, 65535U, 4294967295U); } if ((int )tmp___3) { return (1); } else { } { tmp___4 = reg_pattern_test(adapter, data, 56, 65535U, 4294967295U); } if ((int )tmp___4) { return (1); } else { } { tmp___5 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10272 : 264, 65535U, 4294967295U); } if ((int )tmp___5) { return (1); } else { } { tmp___6 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10244 : 276, 4294967295U, 4294967295U); } if ((int )tmp___6) { return (1); } else { } { tmp___7 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10248 : 280, 1048448U, 1048575U); } if ((int )tmp___7) { return (1); } else { } { tmp___8 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10256 : 288, 65535U, 65535U); } if ((int )tmp___8) { return (1); } else { } { tmp___9 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10264 : 296, 65535U, 65535U); } if ((int )tmp___9) { return (1); } else { } { tmp___10 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 8552 : 352, 65528U, 65528U); } if ((int )tmp___10) { return (1); } else { } { tmp___11 = reg_pattern_test(adapter, data, 368, 65535U, 65535U); } if ((int )tmp___11) { return (1); } else { } { tmp___12 = reg_pattern_test(adapter, data, 1040, 1073741823U, 1073741823U); } if ((int )tmp___12) { return (1); } else { } { tmp___13 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14340 : 1060, 4294967295U, 4294967295U); } if ((int )tmp___13) { return (1); } else { } { tmp___14 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14344 : 1064, 1048448U, 1048575U); } if ((int )tmp___14) { return (1); } else { } { tmp___15 = reg_set_and_check(adapter, data, 256, 4294967295U, 0U); } if ((int )tmp___15) { return (1); } else { } { before = 115323902U; tmp___16 = reg_set_and_check(adapter, data, 256, before, 4194299U); } if ((int )tmp___16) { return (1); } else { } { tmp___17 = reg_set_and_check(adapter, data, 1024, 4294967295U, 0U); } if ((int )tmp___17) { return (1); } else { } if ((unsigned int )hw->mac_type > 2U) { { tmp___18 = reg_set_and_check(adapter, data, 256, before, 4294967295U); } if ((int )tmp___18) { return (1); } else { } { tmp___19 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10240 : 272, 4294967280U, 4294967295U); } if ((int )tmp___19) { return (1); } else { } { tmp___20 = reg_pattern_test(adapter, data, 376, 3221291007U, 65535U); } if ((int )tmp___20) { return (1); } else { } { tmp___21 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14336 : 1056, 4294967280U, 4294967295U); } if ((int )tmp___21) { return (1); } else { } { tmp___22 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14368 : 1088, 65535U, 65535U); } if ((int )tmp___22) { return (1); } else { } value = 15U; i = 0U; goto ldv_51405; ldv_51404: { tmp___23 = reg_pattern_test(adapter, data, (int )((unsigned int )hw->mac_type > 2U ? (((i << 1) + 1U) << 2) + 21504U : (((i << 1) + 1U) << 2) + 64U), 2147745791U, 4294967295U); } if ((int )tmp___23) { return (1); } else { } i = i + 1U; ldv_51405: ; if (i < value) { goto ldv_51404; } else { } } else { { tmp___24 = reg_set_and_check(adapter, data, 256, 4294967295U, 33554431U); } if ((int )tmp___24) { return (1); } else { } { tmp___25 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 10240 : 272, 4294963200U, 4294967295U); } if ((int )tmp___25) { return (1); } else { } { tmp___26 = reg_pattern_test(adapter, data, 376, 65535U, 65535U); } if ((int )tmp___26) { return (1); } else { } { tmp___27 = reg_pattern_test(adapter, data, (unsigned int )hw->mac_type > 2U ? 14336 : 1056, 4294963200U, 4294967295U); } if ((int )tmp___27) { return (1); } else { } } value = 128U; i = 0U; goto ldv_51408; ldv_51407: { tmp___28 = reg_pattern_test(adapter, data, (int )((unsigned int )hw->mac_type > 2U ? (i << 2) + 20992U : (i << 2) + 512U), 4294967295U, 4294967295U); } if ((int )tmp___28) { return (1); } else { } i = i + 1U; ldv_51408: ; if (i < value) { goto ldv_51407; } else { } *data = 0ULL; return (0); } } static int e1000_eeprom_test(struct e1000_adapter *adapter , u64 *data ) { struct e1000_hw *hw ; u16 temp ; u16 checksum ; u16 i ; s32 tmp ; { hw = & adapter->hw; checksum = 0U; *data = 0ULL; i = 0U; goto ldv_51420; ldv_51419: { tmp = e1000_read_eeprom(hw, (int )i, 1, & temp); } if (tmp < 0) { *data = 1ULL; goto ldv_51418; } else { } checksum = (int )checksum + (int )temp; i = (u16 )((int )i + 1); ldv_51420: ; if ((unsigned int )i <= 63U) { goto ldv_51419; } else { } ldv_51418: ; if ((unsigned int )checksum != 47802U && *data == 0ULL) { *data = 2ULL; } else { } return ((int )*data); } } static irqreturn_t e1000_test_intr(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; unsigned int tmp___0 ; { { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = readl((void const volatile *)hw->hw_addr + 192U); adapter->test_icr = adapter->test_icr | tmp___0; } return (1); } } static int e1000_intr_test(struct e1000_adapter *adapter , u64 *data ) { struct net_device *netdev ; u32 mask ; u32 i ; bool shared_int ; u32 irq ; struct e1000_hw *hw ; int tmp ; int tmp___0 ; { { netdev = adapter->netdev; i = 0U; shared_int = 1; irq = (adapter->pdev)->irq; hw = & adapter->hw; *data = 0ULL; tmp___0 = ldv_request_irq_106(irq, & e1000_test_intr, 256UL, (char const *)(& netdev->name), (void *)netdev); } if (tmp___0 == 0) { shared_int = 0; } else { { tmp = ldv_request_irq_108(irq, & e1000_test_intr, 128UL, (char const *)(& netdev->name), (void *)netdev); } if (tmp != 0) { *data = 1ULL; return (-1); } else { } } if ((adapter->msg_enable & 8192) != 0) { { netdev_info((struct net_device const *)adapter->netdev, "testing %s interrupt\n", (int )shared_int ? (char *)"shared" : (char *)"unshared"); } } else { } { writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); } goto ldv_51440; ldv_51439: mask = (u32 )(1 << (int )i); if (! shared_int) { { adapter->test_icr = 0U; writel(mask, (void volatile *)hw->hw_addr + 216U); writel(mask, (void volatile *)hw->hw_addr + 200U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); } if ((adapter->test_icr & mask) != 0U) { *data = 3ULL; goto ldv_51438; } else { } } else { } { adapter->test_icr = 0U; writel(mask, (void volatile *)hw->hw_addr + 208U); writel(mask, (void volatile *)hw->hw_addr + 200U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); } if ((adapter->test_icr & mask) == 0U) { *data = 4ULL; goto ldv_51438; } else { } if (! shared_int) { { adapter->test_icr = 0U; writel(~ mask & 32767U, (void volatile *)hw->hw_addr + 216U); writel(~ mask & 32767U, (void volatile *)hw->hw_addr + 200U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); } if (adapter->test_icr != 0U) { *data = 5ULL; goto ldv_51438; } else { } } else { } i = i + 1U; ldv_51440: ; if (i <= 9U) { goto ldv_51439; } else { } ldv_51438: { writel(4294967295U, (void volatile *)hw->hw_addr + 216U); readl((void const volatile *)hw->hw_addr + 8U); msleep(10U); ldv_free_irq_108(irq, (void *)netdev); } return ((int )*data); } } static void e1000_free_desc_rings(struct e1000_adapter *adapter ) { struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; struct pci_dev *pdev ; int i ; { txdr = & adapter->test_tx_ring; rxdr = & adapter->test_rx_ring; pdev = adapter->pdev; if ((unsigned long )txdr->desc != (unsigned long )((void *)0) && (unsigned long )txdr->buffer_info != (unsigned long )((struct e1000_buffer *)0)) { i = 0; goto ldv_51449; ldv_51448: ; if ((txdr->buffer_info + (unsigned long )i)->dma != 0ULL) { { dma_unmap_single_attrs(& pdev->dev, (txdr->buffer_info + (unsigned long )i)->dma, (size_t )(txdr->buffer_info + (unsigned long )i)->length, 1, (struct dma_attrs *)0); } } else { } if ((unsigned long )(txdr->buffer_info + (unsigned long )i)->skb != (unsigned long )((struct sk_buff *)0)) { { consume_skb((txdr->buffer_info + (unsigned long )i)->skb); } } else { } i = i + 1; ldv_51449: ; if ((unsigned int )i < txdr->count) { goto ldv_51448; } else { } } else { } if ((unsigned long )rxdr->desc != (unsigned long )((void *)0) && (unsigned long )rxdr->buffer_info != (unsigned long )((struct e1000_buffer *)0)) { i = 0; goto ldv_51452; ldv_51451: ; if ((rxdr->buffer_info + (unsigned long )i)->dma != 0ULL) { { dma_unmap_single_attrs(& pdev->dev, (rxdr->buffer_info + (unsigned long )i)->dma, (size_t )(rxdr->buffer_info + (unsigned long )i)->length, 2, (struct dma_attrs *)0); } } else { } if ((unsigned long )(rxdr->buffer_info + (unsigned long )i)->skb != (unsigned long )((struct sk_buff *)0)) { { consume_skb((rxdr->buffer_info + (unsigned long )i)->skb); } } else { } i = i + 1; ldv_51452: ; if ((unsigned int )i < rxdr->count) { goto ldv_51451; } else { } } else { } if ((unsigned long )txdr->desc != (unsigned long )((void *)0)) { { dma_free_attrs(& pdev->dev, (size_t )txdr->size, txdr->desc, txdr->dma, (struct dma_attrs *)0); txdr->desc = (void *)0; } } else { } if ((unsigned long )rxdr->desc != (unsigned long )((void *)0)) { { dma_free_attrs(& pdev->dev, (size_t )rxdr->size, rxdr->desc, rxdr->dma, (struct dma_attrs *)0); rxdr->desc = (void *)0; } } else { } { kfree((void const *)txdr->buffer_info); txdr->buffer_info = (struct e1000_buffer *)0; kfree((void const *)rxdr->buffer_info); rxdr->buffer_info = (struct e1000_buffer *)0; } return; } } static int e1000_setup_desc_rings(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; struct pci_dev *pdev ; u32 rctl ; int i ; int ret_val ; void *tmp ; unsigned int tmp___0 ; struct e1000_tx_desc *tx_desc ; struct sk_buff *skb ; unsigned int size ; int tmp___1 ; void *tmp___2 ; unsigned int tmp___3 ; struct e1000_rx_desc *rx_desc ; struct sk_buff *skb___0 ; int tmp___4 ; { hw = & adapter->hw; txdr = & adapter->test_tx_ring; rxdr = & adapter->test_rx_ring; pdev = adapter->pdev; if (txdr->count == 0U) { txdr->count = 256U; } else { } { tmp = kcalloc((size_t )txdr->count, 48UL, 208U); txdr->buffer_info = (struct e1000_buffer *)tmp; } if ((unsigned long )txdr->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { ret_val = 1; goto err_nomem; } else { } { txdr->size = txdr->count * 16U; txdr->size = (txdr->size + 4095U) & 4294963200U; txdr->desc = dma_zalloc_coherent(& pdev->dev, (size_t )txdr->size, & txdr->dma, 208U); } if ((unsigned long )txdr->desc == (unsigned long )((void *)0)) { ret_val = 2; goto err_nomem; } else { } { tmp___0 = 0U; txdr->next_to_clean = tmp___0; txdr->next_to_use = tmp___0; writel((unsigned int )txdr->dma, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14336UL : 1056UL))); writel((unsigned int )(txdr->dma >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14340UL : 1060UL))); writel(txdr->count * 16U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14344UL : 1064UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14352UL : 1072UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); writel(258298U, (void volatile *)hw->hw_addr + 1024U); i = 0; } goto ldv_51469; ldv_51468: { tx_desc = (struct e1000_tx_desc *)txdr->desc + (unsigned long )i; size = 1024U; skb = alloc_skb(size, 208U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { ret_val = 3; goto err_nomem; } else { } { skb_put(skb, size); (txdr->buffer_info + (unsigned long )i)->skb = skb; (txdr->buffer_info + (unsigned long )i)->length = (u16 )skb->len; (txdr->buffer_info + (unsigned long )i)->dma = dma_map_single_attrs(& pdev->dev, (void *)skb->data, (size_t )skb->len, 1, (struct dma_attrs *)0); tmp___1 = dma_mapping_error(& pdev->dev, (txdr->buffer_info + (unsigned long )i)->dma); } if (tmp___1 != 0) { ret_val = 4; goto err_nomem; } else { } tx_desc->buffer_addr = (txdr->buffer_info + (unsigned long )i)->dma; tx_desc->lower.data = skb->len; tx_desc->lower.data = tx_desc->lower.data | 318767104U; tx_desc->upper.data = 0U; i = i + 1; ldv_51469: ; if ((unsigned int )i < txdr->count) { goto ldv_51468; } else { } if (rxdr->count == 0U) { rxdr->count = 256U; } else { } { tmp___2 = kcalloc((size_t )rxdr->count, 48UL, 208U); rxdr->buffer_info = (struct e1000_buffer *)tmp___2; } if ((unsigned long )rxdr->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { ret_val = 5; goto err_nomem; } else { } { rxdr->size = rxdr->count * 16U; rxdr->desc = dma_zalloc_coherent(& pdev->dev, (size_t )rxdr->size, & rxdr->dma, 208U); } if ((unsigned long )rxdr->desc == (unsigned long )((void *)0)) { ret_val = 6; goto err_nomem; } else { } { tmp___3 = 0U; rxdr->next_to_clean = tmp___3; rxdr->next_to_use = tmp___3; rctl = readl((void const volatile *)hw->hw_addr + 256U); writel(rctl & 4294967293U, (void volatile *)hw->hw_addr + 256U); writel((unsigned int )rxdr->dma, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10240UL : 272UL))); writel((unsigned int )(rxdr->dma >> 32), (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10244UL : 276UL))); writel(rxdr->size, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10248UL : 280UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10256UL : 288UL))); writel(0U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); rctl = (hw->mc_filter_type << 12) | 32770U; writel(rctl, (void volatile *)hw->hw_addr + 256U); i = 0; } goto ldv_51474; ldv_51473: { rx_desc = (struct e1000_rx_desc *)rxdr->desc + (unsigned long )i; skb___0 = alloc_skb(2048U, 208U); } if ((unsigned long )skb___0 == (unsigned long )((struct sk_buff *)0)) { ret_val = 7; goto err_nomem; } else { } { skb_reserve(skb___0, 0); (rxdr->buffer_info + (unsigned long )i)->skb = skb___0; (rxdr->buffer_info + (unsigned long )i)->length = 2048U; (rxdr->buffer_info + (unsigned long )i)->dma = dma_map_single_attrs(& pdev->dev, (void *)skb___0->data, 2048UL, 2, (struct dma_attrs *)0); tmp___4 = dma_mapping_error(& pdev->dev, (rxdr->buffer_info + (unsigned long )i)->dma); } if (tmp___4 != 0) { ret_val = 8; goto err_nomem; } else { } { rx_desc->buffer_addr = (rxdr->buffer_info + (unsigned long )i)->dma; memset((void *)skb___0->data, 0, (size_t )skb___0->len); i = i + 1; } ldv_51474: ; if ((unsigned int )i < rxdr->count) { goto ldv_51473; } else { } return (0); err_nomem: { e1000_free_desc_rings(adapter); } return (ret_val); } } static void e1000_phy_disable_receiver(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { { hw = & adapter->hw; e1000_write_phy_reg(hw, 29U, 31); e1000_write_phy_reg(hw, 30U, 36860); e1000_write_phy_reg(hw, 29U, 26); e1000_write_phy_reg(hw, 30U, 36848); } return; } } static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 phy_reg ; { { hw = & adapter->hw; e1000_read_phy_reg(hw, 20U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 112U); e1000_write_phy_reg(hw, 20U, (int )phy_reg); e1000_read_phy_reg(hw, 16U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 2048U); e1000_write_phy_reg(hw, 16U, (int )phy_reg); } return; } } static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl_reg ; u16 phy_reg ; { { hw = & adapter->hw; ctrl_reg = readl((void const volatile *)hw->hw_addr); ctrl_reg = ctrl_reg | 6785U; writel(ctrl_reg, (void volatile *)hw->hw_addr); e1000_read_phy_reg(hw, 16U, & phy_reg); phy_reg = (unsigned int )phy_reg & 65439U; e1000_write_phy_reg(hw, 16U, (int )phy_reg); e1000_phy_reset(hw); e1000_phy_reset_clk_and_crs(adapter); e1000_write_phy_reg(hw, 0U, 33024); __const_udelay(2147500UL); e1000_phy_reset_clk_and_crs(adapter); e1000_phy_disable_receiver(adapter); e1000_read_phy_reg(hw, 0U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 16384U); e1000_write_phy_reg(hw, 0U, (int )phy_reg); e1000_phy_reset_clk_and_crs(adapter); e1000_read_phy_reg(hw, 0U, & phy_reg); } if ((unsigned int )phy_reg != 16640U) { return (9); } else { } { e1000_read_phy_reg(hw, 20U, & phy_reg); } if ((unsigned int )phy_reg != 112U) { return (10); } else { } { e1000_read_phy_reg(hw, 29U, & phy_reg); } if ((unsigned int )phy_reg != 26U) { return (11); } else { } return (0); } } static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl_reg ; u32 stat_reg ; { hw = & adapter->hw; ctrl_reg = 0U; stat_reg = 0U; hw->autoneg = 0U; if ((unsigned int )hw->phy_type == 0U) { { e1000_write_phy_reg(hw, 16U, 2056); e1000_write_phy_reg(hw, 0U, 37184); e1000_write_phy_reg(hw, 0U, 33088); } } else { } { ctrl_reg = readl((void const volatile *)hw->hw_addr); e1000_write_phy_reg(hw, 0U, 16704); ctrl_reg = readl((void const volatile *)hw->hw_addr); ctrl_reg = ctrl_reg & 4294966527U; ctrl_reg = ctrl_reg | 6657U; } if ((unsigned int )hw->media_type == 0U && (unsigned int )hw->phy_type == 0U) { ctrl_reg = ctrl_reg | 128U; } else { { stat_reg = readl((void const volatile *)hw->hw_addr + 8U); } if ((stat_reg & 1U) == 0U) { ctrl_reg = ctrl_reg | 192U; } else { } } { writel(ctrl_reg, (void volatile *)hw->hw_addr); } if ((unsigned int )hw->phy_type == 0U) { { e1000_phy_disable_receiver(adapter); } } else { } { __const_udelay(2147500UL); } return (0); } } static int e1000_set_phy_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u16 phy_reg ; u16 count ; int tmp ; u16 tmp___0 ; int tmp___1 ; { hw = & adapter->hw; phy_reg = 0U; count = 0U; { if ((unsigned int )hw->mac_type == 3U) { goto case_3; } else { } if ((unsigned int )hw->mac_type == 4U) { goto case_4; } else { } if ((unsigned int )hw->mac_type == 5U) { goto case_5; } else { } if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } if ((unsigned int )hw->mac_type == 11U) { goto case_11; } else { } if ((unsigned int )hw->mac_type == 12U) { goto case_12; } else { } if ((unsigned int )hw->mac_type == 13U) { goto case_13; } else { } if ((unsigned int )hw->mac_type == 14U) { goto case_14; } else { } goto switch_default; case_3: /* CIL Label */ ; if ((unsigned int )hw->media_type == 0U) { goto ldv_51505; ldv_51504: ; ldv_51505: { tmp = e1000_nonintegrated_phy_loopback(adapter); } if (tmp != 0) { tmp___0 = count; count = (u16 )((int )count + 1); if ((unsigned int )tmp___0 <= 9U) { goto ldv_51504; } else { goto ldv_51506; } } else { } ldv_51506: ; if ((unsigned int )count <= 10U) { return (0); } else { } } else { } goto ldv_51507; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ { tmp___1 = e1000_integrated_phy_loopback(adapter); } return (tmp___1); switch_default: /* CIL Label */ { e1000_read_phy_reg(hw, 0U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 16384U); e1000_write_phy_reg(hw, 0U, (int )phy_reg); } return (0); switch_break: /* CIL Label */ ; } ldv_51507: ; return (8); } } static int e1000_setup_loopback_test(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; int tmp ; int tmp___0 ; { hw = & adapter->hw; if ((unsigned int )hw->media_type - 1U <= 1U) { { if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } goto switch_default; case_6: /* CIL Label */ ; case_8: /* CIL Label */ ; case_7: /* CIL Label */ ; case_10: /* CIL Label */ { tmp = e1000_set_phy_loopback(adapter); } return (tmp); switch_default: /* CIL Label */ { rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl | 192U; writel(rctl, (void volatile *)hw->hw_addr + 256U); } return (0); switch_break: /* CIL Label */ ; } } else if ((unsigned int )hw->media_type == 0U) { { tmp___0 = e1000_set_phy_loopback(adapter); } return (tmp___0); } else { } return (7); } } static void e1000_loopback_cleanup(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; u16 phy_reg ; { { hw = & adapter->hw; rctl = readl((void const volatile *)hw->hw_addr + 256U); rctl = rctl & 4294967103U; writel(rctl, (void volatile *)hw->hw_addr + 256U); } { if ((unsigned int )hw->mac_type == 6U) { goto case_6; } else { } if ((unsigned int )hw->mac_type == 8U) { goto case_8; } else { } if ((unsigned int )hw->mac_type == 7U) { goto case_7; } else { } if ((unsigned int )hw->mac_type == 10U) { goto case_10; } else { } goto switch_default; case_6: /* CIL Label */ ; case_8: /* CIL Label */ ; case_7: /* CIL Label */ ; case_10: /* CIL Label */ ; switch_default: /* CIL Label */ { hw->autoneg = 1U; e1000_read_phy_reg(hw, 0U, & phy_reg); } if (((int )phy_reg & 16384) != 0) { { phy_reg = (unsigned int )phy_reg & 49151U; e1000_write_phy_reg(hw, 0U, (int )phy_reg); e1000_phy_reset(hw); } } else { } goto ldv_51540; switch_break: /* CIL Label */ ; } ldv_51540: ; return; } } static void e1000_create_lbtest_frame(struct sk_buff *skb , unsigned int frame_size ) { { { memset((void *)skb->data, 255, (size_t )frame_size); frame_size = frame_size & 4294967294U; memset((void *)skb->data + (unsigned long )(frame_size / 2U), 170, (size_t )(frame_size / 2U - 1U)); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 10U), 190, 1UL); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 12U), 175, 1UL); } return; } } static int e1000_check_lbtest_frame(struct sk_buff *skb , unsigned int frame_size ) { { frame_size = frame_size & 4294967294U; if ((unsigned int )*(skb->data + 3UL) == 255U) { if ((unsigned int )*(skb->data + ((unsigned long )(frame_size / 2U) + 10UL)) == 190U && (unsigned int )*(skb->data + ((unsigned long )(frame_size / 2U) + 12UL)) == 175U) { return (0); } else { } } else { } return (13); } } static int e1000_run_loopback_test(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_tx_ring *txdr ; struct e1000_rx_ring *rxdr ; struct pci_dev *pdev ; int i ; int j ; int k ; int l ; int lc ; int good_cnt ; int ret_val ; unsigned long time ; long tmp ; long tmp___0 ; { { hw = & adapter->hw; txdr = & adapter->test_tx_ring; rxdr = & adapter->test_rx_ring; pdev = adapter->pdev; ret_val = 0; writel(rxdr->count - 1U, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 10264UL : 296UL))); } if (rxdr->count <= txdr->count) { lc = (int )((txdr->count / 64U) * 2U + 1U); } else { lc = (int )((rxdr->count / 64U) * 2U + 1U); } l = 0; k = l; j = 0; goto ldv_51571; ldv_51570: i = 0; goto ldv_51565; ldv_51564: { e1000_create_lbtest_frame((txdr->buffer_info + (unsigned long )i)->skb, 1024U); dma_sync_single_for_device(& pdev->dev, (txdr->buffer_info + (unsigned long )k)->dma, (size_t )(txdr->buffer_info + (unsigned long )k)->length, 1); k = k + 1; tmp = ldv__builtin_expect((unsigned int )k == txdr->count, 0L); } if (tmp != 0L) { k = 0; } else { } i = i + 1; ldv_51565: ; if (i <= 63) { goto ldv_51564; } else { } { writel((unsigned int )k, (void volatile *)(hw->hw_addr + ((unsigned int )hw->mac_type > 2U ? 14360UL : 1080UL))); readl((void const volatile *)hw->hw_addr + 8U); msleep(200U); time = jiffies; good_cnt = 0; } ldv_51567: { dma_sync_single_for_cpu(& pdev->dev, (rxdr->buffer_info + (unsigned long )l)->dma, (size_t )(rxdr->buffer_info + (unsigned long )l)->length, 2); ret_val = e1000_check_lbtest_frame((rxdr->buffer_info + (unsigned long )l)->skb, 1024U); } if (ret_val == 0) { good_cnt = good_cnt + 1; } else { } { l = l + 1; tmp___0 = ldv__builtin_expect((unsigned int )l == rxdr->count, 0L); } if (tmp___0 != 0L) { l = 0; } else { } if (good_cnt <= 63 && (unsigned long )jiffies < time + 20UL) { goto ldv_51567; } else { } if (good_cnt != 64) { ret_val = 13; goto ldv_51569; } else { } if ((unsigned long )jiffies >= time + 2UL) { ret_val = 14; goto ldv_51569; } else { } j = j + 1; ldv_51571: ; if (j <= lc) { goto ldv_51570; } else { } ldv_51569: ; return (ret_val); } } static int e1000_loopback_test(struct e1000_adapter *adapter , u64 *data ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = e1000_setup_desc_rings(adapter); *data = (u64 )tmp; } if (*data != 0ULL) { goto out; } else { } { tmp___0 = e1000_setup_loopback_test(adapter); *data = (u64 )tmp___0; } if (*data != 0ULL) { goto err_loopback; } else { } { tmp___1 = e1000_run_loopback_test(adapter); *data = (u64 )tmp___1; e1000_loopback_cleanup(adapter); } err_loopback: { e1000_free_desc_rings(adapter); } out: ; return ((int )*data); } } static int e1000_link_test(struct e1000_adapter *adapter , u64 *data ) { struct e1000_hw *hw ; int i ; int tmp ; unsigned int tmp___0 ; { hw = & adapter->hw; *data = 0ULL; if ((unsigned int )hw->media_type == 2U) { i = 0; hw->serdes_has_link = 0; ldv_51584: { e1000_check_for_link(hw); } if ((int )hw->serdes_has_link) { return ((int )*data); } else { } { msleep(20U); tmp = i; i = i + 1; } if (tmp <= 3749) { goto ldv_51584; } else { } *data = 1ULL; } else { { e1000_check_for_link(hw); } if ((unsigned int )hw->autoneg != 0U) { { msleep(4000U); } } else { } { tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp___0 & 2U) == 0U) { *data = 1ULL; } else { } } return ((int )*data); } } static int e1000_get_sset_count(struct net_device *netdev , int sset ) { { { if (sset == 0) { goto case_0; } else { } if (sset == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; return (5); case_1: /* CIL Label */ ; return (46); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void e1000_diag_test(struct net_device *netdev , struct ethtool_test *eth_test , u64 *data ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; bool if_running ; bool tmp___0 ; u16 autoneg_advertised ; u8 forced_speed_duplex ; u8 autoneg ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = netif_running((struct net_device const *)netdev); if_running = tmp___0; set_bit(0L, (unsigned long volatile *)(& adapter->flags)); } if (eth_test->flags == 1U) { autoneg_advertised = hw->autoneg_advertised; forced_speed_duplex = hw->forced_speed_duplex; autoneg = hw->autoneg; if ((adapter->msg_enable & 8192) != 0) { { netdev_info((struct net_device const *)adapter->netdev, "offline testing starting\n"); } } else { } { tmp___1 = e1000_link_test(adapter, data + 4UL); } if (tmp___1 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } if ((int )if_running) { { dev_close(netdev); } } else { { e1000_reset(adapter); } } { tmp___2 = e1000_reg_test(adapter, data); } if (tmp___2 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } { e1000_reset(adapter); tmp___3 = e1000_eeprom_test(adapter, data + 1UL); } if (tmp___3 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } { e1000_reset(adapter); tmp___4 = e1000_intr_test(adapter, data + 2UL); } if (tmp___4 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } { e1000_reset(adapter); e1000_power_up_phy(adapter); tmp___5 = e1000_loopback_test(adapter, data + 3UL); } if (tmp___5 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } { hw->autoneg_advertised = autoneg_advertised; hw->forced_speed_duplex = forced_speed_duplex; hw->autoneg = autoneg; e1000_reset(adapter); clear_bit(0L, (unsigned long volatile *)(& adapter->flags)); } if ((int )if_running) { { dev_open(netdev); } } else { } } else { if ((adapter->msg_enable & 8192) != 0) { { netdev_info((struct net_device const *)adapter->netdev, "online testing starting\n"); } } else { } { tmp___6 = e1000_link_test(adapter, data + 4UL); } if (tmp___6 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } { *data = 0ULL; *(data + 1UL) = 0ULL; *(data + 2UL) = 0ULL; *(data + 3UL) = 0ULL; clear_bit(0L, (unsigned long volatile *)(& adapter->flags)); } } { msleep_interruptible(4000U); } return; } } static int e1000_wol_exclusion(struct e1000_adapter *adapter , struct ethtool_wolinfo *wol ) { struct e1000_hw *hw ; int retval ; unsigned int tmp ; unsigned int tmp___0 ; { hw = & adapter->hw; retval = 1; { if ((int )hw->device_id == 4096) { goto case_4096; } else { } if ((int )hw->device_id == 4097) { goto case_4097; } else { } if ((int )hw->device_id == 4100) { goto case_4100; } else { } if ((int )hw->device_id == 4105) { goto case_4105; } else { } if ((int )hw->device_id == 4125) { goto case_4125; } else { } if ((int )hw->device_id == 4113) { goto case_4113; } else { } if ((int )hw->device_id == 4111) { goto case_4111; } else { } if ((int )hw->device_id == 4249) { goto case_4249; } else { } if ((int )hw->device_id == 4234) { goto case_4234; } else { } if ((int )hw->device_id == 4114) { goto case_4114; } else { } if ((int )hw->device_id == 4218) { goto case_4218; } else { } if ((int )hw->device_id == 4277) { goto case_4277; } else { } goto switch_default; case_4096: /* CIL Label */ ; case_4097: /* CIL Label */ ; case_4100: /* CIL Label */ ; case_4105: /* CIL Label */ ; case_4125: /* CIL Label */ ; case_4113: /* CIL Label */ ; case_4111: /* CIL Label */ ; case_4249: /* CIL Label */ ; case_4234: /* CIL Label */ wol->supported = 0U; goto ldv_51623; case_4114: /* CIL Label */ ; case_4218: /* CIL Label */ { tmp = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp & 4U) != 0U) { wol->supported = 0U; goto ldv_51623; } else { } retval = 0; goto ldv_51623; case_4277: /* CIL Label */ ; if (! adapter->quad_port_a) { wol->supported = 0U; goto ldv_51623; } else { } retval = 0; goto ldv_51623; switch_default: /* CIL Label */ { tmp___0 = readl((void const volatile *)hw->hw_addr + 8U); } if ((tmp___0 & 4U) != 0U && adapter->eeprom_wol == 0U) { wol->supported = 0U; goto ldv_51623; } else { } retval = 0; switch_break: /* CIL Label */ ; } ldv_51623: ; return (retval); } } static void e1000_get_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; wol->supported = 46U; wol->wolopts = 0U; tmp___0 = e1000_wol_exclusion(adapter, wol); } if (tmp___0 != 0) { return; } else { { tmp___1 = device_can_wakeup(& (adapter->pdev)->dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return; } else { } } { if ((int )hw->device_id == 4277) { goto case_4277; } else { } goto switch_default; case_4277: /* CIL Label */ wol->supported = wol->supported & 4294967293U; if ((adapter->wol & 4U) != 0U) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "Interface does not support directed (unicast) frame wake-up packets\n"); } } else { } } else { } goto ldv_51635; switch_default: /* CIL Label */ ; goto ldv_51635; switch_break: /* CIL Label */ ; } ldv_51635: ; if ((adapter->wol & 4U) != 0U) { wol->wolopts = wol->wolopts | 2U; } else { } if ((adapter->wol & 8U) != 0U) { wol->wolopts = wol->wolopts | 4U; } else { } if ((adapter->wol & 16U) != 0U) { wol->wolopts = wol->wolopts | 8U; } else { } if ((adapter->wol & 2U) != 0U) { wol->wolopts = wol->wolopts | 32U; } else { } return; } } static int e1000_set_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; } if ((wol->wolopts & 81U) != 0U) { return (-95); } else { } { tmp___0 = e1000_wol_exclusion(adapter, wol); } if (tmp___0 != 0) { return (wol->wolopts != 0U ? -95 : 0); } else { { tmp___1 = device_can_wakeup(& (adapter->pdev)->dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (wol->wolopts != 0U ? -95 : 0); } else { } } { if ((int )hw->device_id == 4277) { goto case_4277; } else { } goto switch_default; case_4277: /* CIL Label */ ; if ((wol->wolopts & 2U) != 0U) { if (adapter->msg_enable & 1) { { netdev_err((struct net_device const *)adapter->netdev, "Interface does not support directed (unicast) frame wake-up packets\n"); } } else { } return (-95); } else { } goto ldv_51644; switch_default: /* CIL Label */ ; goto ldv_51644; switch_break: /* CIL Label */ ; } ldv_51644: adapter->wol = 0U; if ((wol->wolopts & 2U) != 0U) { adapter->wol = adapter->wol | 4U; } else { } if ((wol->wolopts & 4U) != 0U) { adapter->wol = adapter->wol | 8U; } else { } if ((wol->wolopts & 8U) != 0U) { adapter->wol = adapter->wol | 16U; } else { } if ((wol->wolopts & 32U) != 0U) { adapter->wol = adapter->wol | 2U; } else { } { device_set_wakeup_enable(& (adapter->pdev)->dev, adapter->wol != 0U); } return (0); } } static int e1000_set_phys_id(struct net_device *netdev , enum ethtool_phys_id_state state ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } if ((unsigned int )state == 3U) { goto case_3; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ { e1000_setup_led(hw); } return (2); case_2: /* CIL Label */ { e1000_led_on(hw); } goto ldv_51654; case_3: /* CIL Label */ { e1000_led_off(hw); } goto ldv_51654; case_0: /* CIL Label */ { e1000_cleanup_led(hw); } switch_break: /* CIL Label */ ; } ldv_51654: ; return (0); } } static int e1000_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct e1000_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; } if ((unsigned int )adapter->hw.mac_type <= 5U) { return (-95); } else { } if (adapter->itr_setting <= 4U) { ec->rx_coalesce_usecs = adapter->itr_setting; } else { ec->rx_coalesce_usecs = 1000000U / adapter->itr_setting; } return (0); } } static int e1000_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; } if ((unsigned int )hw->mac_type <= 5U) { return (-95); } else { } if ((ec->rx_coalesce_usecs > 10000U || ec->rx_coalesce_usecs - 5U <= 4U) || ec->rx_coalesce_usecs == 2U) { return (-22); } else { } if (ec->rx_coalesce_usecs == 4U) { tmp___0 = 4U; adapter->itr_setting = tmp___0; adapter->itr = tmp___0; } else if (ec->rx_coalesce_usecs <= 3U) { adapter->itr = 20000U; adapter->itr_setting = ec->rx_coalesce_usecs; } else { adapter->itr = 1000000U / ec->rx_coalesce_usecs; adapter->itr_setting = adapter->itr & 4294967292U; } if (adapter->itr_setting != 0U) { { writel(1000000000U / (adapter->itr * 256U), (void volatile *)hw->hw_addr + 196U); } } else { { writel(0U, (void volatile *)hw->hw_addr + 196U); } } return (0); } } static int e1000_nway_reset(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { e1000_reinit_locked(adapter); } } else { } return (0); } } static void e1000_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct e1000_adapter *adapter ; void *tmp ; int i ; char *p ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; p = (char *)0; e1000_update_stats(adapter); i = 0; } goto ldv_51686; ldv_51685: ; { if (e1000_gstrings_stats[i].type == 0) { goto case_0; } else { } if (e1000_gstrings_stats[i].type == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ p = (char *)netdev + (unsigned long )e1000_gstrings_stats[i].stat_offset; goto ldv_51683; case_1: /* CIL Label */ p = (char *)adapter + (unsigned long )e1000_gstrings_stats[i].stat_offset; goto ldv_51683; switch_break: /* CIL Label */ ; } ldv_51683: *(data + (unsigned long )i) = e1000_gstrings_stats[i].sizeof_stat == 8 ? *((u64 *)p) : (u64 )*((u32 *)p); i = i + 1; ldv_51686: ; if ((unsigned int )i <= 45U) { goto ldv_51685; } else { } return; } } static void e1000_get_strings(struct net_device *netdev , u32 stringset , u8 *data ) { u8 *p ; int i ; { p = data; { if (stringset == 0U) { goto case_0; } else { } if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { memcpy((void *)data, (void const *)(& e1000_gstrings_test), 160UL); } goto ldv_51696; case_1: /* CIL Label */ i = 0; goto ldv_51701; ldv_51700: { memcpy((void *)p, (void const *)(& e1000_gstrings_stats[i].stat_string), 32UL); p = p + 32UL; i = i + 1; } ldv_51701: ; if ((unsigned int )i <= 45U) { goto ldv_51700; } else { } goto ldv_51696; switch_break: /* CIL Label */ ; } ldv_51696: ; return; } } static struct ethtool_ops const e1000_ethtool_ops = {& e1000_get_settings, & e1000_set_settings, & e1000_get_drvinfo, & e1000_get_regs_len, & e1000_get_regs, & e1000_get_wol, & e1000_set_wol, & e1000_get_msglevel, & e1000_set_msglevel, & e1000_nway_reset, & e1000_get_link, & e1000_get_eeprom_len, & e1000_get_eeprom, & e1000_set_eeprom, & e1000_get_coalesce, & e1000_set_coalesce, & e1000_get_ringparam, & e1000_set_ringparam, & e1000_get_pauseparam, & e1000_set_pauseparam, & e1000_diag_test, & e1000_get_strings, & e1000_set_phys_id, & e1000_get_ethtool_stats, 0, 0, 0, 0, & e1000_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ethtool_op_get_ts_info, 0, 0, 0, 0}; void e1000_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & e1000_ethtool_ops; return; } } void ldv_dispatch_irq_deregister_6_1(int arg0 ) ; void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; int ldv_statevar_0 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & e1000_test_intr; int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & e1000_get_coalesce; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & e1000_get_drvinfo; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & e1000_get_eeprom; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) = & e1000_get_eeprom_len; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & e1000_get_ethtool_stats; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & e1000_get_link; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) = & e1000_get_msglevel; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & e1000_get_pauseparam; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & e1000_get_regs; int (*ldv_1_callback_get_regs_len)(struct net_device * ) = & e1000_get_regs_len; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & e1000_get_ringparam; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & e1000_get_settings; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) = & e1000_get_sset_count; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & e1000_get_strings; int (*ldv_1_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) = & ethtool_op_get_ts_info; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) = & e1000_get_wol; int (*ldv_1_callback_nway_reset)(struct net_device * ) = & e1000_nway_reset; void (*ldv_1_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) = & e1000_diag_test; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & e1000_set_coalesce; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & e1000_set_eeprom; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) = & e1000_set_msglevel; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & e1000_set_pauseparam; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) = & e1000_set_phys_id; int (*ldv_1_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & e1000_set_ringparam; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & e1000_set_settings; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) = & e1000_set_wol; void ldv_dispatch_irq_deregister_6_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { e1000_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { e1000_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { e1000_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { e1000_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { e1000_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { e1000_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { e1000_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_28(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) { { { ethtool_op_get_ts_info(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_29(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { e1000_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { e1000_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_55(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { e1000_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_56(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { e1000_diag_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_59(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { e1000_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_60(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { e1000_set_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_63(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { e1000_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_66(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { e1000_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_67(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { e1000_set_phys_id(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_68(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { e1000_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_69(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { e1000_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { e1000_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_70(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { e1000_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_8(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { e1000_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_6_line_line ; { { ldv_6_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_6_1(ldv_6_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = e1000_test_intr(arg1, arg2); } return (tmp); } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_52299; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_52299; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_52299; case_6: /* CIL Label */ ; goto ldv_52299; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52299: ; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_9_callback_handler)(int , void * ) ; void *ldv_9_data_data ; int ldv_9_line_line ; enum irqreturn (*ldv_9_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_line_line = (int )arg1; ldv_9_callback_handler = arg2; ldv_9_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_9_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_9_2(ldv_9_line_line, ldv_9_callback_handler, ldv_9_thread_thread, ldv_9_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_zalloc(size); } return (tmp); } } void *ldv_malloc(size_t size ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } __inline static int ldv_request_irq_106(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; static int TxDescriptors[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxDescriptors ; static int RxDescriptors[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxDescriptors ; static int Speed[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_Speed ; static int Duplex[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_Duplex ; static int AutoNeg[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_AutoNeg ; static int FlowControl[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_FlowControl ; static int XsumRX[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_XsumRX ; static int TxIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxIntDelay ; static int TxAbsIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxAbsIntDelay ; static int RxIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxIntDelay ; static int RxAbsIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxAbsIntDelay ; static int InterruptThrottleRate[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_InterruptThrottleRate ; static int SmartPowerDownEnable[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_SmartPowerDownEnable ; static int e1000_validate_option(unsigned int *value , struct e1000_option const *opt , struct e1000_adapter *adapter ) { int i ; struct e1000_opt_list const *ent ; { if (*value == 4294967295U) { *value = (unsigned int )opt->def; return (0); } else { } { if ((unsigned int )opt->type == 0U) { goto case_0; } else { } if ((unsigned int )opt->type == 1U) { goto case_1___0; } else { } if ((unsigned int )opt->type == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; { if (*value == 1U) { goto case_1; } else { } if (*value == 0U) { goto case_0___0; } else { } goto switch_break___0; case_1: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s Enabled\n", opt->name); } return (0); case_0___0: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s Disabled\n", opt->name); } return (0); switch_break___0: /* CIL Label */ ; } goto ldv_51407; case_1___0: /* CIL Label */ ; if (*value >= (unsigned int )opt->arg.r.min && *value <= (unsigned int )opt->arg.r.max) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to %i\n", opt->name, *value); } return (0); } else { } goto ldv_51407; case_2: /* CIL Label */ i = 0; goto ldv_51413; ldv_51412: ent = opt->arg.l.p + (unsigned long )i; if (*value == (unsigned int )ent->i) { if ((int )((signed char )*(ent->str)) != 0) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s\n", ent->str); } } else { } return (0); } else { } i = i + 1; ldv_51413: ; if (i < (int )opt->arg.l.nr) { goto ldv_51412; } else { } goto ldv_51407; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/intel/e1000/e1000_param.c"), "i" (249), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51407: { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Invalid %s value specified (%i) %s\n", opt->name, *value, opt->err); *value = (unsigned int )opt->def; } return (-1); } } static void e1000_check_fiber_options(struct e1000_adapter *adapter ) ; static void e1000_check_copper_options(struct e1000_adapter *adapter ) ; void e1000_check_options(struct e1000_adapter *adapter ) { struct e1000_option opt ; int bd ; struct e1000_tx_ring *tx_ring ; int i ; e1000_mac_type mac_type ; struct e1000_option __constr_expr_0 ; struct e1000_rx_ring *rx_ring ; int i___0 ; e1000_mac_type mac_type___0 ; struct e1000_option __constr_expr_1 ; struct e1000_option __constr_expr_2 ; unsigned int rx_csum ; struct e1000_opt_list fc_list[5U] ; struct e1000_option __constr_expr_3 ; unsigned int fc ; u32 tmp ; u32 tmp___0 ; struct e1000_option __constr_expr_4 ; struct e1000_option __constr_expr_5 ; struct e1000_option __constr_expr_6 ; struct e1000_option __constr_expr_7 ; struct e1000_option __constr_expr_8 ; struct e1000_option __constr_expr_9 ; unsigned int spd ; { bd = (int )adapter->bd_number; if (bd > 31) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "Warning: no configuration for board #%i using defaults for all values\n", bd); } } else { } tx_ring = adapter->tx_ring; mac_type = adapter->hw.mac_type; __constr_expr_0.type = 1; __constr_expr_0.name = "Transmit Descriptors"; __constr_expr_0.err = "using default of 256"; __constr_expr_0.def = 256; __constr_expr_0.arg.r.min = 48; __constr_expr_0.arg.r.max = (unsigned int )mac_type <= 3U ? 256 : 4096; opt = __constr_expr_0; if (num_TxDescriptors > (unsigned int )bd) { { tx_ring->count = (unsigned int )TxDescriptors[bd]; e1000_validate_option(& tx_ring->count, (struct e1000_option const *)(& opt), adapter); tx_ring->count = (tx_ring->count + 7U) & 4294967288U; } } else { tx_ring->count = (unsigned int )opt.def; } i = 0; goto ldv_51430; ldv_51429: (tx_ring + (unsigned long )i)->count = tx_ring->count; i = i + 1; ldv_51430: ; if (i < adapter->num_tx_queues) { goto ldv_51429; } else { } rx_ring = adapter->rx_ring; mac_type___0 = adapter->hw.mac_type; __constr_expr_1.type = 1; __constr_expr_1.name = "Receive Descriptors"; __constr_expr_1.err = "using default of 256"; __constr_expr_1.def = 256; __constr_expr_1.arg.r.min = 48; __constr_expr_1.arg.r.max = (unsigned int )mac_type___0 <= 3U ? 256 : 4096; opt = __constr_expr_1; if (num_RxDescriptors > (unsigned int )bd) { { rx_ring->count = (unsigned int )RxDescriptors[bd]; e1000_validate_option(& rx_ring->count, (struct e1000_option const *)(& opt), adapter); rx_ring->count = (rx_ring->count + 7U) & 4294967288U; } } else { rx_ring->count = (unsigned int )opt.def; } i___0 = 0; goto ldv_51437; ldv_51436: (rx_ring + (unsigned long )i___0)->count = rx_ring->count; i___0 = i___0 + 1; ldv_51437: ; if (i___0 < adapter->num_rx_queues) { goto ldv_51436; } else { } __constr_expr_2.type = 0; __constr_expr_2.name = "Checksum Offload"; __constr_expr_2.err = "defaulting to Enabled"; __constr_expr_2.def = 1; __constr_expr_2.arg.l.nr = 0; __constr_expr_2.arg.l.p = 0; opt = __constr_expr_2; if (num_XsumRX > (unsigned int )bd) { { rx_csum = (unsigned int )XsumRX[bd]; e1000_validate_option(& rx_csum, (struct e1000_option const *)(& opt), adapter); adapter->rx_csum = rx_csum != 0U; } } else { adapter->rx_csum = opt.def != 0; } fc_list[0].i = 0; fc_list[0].str = (char *)"Flow Control Disabled"; fc_list[1].i = 1; fc_list[1].str = (char *)"Flow Control Receive Only"; fc_list[2].i = 2; fc_list[2].str = (char *)"Flow Control Transmit Only"; fc_list[3].i = 3; fc_list[3].str = (char *)"Flow Control Enabled"; fc_list[4].i = 255; fc_list[4].str = (char *)"Flow Control Hardware Default"; __constr_expr_3.type = 2; __constr_expr_3.name = "Flow Control"; __constr_expr_3.err = "reading default settings from EEPROM"; __constr_expr_3.def = 255; __constr_expr_3.arg.l.nr = 5; __constr_expr_3.arg.l.p = (struct e1000_opt_list const *)(& fc_list); opt = __constr_expr_3; if (num_FlowControl > (unsigned int )bd) { { fc = (unsigned int )FlowControl[bd]; e1000_validate_option(& fc, (struct e1000_option const *)(& opt), adapter); tmp = fc; adapter->hw.original_fc = tmp; adapter->hw.fc = (e1000_fc_type )tmp; } } else { tmp___0 = (u32 )opt.def; adapter->hw.original_fc = tmp___0; adapter->hw.fc = (e1000_fc_type )tmp___0; } __constr_expr_4.type = 1; __constr_expr_4.name = "Transmit Interrupt Delay"; __constr_expr_4.err = "using default of 8"; __constr_expr_4.def = 8; __constr_expr_4.arg.r.min = 0; __constr_expr_4.arg.r.max = 65535; opt = __constr_expr_4; if (num_TxIntDelay > (unsigned int )bd) { { adapter->tx_int_delay = (u32 )TxIntDelay[bd]; e1000_validate_option(& adapter->tx_int_delay, (struct e1000_option const *)(& opt), adapter); } } else { adapter->tx_int_delay = (u32 )opt.def; } __constr_expr_5.type = 1; __constr_expr_5.name = "Transmit Absolute Interrupt Delay"; __constr_expr_5.err = "using default of 32"; __constr_expr_5.def = 32; __constr_expr_5.arg.r.min = 0; __constr_expr_5.arg.r.max = 65535; opt = __constr_expr_5; if (num_TxAbsIntDelay > (unsigned int )bd) { { adapter->tx_abs_int_delay = (u32 )TxAbsIntDelay[bd]; e1000_validate_option(& adapter->tx_abs_int_delay, (struct e1000_option const *)(& opt), adapter); } } else { adapter->tx_abs_int_delay = (u32 )opt.def; } __constr_expr_6.type = 1; __constr_expr_6.name = "Receive Interrupt Delay"; __constr_expr_6.err = "using default of 0"; __constr_expr_6.def = 0; __constr_expr_6.arg.r.min = 0; __constr_expr_6.arg.r.max = 65535; opt = __constr_expr_6; if (num_RxIntDelay > (unsigned int )bd) { { adapter->rx_int_delay = (u32 )RxIntDelay[bd]; e1000_validate_option(& adapter->rx_int_delay, (struct e1000_option const *)(& opt), adapter); } } else { adapter->rx_int_delay = (u32 )opt.def; } __constr_expr_7.type = 1; __constr_expr_7.name = "Receive Absolute Interrupt Delay"; __constr_expr_7.err = "using default of 8"; __constr_expr_7.def = 8; __constr_expr_7.arg.r.min = 0; __constr_expr_7.arg.r.max = 65535; opt = __constr_expr_7; if (num_RxAbsIntDelay > (unsigned int )bd) { { adapter->rx_abs_int_delay = (u32 )RxAbsIntDelay[bd]; e1000_validate_option(& adapter->rx_abs_int_delay, (struct e1000_option const *)(& opt), adapter); } } else { adapter->rx_abs_int_delay = (u32 )opt.def; } __constr_expr_8.type = 1; __constr_expr_8.name = "Interrupt Throttling Rate (ints/sec)"; __constr_expr_8.err = "using default of 3"; __constr_expr_8.def = 3; __constr_expr_8.arg.r.min = 100; __constr_expr_8.arg.r.max = 100000; opt = __constr_expr_8; if (num_InterruptThrottleRate > (unsigned int )bd) { adapter->itr = (u32 )InterruptThrottleRate[bd]; { if (adapter->itr == 0U) { goto case_0; } else { } if (adapter->itr == 1U) { goto case_1; } else { } if (adapter->itr == 3U) { goto case_3; } else { } if (adapter->itr == 4U) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s turned off\n", opt.name); } goto ldv_51452; case_1: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to dynamic mode\n", opt.name); adapter->itr_setting = adapter->itr; adapter->itr = 20000U; } goto ldv_51452; case_3: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to dynamic conservative mode\n", opt.name); adapter->itr_setting = adapter->itr; adapter->itr = 20000U; } goto ldv_51452; case_4: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to simplified (2000-8000) ints mode\n", opt.name); adapter->itr_setting = adapter->itr; } goto ldv_51452; switch_default: /* CIL Label */ { e1000_validate_option(& adapter->itr, (struct e1000_option const *)(& opt), adapter); adapter->itr_setting = adapter->itr & 4294967292U; } goto ldv_51452; switch_break: /* CIL Label */ ; } ldv_51452: ; } else { adapter->itr_setting = (u32 )opt.def; adapter->itr = 20000U; } __constr_expr_9.type = 0; __constr_expr_9.name = "PHY Smart Power Down"; __constr_expr_9.err = "defaulting to Disabled"; __constr_expr_9.def = 0; __constr_expr_9.arg.l.nr = 0; __constr_expr_9.arg.l.p = 0; opt = __constr_expr_9; if (num_SmartPowerDownEnable > (unsigned int )bd) { { spd = (unsigned int )SmartPowerDownEnable[bd]; e1000_validate_option(& spd, (struct e1000_option const *)(& opt), adapter); adapter->smart_power_down = spd != 0U; } } else { adapter->smart_power_down = opt.def != 0; } { if ((unsigned int )adapter->hw.media_type == 1U) { goto case_1___0; } else { } if ((unsigned int )adapter->hw.media_type == 2U) { goto case_2; } else { } if ((unsigned int )adapter->hw.media_type == 0U) { goto case_0___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; case_2: /* CIL Label */ { e1000_check_fiber_options(adapter); } goto ldv_51461; case_0___0: /* CIL Label */ { e1000_check_copper_options(adapter); } goto ldv_51461; switch_default___0: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/intel/e1000/e1000_param.c"), "i" (527), "i" (12UL)); __builtin_unreachable(); } switch_break___0: /* CIL Label */ ; } ldv_51461: ; return; } } static void e1000_check_fiber_options(struct e1000_adapter *adapter ) { int bd ; { bd = (int )adapter->bd_number; if (num_Speed > (unsigned int )bd) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Speed not valid for fiber adapters, parameter ignored\n"); } } else { } if (num_Duplex > (unsigned int )bd) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Duplex not valid for fiber adapters, parameter ignored\n"); } } else { } if (num_AutoNeg > (unsigned int )bd && AutoNeg[bd] != 32) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "AutoNeg other than 1000/Full is not valid for fiberadapters, parameter ignored\n"); } } else { } return; } } static void e1000_check_copper_options(struct e1000_adapter *adapter ) { struct e1000_option opt ; unsigned int speed ; unsigned int dplx ; unsigned int an ; int bd ; struct e1000_opt_list speed_list[4U] ; struct e1000_option __constr_expr_0 ; struct e1000_opt_list dplx_list[3U] ; struct e1000_option __constr_expr_1 ; struct e1000_opt_list an_list[31U] ; struct e1000_option __constr_expr_2 ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; u8 tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; s32 tmp___9 ; { bd = (int )adapter->bd_number; speed_list[0].i = 0; speed_list[0].str = (char *)""; speed_list[1].i = 10; speed_list[1].str = (char *)""; speed_list[2].i = 100; speed_list[2].str = (char *)""; speed_list[3].i = 1000; speed_list[3].str = (char *)""; __constr_expr_0.type = 2; __constr_expr_0.name = "Speed"; __constr_expr_0.err = "parameter ignored"; __constr_expr_0.def = 0; __constr_expr_0.arg.l.nr = 4; __constr_expr_0.arg.l.p = (struct e1000_opt_list const *)(& speed_list); opt = __constr_expr_0; if (num_Speed > (unsigned int )bd) { { speed = (unsigned int )Speed[bd]; e1000_validate_option(& speed, (struct e1000_option const *)(& opt), adapter); } } else { speed = (unsigned int )opt.def; } dplx_list[0].i = 0; dplx_list[0].str = (char *)""; dplx_list[1].i = 1; dplx_list[1].str = (char *)""; dplx_list[2].i = 2; dplx_list[2].str = (char *)""; __constr_expr_1.type = 2; __constr_expr_1.name = "Duplex"; __constr_expr_1.err = "parameter ignored"; __constr_expr_1.def = 0; __constr_expr_1.arg.l.nr = 3; __constr_expr_1.arg.l.p = (struct e1000_opt_list const *)(& dplx_list); opt = __constr_expr_1; if (num_Duplex > (unsigned int )bd) { { dplx = (unsigned int )Duplex[bd]; e1000_validate_option(& dplx, (struct e1000_option const *)(& opt), adapter); } } else { dplx = (unsigned int )opt.def; } if (num_AutoNeg > (unsigned int )bd && (speed != 0U || dplx != 0U)) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "AutoNeg specified along with Speed or Duplex, parameter ignored\n"); adapter->hw.autoneg_advertised = 47U; } } else { an_list[0].i = 1; an_list[0].str = (char *)"AutoNeg advertising 10/HD"; an_list[1].i = 2; an_list[1].str = (char *)"AutoNeg advertising 10/FD"; an_list[2].i = 3; an_list[2].str = (char *)"AutoNeg advertising 10/FD, 10/HD"; an_list[3].i = 4; an_list[3].str = (char *)"AutoNeg advertising 100/HD"; an_list[4].i = 5; an_list[4].str = (char *)"AutoNeg advertising 100/HD, 10/HD"; an_list[5].i = 6; an_list[5].str = (char *)"AutoNeg advertising 100/HD, 10/FD"; an_list[6].i = 7; an_list[6].str = (char *)"AutoNeg advertising 100/HD, 10/FD, 10/HD"; an_list[7].i = 8; an_list[7].str = (char *)"AutoNeg advertising 100/FD"; an_list[8].i = 9; an_list[8].str = (char *)"AutoNeg advertising 100/FD, 10/HD"; an_list[9].i = 10; an_list[9].str = (char *)"AutoNeg advertising 100/FD, 10/FD"; an_list[10].i = 11; an_list[10].str = (char *)"AutoNeg advertising 100/FD, 10/FD, 10/HD"; an_list[11].i = 12; an_list[11].str = (char *)"AutoNeg advertising 100/FD, 100/HD"; an_list[12].i = 13; an_list[12].str = (char *)"AutoNeg advertising 100/FD, 100/HD, 10/HD"; an_list[13].i = 14; an_list[13].str = (char *)"AutoNeg advertising 100/FD, 100/HD, 10/FD"; an_list[14].i = 15; an_list[14].str = (char *)"AutoNeg advertising 100/FD, 100/HD, 10/FD, 10/HD"; an_list[15].i = 32; an_list[15].str = (char *)"AutoNeg advertising 1000/FD"; an_list[16].i = 33; an_list[16].str = (char *)"AutoNeg advertising 1000/FD, 10/HD"; an_list[17].i = 34; an_list[17].str = (char *)"AutoNeg advertising 1000/FD, 10/FD"; an_list[18].i = 35; an_list[18].str = (char *)"AutoNeg advertising 1000/FD, 10/FD, 10/HD"; an_list[19].i = 36; an_list[19].str = (char *)"AutoNeg advertising 1000/FD, 100/HD"; an_list[20].i = 37; an_list[20].str = (char *)"AutoNeg advertising 1000/FD, 100/HD, 10/HD"; an_list[21].i = 38; an_list[21].str = (char *)"AutoNeg advertising 1000/FD, 100/HD, 10/FD"; an_list[22].i = 39; an_list[22].str = (char *)"AutoNeg advertising 1000/FD, 100/HD, 10/FD, 10/HD"; an_list[23].i = 40; an_list[23].str = (char *)"AutoNeg advertising 1000/FD, 100/FD"; an_list[24].i = 41; an_list[24].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 10/HD"; an_list[25].i = 42; an_list[25].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 10/FD"; an_list[26].i = 43; an_list[26].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 10/FD, 10/HD"; an_list[27].i = 44; an_list[27].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD"; an_list[28].i = 45; an_list[28].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD, 10/HD"; an_list[29].i = 46; an_list[29].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD, 10/FD"; an_list[30].i = 47; an_list[30].str = (char *)"AutoNeg advertising 1000/FD, 100/FD, 100/HD, 10/FD, 10/HD"; __constr_expr_2.type = 2; __constr_expr_2.name = "AutoNeg"; __constr_expr_2.err = "parameter ignored"; __constr_expr_2.def = 47; __constr_expr_2.arg.l.nr = 31; __constr_expr_2.arg.l.p = (struct e1000_opt_list const *)(& an_list); opt = __constr_expr_2; if (num_AutoNeg > (unsigned int )bd) { { an = (unsigned int )AutoNeg[bd]; e1000_validate_option(& an, (struct e1000_option const *)(& opt), adapter); } } else { an = (unsigned int )opt.def; } adapter->hw.autoneg_advertised = (u16 )an; } { if (speed + dplx == 0U) { goto case_0; } else { } if (speed + dplx == 1U) { goto case_1; } else { } if (speed + dplx == 2U) { goto case_2; } else { } if (speed + dplx == 10U) { goto case_10; } else { } if (speed + dplx == 11U) { goto case_11; } else { } if (speed + dplx == 12U) { goto case_12; } else { } if (speed + dplx == 100U) { goto case_100; } else { } if (speed + dplx == 101U) { goto case_101; } else { } if (speed + dplx == 102U) { goto case_102; } else { } if (speed + dplx == 1000U) { goto case_1000; } else { } if (speed + dplx == 1001U) { goto case_1001; } else { } if (speed + dplx == 1002U) { goto case_1002; } else { } goto switch_default; case_0: /* CIL Label */ tmp = 1U; adapter->fc_autoneg = tmp; adapter->hw.autoneg = tmp; if (num_Speed > (unsigned int )bd && (speed != 0U || dplx != 0U)) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Speed and duplex autonegotiation enabled\n"); } } else { } goto ldv_51489; case_1: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Half Duplex specified without Speed\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at Half Duplex only\n"); tmp___0 = 1U; adapter->fc_autoneg = tmp___0; adapter->hw.autoneg = tmp___0; adapter->hw.autoneg_advertised = 5U; } goto ldv_51489; case_2: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Full Duplex specified without Speed\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at Full Duplex only\n"); tmp___1 = 1U; adapter->fc_autoneg = tmp___1; adapter->hw.autoneg = tmp___1; adapter->hw.autoneg_advertised = 42U; } goto ldv_51489; case_10: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "10 Mbps Speed specified without Duplex\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at 10 Mbps only\n"); tmp___2 = 1U; adapter->fc_autoneg = tmp___2; adapter->hw.autoneg = tmp___2; adapter->hw.autoneg_advertised = 3U; } goto ldv_51489; case_11: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 10 Mbps Half Duplex\n"); tmp___3 = 0U; adapter->fc_autoneg = tmp___3; adapter->hw.autoneg = tmp___3; adapter->hw.forced_speed_duplex = 0U; adapter->hw.autoneg_advertised = 0U; } goto ldv_51489; case_12: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 10 Mbps Full Duplex\n"); tmp___4 = 0U; adapter->fc_autoneg = tmp___4; adapter->hw.autoneg = tmp___4; adapter->hw.forced_speed_duplex = 1U; adapter->hw.autoneg_advertised = 0U; } goto ldv_51489; case_100: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "100 Mbps Speed specified without Duplex\n"); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at 100 Mbps only\n"); tmp___5 = 1U; adapter->fc_autoneg = tmp___5; adapter->hw.autoneg = tmp___5; adapter->hw.autoneg_advertised = 12U; } goto ldv_51489; case_101: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 100 Mbps Half Duplex\n"); tmp___6 = 0U; adapter->fc_autoneg = tmp___6; adapter->hw.autoneg = tmp___6; adapter->hw.forced_speed_duplex = 2U; adapter->hw.autoneg_advertised = 0U; } goto ldv_51489; case_102: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Forcing to 100 Mbps Full Duplex\n"); tmp___7 = 0U; adapter->fc_autoneg = tmp___7; adapter->hw.autoneg = tmp___7; adapter->hw.forced_speed_duplex = 3U; adapter->hw.autoneg_advertised = 0U; } goto ldv_51489; case_1000: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "1000 Mbps Speed specified without Duplex\n"); } goto full_duplex_only; case_1001: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Half Duplex is not supported at 1000 Mbps\n"); } case_1002: /* CIL Label */ ; full_duplex_only: { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Using Autonegotiation at 1000 Mbps Full Duplex only\n"); tmp___8 = 1U; adapter->fc_autoneg = tmp___8; adapter->hw.autoneg = tmp___8; adapter->hw.autoneg_advertised = 32U; } goto ldv_51489; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/intel/e1000/e1000_param.c"), "i" (745), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51489: { tmp___9 = e1000_validate_mdi_setting(& adapter->hw); } if (tmp___9 < 0) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Speed, AutoNeg and MDI-X specs are incompatible. Setting MDI-X to a compatible value.\n"); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin_NOT_ARG_SIGN = 1; void ldv_spin_lock_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); ldv_spin_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_NOT_ARG_SIGN == 2); ldv_spin_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_e1000_eeprom_lock = 1; void ldv_spin_lock_e1000_eeprom_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_e1000_eeprom_lock == 1); ldv_assume(ldv_spin_e1000_eeprom_lock == 1); ldv_spin_e1000_eeprom_lock = 2; } return; } } void ldv_spin_unlock_e1000_eeprom_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_e1000_eeprom_lock == 2); ldv_assume(ldv_spin_e1000_eeprom_lock == 2); ldv_spin_e1000_eeprom_lock = 1; } return; } } int ldv_spin_trylock_e1000_eeprom_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_e1000_eeprom_lock == 1); ldv_assume(ldv_spin_e1000_eeprom_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_e1000_eeprom_lock = 2; return (1); } } } void ldv_spin_unlock_wait_e1000_eeprom_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_e1000_eeprom_lock == 1); ldv_assume(ldv_spin_e1000_eeprom_lock == 1); } return; } } int ldv_spin_is_locked_e1000_eeprom_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_e1000_eeprom_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_e1000_eeprom_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_e1000_eeprom_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_e1000_eeprom_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_e1000_eeprom_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_e1000_eeprom_lock == 1); ldv_assume(ldv_spin_e1000_eeprom_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_e1000_eeprom_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_e1000_phy_lock = 1; void ldv_spin_lock_e1000_phy_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_e1000_phy_lock == 1); ldv_assume(ldv_spin_e1000_phy_lock == 1); ldv_spin_e1000_phy_lock = 2; } return; } } void ldv_spin_unlock_e1000_phy_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_e1000_phy_lock == 2); ldv_assume(ldv_spin_e1000_phy_lock == 2); ldv_spin_e1000_phy_lock = 1; } return; } } int ldv_spin_trylock_e1000_phy_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_e1000_phy_lock == 1); ldv_assume(ldv_spin_e1000_phy_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_e1000_phy_lock = 2; return (1); } } } void ldv_spin_unlock_wait_e1000_phy_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_e1000_phy_lock == 1); ldv_assume(ldv_spin_e1000_phy_lock == 1); } return; } } int ldv_spin_is_locked_e1000_phy_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_e1000_phy_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_e1000_phy_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_e1000_phy_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_e1000_phy_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_e1000_phy_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_e1000_phy_lock == 1); ldv_assume(ldv_spin_e1000_phy_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_e1000_phy_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_stats_lock_of_e1000_adapter = 1; void ldv_spin_lock_stats_lock_of_e1000_adapter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_stats_lock_of_e1000_adapter == 1); ldv_assume(ldv_spin_stats_lock_of_e1000_adapter == 1); ldv_spin_stats_lock_of_e1000_adapter = 2; } return; } } void ldv_spin_unlock_stats_lock_of_e1000_adapter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_stats_lock_of_e1000_adapter == 2); ldv_assume(ldv_spin_stats_lock_of_e1000_adapter == 2); ldv_spin_stats_lock_of_e1000_adapter = 1; } return; } } int ldv_spin_trylock_stats_lock_of_e1000_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stats_lock_of_e1000_adapter == 1); ldv_assume(ldv_spin_stats_lock_of_e1000_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_stats_lock_of_e1000_adapter = 2; return (1); } } } void ldv_spin_unlock_wait_stats_lock_of_e1000_adapter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stats_lock_of_e1000_adapter == 1); ldv_assume(ldv_spin_stats_lock_of_e1000_adapter == 1); } return; } } int ldv_spin_is_locked_stats_lock_of_e1000_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_stats_lock_of_e1000_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_stats_lock_of_e1000_adapter(void) { int tmp ; { { tmp = ldv_spin_is_locked_stats_lock_of_e1000_adapter(); } return (tmp == 0); } } int ldv_spin_is_contended_stats_lock_of_e1000_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_stats_lock_of_e1000_adapter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stats_lock_of_e1000_adapter == 1); ldv_assume(ldv_spin_stats_lock_of_e1000_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_stats_lock_of_e1000_adapter = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_e1000_eeprom_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_e1000_phy_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_stats_lock_of_e1000_adapter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_e1000_eeprom_lock == 2) { return (1); } else { } if (ldv_spin_e1000_phy_lock == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_stats_lock_of_e1000_adapter == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-alloc-spinlock__drivers-net-ethernet-intel-e1000-e1000_true-unreach-call.cil.env.c" #include "model/common.env.c"