/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22252 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22252 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; enum pkt_hash_types { PKT_HASH_TYPE_NONE = 0, PKT_HASH_TYPE_L2 = 1, PKT_HASH_TYPE_L3 = 2, PKT_HASH_TYPE_L4 = 3 } ; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28610 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28611 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28610 reg_state : 8 ; bool dismantle ; enum ldv_28611 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct pci_sysdata { int domain ; int node ; struct acpi_device *companion ; void *iommu ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_device_info { struct device *parent ; struct acpi_dev_node acpi_node ; char const *name ; int id ; struct resource const *res ; unsigned int num_res ; void const *data ; size_t size_data ; u64 dma_mask ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct vlan_ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_vlan_proto ; __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { __u8 priority : 4 ; __u8 version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_252 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_252 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_253 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_253 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_255 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_255 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_256 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_256 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_258 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_257 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_258 __annonCompField79 ; }; union __anonunion____missing_field_name_259 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_261 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_260 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_261 __annonCompField82 ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_263 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_257 __annonCompField80 ; union __anonunion____missing_field_name_259 __annonCompField81 ; union __anonunion____missing_field_name_260 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_262 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_263 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_264 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_264 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_265 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_265 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct fcram_hash_ipv4 { u64 header ; u64 addrs ; u64 ports ; u64 action ; }; struct rx_pkt_hdr1 { u8 hwrsvd1 ; u8 tcammatch ; u8 hwrsvd2 : 2 ; u8 hashit : 1 ; u8 exact : 1 ; u8 hzfvld : 1 ; u8 hashsidx : 3 ; u8 zcrsvd ; u8 hwrsvd3 : 4 ; u8 zflowid0 : 4 ; u8 zflowid1 ; u8 hashval2_0 ; u8 hashval2_1 ; u8 hwrsvd4 : 4 ; u8 hashval1_0 : 4 ; u8 hashval1_1 ; u8 hashval1_2 ; u8 hwrsvd5 ; u8 hwrsvd6 ; u8 usrdata_0 ; u8 usrdata_1 ; u8 usrdata_2 ; u8 usrdata_3 ; u8 usrdata_4 ; }; struct tx_pkt_hdr { __le64 flags ; __le64 resv ; }; struct tx_buff_info { struct sk_buff *skb ; u64 mapping ; }; struct txdma_mailbox { __le64 tx_dma_pre_st ; __le64 tx_cs ; __le64 tx_ring_kick ; __le64 tx_ring_hdl ; __le64 resv1 ; __le32 tx_rng_err_logl ; __le32 tx_rng_err_logh ; __le64 resv2[2U] ; }; struct niu; struct tx_ring_info { struct tx_buff_info tx_buffs[256U] ; struct niu *np ; u64 tx_cs ; int pending ; int prod ; int cons ; int wrap_bit ; u16 last_pkt_cnt ; u16 tx_channel ; u16 mark_counter ; u16 mark_freq ; u16 mark_pending ; u16 __pad ; struct txdma_mailbox *mbox ; __le64 *descr ; u64 tx_packets ; u64 tx_bytes ; u64 tx_errors ; u64 mbox_dma ; u64 descr_dma ; int max_burst ; }; struct rxdma_mailbox { __le64 rx_dma_ctl_stat ; __le64 rbr_stat ; __le32 rbr_hdl ; __le32 rbr_hdh ; __le64 resv1 ; __le32 rcrstat_c ; __le32 rcrstat_b ; __le64 rcrstat_a ; __le64 resv2[2U] ; }; struct rx_ring_info { struct niu *np ; int rx_channel ; u16 rbr_block_size ; u16 rbr_blocks_per_page ; u16 rbr_sizes[4U] ; unsigned int rcr_index ; unsigned int rcr_table_size ; unsigned int rbr_index ; unsigned int rbr_pending ; unsigned int rbr_refill_pending ; unsigned int rbr_kick_thresh ; unsigned int rbr_table_size ; struct page **rxhash ; struct rxdma_mailbox *mbox ; __le64 *rcr ; __le32 *rbr ; u64 rx_packets ; u64 rx_bytes ; u64 rx_dropped ; u64 rx_errors ; u64 mbox_dma ; u64 rcr_dma ; u64 rbr_dma ; int nonsyn_window ; int nonsyn_threshold ; int syn_window ; int syn_threshold ; int rcr_pkt_threshold ; int rcr_timeout ; }; struct niu_vpd { char model[32U] ; char board_model[16U] ; char version[64U] ; char phy_type[8U] ; u8 mac_num ; u8 __pad ; u8 local_mac[6U] ; int fcode_major ; int fcode_minor ; }; struct niu_altmac_rdc { u8 alt_mac_num ; u8 rdc_num ; u8 mac_pref ; }; struct niu_vlan_rdc { u8 rdc_num ; u8 vlan_pref ; }; struct niu_classifier { struct niu_altmac_rdc alt_mac_mappings[16U] ; struct niu_vlan_rdc vlan_mappings[4096U] ; u16 tcam_top ; u16 tcam_sz ; u16 tcam_valid_entries ; u16 num_alt_mac_mappings ; u32 h1_init ; u16 h2_init ; }; struct rdc_table { u8 rxdma_channel[16U] ; }; struct niu_rdc_tables { struct rdc_table tables[8U] ; int first_table_num ; int num_tables ; }; struct phy_probe_info { u32 phy_id[3U][4U] ; u8 phy_port[3U][4U] ; u8 cur[3U] ; struct device_attribute phy_port_attrs[12U] ; struct device_attribute phy_type_attrs[12U] ; struct device_attribute phy_id_attrs[12U] ; }; struct niu_tcam_entry { u8 valid ; u64 key[4U] ; u64 key_mask[4U] ; u64 assoc_data ; }; struct __anonstruct_pci_275 { int domain ; int bus ; int device ; }; union niu_parent_id { struct __anonstruct_pci_275 pci ; struct device_node *of ; }; struct niu_parent { struct platform_device *plat_dev ; int index ; union niu_parent_id id ; struct niu *ports[4U] ; atomic_t refcnt ; struct list_head list ; spinlock_t lock ; u32 flags ; u32 port_phy ; u8 rxchan_per_port[4U] ; u8 txchan_per_port[4U] ; struct niu_rdc_tables rdc_group_cfg[4U] ; u8 rdc_default[4U] ; u8 ldg_map[69U] ; u8 plat_type ; u8 num_ports ; u16 tcam_num_entries ; int rxdma_clock_divider ; struct phy_probe_info phy_probe_info ; struct niu_tcam_entry tcam[256U] ; u64 l2_cls[2U] ; u64 l3_cls[4U] ; u64 tcam_key[12U] ; u64 flow_key[12U] ; u16 l3_cls_refcnt[4U] ; u8 l3_cls_pid[4U] ; }; struct niu_ops { void *(*alloc_coherent)(struct device * , size_t , u64 * , gfp_t ) ; void (*free_coherent)(struct device * , size_t , void * , u64 ) ; u64 (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction ) ; void (*unmap_page)(struct device * , u64 , size_t , enum dma_data_direction ) ; u64 (*map_single)(struct device * , void * , size_t , enum dma_data_direction ) ; void (*unmap_single)(struct device * , u64 , size_t , enum dma_data_direction ) ; }; struct niu_link_config { u32 supported ; u32 advertising ; u16 speed ; u8 duplex ; u8 autoneg ; u32 active_advertising ; u16 active_speed ; u8 active_duplex ; u8 active_autoneg ; u8 loopback_mode ; }; struct niu_ldg { struct napi_struct napi ; struct niu *np ; u8 ldg_num ; u8 timer ; u64 v0 ; u64 v1 ; u64 v2 ; unsigned int irq ; }; struct niu_xmac_stats { u64 tx_frames ; u64 tx_bytes ; u64 tx_fifo_errors ; u64 tx_overflow_errors ; u64 tx_max_pkt_size_errors ; u64 tx_underflow_errors ; u64 rx_local_faults ; u64 rx_remote_faults ; u64 rx_link_faults ; u64 rx_align_errors ; u64 rx_frags ; u64 rx_mcasts ; u64 rx_bcasts ; u64 rx_hist_cnt1 ; u64 rx_hist_cnt2 ; u64 rx_hist_cnt3 ; u64 rx_hist_cnt4 ; u64 rx_hist_cnt5 ; u64 rx_hist_cnt6 ; u64 rx_hist_cnt7 ; u64 rx_octets ; u64 rx_code_violations ; u64 rx_len_errors ; u64 rx_crc_errors ; u64 rx_underflows ; u64 rx_overflows ; u64 pause_off_state ; u64 pause_on_state ; u64 pause_received ; }; struct niu_bmac_stats { u64 tx_underflow_errors ; u64 tx_max_pkt_size_errors ; u64 tx_bytes ; u64 tx_frames ; u64 rx_overflows ; u64 rx_frames ; u64 rx_align_errors ; u64 rx_crc_errors ; u64 rx_len_errors ; u64 pause_off_state ; u64 pause_on_state ; u64 pause_received ; }; union niu_mac_stats { struct niu_xmac_stats xmac ; struct niu_bmac_stats bmac ; }; struct niu_phy_ops { int (*serdes_init)(struct niu * ) ; int (*xcvr_init)(struct niu * ) ; int (*link_status)(struct niu * , int * ) ; }; struct niu { void *regs ; struct net_device *dev ; struct pci_dev *pdev ; struct device *device ; struct niu_parent *parent ; u32 flags ; u32 msg_enable ; char irq_name[43U][22U] ; spinlock_t lock ; struct niu_ops const *ops ; union niu_mac_stats mac_stats ; struct rx_ring_info *rx_rings ; struct tx_ring_info *tx_rings ; int num_rx_rings ; int num_tx_rings ; struct niu_ldg ldg[64U] ; int num_ldg ; void *mac_regs ; unsigned long ipp_off ; unsigned long pcs_off ; unsigned long xpcs_off ; struct timer_list timer ; u64 orig_led_state ; struct niu_phy_ops const *phy_ops ; int phy_addr ; struct niu_link_config link_config ; struct work_struct reset_task ; u8 port ; u8 mac_xcvr ; struct niu_classifier clas ; struct niu_vpd vpd ; u32 eeprom_len ; struct platform_device *op ; void *vir_regs_1 ; void *vir_regs_2 ; }; struct niu_phy_template { struct niu_phy_ops const *ops ; u32 phy_addr_base ; }; struct __anonstruct_niu_xmac_stat_keys_276 { char const string[32U] ; }; struct __anonstruct_niu_bmac_stat_keys_277 { char const string[32U] ; }; struct __anonstruct_niu_rxchan_stat_keys_278 { char const string[32U] ; }; struct __anonstruct_niu_txchan_stat_keys_279 { char const string[32U] ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef struct net_device *ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; long ldv_is_err(void const *ptr ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern void list_del(struct list_head * ) ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static unsigned long __arch_hweight64(__u64 w ) { unsigned long res ; { res = 0UL; __asm__ ("661:\n\tcall __sw_hweight64\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word (4*32+23)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0xf3,0x48,0x0f,0xb8,0xc7\n6641:\n\t.popsection": "=a" (res): "D" (w)); return (res); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static __u64 __le64_to_cpup(__le64 const *p ) { { return ((__u64 )*p); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int sscanf(char const * , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern int strcmp(char const * , char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static long IS_ERR(void const *ptr ) ; __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_add(int i , atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; addl %1,%0": "+m" (v->counter): "ir" (i)); return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_79(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_87(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_89(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_91(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_93(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_97(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_100(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_102(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_104(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_114(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_116(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_118(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_122(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_124(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_128(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_130(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_132(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_134(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_136(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_138(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_140(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_142(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_150(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_152(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_154(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_lock_of_niu(void) ; void ldv_spin_unlock_lock_of_niu(void) ; void ldv_spin_lock_lock_of_niu_parent(void) ; void ldv_spin_unlock_lock_of_niu_parent(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_46(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) ; extern u64 jiffies_64 ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void add_timer(struct timer_list * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_111(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_121(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_149(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern int sysfs_create_link(struct kobject * , struct kobject * , char const * ) ; extern void sysfs_remove_link(struct kobject * , char const * ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern void dump_page(struct page * , char * ) ; __inline static unsigned long readq(void const volatile *addr ) { unsigned long ret ; { __asm__ volatile ("movq %1,%0": "=r" (ret): "m" (*((unsigned long volatile *)addr)): "memory"); return (ret); } } __inline static void writeq(unsigned long val , void volatile *addr ) { { __asm__ volatile ("movq %0,%1": : "r" (val), "m" (*((unsigned long volatile *)addr)): "memory"); return; } } extern void iounmap(void volatile * ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; extern struct page *alloc_pages_current(gfp_t , unsigned int ) ; __inline static struct page *alloc_pages(gfp_t gfp_mask , unsigned int order ) { struct page *tmp ; { { tmp = alloc_pages_current(gfp_mask, order); } return (tmp); } } extern void __free_pages(struct page * , unsigned int ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) ; static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) ; __inline static void *dev_get_platdata(struct device const *dev ) { { return ((void *)dev->platform_data); } } extern int dev_err(struct device const * , char const * , ...) ; extern void __udelay(unsigned long ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head(struct page *page ) { struct page *head ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { head = page->__annonCompField46.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)page); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { return (head); } else { } } else { } return (page); } } extern bool __get_page_tail(struct page * ) ; __inline static void get_page(struct page *page ) { bool tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp = __get_page_tail(page); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { return; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& page->__annonCompField43.__annonCompField42.__annonCompField41._count)); tmp___4 = ldv__builtin_expect(tmp___3 <= 0, 0L); } if (tmp___4 != 0L) { { dump_page(page, (char *)0); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/mm.h"), "i" (488), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_inc(& page->__annonCompField43.__annonCompField42.__annonCompField41._count); } return; } } __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && n > 0xffffffffffffffffUL / size) { return ((void *)0); } else { } { tmp = __kmalloc(n * size, flags); } return (tmp); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc_array(n, size, flags | 32768U); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern void kfree_skb(struct sk_buff * ) ; extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *skb_realloc_headroom(struct sk_buff * , unsigned int ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static void skb_set_hash(struct sk_buff *skb , __u32 hash , enum pkt_hash_types type ) { { skb->l4_rxhash = (unsigned int )type == 3U; skb->rxhash = hash; return; } } __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); } if ((int )page->__annonCompField43.__annonCompField38.pfmemalloc && (unsigned long )page->__annonCompField37.mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static void skb_orphan(struct sk_buff *skb ) { long tmp ; { if ((unsigned long )skb->destructor != (unsigned long )((void (*)(struct sk_buff * ))0)) { { (*(skb->destructor))(skb); skb->destructor = (void (*)(struct sk_buff * ))0; skb->sk = (struct sock *)0; } } else { { tmp = ldv__builtin_expect((unsigned long )skb->sk != (unsigned long )((struct sock *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/skbuff.h"), "i" (1891), "i" (12UL)); __builtin_unreachable(); } } else { } } return; } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38645; ldv_38644: { msleep(1U); } ldv_38645: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38644; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_146(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_148(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39540; ldv_39539: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_39540: ; if (i < dev->num_tx_queues) { goto ldv_39539; } else { } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39554; ldv_39553: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_39554: ; if (i < dev->num_tx_queues) { goto ldv_39553; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_stop_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39570; ldv_39569: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_stop_queue(txq); i = i + 1U; } ldv_39570: ; if (i < dev->num_tx_queues) { goto ldv_39569; } else { } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_46(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_49(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40099; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40099; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40099; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40099; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_40099: pscr_ret__ = pfo_ret__; goto ldv_40105; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40109; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40109; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40109; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40109; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_40109: pscr_ret__ = pfo_ret_____0; goto ldv_40105; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40118; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40118; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40118; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40118; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_40118: pscr_ret__ = pfo_ret_____1; goto ldv_40105; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40127; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40127; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40127; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40127; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_40127: pscr_ret__ = pfo_ret_____2; goto ldv_40105; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_40105; switch_break: /* CIL Label */ ; } ldv_40105: cpu = pscr_ret__; i = 0U; goto ldv_40137; ldv_40136: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_40137: ; if (i < dev->num_tx_queues) { goto ldv_40136; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_145(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_147(struct net_device *ldv_func_arg1 ) ; extern int netdev_printk(char const * , struct net_device const * , char const * , ...) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pcie_capability_clear_and_set_word(struct pci_dev * , int , u16 , u16 ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_156(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_157(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static int pci_domain_nr(struct pci_bus *bus ) { struct pci_sysdata *sd ; { sd = (struct pci_sysdata *)bus->sysdata; return (sd->domain); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_58((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_59(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; __inline static int pci_pcie_cap(struct pci_dev *dev ) { { return ((int )dev->pcie_cap); } } __inline static bool pci_is_pcie(struct pci_dev *dev ) { int tmp ; { { tmp = pci_pcie_cap(dev); } return (tmp != 0); } } extern void platform_device_unregister(struct platform_device * ) ; extern struct platform_device *platform_device_register_full(struct platform_device_info const * ) ; __inline static struct platform_device *platform_device_register_resndata(struct device *parent , char const *name , int id , struct resource const *res , unsigned int num , void const *data , size_t size ) { struct platform_device_info pdevinfo ; struct platform_device *tmp ; { { pdevinfo.parent = parent; pdevinfo.acpi_node.companion = 0; pdevinfo.name = name; pdevinfo.id = id; pdevinfo.res = res; pdevinfo.num_res = num; pdevinfo.data = data; pdevinfo.size_data = size; pdevinfo.dma_mask = 0ULL; tmp = platform_device_register_full((struct platform_device_info const *)(& pdevinfo)); } return (tmp); } } __inline static struct platform_device *platform_device_register_simple(char const *name , int id , struct resource const *res , unsigned int num ) { struct platform_device *tmp ; { { tmp = platform_device_register_resndata((struct device *)0, name, id, res, num, (void const *)0, 0UL); } return (tmp); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_106(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_107(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_144(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static u32 mii_adv_to_ethtool_adv_t(u32 adv ) { u32 result ; { result = 0U; if ((adv & 32U) != 0U) { result = result | 1U; } else { } if ((adv & 64U) != 0U) { result = result | 2U; } else { } if ((adv & 128U) != 0U) { result = result | 4U; } else { } if ((adv & 256U) != 0U) { result = result | 8U; } else { } if ((adv & 1024U) != 0U) { result = result | 8192U; } else { } if ((adv & 2048U) != 0U) { result = result | 16384U; } else { } return (result); } } __inline static u32 mii_ctrl1000_to_ethtool_adv_t(u32 adv ) { u32 result ; { result = 0U; if ((adv & 256U) != 0U) { result = result | 16U; } else { } if ((adv & 512U) != 0U) { result = result | 32U; } else { } return (result); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; __inline static u32 niu_tx_avail(struct tx_ring_info *tp ) { { return ((u32 )(tp->pending - ((tp->prod - tp->cons) & 255))); } } static char version[27U] = { 'n', 'i', 'u', '.', 'c', ':', 'v', '1', '.', '1', ' ', '(', 'A', 'p', 'r', ' ', '2', '2', ',', ' ', '2', '0', '1', '0', ')', '\n', '\000'}; static struct pci_device_id const niu_pci_tbl[2U] = { {4238U, 43981U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int niu_debug ; static int debug = -1; static int serdes_init_10g_serdes(struct niu *np ) ; static int __niu_wait_bits_clear_mac(struct niu *np , unsigned long reg , u64 bits , int limit , int delay ) { u64 val ; unsigned long tmp ; { goto ldv_49631; ldv_49630: { tmp = readq((void const volatile *)(np->mac_regs + reg)); val = (u64 )tmp; } if ((val & bits) == 0ULL) { goto ldv_49629; } else { } { __udelay((unsigned long )delay); } ldv_49631: limit = limit - 1; if (limit >= 0) { goto ldv_49630; } else { } ldv_49629: ; if (limit < 0) { return (-19); } else { } return (0); } } static int __niu_set_and_wait_clear_mac(struct niu *np , unsigned long reg , u64 bits , int limit , int delay , char const *reg_name ) { int err ; unsigned long tmp ; { { writeq((unsigned long )bits, (void volatile *)(np->mac_regs + reg)); err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay); } if (err != 0) { { tmp = readq((void const volatile *)(np->mac_regs + reg)); netdev_err((struct net_device const *)np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n", bits, reg_name, (unsigned long long )tmp); } } else { } return (err); } } static int __niu_wait_bits_clear_ipp(struct niu *np , unsigned long reg , u64 bits , int limit , int delay ) { u64 val ; unsigned long tmp ; { goto ldv_49651; ldv_49650: { tmp = readq((void const volatile *)(np->regs + (np->ipp_off + reg))); val = (u64 )tmp; } if ((val & bits) == 0ULL) { goto ldv_49649; } else { } { __udelay((unsigned long )delay); } ldv_49651: limit = limit - 1; if (limit >= 0) { goto ldv_49650; } else { } ldv_49649: ; if (limit < 0) { return (-19); } else { } return (0); } } static int __niu_set_and_wait_clear_ipp(struct niu *np , unsigned long reg , u64 bits , int limit , int delay , char const *reg_name ) { int err ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; { { tmp = readq((void const volatile *)(np->regs + (np->ipp_off + reg))); val = (u64 )tmp; val = val | bits; writeq((unsigned long )val, (void volatile *)(np->regs + (np->ipp_off + reg))); err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay); } if (err != 0) { { tmp___0 = readq((void const volatile *)(np->regs + (np->ipp_off + reg))); netdev_err((struct net_device const *)np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n", bits, reg_name, (unsigned long long )tmp___0); } } else { } return (err); } } static int __niu_wait_bits_clear(struct niu *np , unsigned long reg , u64 bits , int limit , int delay ) { u64 val ; unsigned long tmp ; { goto ldv_49672; ldv_49671: { tmp = readq((void const volatile *)(np->regs + reg)); val = (u64 )tmp; } if ((val & bits) == 0ULL) { goto ldv_49670; } else { } { __udelay((unsigned long )delay); } ldv_49672: limit = limit - 1; if (limit >= 0) { goto ldv_49671; } else { } ldv_49670: ; if (limit < 0) { return (-19); } else { } return (0); } } static int __niu_set_and_wait_clear(struct niu *np , unsigned long reg , u64 bits , int limit , int delay , char const *reg_name ) { int err ; unsigned long tmp ; { { writeq((unsigned long )bits, (void volatile *)(np->regs + reg)); err = __niu_wait_bits_clear(np, reg, bits, limit, delay); } if (err != 0) { { tmp = readq((void const volatile *)(np->regs + reg)); netdev_err((struct net_device const *)np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n", bits, reg_name, (unsigned long long )tmp); } } else { } return (err); } } static void niu_ldg_rearm(struct niu *np , struct niu_ldg *lp , int on ) { u64 val ; { val = (unsigned long long )lp->timer; if (on != 0) { val = val | 2147483648ULL; } else { } { writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )lp->ldg_num * 8192UL + 8388632UL))); } return; } } static int niu_ldn_irq_enable(struct niu *np , int ldn , int on ) { unsigned long mask_reg ; unsigned long bits ; u64 val ; unsigned long tmp ; { if ((unsigned int )ldn > 68U) { return (-22); } else { } if (ldn <= 63) { mask_reg = ((unsigned long )ldn + 1280UL) * 8192UL; bits = 3UL; } else { mask_reg = ((unsigned long )(ldn + -64) + 1408UL) * 8192UL; bits = 3UL; } { tmp = readq((void const volatile *)(np->regs + mask_reg)); val = (u64 )tmp; } if (on != 0) { val = val & (unsigned long long )(~ bits); } else { val = val | (unsigned long long )bits; } { writeq((unsigned long )val, (void volatile *)(np->regs + mask_reg)); } return (0); } } static int niu_enable_ldn_in_ldg(struct niu *np , struct niu_ldg *lp , int on ) { struct niu_parent *parent ; int i ; int err ; { parent = np->parent; i = 0; goto ldv_49706; ldv_49705: ; if ((int )parent->ldg_map[i] != (int )lp->ldg_num) { goto ldv_49704; } else { } { err = niu_ldn_irq_enable(np, i, on); } if (err != 0) { return (err); } else { } ldv_49704: i = i + 1; ldv_49706: ; if (i <= 68) { goto ldv_49705; } else { } return (0); } } static int niu_enable_interrupts(struct niu *np , int on ) { int i ; struct niu_ldg *lp ; int err ; { i = 0; goto ldv_49716; ldv_49715: { lp = (struct niu_ldg *)(& np->ldg) + (unsigned long )i; err = niu_enable_ldn_in_ldg(np, lp, on); } if (err != 0) { return (err); } else { } i = i + 1; ldv_49716: ; if (i < np->num_ldg) { goto ldv_49715; } else { } i = 0; goto ldv_49719; ldv_49718: { niu_ldg_rearm(np, (struct niu_ldg *)(& np->ldg) + (unsigned long )i, on); i = i + 1; } ldv_49719: ; if (i < np->num_ldg) { goto ldv_49718; } else { } return (0); } } static u32 phy_encode(u32 type , int port ) { { return (type << port * 2); } } static u32 phy_decode(u32 val , int port ) { { return ((val >> port * 2) & 3U); } } static int mdio_wait(struct niu *np ) { int limit ; u64 val ; unsigned long tmp ; { limit = 1000; goto ldv_49735; ldv_49734: { tmp = readq((void const volatile *)np->regs + 1663000U); val = (u64 )tmp; } if ((val & 65536ULL) != 0ULL) { return ((int )val & 65535); } else { } { __const_udelay(42950UL); } ldv_49735: limit = limit - 1; if (limit > 0) { goto ldv_49734; } else { } return (-19); } } static int mdio_read(struct niu *np , int port , int dev , int reg ) { int err ; int tmp ; { { writeq((unsigned long )((unsigned long long )((((port << 23) | (dev << 18)) | 131072) | reg)), (void volatile *)np->regs + 1663000U); err = mdio_wait(np); } if (err < 0) { return (err); } else { } { writeq((unsigned long )((unsigned long long )((((port << 23) | 805306368) | (dev << 18)) | 131072)), (void volatile *)np->regs + 1663000U); tmp = mdio_wait(np); } return (tmp); } } static int mdio_write(struct niu *np , int port , int dev , int reg , int data ) { int err ; { { writeq((unsigned long )((unsigned long long )((((port << 23) | (dev << 18)) | 131072) | reg)), (void volatile *)np->regs + 1663000U); err = mdio_wait(np); } if (err < 0) { return (err); } else { } { writeq((unsigned long )((unsigned long long )(((((port << 23) | 268435456) | (dev << 18)) | 131072) | data)), (void volatile *)np->regs + 1663000U); err = mdio_wait(np); } if (err < 0) { return (err); } else { } return (0); } } static int mii_read(struct niu *np , int port , int reg ) { int tmp ; { { writeq((unsigned long )((((port << 23) | 1610612736) | (reg << 18)) | 131072), (void volatile *)np->regs + 1663000U); tmp = mdio_wait(np); } return (tmp); } } static int mii_write(struct niu *np , int port , int reg , int data ) { int err ; { { writeq((unsigned long )(((((port << 23) | 1342177280) | (reg << 18)) | 131072) | data), (void volatile *)np->regs + 1663000U); err = mdio_wait(np); } if (err < 0) { return (err); } else { } return (0); } } static int esr2_set_tx_cfg(struct niu *np , unsigned long channel , u32 val ) { int err ; { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )(channel + 8256UL) * 4U), (int )val & 65535); } if (err == 0) { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )channel * 4U + 33025U), (int )(val >> 16)); } } else { } return (err); } } static int esr2_set_rx_cfg(struct niu *np , unsigned long channel , u32 val ) { int err ; { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )(channel + 8264UL) * 4U), (int )val & 65535); } if (err == 0) { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )channel * 4U + 33057U), (int )(val >> 16)); } } else { } return (err); } } static int serdes_init_niu_10g_fiber(struct niu *np ) { struct niu_link_config *lp ; u32 tx_cfg ; u32 rx_cfg ; unsigned long i ; u16 test_cfg ; int err ; int tmp ; int err___0 ; int tmp___0 ; { lp = & np->link_config; tx_cfg = 3585U; rx_cfg = 561409U; if ((unsigned int )lp->loopback_mode == 1U) { { test_cfg = 128U; mdio_write(np, (int )np->port, 30, 32772, (int )test_cfg); tx_cfg = tx_cfg | 2U; rx_cfg = rx_cfg | 2U; } } else { } i = 0UL; goto ldv_49786; ldv_49785: { tmp = esr2_set_tx_cfg(np, i, tx_cfg); err = tmp; } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_49786: ; if (i <= 3UL) { goto ldv_49785; } else { } i = 0UL; goto ldv_49790; ldv_49789: { tmp___0 = esr2_set_rx_cfg(np, i, rx_cfg); err___0 = tmp___0; } if (err___0 != 0) { return (err___0); } else { } i = i + 1UL; ldv_49790: ; if (i <= 3UL) { goto ldv_49789; } else { } return (0); } } static int serdes_init_niu_1g_serdes(struct niu *np ) { struct niu_link_config *lp ; u16 pll_cfg ; u16 pll_sts ; int max_retry ; u64 sig ; u64 mask ; u64 val ; u32 tx_cfg ; u32 rx_cfg ; unsigned long i ; int err ; u16 test_cfg ; unsigned long tmp ; unsigned long __ms ; unsigned long tmp___0 ; int tmp___1 ; { lp = & np->link_config; max_retry = 100; sig = sig; tx_cfg = 3617U; rx_cfg = 37153U; if ((unsigned int )np->port == 0U) { rx_cfg = rx_cfg | 524288U; } else { } if ((unsigned int )lp->loopback_mode == 1U) { { test_cfg = 128U; mdio_write(np, (int )np->port, 30, 32772, (int )test_cfg); tx_cfg = tx_cfg | 2U; rx_cfg = rx_cfg | 2U; } } else { } { pll_cfg = 9U; err = mdio_write(np, (int )np->port, 30, 32768, (int )pll_cfg); } if (err != 0) { { netdev_err((struct net_device const *)np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n", (int )np->port, "serdes_init_niu_1g_serdes"); } return (err); } else { } { pll_sts = 1U; err = mdio_write(np, (int )np->port, 30, 32770, (int )pll_sts); } if (err != 0) { { netdev_err((struct net_device const *)np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n", (int )np->port, "serdes_init_niu_1g_serdes"); } return (err); } else { } { __const_udelay(859000UL); i = 0UL; } goto ldv_49809; ldv_49808: { err = esr2_set_tx_cfg(np, i, tx_cfg); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_49809: ; if (i <= 3UL) { goto ldv_49808; } else { } i = 0UL; goto ldv_49812; ldv_49811: { err = esr2_set_rx_cfg(np, i, rx_cfg); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_49812: ; if (i <= 3UL) { goto ldv_49811; } else { } { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ val = 805306368ULL; mask = val; goto ldv_49815; case_1: /* CIL Label */ val = 201326592ULL; mask = val; goto ldv_49815; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49815: ; goto ldv_49824; ldv_49823: { tmp = readq((void const volatile *)np->regs + 1656832U); sig = (u64 )tmp; } if ((sig & mask) == val) { goto ldv_49818; } else { } __ms = 500UL; goto ldv_49821; ldv_49820: { __const_udelay(4295000UL); } ldv_49821: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_49820; } else { } ldv_49824: tmp___1 = max_retry; max_retry = max_retry - 1; if (tmp___1 != 0) { goto ldv_49823; } else { } ldv_49818: ; if ((sig & mask) != val) { { netdev_err((struct net_device const *)np->dev, "Port %u signal bits [%08x] are not [%08x]\n", (int )np->port, (int )((unsigned int )sig & (unsigned int )mask), (int )val); } return (-19); } else { } return (0); } } static int serdes_init_niu_10g_serdes(struct niu *np ) { struct niu_link_config *lp ; u32 tx_cfg ; u32 rx_cfg ; u32 pll_cfg ; u32 pll_sts ; int max_retry ; u64 sig ; u64 mask ; u64 val ; unsigned long i ; int err ; u16 test_cfg ; unsigned long tmp ; unsigned long __ms ; unsigned long tmp___0 ; int tmp___1 ; { lp = & np->link_config; max_retry = 100; sig = sig; tx_cfg = 3585U; rx_cfg = 561409U; if ((unsigned int )lp->loopback_mode == 1U) { { test_cfg = 128U; mdio_write(np, (int )np->port, 30, 32772, (int )test_cfg); tx_cfg = tx_cfg | 2U; rx_cfg = rx_cfg | 2U; } } else { } { pll_cfg = 11U; err = mdio_write(np, (int )np->port, 30, 32768, (int )pll_cfg & 65535); } if (err != 0) { { netdev_err((struct net_device const *)np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n", (int )np->port, "serdes_init_niu_10g_serdes"); } return (err); } else { } { pll_sts = 1U; err = mdio_write(np, (int )np->port, 30, 32770, (int )pll_sts & 65535); } if (err != 0) { { netdev_err((struct net_device const *)np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n", (int )np->port, "serdes_init_niu_10g_serdes"); } return (err); } else { } { __const_udelay(859000UL); i = 0UL; } goto ldv_49842; ldv_49841: { err = esr2_set_tx_cfg(np, i, tx_cfg); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_49842: ; if (i <= 3UL) { goto ldv_49841; } else { } i = 0UL; goto ldv_49845; ldv_49844: { err = esr2_set_rx_cfg(np, i, rx_cfg); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_49845: ; if (i <= 3UL) { goto ldv_49844; } else { } { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ mask = 870318095ULL; val = 870318080ULL; goto ldv_49848; case_1: /* CIL Label */ mask = 203358448ULL; val = 203358208ULL; goto ldv_49848; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49848: ; goto ldv_49857; ldv_49856: { tmp = readq((void const volatile *)np->regs + 1656832U); sig = (u64 )tmp; } if ((sig & mask) == val) { goto ldv_49851; } else { } __ms = 500UL; goto ldv_49854; ldv_49853: { __const_udelay(4295000UL); } ldv_49854: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_49853; } else { } ldv_49857: tmp___1 = max_retry; max_retry = max_retry - 1; if (tmp___1 != 0) { goto ldv_49856; } else { } ldv_49851: ; if ((sig & mask) != val) { { printk("\016niu: NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n", (int )np->port, (int )((unsigned int )sig & (unsigned int )mask), (int )val); err = serdes_init_niu_1g_serdes(np); } if (err == 0) { np->flags = np->flags & 4294705151U; np->mac_xcvr = 2U; } else { { netdev_err((struct net_device const *)np->dev, "Port %u 10G/1G SERDES Link Failed\n", (int )np->port); } return (-19); } } else { } return (0); } } static int esr_read_rxtx_ctrl(struct niu *np , unsigned long chan , u32 *val ) { int err ; { { err = mdio_read(np, (int )np->port, 30, (int )((unsigned int )(chan + 8UL) * 16U)); } if (err >= 0) { { *val = (u32 )err & 65535U; err = mdio_read(np, (int )np->port, 30, (int )((unsigned int )chan * 16U + 129U)); } if (err >= 0) { *val = *val | (u32 )(err << 16); } else { } err = 0; } else { } return (err); } } static int esr_read_glue0(struct niu *np , unsigned long chan , u32 *val ) { int err ; { { err = mdio_read(np, (int )np->port, 30, (int )((unsigned int )chan * 16U + 136U)); } if (err >= 0) { { *val = (u32 )err & 65535U; err = mdio_read(np, (int )np->port, 30, (int )((unsigned int )chan * 16U + 137U)); } if (err >= 0) { *val = *val | (u32 )(err << 16); err = 0; } else { } } else { } return (err); } } static int esr_read_reset(struct niu *np , u32 *val ) { int err ; { { err = mdio_read(np, (int )np->port, 30, 2); } if (err >= 0) { { *val = (u32 )err & 65535U; err = mdio_read(np, (int )np->port, 30, 3); } if (err >= 0) { *val = *val | (u32 )(err << 16); err = 0; } else { } } else { } return (err); } } static int esr_write_rxtx_ctrl(struct niu *np , unsigned long chan , u32 val ) { int err ; { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )(chan + 8UL) * 16U), (int )val & 65535); } if (err == 0) { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )chan * 16U + 129U), (int )(val >> 16)); } } else { } return (err); } } static int esr_write_glue0(struct niu *np , unsigned long chan , u32 val ) { int err ; { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )chan * 16U + 136U), (int )val & 65535); } if (err == 0) { { err = mdio_write(np, (int )np->port, 30, (int )((unsigned int )chan * 16U + 137U), (int )(val >> 16)); } } else { } return (err); } } static int esr_reset(struct niu *np ) { u32 reset ; int err ; { { reset = reset; err = mdio_write(np, (int )np->port, 30, 2, 0); } if (err != 0) { return (err); } else { } { err = mdio_write(np, (int )np->port, 30, 3, 65535); } if (err != 0) { return (err); } else { } { __const_udelay(859000UL); err = mdio_write(np, (int )np->port, 30, 2, 65535); } if (err != 0) { return (err); } else { } { __const_udelay(859000UL); err = mdio_write(np, (int )np->port, 30, 3, 0); } if (err != 0) { return (err); } else { } { __const_udelay(859000UL); err = esr_read_reset(np, & reset); } if (err != 0) { return (err); } else { } if (reset != 0U) { { netdev_err((struct net_device const *)np->dev, "Port %u ESR_RESET did not clear [%08x]\n", (int )np->port, reset); } return (-19); } else { } return (0); } } static int serdes_init_10g(struct niu *np ) { struct niu_link_config *lp ; unsigned long ctrl_reg ; unsigned long test_cfg_reg ; unsigned long i ; u64 ctrl_val ; u64 test_cfg_val ; u64 sig ; u64 mask ; u64 val ; int err ; u32 rxtx_ctrl ; u32 glue0 ; unsigned long tmp ; { lp = & np->link_config; { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ctrl_reg = 1654808UL; test_cfg_reg = 1654816UL; goto ldv_49906; case_1: /* CIL Label */ ctrl_reg = 1654832UL; test_cfg_reg = 1654840UL; goto ldv_49906; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49906: ctrl_val = 38385375ULL; test_cfg_val = 0ULL; if ((unsigned int )lp->loopback_mode == 1U) { test_cfg_val = test_cfg_val | 170ULL; } else { } { writeq((unsigned long )ctrl_val, (void volatile *)(np->regs + ctrl_reg)); writeq((unsigned long )test_cfg_val, (void volatile *)(np->regs + test_cfg_reg)); i = 0UL; } goto ldv_49912; ldv_49911: { err = esr_read_rxtx_ctrl(np, i, & rxtx_ctrl); } if (err != 0) { return (err); } else { } { err = esr_read_glue0(np, i, & glue0); } if (err != 0) { return (err); } else { } { rxtx_ctrl = rxtx_ctrl & 4282384383U; rxtx_ctrl = rxtx_ctrl | 8388609U; glue0 = glue0 & 4177522688U; glue0 = glue0 | 50343935U; err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl); } if (err != 0) { return (err); } else { } { err = esr_write_glue0(np, i, glue0); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_49912: ; if (i <= 3UL) { goto ldv_49911; } else { } { err = esr_reset(np); } if (err != 0) { return (err); } else { } { tmp = readq((void const volatile *)np->regs + 1656832U); sig = (u64 )tmp; } { if ((int )np->port == 0) { goto case_0___0; } else { } if ((int )np->port == 1) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ mask = 870318095ULL; val = 870318080ULL; goto ldv_49915; case_1___0: /* CIL Label */ mask = 203358448ULL; val = 203358208ULL; goto ldv_49915; switch_default___0: /* CIL Label */ ; return (-22); switch_break___0: /* CIL Label */ ; } ldv_49915: ; if ((sig & mask) != val) { if ((np->flags & 16777216U) != 0U) { np->flags = np->flags & 4261412863U; return (0); } else { } { netdev_err((struct net_device const *)np->dev, "Port %u signal bits [%08x] are not [%08x]\n", (int )np->port, (int )((unsigned int )sig & (unsigned int )mask), (int )val); } return (-19); } else { } if ((np->flags & 16777216U) != 0U) { np->flags = np->flags | 33554432U; } else { } return (0); } } static int serdes_init_1g(struct niu *np ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->regs + 1654824U); val = (u64 )tmp; val = val & 0xfffffffffffffffbULL; } { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } if ((int )np->port == 2) { goto case_2; } else { } if ((int )np->port == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ val = val | 8ULL; goto ldv_49923; case_1: /* CIL Label */ val = val | 16ULL; goto ldv_49923; case_2: /* CIL Label */ val = val | 32ULL; goto ldv_49923; case_3: /* CIL Label */ val = val | 64ULL; goto ldv_49923; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49923: { writeq((unsigned long )val, (void volatile *)np->regs + 1654824U); } return (0); } } static int serdes_init_1g_serdes(struct niu *np ) { struct niu_link_config *lp ; unsigned long ctrl_reg ; unsigned long test_cfg_reg ; unsigned long pll_cfg ; unsigned long i ; u64 ctrl_val ; u64 test_cfg_val ; u64 sig ; u64 mask ; u64 val ; int err ; u64 reset_val ; u64 val_rd ; unsigned long __ms ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long __ms___0 ; unsigned long tmp___1 ; u32 rxtx_ctrl ; u32 glue0 ; unsigned long tmp___2 ; { lp = & np->link_config; val = 121ULL; { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ reset_val = 1ULL; ctrl_reg = 1654808UL; test_cfg_reg = 1654816UL; pll_cfg = 1654800UL; goto ldv_49945; case_1: /* CIL Label */ reset_val = 2ULL; ctrl_reg = 1654832UL; test_cfg_reg = 1654840UL; pll_cfg = 1654824UL; goto ldv_49945; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49945: ctrl_val = 38385375ULL; test_cfg_val = 0ULL; if ((unsigned int )lp->loopback_mode == 1U) { test_cfg_val = test_cfg_val | 170ULL; } else { } { writeq((unsigned long )reset_val, (void volatile *)np->regs + 1654784U); __ms = 20UL; } goto ldv_49950; ldv_49949: { __const_udelay(4295000UL); } ldv_49950: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_49949; } else { } { tmp___0 = readq((void const volatile *)np->regs + 1654784U); val_rd = (u64 )tmp___0; val_rd = val_rd & ~ reset_val; writeq((unsigned long )val, (void volatile *)(np->regs + pll_cfg)); writeq((unsigned long )ctrl_val, (void volatile *)(np->regs + ctrl_reg)); writeq((unsigned long )test_cfg_val, (void volatile *)(np->regs + test_cfg_reg)); writeq((unsigned long )val_rd, (void volatile *)np->regs + 1654784U); __ms___0 = 2000UL; } goto ldv_49954; ldv_49953: { __const_udelay(4295000UL); } ldv_49954: tmp___1 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___1 != 0UL) { goto ldv_49953; } else { } i = 0UL; goto ldv_49959; ldv_49958: { err = esr_read_rxtx_ctrl(np, i, & rxtx_ctrl); } if (err != 0) { return (err); } else { } { err = esr_read_glue0(np, i, & glue0); } if (err != 0) { return (err); } else { } { rxtx_ctrl = rxtx_ctrl & 4282384383U; rxtx_ctrl = rxtx_ctrl | 8388609U; glue0 = glue0 & 4177522688U; glue0 = glue0 | 50343935U; err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl); } if (err != 0) { return (err); } else { } { err = esr_write_glue0(np, i, glue0); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_49959: ; if (i <= 3UL) { goto ldv_49958; } else { } { tmp___2 = readq((void const volatile *)np->regs + 1656832U); sig = (u64 )tmp___2; } { if ((int )np->port == 0) { goto case_0___0; } else { } if ((int )np->port == 1) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ val = 805306368ULL; mask = val; goto ldv_49962; case_1___0: /* CIL Label */ val = 201326592ULL; mask = val; goto ldv_49962; switch_default___0: /* CIL Label */ ; return (-22); switch_break___0: /* CIL Label */ ; } ldv_49962: ; if ((sig & mask) != val) { { netdev_err((struct net_device const *)np->dev, "Port %u signal bits [%08x] are not [%08x]\n", (int )np->port, (int )((unsigned int )sig & (unsigned int )mask), (int )val); } return (-19); } else { } return (0); } } static int link_status_1g_serdes(struct niu *np , int *link_up_p ) { struct niu_link_config *lp ; int link_up ; u64 val ; u16 current_speed ; unsigned long flags ; u8 current_duplex ; unsigned long tmp ; { { lp = & np->link_config; link_up = 0; current_speed = 65535U; current_duplex = 255U; ldv___ldv_spin_lock_79(& np->lock); tmp = readq((void const volatile *)(np->regs + (np->pcs_off + 1572872UL))); val = (u64 )tmp; } if ((val & 4ULL) != 0ULL) { link_up = 1; current_speed = 1000U; current_duplex = 1U; } else { } { lp->active_speed = current_speed; lp->active_duplex = current_duplex; ldv_spin_unlock_irqrestore_80(& np->lock, flags); *link_up_p = link_up; } return (0); } } static int link_status_10g_serdes(struct niu *np , int *link_up_p ) { unsigned long flags ; struct niu_link_config *lp ; int link_up ; int link_ok ; u64 val ; u64 val2 ; u16 current_speed ; u8 current_duplex ; int tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { lp = & np->link_config; link_up = 0; link_ok = 1; if ((np->flags & 262144U) == 0U) { { tmp = link_status_1g_serdes(np, link_up_p); } return (tmp); } else { } { current_speed = 65535U; current_duplex = 255U; ldv___ldv_spin_lock_81(& np->lock); tmp___0 = readq((void const volatile *)(np->regs + (np->xpcs_off + 1572928UL))); val = (u64 )tmp___0; tmp___1 = readq((void const volatile *)np->mac_regs + 440U); val2 = (u64 )tmp___1; } if ((val2 & 16777216ULL) != 0ULL) { link_ok = 0; } else { } if ((val & 4096ULL) != 0ULL && link_ok != 0) { link_up = 1; current_speed = 10000U; current_duplex = 1U; } else { } { lp->active_speed = current_speed; lp->active_duplex = current_duplex; ldv_spin_unlock_irqrestore_80(& np->lock, flags); *link_up_p = link_up; } return (0); } } static int link_status_mii(struct niu *np , int *link_up_p ) { struct niu_link_config *lp ; int err ; int bmsr ; int advert ; int ctrl1000 ; int stat1000 ; int lpa ; int bmcr ; int estatus ; int supported ; int advertising ; int active_speed ; int active_duplex ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; int neg ; int neg1000 ; { { lp = & np->link_config; err = mii_read(np, np->phy_addr, 0); tmp = ldv__builtin_expect(err < 0, 0L); } if (tmp != 0L) { return (err); } else { } { bmcr = err; err = mii_read(np, np->phy_addr, 1); tmp___0 = ldv__builtin_expect(err < 0, 0L); } if (tmp___0 != 0L) { return (err); } else { } { bmsr = err; err = mii_read(np, np->phy_addr, 4); tmp___1 = ldv__builtin_expect(err < 0, 0L); } if (tmp___1 != 0L) { return (err); } else { } { advert = err; err = mii_read(np, np->phy_addr, 5); tmp___2 = ldv__builtin_expect(err < 0, 0L); } if (tmp___2 != 0L) { return (err); } else { } { lpa = err; tmp___6 = ldv__builtin_expect((bmsr & 256) != 0, 1L); } if (tmp___6 != 0L) { { err = mii_read(np, np->phy_addr, 15); tmp___3 = ldv__builtin_expect(err < 0, 0L); } if (tmp___3 != 0L) { return (err); } else { } { estatus = err; err = mii_read(np, np->phy_addr, 9); tmp___4 = ldv__builtin_expect(err < 0, 0L); } if (tmp___4 != 0L) { return (err); } else { } { ctrl1000 = err; err = mii_read(np, np->phy_addr, 10); tmp___5 = ldv__builtin_expect(err < 0, 0L); } if (tmp___5 != 0L) { return (err); } else { } stat1000 = err; } else { stat1000 = 0; ctrl1000 = stat1000; estatus = ctrl1000; } supported = 0; if ((bmsr & 8) != 0) { supported = supported | 64; } else { } if ((bmsr & 2048) != 0) { supported = supported | 1; } else { } if ((bmsr & 4096) != 0) { supported = supported | 2; } else { } if ((bmsr & 8192) != 0) { supported = supported | 4; } else { } if ((bmsr & 16384) != 0) { supported = supported | 8; } else { } if ((estatus & 4096) != 0) { supported = supported | 16; } else { } if ((estatus & 8192) != 0) { supported = supported | 32; } else { } { lp->supported = (u32 )supported; tmp___7 = mii_adv_to_ethtool_adv_t((u32 )advert); advertising = (int )tmp___7; tmp___8 = mii_ctrl1000_to_ethtool_adv_t((u32 )ctrl1000); advertising = (int )((u32 )advertising | tmp___8); } if ((bmcr & 4096) != 0) { lp->active_autoneg = 1U; advertising = advertising | 64; neg = advert & lpa; neg1000 = (ctrl1000 << 2) & stat1000; if ((neg1000 & 3072) != 0) { active_speed = 1000; } else if ((neg & 896) != 0) { active_speed = 100; } else if ((neg & 96) != 0) { active_speed = 10; } else { active_speed = 65535; } if ((neg1000 & 2048) != 0 || (neg & 320) != 0) { active_duplex = 1; } else if (active_speed != 65535) { active_duplex = 0; } else { active_duplex = 255; } } else { lp->active_autoneg = 0U; if (((unsigned int )bmcr & 8256U) == 64U) { active_speed = 1000; } else if ((bmcr & 8192) != 0) { active_speed = 100; } else { active_speed = 10; } if ((bmcr & 256) != 0) { active_duplex = 1; } else { active_duplex = 0; } } lp->active_advertising = (u32 )advertising; lp->active_speed = (u16 )active_speed; lp->active_duplex = (u8 )active_duplex; *link_up_p = (bmsr & 4) != 0; return (0); } } static int link_status_1g_rgmii(struct niu *np , int *link_up_p ) { struct niu_link_config *lp ; u16 current_speed ; u16 bmsr ; unsigned long flags ; u8 current_duplex ; int err ; int link_up ; u16 adv ; u16 lpa ; { { lp = & np->link_config; link_up = 0; current_speed = 65535U; current_duplex = 255U; ldv___ldv_spin_lock_83(& np->lock); err = -22; err = mii_read(np, np->phy_addr, 1); } if (err < 0) { goto out; } else { } bmsr = (u16 )err; if (((int )bmsr & 4) != 0) { { err = mii_read(np, np->phy_addr, 4); } if (err < 0) { goto out; } else { } { adv = (u16 )err; err = mii_read(np, np->phy_addr, 5); } if (err < 0) { goto out; } else { } { lpa = (u16 )err; err = mii_read(np, np->phy_addr, 15); } if (err < 0) { goto out; } else { } link_up = 1; current_speed = 1000U; current_duplex = 1U; } else { } lp->active_speed = current_speed; lp->active_duplex = current_duplex; err = 0; out: { ldv_spin_unlock_irqrestore_80(& np->lock, flags); *link_up_p = link_up; } return (err); } } static int link_status_1g(struct niu *np , int *link_up_p ) { struct niu_link_config *lp ; unsigned long flags ; int err ; { { lp = & np->link_config; ldv___ldv_spin_lock_85(& np->lock); err = link_status_mii(np, link_up_p); lp->supported = lp->supported | 128U; lp->active_advertising = lp->active_advertising | 128U; ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return (err); } } static int bcm8704_reset(struct niu *np ) { int err ; int limit ; { { err = mdio_read(np, np->phy_addr, 4, 0); } if (err < 0 || err == 65535) { return (err); } else { } { err = err | 32768; err = mdio_write(np, np->phy_addr, 4, 0, err); } if (err != 0) { return (err); } else { } limit = 1000; goto ldv_50034; ldv_50033: { err = mdio_read(np, np->phy_addr, 4, 0); } if (err < 0) { return (err); } else { } if ((err & 32768) == 0) { goto ldv_50032; } else { } ldv_50034: limit = limit - 1; if (limit >= 0) { goto ldv_50033; } else { } ldv_50032: ; if (limit < 0) { { netdev_err((struct net_device const *)np->dev, "Port %u PHY will not reset (bmcr=%04x)\n", (int )np->port, err & 65535); } return (-19); } else { } return (0); } } static int bcm8704_user_dev3_readback(struct niu *np , int reg ) { int err ; int tmp ; { { tmp = mdio_read(np, np->phy_addr, 3, reg); err = tmp; } if (err < 0) { return (err); } else { } { err = mdio_read(np, np->phy_addr, 3, reg); } if (err < 0) { return (err); } else { } return (0); } } static int bcm8706_init_user_dev3(struct niu *np ) { int err ; unsigned long __ms ; unsigned long tmp ; { { err = mdio_read(np, np->phy_addr, 3, 51208); } if (err < 0) { return (err); } else { } { err = err & -97; err = err | 96; err = err | 16; err = mdio_write(np, np->phy_addr, 3, 51208, err); } if (err != 0) { return (err); } else { } __ms = 1000UL; goto ldv_50046; ldv_50045: { __const_udelay(4295000UL); } ldv_50046: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_50045; } else { } return (0); } } static int bcm8704_init_user_dev3(struct niu *np ) { int err ; unsigned long __ms ; unsigned long tmp ; { { err = mdio_write(np, np->phy_addr, 3, 51200, 32703); } if (err != 0) { return (err); } else { } { err = mdio_write(np, np->phy_addr, 3, 51203, 356); } if (err != 0) { return (err); } else { } { err = bcm8704_user_dev3_readback(np, 51200); } if (err != 0) { return (err); } else { } { err = bcm8704_user_dev3_readback(np, 51203); } if (err != 0) { return (err); } else { } { err = mdio_read(np, np->phy_addr, 3, 51208); } if (err < 0) { return (err); } else { } { err = err & -97; err = err | 96; err = mdio_write(np, np->phy_addr, 3, 51208, err); } if (err != 0) { return (err); } else { } __ms = 1000UL; goto ldv_50054; ldv_50053: { __const_udelay(4295000UL); } ldv_50054: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_50053; } else { } return (0); } } static int mrvl88x2011_act_led(struct niu *np , int val ) { int err ; int tmp ; { { err = mdio_read(np, np->phy_addr, 2, 33542); } if (err < 0) { return (err); } else { } { err = err & -113; err = err | (val << 4); tmp = mdio_write(np, np->phy_addr, 2, 33542, err); } return (tmp); } } static int mrvl88x2011_led_blink_rate(struct niu *np , int rate ) { int err ; { { err = mdio_read(np, np->phy_addr, 2, 33539); } if (err >= 0) { { err = err & -113; err = err | (rate << 4); err = mdio_write(np, np->phy_addr, 2, 33539, err); } } else { } return (err); } } static int xcvr_init_10g_mrvl88x2011(struct niu *np ) { int err ; int tmp ; { { err = mrvl88x2011_led_blink_rate(np, 2); } if (err != 0) { return (err); } else { } { err = mrvl88x2011_act_led(np, 0); } if (err != 0) { return (err); } else { } { err = mdio_read(np, np->phy_addr, 3, 33536); } if (err < 0) { return (err); } else { } { err = err | 1; err = mdio_write(np, np->phy_addr, 3, 33536, err); } if (err < 0) { return (err); } else { } { err = mdio_read(np, np->phy_addr, 1, 0); } if (err < 0) { return (err); } else { } if ((unsigned int )np->link_config.loopback_mode == 2U) { err = err | 1; } else { err = err & -2; } { err = mdio_write(np, np->phy_addr, 1, 0, err); } if (err < 0) { return (err); } else { } { tmp = mdio_write(np, np->phy_addr, 1, 9, 0); } return (tmp); } } static int xcvr_diag_bcm870x(struct niu *np ) { u16 analog_stat0 ; u16 tx_alarm_status ; int err ; { { err = 0; err = mdio_read(np, np->phy_addr, 1, 10); } if (err < 0) { return (err); } else { } { printk("\016niu: Port %u PMA_PMD(MII_STAT1000) [%04x]\n", (int )np->port, err); err = mdio_read(np, np->phy_addr, 3, 32); } if (err < 0) { return (err); } else { } { printk("\016niu: Port %u USER_DEV3(0x20) [%04x]\n", (int )np->port, err); err = mdio_read(np, np->phy_addr, 4, 20); } if (err < 0) { return (err); } else { } { printk("\016niu: Port %u PHYXS(MII_NWAYTEST) [%04x]\n", (int )np->port, err); err = mdio_read(np, np->phy_addr, 3, 51204); } if (err < 0) { return (err); } else { } { err = mdio_read(np, np->phy_addr, 3, 51204); } if (err < 0) { return (err); } else { } { analog_stat0 = (u16 )err; err = mdio_read(np, np->phy_addr, 3, 36868); } if (err < 0) { return (err); } else { } { err = mdio_read(np, np->phy_addr, 3, 36868); } if (err < 0) { return (err); } else { } tx_alarm_status = (u16 )err; if ((unsigned int )analog_stat0 != 1020U) { if ((unsigned int )analog_stat0 == 17340U && (unsigned int )tx_alarm_status != 0U) { { printk("\016niu: Port %u cable not connected or bad cable\n", (int )np->port); } } else if ((unsigned int )analog_stat0 == 25500U) { { printk("\016niu: Port %u optical module is bad or missing\n", (int )np->port); } } else { } } else { } return (0); } } static int xcvr_10g_set_lb_bcm870x(struct niu *np ) { struct niu_link_config *lp ; int err ; { { lp = & np->link_config; err = mdio_read(np, np->phy_addr, 2, 0); } if (err < 0) { return (err); } else { } err = err & -16385; if ((unsigned int )lp->loopback_mode == 2U) { err = err | 16384; } else { } { err = mdio_write(np, np->phy_addr, 2, 0, err); } if (err != 0) { return (err); } else { } return (0); } } static int xcvr_init_10g_bcm8706(struct niu *np ) { int err ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; { err = 0; if (*((unsigned int *)np + 10UL) == 16777216U) { return (err); } else { } { tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; val = val & 0xffffffffffbfffffULL; val = val | 2097152ULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); tmp___0 = readq((void const volatile *)np->regs + 1663008U); val = (u64 )tmp___0; val = val | 32768ULL; writeq((unsigned long )val, (void volatile *)np->regs + 1663008U); err = bcm8704_reset(np); } if (err != 0) { return (err); } else { } { err = xcvr_10g_set_lb_bcm870x(np); } if (err != 0) { return (err); } else { } { err = bcm8706_init_user_dev3(np); } if (err != 0) { return (err); } else { } { err = xcvr_diag_bcm870x(np); } if (err != 0) { return (err); } else { } return (0); } } static int xcvr_init_10g_bcm8704(struct niu *np ) { int err ; { { err = bcm8704_reset(np); } if (err != 0) { return (err); } else { } { err = bcm8704_init_user_dev3(np); } if (err != 0) { return (err); } else { } { err = xcvr_10g_set_lb_bcm870x(np); } if (err != 0) { return (err); } else { } { err = xcvr_diag_bcm870x(np); } if (err != 0) { return (err); } else { } return (0); } } static int xcvr_init_10g(struct niu *np ) { int phy_id ; int err ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; u32 tmp___1 ; { { tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; val = val & 0xffffffffffbfffffULL; val = val | 2097152ULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); tmp___0 = readq((void const volatile *)np->regs + 1663008U); val = (u64 )tmp___0; val = val | 32768ULL; writeq((unsigned long )val, (void volatile *)np->regs + 1663008U); tmp___1 = phy_decode((np->parent)->port_phy, (int )np->port); phy_id = (int )tmp___1; phy_id = (int )(np->parent)->phy_probe_info.phy_id[phy_id][(int )np->port]; } { if (((unsigned int )phy_id & 4294963440U) == 21037088U) { goto case_21037088; } else { } goto switch_default; case_21037088: /* CIL Label */ { err = xcvr_init_10g_mrvl88x2011(np); } goto ldv_50097; switch_default: /* CIL Label */ { err = xcvr_init_10g_bcm8704(np); } goto ldv_50097; switch_break: /* CIL Label */ ; } ldv_50097: ; return (err); } } static int mii_reset(struct niu *np ) { int limit ; int err ; { { err = mii_write(np, np->phy_addr, 0, 32768); } if (err != 0) { return (err); } else { } limit = 1000; goto ldv_50106; ldv_50105: { __const_udelay(2147500UL); err = mii_read(np, np->phy_addr, 0); } if (err < 0) { return (err); } else { } if ((err & 32768) == 0) { goto ldv_50104; } else { } ldv_50106: limit = limit - 1; if (limit >= 0) { goto ldv_50105; } else { } ldv_50104: ; if (limit < 0) { { netdev_err((struct net_device const *)np->dev, "Port %u MII would not reset, bmcr[%04x]\n", (int )np->port, err); } return (-19); } else { } return (0); } } static int xcvr_init_1g_rgmii(struct niu *np ) { int err ; u64 val ; u16 bmcr ; u16 bmsr ; u16 estat ; unsigned long tmp ; u16 ctrl1000 ; int tmp___0 ; { { tmp = readq((void const volatile *)np->regs + 1663008U); val = (u64 )tmp; val = val & 0xffffffffffff7fffULL; writeq((unsigned long )val, (void volatile *)np->regs + 1663008U); err = mii_reset(np); } if (err != 0) { return (err); } else { } { err = mii_read(np, np->phy_addr, 1); } if (err < 0) { return (err); } else { } bmsr = (u16 )err; estat = 0U; if (((int )bmsr & 256) != 0) { { err = mii_read(np, np->phy_addr, 15); } if (err < 0) { return (err); } else { } estat = (u16 )err; } else { } { bmcr = 0U; err = mii_write(np, np->phy_addr, 0, (int )bmcr); } if (err != 0) { return (err); } else { } if (((int )bmsr & 256) != 0) { ctrl1000 = 0U; if (((int )estat & 8192) != 0) { ctrl1000 = (u16 )((unsigned int )ctrl1000 | 512U); } else { } { err = mii_write(np, np->phy_addr, 9, (int )ctrl1000); } if (err != 0) { return (err); } else { } } else { } { bmcr = 320U; err = mii_write(np, np->phy_addr, 0, (int )bmcr); } if (err != 0) { return (err); } else { } { err = mii_read(np, np->phy_addr, 0); } if (err < 0) { return (err); } else { } { tmp___0 = mii_read(np, np->phy_addr, 0); bmcr = (u16 )tmp___0; err = mii_read(np, np->phy_addr, 1); } if (err < 0) { return (err); } else { } return (0); } } static int mii_init_common(struct niu *np ) { struct niu_link_config *lp ; u16 bmcr ; u16 bmsr ; u16 adv ; u16 estat ; int err ; u16 aux ; u16 ctrl1000 ; long tmp ; int fulldpx ; { { lp = & np->link_config; err = mii_reset(np); } if (err != 0) { return (err); } else { } { err = mii_read(np, np->phy_addr, 1); } if (err < 0) { return (err); } else { } bmsr = (u16 )err; estat = 0U; if (((int )bmsr & 256) != 0) { { err = mii_read(np, np->phy_addr, 15); } if (err < 0) { return (err); } else { } estat = (u16 )err; } else { } { bmcr = 0U; err = mii_write(np, np->phy_addr, 0, (int )bmcr); } if (err != 0) { return (err); } else { } if ((unsigned int )lp->loopback_mode == 2U) { bmcr = (u16 )((unsigned int )bmcr | 16384U); if ((unsigned int )lp->active_speed == 1000U) { bmcr = (u16 )((unsigned int )bmcr | 64U); } else { } if ((unsigned int )lp->active_duplex == 1U) { bmcr = (u16 )((unsigned int )bmcr | 256U); } else { } } else { } if ((unsigned int )lp->loopback_mode == 1U) { { aux = 33792U; err = mii_write(np, np->phy_addr, 24, (int )aux); } if (err != 0) { return (err); } else { } } else { } if ((unsigned int )lp->autoneg != 0U) { adv = 1025U; if (((int )bmsr & 2048) != 0 && (int )lp->advertising & 1) { adv = (u16 )((unsigned int )adv | 32U); } else { } if (((int )bmsr & 4096) != 0 && (lp->advertising & 2U) != 0U) { adv = (u16 )((unsigned int )adv | 64U); } else { } if (((int )bmsr & 8192) != 0 && (lp->advertising & 4U) != 0U) { adv = (u16 )((unsigned int )adv | 128U); } else { } if (((int )bmsr & 16384) != 0 && (lp->advertising & 8U) != 0U) { adv = (u16 )((unsigned int )adv | 256U); } else { } { err = mii_write(np, np->phy_addr, 4, (int )adv); } if (err != 0) { return (err); } else { } { tmp = ldv__builtin_expect(((int )bmsr & 256) != 0, 1L); } if (tmp != 0L) { ctrl1000 = 0U; if (((int )estat & 4096) != 0 && (lp->advertising & 16U) != 0U) { ctrl1000 = (u16 )((unsigned int )ctrl1000 | 256U); } else { } if (((int )estat & 8192) != 0 && (lp->advertising & 32U) != 0U) { ctrl1000 = (u16 )((unsigned int )ctrl1000 | 512U); } else { } { err = mii_write(np, np->phy_addr, 9, (int )ctrl1000); } if (err != 0) { return (err); } else { } } else { } bmcr = (u16 )((unsigned int )bmcr | 4608U); } else { if ((unsigned int )lp->duplex == 1U) { bmcr = (u16 )((unsigned int )bmcr | 256U); fulldpx = 1; } else if ((unsigned int )lp->duplex == 0U) { fulldpx = 0; } else { return (-22); } if ((unsigned int )lp->speed == 1000U) { if ((fulldpx != 0 && ((int )estat & 8192) == 0) || (fulldpx == 0 && ((int )estat & 4096) == 0)) { return (-22); } else { } bmcr = (u16 )((unsigned int )bmcr | 64U); } else if ((unsigned int )lp->speed == 100U) { if ((fulldpx != 0 && ((int )bmsr & 16384) == 0) || (fulldpx == 0 && ((int )bmsr & 8192) == 0)) { return (-22); } else { } bmcr = (u16 )((unsigned int )bmcr | 8192U); } else if ((unsigned int )lp->speed == 10U) { if ((fulldpx != 0 && ((int )bmsr & 4096) == 0) || (fulldpx == 0 && ((int )bmsr & 2048) == 0)) { return (-22); } else { } } else { return (-22); } } { err = mii_write(np, np->phy_addr, 0, (int )bmcr); } if (err != 0) { return (err); } else { } return (0); } } static int xcvr_init_1g(struct niu *np ) { u64 val ; unsigned long tmp ; int tmp___0 ; { { tmp = readq((void const volatile *)np->regs + 1663008U); val = (u64 )tmp; val = val & 0xffffffffffff7fffULL; writeq((unsigned long )val, (void volatile *)np->regs + 1663008U); tmp___0 = mii_init_common(np); } return (tmp___0); } } static int niu_xcvr_init(struct niu *np ) { struct niu_phy_ops const *ops ; int err ; { ops = np->phy_ops; err = 0; if ((unsigned long )ops->xcvr_init != (unsigned long )((int (*/* const */)(struct niu * ))0)) { { err = (*(ops->xcvr_init))(np); } } else { } return (err); } } static int niu_serdes_init(struct niu *np ) { struct niu_phy_ops const *ops ; int err ; { ops = np->phy_ops; err = 0; if ((unsigned long )ops->serdes_init != (unsigned long )((int (*/* const */)(struct niu * ))0)) { { err = (*(ops->serdes_init))(np); } } else { } return (err); } } static void niu_init_xif(struct niu *np ) ; static void niu_handle_led(struct niu *np , int status ) ; static int niu_link_status_common(struct niu *np , int link_up ) { struct niu_link_config *lp ; struct net_device *dev ; unsigned long flags ; bool tmp ; bool tmp___0 ; int tmp___1 ; { { lp = & np->link_config; dev = np->dev; tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1 && link_up != 0) { if ((np->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)dev, "Link is up at %s, %s duplex\n", (unsigned int )lp->active_speed != 10000U ? ((unsigned int )lp->active_speed != 1000U ? ((unsigned int )lp->active_speed == 100U ? (char *)"100Mbit/sec" : (char *)"10Mbit/sec") : (char *)"1Gb/sec") : (char *)"10Gb/sec", (unsigned int )lp->active_duplex == 1U ? (char *)"full" : (char *)"half"); } } else { } { ldv___ldv_spin_lock_87(& np->lock); niu_init_xif(np); niu_handle_led(np, 1); ldv_spin_unlock_irqrestore_80(& np->lock, flags); netif_carrier_on(dev); } } else { { tmp = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp && link_up == 0) { if ((np->msg_enable & 4U) != 0U) { { netdev_warn((struct net_device const *)dev, "Link is down\n"); } } else { } { ldv___ldv_spin_lock_89(& np->lock); niu_handle_led(np, 0); ldv_spin_unlock_irqrestore_80(& np->lock, flags); netif_carrier_off(dev); } } else { } } return (0); } } static int link_status_10g_mrvl(struct niu *np , int *link_up_p ) { int err ; int link_up ; int pma_status ; int pcs_status ; { { link_up = 0; err = mdio_read(np, np->phy_addr, 1, 8); } if (err < 0) { goto out; } else { } { err = mdio_read(np, np->phy_addr, 1, 1); } if (err < 0) { goto out; } else { } { pma_status = (err & 4) != 0; err = mdio_read(np, np->phy_addr, 3, 1); } if (err < 0) { goto out; } else { } { err = mdio_read(np, np->phy_addr, 3, 1); } if (err < 0) { goto out; } else { } { pcs_status = (err & 4) != 0; err = mdio_read(np, np->phy_addr, 4, 24); } if (err < 0) { goto out; } else { } if (err == 7183) { link_up = pma_status != 0 && pcs_status != 0; } else { } np->link_config.active_speed = 10000U; np->link_config.active_duplex = 1U; err = 0; out: { mrvl88x2011_act_led(np, link_up != 0 ? 5 : 0); *link_up_p = link_up; } return (err); } } static int link_status_10g_bcm8706(struct niu *np , int *link_up_p ) { int err ; int link_up ; { { link_up = 0; err = mdio_read(np, np->phy_addr, 1, 10); } if (err < 0 || err == 65535) { goto out; } else { } if ((err & 1) == 0) { err = 0; goto out; } else { } { err = mdio_read(np, np->phy_addr, 2, 32); } if (err < 0) { goto out; } else { } if ((err & 1) == 0) { err = 0; goto out; } else { } { err = mdio_read(np, np->phy_addr, 4, 24); } if (err < 0) { goto out; } else { } if (err != 7183) { err = 0; np->link_config.active_speed = 65535U; np->link_config.active_duplex = 255U; goto out; } else { } link_up = 1; np->link_config.active_speed = 10000U; np->link_config.active_duplex = 1U; err = 0; out: *link_up_p = link_up; return (err); } } static int link_status_10g_bcom(struct niu *np , int *link_up_p ) { int err ; int link_up ; { { link_up = 0; err = mdio_read(np, np->phy_addr, 1, 10); } if (err < 0) { goto out; } else { } if ((err & 1) == 0) { err = 0; goto out; } else { } { err = mdio_read(np, np->phy_addr, 2, 32); } if (err < 0) { goto out; } else { } if ((err & 1) == 0) { err = 0; goto out; } else { } { err = mdio_read(np, np->phy_addr, 4, 24); } if (err < 0) { goto out; } else { } if (err != 5135) { err = 0; goto out; } else { } link_up = 1; np->link_config.active_speed = 10000U; np->link_config.active_duplex = 1U; err = 0; out: *link_up_p = link_up; return (err); } } static int link_status_10g(struct niu *np , int *link_up_p ) { unsigned long flags ; int err ; int phy_id ; u32 tmp ; { { err = -22; ldv___ldv_spin_lock_91(& np->lock); } if ((unsigned int )np->link_config.loopback_mode == 0U) { { tmp = phy_decode((np->parent)->port_phy, (int )np->port); phy_id = (int )tmp; phy_id = (int )(np->parent)->phy_probe_info.phy_id[phy_id][(int )np->port]; } { if (((unsigned int )phy_id & 4294963440U) == 21037088U) { goto case_21037088; } else { } goto switch_default; case_21037088: /* CIL Label */ { err = link_status_10g_mrvl(np, link_up_p); } goto ldv_50185; switch_default: /* CIL Label */ { err = link_status_10g_bcom(np, link_up_p); } goto ldv_50185; switch_break: /* CIL Label */ ; } ldv_50185: ; } else { } { ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return (err); } } static int niu_10g_phy_present(struct niu *np ) { u64 sig ; u64 mask ; u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->regs + 1656832U); sig = (u64 )tmp; } { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ mask = 870318095ULL; val = 870318080ULL; goto ldv_50194; case_1: /* CIL Label */ mask = 203358448ULL; val = 203358208ULL; goto ldv_50194; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_50194: ; if ((sig & mask) != val) { return (0); } else { } return (1); } } static int link_status_10g_hotplug(struct niu *np , int *link_up_p ) { unsigned long flags ; int err ; int phy_present ; int phy_present_prev ; { { err = 0; ldv___ldv_spin_lock_93(& np->lock); } if ((unsigned int )np->link_config.loopback_mode == 0U) { { phy_present_prev = (np->flags & 33554432U) != 0U; phy_present = niu_10g_phy_present(np); } if (phy_present != phy_present_prev) { if (phy_present != 0) { np->flags = np->flags | 33554432U; if ((unsigned long )(np->phy_ops)->xcvr_init != (unsigned long )((int (*/* const */)(struct niu * ))0)) { { err = (*((np->phy_ops)->xcvr_init))(np); } } else { } if (err != 0) { { err = mdio_read(np, np->phy_addr, 4, 0); } if (err == 65535) { goto out; } else { } np->flags = np->flags & 4261412863U; } else { } } else { np->flags = np->flags & 4261412863U; *link_up_p = 0; if ((np->msg_enable & 4U) != 0U) { { netdev_warn((struct net_device const *)np->dev, "Hotplug PHY Removed\n"); } } else { } } } else { } out: ; if ((np->flags & 33554432U) != 0U) { { err = link_status_10g_bcm8706(np, link_up_p); } if (err == 65535) { *link_up_p = 1; np->link_config.active_speed = 10000U; np->link_config.active_duplex = 1U; } else { } } else { } } else { } { ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return (0); } } static int niu_link_status(struct niu *np , int *link_up_p ) { struct niu_phy_ops const *ops ; int err ; { ops = np->phy_ops; err = 0; if ((unsigned long )ops->link_status != (unsigned long )((int (*/* const */)(struct niu * , int * ))0)) { { err = (*(ops->link_status))(np, link_up_p); } } else { } return (err); } } static void niu_timer(unsigned long __opaque ) { struct niu *np ; unsigned long off ; int err ; int link_up ; bool tmp ; { { np = (struct niu *)__opaque; err = niu_link_status(np, & link_up); } if (err == 0) { { niu_link_status_common(np, link_up); } } else { } { tmp = netif_carrier_ok((struct net_device const *)np->dev); } if ((int )tmp) { off = 1250UL; } else { off = 250UL; } { np->timer.expires = (unsigned long )jiffies + off; add_timer(& np->timer); } return; } } static struct niu_phy_ops const phy_ops_10g_serdes = {& serdes_init_10g_serdes, 0, & link_status_10g_serdes}; static struct niu_phy_ops const phy_ops_10g_serdes_niu = {& serdes_init_niu_10g_serdes, 0, & link_status_10g_serdes}; static struct niu_phy_ops const phy_ops_1g_serdes_niu = {& serdes_init_niu_1g_serdes, 0, & link_status_1g_serdes}; static struct niu_phy_ops const phy_ops_1g_rgmii = {0, & xcvr_init_1g_rgmii, & link_status_1g_rgmii}; static struct niu_phy_ops const phy_ops_10g_fiber_niu = {& serdes_init_niu_10g_fiber, & xcvr_init_10g, & link_status_10g}; static struct niu_phy_ops const phy_ops_10g_fiber = {& serdes_init_10g, & xcvr_init_10g, & link_status_10g}; static struct niu_phy_ops const phy_ops_10g_fiber_hotplug = {& serdes_init_10g, & xcvr_init_10g_bcm8706, & link_status_10g_hotplug}; static struct niu_phy_ops const phy_ops_niu_10g_hotplug = {& serdes_init_niu_10g_fiber, & xcvr_init_10g_bcm8706, & link_status_10g_hotplug}; static struct niu_phy_ops const phy_ops_10g_copper = {& serdes_init_10g, 0, & link_status_10g}; static struct niu_phy_ops const phy_ops_1g_fiber = {& serdes_init_1g, & xcvr_init_1g, & link_status_1g}; static struct niu_phy_ops const phy_ops_1g_copper = {0, & xcvr_init_1g, & link_status_1g}; static struct niu_phy_template const phy_template_niu_10g_fiber = {& phy_ops_10g_fiber_niu, 16U}; static struct niu_phy_template const phy_template_niu_10g_serdes = {& phy_ops_10g_serdes_niu, 0U}; static struct niu_phy_template const phy_template_niu_1g_serdes = {& phy_ops_1g_serdes_niu, 0U}; static struct niu_phy_template const phy_template_10g_fiber = {& phy_ops_10g_fiber, 8U}; static struct niu_phy_template const phy_template_10g_fiber_hotplug = {& phy_ops_10g_fiber_hotplug, 8U}; static struct niu_phy_template const phy_template_niu_10g_hotplug = {& phy_ops_niu_10g_hotplug, 8U}; static struct niu_phy_template const phy_template_10g_copper = {& phy_ops_10g_copper, 10U}; static struct niu_phy_template const phy_template_1g_fiber = {& phy_ops_1g_fiber, 0U}; static struct niu_phy_template const phy_template_1g_copper = {& phy_ops_1g_copper, 0U}; static struct niu_phy_template const phy_template_1g_rgmii = {& phy_ops_1g_rgmii, 0U}; static struct niu_phy_template const phy_template_10g_serdes = {& phy_ops_10g_serdes, 0U}; static int niu_atca_port_num[4U] = { 0, 0, 11, 10}; static int serdes_init_10g_serdes(struct niu *np ) { struct niu_link_config *lp ; unsigned long ctrl_reg ; unsigned long test_cfg_reg ; unsigned long pll_cfg ; unsigned long i ; u64 ctrl_val ; u64 test_cfg_val ; u64 sig ; u64 mask ; u64 val ; u32 rxtx_ctrl ; u32 glue0 ; int err ; unsigned long tmp ; int err___0 ; { lp = & np->link_config; { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ctrl_reg = 1654808UL; test_cfg_reg = 1654816UL; pll_cfg = 1654800UL; goto ldv_50259; case_1: /* CIL Label */ ctrl_reg = 1654832UL; test_cfg_reg = 1654840UL; pll_cfg = 1654824UL; goto ldv_50259; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_50259: ctrl_val = 38385375ULL; test_cfg_val = 0ULL; if ((unsigned int )lp->loopback_mode == 1U) { test_cfg_val = test_cfg_val | 170ULL; } else { } { esr_reset(np); writeq(4UL, (void volatile *)(np->regs + pll_cfg)); writeq((unsigned long )ctrl_val, (void volatile *)(np->regs + ctrl_reg)); writeq((unsigned long )test_cfg_val, (void volatile *)(np->regs + test_cfg_reg)); i = 0UL; } goto ldv_50266; ldv_50265: { err = esr_read_rxtx_ctrl(np, i, & rxtx_ctrl); } if (err != 0) { return (err); } else { } { err = esr_read_glue0(np, i, & glue0); } if (err != 0) { return (err); } else { } { rxtx_ctrl = rxtx_ctrl & 4282384383U; rxtx_ctrl = rxtx_ctrl | 8388609U; glue0 = glue0 & 4177522688U; glue0 = glue0 | 50343935U; err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl); } if (err != 0) { return (err); } else { } { err = esr_write_glue0(np, i, glue0); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_50266: ; if (i <= 3UL) { goto ldv_50265; } else { } { tmp = readq((void const volatile *)np->regs + 1656832U); sig = (u64 )tmp; } { if ((int )np->port == 0) { goto case_0___0; } else { } if ((int )np->port == 1) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ mask = 870318095ULL; val = 870318080ULL; goto ldv_50269; case_1___0: /* CIL Label */ mask = 203358448ULL; val = 203358208ULL; goto ldv_50269; switch_default___0: /* CIL Label */ ; return (-22); switch_break___0: /* CIL Label */ ; } ldv_50269: ; if ((sig & mask) != val) { { err___0 = serdes_init_1g_serdes(np); } if (err___0 == 0) { np->flags = np->flags & 4294705151U; np->mac_xcvr = 2U; } else { { netdev_err((struct net_device const *)np->dev, "Port %u 10G/1G SERDES Link Failed\n", (int )np->port); } return (-19); } } else { } return (0); } } static int niu_determine_phy_disposition(struct niu *np ) { struct niu_parent *parent ; u8 plat_type ; struct niu_phy_template const *tp ; u32 phy_addr_off ; { parent = np->parent; plat_type = parent->plat_type; phy_addr_off = 0U; if ((unsigned int )plat_type == 2U) { { if ((np->flags & 917504U) == 786432U) { goto case_786432; } else { } if ((np->flags & 917504U) == 524288U) { goto case_524288; } else { } if ((np->flags & 917504U) == 393216U) { goto case_393216; } else { } goto switch_default; case_786432: /* CIL Label */ tp = & phy_template_niu_10g_serdes; goto ldv_50281; case_524288: /* CIL Label */ tp = & phy_template_niu_1g_serdes; goto ldv_50281; case_393216: /* CIL Label */ ; switch_default: /* CIL Label */ ; if ((np->flags & 16777216U) != 0U) { tp = & phy_template_niu_10g_hotplug; if ((unsigned int )np->port == 0U) { phy_addr_off = 8U; } else { } if ((unsigned int )np->port == 1U) { phy_addr_off = 12U; } else { } } else { tp = & phy_template_niu_10g_fiber; phy_addr_off = phy_addr_off + (u32 )np->port; } goto ldv_50281; switch_break: /* CIL Label */ ; } ldv_50281: ; } else { { if ((np->flags & 917504U) == 0U) { goto case_0; } else { } if ((np->flags & 917504U) == 262144U) { goto case_262144; } else { } if ((np->flags & 917504U) == 131072U) { goto case_131072; } else { } if ((np->flags & 917504U) == 393216U) { goto case_393216___0; } else { } if ((np->flags & 917504U) == 786432U) { goto case_786432___0; } else { } if ((np->flags & 917504U) == 655360U) { goto case_655360; } else { } if ((np->flags & 917504U) == 524288U) { goto case_524288___0; } else { } goto switch_default___1; case_0: /* CIL Label */ tp = & phy_template_1g_copper; if ((unsigned int )plat_type == 3U) { phy_addr_off = 10U; } else if ((unsigned int )plat_type == 4U) { phy_addr_off = 26U; } else { } phy_addr_off = phy_addr_off + ((unsigned int )np->port ^ 3U); goto ldv_50286; case_262144: /* CIL Label */ tp = & phy_template_10g_copper; goto ldv_50286; case_131072: /* CIL Label */ tp = & phy_template_1g_fiber; goto ldv_50286; case_393216___0: /* CIL Label */ tp = & phy_template_10g_fiber; if ((unsigned int )plat_type - 3U <= 1U) { phy_addr_off = 8U; } else { } phy_addr_off = phy_addr_off + (u32 )np->port; if ((np->flags & 16777216U) != 0U) { tp = & phy_template_10g_fiber_hotplug; if ((unsigned int )np->port == 0U) { phy_addr_off = 8U; } else { } if ((unsigned int )np->port == 1U) { phy_addr_off = 12U; } else { } } else { } goto ldv_50286; case_786432___0: /* CIL Label */ ; case_655360: /* CIL Label */ ; case_524288___0: /* CIL Label */ ; { if ((int )np->port == 0) { goto case_0___0; } else { } if ((int )np->port == 1) { goto case_1; } else { } if ((int )np->port == 2) { goto case_2; } else { } if ((int )np->port == 3) { goto case_3; } else { } goto switch_default___0; case_0___0: /* CIL Label */ ; case_1: /* CIL Label */ tp = & phy_template_10g_serdes; goto ldv_50295; case_2: /* CIL Label */ ; case_3: /* CIL Label */ tp = & phy_template_1g_rgmii; goto ldv_50295; switch_default___0: /* CIL Label */ ; return (-22); switch_break___1: /* CIL Label */ ; } ldv_50295: phy_addr_off = (u32 )niu_atca_port_num[(int )np->port]; goto ldv_50286; switch_default___1: /* CIL Label */ ; return (-22); switch_break___0: /* CIL Label */ ; } ldv_50286: ; } np->phy_ops = tp->ops; np->phy_addr = (int )((unsigned int )tp->phy_addr_base + phy_addr_off); return (0); } } static int niu_init_link(struct niu *np ) { struct niu_parent *parent ; int err ; int ignore ; { parent = np->parent; if ((unsigned int )parent->plat_type == 2U) { { err = niu_xcvr_init(np); } if (err != 0) { return (err); } else { } { msleep(200U); } } else { } { err = niu_serdes_init(np); } if (err != 0 && (np->flags & 16777216U) == 0U) { return (err); } else { } { msleep(200U); err = niu_xcvr_init(np); } if (err == 0 || (np->flags & 16777216U) != 0U) { { niu_link_status(np, & ignore); } } else { } return (0); } } static void niu_set_primary_mac(struct niu *np , unsigned char *addr ) { u16 reg0 ; u16 reg1 ; u16 reg2 ; { reg0 = (u16 )((int )((short )((int )*(addr + 4UL) << 8)) | (int )((short )*(addr + 5UL))); reg1 = (u16 )((int )((short )((int )*(addr + 2UL) << 8)) | (int )((short )*(addr + 3UL))); reg2 = (u16 )((int )((short )((int )*addr << 8)) | (int )((short )*(addr + 1UL))); if ((np->flags & 65536U) != 0U) { { writeq((unsigned long )reg0, (void volatile *)np->mac_regs + 160U); writeq((unsigned long )reg1, (void volatile *)np->mac_regs + 168U); writeq((unsigned long )reg2, (void volatile *)np->mac_regs + 176U); } } else { { writeq((unsigned long )reg0, (void volatile *)np->mac_regs + 256U); writeq((unsigned long )reg1, (void volatile *)np->mac_regs + 264U); writeq((unsigned long )reg2, (void volatile *)np->mac_regs + 272U); } } return; } } static int niu_num_alt_addr(struct niu *np ) { { if ((np->flags & 65536U) != 0U) { return (16); } else { return (6); } } } static int niu_set_alt_mac(struct niu *np , int index , unsigned char *addr ) { u16 reg0 ; u16 reg1 ; u16 reg2 ; int tmp ; { { reg0 = (u16 )((int )((short )((int )*(addr + 4UL) << 8)) | (int )((short )*(addr + 5UL))); reg1 = (u16 )((int )((short )((int )*(addr + 2UL) << 8)) | (int )((short )*(addr + 3UL))); reg2 = (u16 )((int )((short )((int )*addr << 8)) | (int )((short )*(addr + 1UL))); tmp = niu_num_alt_addr(np); } if (index >= tmp) { return (-22); } else { } if ((np->flags & 65536U) != 0U) { { writeq((unsigned long )reg0, (void volatile *)(np->mac_regs + ((unsigned long )index * 24UL + 536UL))); writeq((unsigned long )reg1, (void volatile *)(np->mac_regs + ((unsigned long )index * 24UL + 544UL))); writeq((unsigned long )reg2, (void volatile *)(np->mac_regs + ((unsigned long )index * 24UL + 552UL))); } } else { { writeq((unsigned long )reg0, (void volatile *)(np->mac_regs + ((unsigned long )index * 24UL + 280UL))); writeq((unsigned long )reg1, (void volatile *)(np->mac_regs + ((unsigned long )index * 24UL + 288UL))); writeq((unsigned long )reg2, (void volatile *)(np->mac_regs + ((unsigned long )index * 24UL + 296UL))); } } return (0); } } static int niu_enable_alt_mac(struct niu *np , int index , int on ) { unsigned long reg ; u64 val ; u64 mask ; int tmp ; unsigned long tmp___0 ; { { tmp = niu_num_alt_addr(np); } if (index >= tmp) { return (-22); } else { } if ((np->flags & 65536U) != 0U) { reg = 520UL; mask = (u64 )(1 << index); } else { reg = 1016UL; mask = (u64 )(1 << (index + 1)); } { tmp___0 = readq((void const volatile *)(np->mac_regs + reg)); val = (u64 )tmp___0; } if (on != 0) { val = val | mask; } else { val = val & ~ mask; } { writeq((unsigned long )val, (void volatile *)(np->mac_regs + reg)); } return (0); } } static void __set_rdc_table_num_hw(struct niu *np , unsigned long reg , int num , int mac_pref ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)(np->mac_regs + reg)); val = (u64 )tmp; val = val & 0xfffffffffffffef8ULL; val = val | (u64 )num; } if (mac_pref != 0) { val = val | 256ULL; } else { } { writeq((unsigned long )val, (void volatile *)(np->mac_regs + reg)); } return; } } static int __set_rdc_table_num(struct niu *np , int xmac_index , int bmac_index , int rdc_table_num , int mac_pref ) { unsigned long reg ; { if (((unsigned long long )rdc_table_num & 0xfffffffffffffff8ULL) != 0ULL) { return (-22); } else { } if ((np->flags & 65536U) != 0U) { reg = ((unsigned long )xmac_index + 288UL) * 8UL; } else { reg = ((unsigned long )bmac_index + 128UL) * 8UL; } { __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref); } return (0); } } static int niu_set_primary_mac_rdc_table(struct niu *np , int table_num , int mac_pref ) { int tmp ; { { tmp = __set_rdc_table_num(np, 17, 0, table_num, mac_pref); } return (tmp); } } static int niu_set_multicast_mac_rdc_table(struct niu *np , int table_num , int mac_pref ) { int tmp ; { { tmp = __set_rdc_table_num(np, 16, 8, table_num, mac_pref); } return (tmp); } } static int niu_set_alt_mac_rdc_table(struct niu *np , int idx , int table_num , int mac_pref ) { int tmp ; int tmp___0 ; { { tmp = niu_num_alt_addr(np); } if (idx >= tmp) { return (-22); } else { } { tmp___0 = __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref); } return (tmp___0); } } static u64 vlan_entry_set_parity(u64 reg_val ) { u64 port01_mask ; u64 port23_mask ; unsigned long tmp ; unsigned long tmp___0 ; { { port01_mask = 255ULL; port23_mask = 65280ULL; tmp = __arch_hweight64(reg_val & port01_mask); } if ((int )tmp & 1) { reg_val = reg_val | 65536ULL; } else { reg_val = reg_val & 0xfffffffffffeffffULL; } { tmp___0 = __arch_hweight64(reg_val & port23_mask); } if ((int )tmp___0 & 1) { reg_val = reg_val | 131072ULL; } else { reg_val = reg_val & 0xfffffffffffdffffULL; } return (reg_val); } } static void vlan_tbl_write(struct niu *np , unsigned long index , int port , int vpr , int rdc_table ) { u64 reg_val ; unsigned long tmp ; { { tmp = readq((void const volatile *)(np->regs + (index + 458752UL) * 8UL)); reg_val = (u64 )tmp; reg_val = reg_val & ~ (15ULL << port * 4); } if (vpr != 0) { reg_val = reg_val | (8ULL << port * 4); } else { } { reg_val = reg_val | (u64 )(rdc_table << port * 4); reg_val = vlan_entry_set_parity(reg_val); writeq((unsigned long )reg_val, (void volatile *)(np->regs + (index + 458752UL) * 8UL)); } return; } } static void vlan_tbl_clear(struct niu *np ) { int i ; { i = 0; goto ldv_50381; ldv_50380: { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )i + 458752UL) * 8UL)); i = i + 1; } ldv_50381: ; if (i <= 4095) { goto ldv_50380; } else { } return; } } static int tcam_wait_bit(struct niu *np , u64 bit ) { int limit ; unsigned long tmp ; { limit = 1000; goto ldv_50390; ldv_50389: { tmp = readq((void const volatile *)np->regs + 3801296U); } if (((unsigned long long )tmp & bit) != 0ULL) { goto ldv_50388; } else { } { __const_udelay(4295UL); } ldv_50390: limit = limit - 1; if (limit > 0) { goto ldv_50389; } else { } ldv_50388: ; if (limit <= 0) { return (-19); } else { } return (0); } } static int tcam_flush(struct niu *np , int index ) { int tmp ; { { writeq(0UL, (void volatile *)np->regs + 3801232U); writeq(255UL, (void volatile *)np->regs + 3801264U); writeq((unsigned long )((unsigned long long )index), (void volatile *)np->regs + 3801296U); tmp = tcam_wait_bit(np, 131072ULL); } return (tmp); } } static int tcam_write(struct niu *np , int index , u64 *key , u64 *mask ) { int tmp ; { { writeq((unsigned long )*key, (void volatile *)np->regs + 3801232U); writeq((unsigned long )*(key + 1UL), (void volatile *)np->regs + 3801240U); writeq((unsigned long )*(key + 2UL), (void volatile *)np->regs + 3801248U); writeq((unsigned long )*(key + 3UL), (void volatile *)np->regs + 3801256U); writeq((unsigned long )*mask, (void volatile *)np->regs + 3801264U); writeq((unsigned long )*(mask + 1UL), (void volatile *)np->regs + 3801272U); writeq((unsigned long )*(mask + 2UL), (void volatile *)np->regs + 3801280U); writeq((unsigned long )*(mask + 3UL), (void volatile *)np->regs + 3801288U); writeq((unsigned long )((unsigned long long )index), (void volatile *)np->regs + 3801296U); tmp = tcam_wait_bit(np, 131072ULL); } return (tmp); } } static int tcam_assoc_write(struct niu *np , int index , u64 assoc_data ) { int tmp ; { { writeq((unsigned long )assoc_data, (void volatile *)np->regs + 3801240U); writeq((unsigned long )((unsigned long long )(index | 1048576)), (void volatile *)np->regs + 3801296U); tmp = tcam_wait_bit(np, 131072ULL); } return (tmp); } } static void tcam_enable(struct niu *np , int on ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->regs + 3801344U); val = (u64 )tmp; } if (on != 0) { val = val & 0xfffffffffbffffffULL; } else { val = val | 67108864ULL; } { writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); } return; } } static void tcam_set_lat_and_ratio(struct niu *np , u64 latency , u64 ratio ) { u64 val ; unsigned long tmp ; unsigned long tmp___0 ; { { tmp = readq((void const volatile *)np->regs + 3801344U); val = (u64 )tmp; val = val & 0xfffffffffff00ffdULL; val = val | (latency << 16); val = val | (ratio << 12); writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); tmp___0 = readq((void const volatile *)np->regs + 3801344U); val = (u64 )tmp___0; val = val | 2ULL; writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); } return; } } static int tcam_user_eth_class_enable(struct niu *np , unsigned long class , int on ) { unsigned long reg ; u64 val ; unsigned long tmp ; { if (class - 2UL > 1UL) { return (-22); } else { } { reg = (class + 475134UL) * 8UL; tmp = readq((void const volatile *)(np->regs + reg)); val = (u64 )tmp; } if (on != 0) { val = val | 65536ULL; } else { val = val & 0xfffffffffffeffffULL; } { writeq((unsigned long )val, (void volatile *)(np->regs + reg)); } return (0); } } static int tcam_user_ip_class_enable(struct niu *np , unsigned long class , int on ) { unsigned long reg ; u64 val ; unsigned long tmp ; { if (class - 4UL > 3UL) { return (-22); } else { } { reg = (class + 475134UL) * 8UL; tmp = readq((void const volatile *)(np->regs + reg)); val = (u64 )tmp; } if (on != 0) { val = val | 33554432ULL; } else { val = val & 0xfffffffffdffffffULL; } { writeq((unsigned long )val, (void volatile *)(np->regs + reg)); } return (0); } } static int tcam_user_ip_class_set(struct niu *np , unsigned long class , int ipv6 , u64 protocol_id , u64 tos_mask , u64 tos_val ) { unsigned long reg ; u64 val ; unsigned long tmp ; { if (((class - 4UL > 3UL || (protocol_id & 0xffffffffffffff00ULL) != 0ULL) || (tos_mask & 0xffffffffffffff00ULL) != 0ULL) || (tos_val & 0xffffffffffffff00ULL) != 0ULL) { return (-22); } else { } { reg = (class + 475134UL) * 8UL; tmp = readq((void const volatile *)(np->regs + reg)); val = (u64 )tmp; val = val & 0xfffffffffe000000ULL; } if (ipv6 != 0) { val = val | 16777216ULL; } else { } { val = val | (protocol_id << 16); val = val | (tos_mask << 8); val = val | tos_val; writeq((unsigned long )val, (void volatile *)(np->regs + reg)); } return (0); } } static int tcam_early_init(struct niu *np ) { unsigned long i ; int err ; { { tcam_enable(np, 0); tcam_set_lat_and_ratio(np, 4ULL, 10ULL); i = 2UL; } goto ldv_50447; ldv_50446: { err = tcam_user_eth_class_enable(np, i, 0); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_50447: ; if (i <= 3UL) { goto ldv_50446; } else { } i = 4UL; goto ldv_50450; ldv_50449: { err = tcam_user_ip_class_enable(np, i, 0); } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_50450: ; if (i <= 7UL) { goto ldv_50449; } else { } return (0); } } static int tcam_flush_all(struct niu *np ) { unsigned long i ; int err ; int tmp ; { i = 0UL; goto ldv_50458; ldv_50457: { tmp = tcam_flush(np, (int )i); err = tmp; } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_50458: ; if (i < (unsigned long )(np->parent)->tcam_num_entries) { goto ldv_50457; } else { } return (0); } } static u64 hash_addr_regval(unsigned long index , unsigned long num_entries ) { { return ((unsigned long long )index | (num_entries == 1UL ? 8388608ULL : 0ULL)); } } static int hash_write(struct niu *np , unsigned long partition , unsigned long index , unsigned long num_entries , u64 *data ) { u64 val ; u64 tmp ; unsigned long i ; { { tmp = hash_addr_regval(index, num_entries); val = tmp; } if (partition > 7UL || index + num_entries * 8UL > 8388608UL) { return (-22); } else { } { writeq((unsigned long )val, (void volatile *)(np->regs + (partition + 384UL) * 8192UL)); i = 0UL; } goto ldv_50474; ldv_50473: { writeq((unsigned long )*(data + i), (void volatile *)(np->regs + (partition * 8192UL + 3145736UL))); i = i + 1UL; } ldv_50474: ; if (i < num_entries) { goto ldv_50473; } else { } return (0); } } static void fflp_reset(struct niu *np ) { u64 val ; { { writeq(4194304UL, (void volatile *)np->regs + 3801344U); __const_udelay(42950UL); writeq(0UL, (void volatile *)np->regs + 3801344U); val = 2ULL; writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); } return; } } static void fflp_set_timings(struct niu *np ) { u64 val ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { tmp = readq((void const volatile *)np->regs + 3801344U); val = (u64 )tmp; val = val & 0xfffffffffffffffdULL; val = val | 2560ULL; writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); tmp___0 = readq((void const volatile *)np->regs + 3801344U); val = (u64 )tmp___0; val = val | 2ULL; writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); tmp___1 = readq((void const volatile *)np->regs + 3801360U); val = (u64 )tmp___1; val = val & 0xffffffff00000000ULL; val = val | 33554432ULL; val = val | 512ULL; writeq((unsigned long )val, (void volatile *)np->regs + 3801360U); } return; } } static int fflp_set_partition(struct niu *np , u64 partition , u64 mask , u64 base , int enable ) { unsigned long reg ; u64 val ; unsigned long tmp ; { if ((partition > 7ULL || (mask & 0xffffffffffffffe0ULL) != 0ULL) || (base & 0xffffffffffffffe0ULL) != 0ULL) { return (-22); } else { } { reg = (unsigned long )((partition + 491534ULL) * 8ULL); tmp = readq((void const volatile *)(np->regs + reg)); val = (u64 )tmp; val = val & 0xfffffffffffee0e0ULL; val = val | (mask << 8); val = val | base; } if (enable != 0) { val = val | 65536ULL; } else { } { writeq((unsigned long )val, (void volatile *)(np->regs + reg)); } return (0); } } static int fflp_disable_all_partitions(struct niu *np ) { unsigned long i ; int err ; int tmp ; { i = 0UL; goto ldv_50499; ldv_50498: { tmp = fflp_set_partition(np, 0ULL, 0ULL, 0ULL, 0); err = tmp; } if (err != 0) { return (err); } else { } i = i + 1UL; ldv_50499: ; if (i <= 7UL) { goto ldv_50498; } else { } return (0); } } static void fflp_llcsnap_enable(struct niu *np , int on ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->regs + 3801344U); val = (u64 )tmp; } if (on != 0) { val = val | 1ULL; } else { val = val & 0xfffffffffffffffeULL; } { writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); } return; } } static void fflp_errors_enable(struct niu *np , int on ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->regs + 3801344U); val = (u64 )tmp; } if (on != 0) { val = val & 0xfffffffffffffffbULL; } else { val = val | 4ULL; } { writeq((unsigned long )val, (void volatile *)np->regs + 3801344U); } return; } } static int fflp_hash_clear(struct niu *np ) { struct fcram_hash_ipv4 ent ; unsigned long i ; int err ; int tmp ; { { memset((void *)(& ent), 0, 32UL); ent.header = 4611686018427387904ULL; i = 0UL; } goto ldv_50518; ldv_50517: { tmp = hash_write(np, 0UL, i, 1UL, (u64 *)(& ent)); err = tmp; } if (err != 0) { return (err); } else { } i = i + 32UL; ldv_50518: ; if (i <= 8388607UL) { goto ldv_50517; } else { } return (0); } } static int fflp_early_init(struct niu *np ) { struct niu_parent *parent ; unsigned long flags ; int err ; { { ldv___ldv_spin_lock_95(& (np->parent)->lock); parent = np->parent; err = 0; } if ((parent->flags & 1U) == 0U) { if ((unsigned int )(np->parent)->plat_type != 2U) { { fflp_reset(np); fflp_set_timings(np); err = fflp_disable_all_partitions(np); } if (err != 0) { if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "fflp_disable_all_partitions failed, err=%d\n", err); } } else { } goto out; } else { } } else { } { err = tcam_early_init(np); } if (err != 0) { if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "tcam_early_init failed, err=%d\n", err); } } else { } goto out; } else { } { fflp_llcsnap_enable(np, 1); fflp_errors_enable(np, 0); writeq(0UL, (void volatile *)np->regs + 3932256U); writeq(0UL, (void volatile *)np->regs + 3932264U); err = tcam_flush_all(np); } if (err != 0) { if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "tcam_flush_all failed, err=%d\n", err); } } else { } goto out; } else { } if ((unsigned int )(np->parent)->plat_type != 2U) { { err = fflp_hash_clear(np); } if (err != 0) { if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "fflp_hash_clear failed, err=%d\n", err); } } else { } goto out; } else { } } else { } { vlan_tbl_clear(np); parent->flags = parent->flags | 1U; } } else { } out: { ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return (err); } } static int niu_set_flow_key(struct niu *np , unsigned long class_code , u64 key ) { { if (class_code - 4UL > 11UL) { return (-22); } else { } { writeq((unsigned long )key, (void volatile *)(np->regs + (class_code + 491516UL) * 8UL)); } return (0); } } static int niu_set_tcam_key(struct niu *np , unsigned long class_code , u64 key ) { { if (class_code - 4UL > 11UL) { return (-22); } else { } { writeq((unsigned long )key, (void volatile *)(np->regs + (class_code + 475138UL) * 8UL)); } return (0); } } static u16 tcam_get_index(struct niu *np , u16 idx ) { { if ((int )idx >= (int )np->clas.tcam_sz + -1) { idx = 0U; } else { } return ((int )np->clas.tcam_top + (int )((u16 )((int )idx + 1)) * (int )((u16 )(np->parent)->num_ports)); } } static u16 tcam_get_size(struct niu *np ) { { return ((unsigned int )np->clas.tcam_sz + 65535U); } } static u16 tcam_get_valid_entry_cnt(struct niu *np ) { { return ((unsigned int )np->clas.tcam_valid_entries + 65535U); } } static void niu_rx_skb_append(struct sk_buff *skb , struct page *page , u32 offset , u32 size , u32 truesize ) { unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); skb_fill_page_desc(skb, (int )((struct skb_shared_info *)tmp)->nr_frags, page, (int )offset, (int )size); skb->len = skb->len + size; skb->data_len = skb->data_len + size; skb->truesize = skb->truesize + truesize; } return; } } static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp , u64 a ) { { a = a >> 12; a = a ^ (a >> 7); return ((unsigned int )a & 127U); } } static struct page *niu_find_rxpage(struct rx_ring_info *rp , u64 addr , struct page ***link ) { unsigned int h ; unsigned int tmp ; struct page *p ; struct page **pp ; { { tmp = niu_hash_rxaddr(rp, addr); h = tmp; addr = addr & 0xfffffffffffff000ULL; pp = rp->rxhash + (unsigned long )h; } goto ldv_50568; ldv_50567: ; if ((unsigned long long )p->__annonCompField43.__annonCompField38.index == addr) { *link = pp; goto found; } else { } pp = (struct page **)(& p->__annonCompField37.mapping); ldv_50568: p = *pp; if ((unsigned long )p != (unsigned long )((struct page *)0)) { goto ldv_50567; } else { } { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/niu.c"), "i" (3310), "i" (12UL)); __builtin_unreachable(); } found: ; return (p); } } static void niu_hash_page(struct rx_ring_info *rp , struct page *page , u64 base ) { unsigned int h ; unsigned int tmp ; { { tmp = niu_hash_rxaddr(rp, base); h = tmp; page->__annonCompField43.__annonCompField38.index = (unsigned long )base; page->__annonCompField37.mapping = (struct address_space *)*(rp->rxhash + (unsigned long )h); *(rp->rxhash + (unsigned long )h) = page; } return; } } static int niu_rbr_add_page(struct niu *np , struct rx_ring_info *rp , gfp_t mask , int start_index ) { struct page *page ; u64 addr ; int i ; struct page *tmp ; __le32 *rbr ; { { page = alloc_pages(mask, 0U); } if ((unsigned long )page == (unsigned long )((struct page *)0)) { return (-12); } else { } { addr = (*((np->ops)->map_page))(np->device, page, 0UL, 4096UL, 2); } if (addr == 0ULL) { { __free_pages(page, 0U); } return (-12); } else { } { niu_hash_page(rp, page, addr); } if ((unsigned int )rp->rbr_blocks_per_page > 1U) { { tmp = compound_head(page); atomic_add((int )rp->rbr_blocks_per_page + -1, & tmp->__annonCompField43.__annonCompField42.__annonCompField41._count); } } else { } i = 0; goto ldv_50587; ldv_50586: rbr = rp->rbr + (unsigned long )(start_index + i); *rbr = (unsigned int )(addr >> 12); addr = addr + (u64 )rp->rbr_block_size; i = i + 1; ldv_50587: ; if (i < (int )rp->rbr_blocks_per_page) { goto ldv_50586; } else { } return (0); } } static void niu_rbr_refill(struct niu *np , struct rx_ring_info *rp , gfp_t mask ) { int index ; int err ; int tmp ; long tmp___0 ; long tmp___1 ; { index = (int )rp->rbr_index; rp->rbr_pending = rp->rbr_pending + 1U; if (rp->rbr_pending % (unsigned int )rp->rbr_blocks_per_page == 0U) { { tmp = niu_rbr_add_page(np, rp, mask, index); err = tmp; tmp___0 = ldv__builtin_expect(err != 0, 0L); } if (tmp___0 != 0L) { rp->rbr_pending = rp->rbr_pending - 1U; return; } else { } { rp->rbr_index = rp->rbr_index + (unsigned int )rp->rbr_blocks_per_page; tmp___1 = ldv__builtin_expect(rp->rbr_index > rp->rbr_table_size, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/niu.c"), "i" (3372), "i" (12UL)); __builtin_unreachable(); } } else { } if (rp->rbr_index == rp->rbr_table_size) { rp->rbr_index = 0U; } else { } if (rp->rbr_pending >= rp->rbr_kick_thresh) { { writeq((unsigned long )rp->rbr_pending, (void volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291488UL))); rp->rbr_pending = 0U; } } else { } } else { } return; } } static int niu_rx_pkt_ignore(struct niu *np , struct rx_ring_info *rp ) { unsigned int index ; int num_rcr ; struct page *page ; struct page **link ; u64 addr ; u64 val ; u32 rcr_size ; { index = rp->rcr_index; num_rcr = 0; rp->rx_dropped = rp->rx_dropped + 1ULL; ldv_50608: { num_rcr = num_rcr + 1; val = __le64_to_cpup((__le64 const *)rp->rcr + (unsigned long )index); addr = (val & 274877906943ULL) << 6; page = niu_find_rxpage(rp, addr, & link); rcr_size = (u32 )rp->rbr_sizes[(val & 824633720832ULL) >> 38]; } if ((unsigned long long )((page->__annonCompField43.__annonCompField38.index - (unsigned long )rcr_size) + 4096UL) == addr) { { *link = (struct page *)page->__annonCompField37.mapping; (*((np->ops)->unmap_page))(np->device, (u64 )page->__annonCompField43.__annonCompField38.index, 4096UL, 2); page->__annonCompField43.__annonCompField38.index = 0UL; page->__annonCompField37.mapping = (struct address_space *)0; __free_pages(page, 0U); rp->rbr_refill_pending = rp->rbr_refill_pending + 1U; } } else { } index = index + 1U < rp->rcr_table_size ? index + 1U : 0U; if ((long )val >= 0L) { goto ldv_50607; } else { } goto ldv_50608; ldv_50607: rp->rcr_index = index; return (num_rcr); } } static int niu_process_rx_pkt(struct napi_struct *napi , struct niu *np , struct rx_ring_info *rp ) { unsigned int index ; struct rx_pkt_hdr1 *rh ; struct sk_buff *skb ; int len ; int num_rcr ; int tmp ; long tmp___0 ; struct page *page ; struct page **link ; u32 rcr_size ; u32 append_size ; u64 addr ; u64 val ; u64 off ; int ptype ; int __min1 ; int __min2 ; { { index = rp->rcr_index; skb = netdev_alloc_skb(np->dev, 128U); tmp___0 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___0 != 0L) { { tmp = niu_rx_pkt_ignore(np, rp); } return (tmp); } else { } num_rcr = 0; ldv_50628: { num_rcr = num_rcr + 1; val = __le64_to_cpup((__le64 const *)rp->rcr + (unsigned long )index); len = (int )((val & 18013298997854208ULL) >> 40); len = len + -4; addr = (val & 274877906943ULL) << 6; page = niu_find_rxpage(rp, addr, & link); rcr_size = (u32 )rp->rbr_sizes[(val & 824633720832ULL) >> 38]; off = addr & 4095ULL; append_size = rcr_size; } if (num_rcr == 1) { ptype = (int )(val >> 61); if ((unsigned int )ptype - 1U <= 1U && (val & 828662331436171264ULL) == 0ULL) { skb->ip_summed = 1U; } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } } else if ((long )val >= 0L) { append_size = (unsigned int )len - skb->len; } else { } { niu_rx_skb_append(skb, page, (u32 )off, append_size, rcr_size); } if ((unsigned long long )((page->__annonCompField43.__annonCompField38.index + (unsigned long )rp->rbr_block_size) - (unsigned long )rcr_size) == addr) { { *link = (struct page *)page->__annonCompField37.mapping; (*((np->ops)->unmap_page))(np->device, (u64 )page->__annonCompField43.__annonCompField38.index, 4096UL, 2); page->__annonCompField43.__annonCompField38.index = 0UL; page->__annonCompField37.mapping = (struct address_space *)0; rp->rbr_refill_pending = rp->rbr_refill_pending + 1U; } } else { { get_page(page); } } index = index + 1U < rp->rcr_table_size ? index + 1U : 0U; if ((long )val >= 0L) { goto ldv_50627; } else { } goto ldv_50628; ldv_50627: { rp->rcr_index = index; len = (int )((unsigned int )len + 18U); __min1 = len; __min2 = 36; len = __min1 < __min2 ? __min1 : __min2; __pskb_pull_tail(skb, len); rh = (struct rx_pkt_hdr1 *)skb->data; } if (((np->dev)->features & 2147483648ULL) != 0ULL) { { skb_set_hash(skb, ((((unsigned int )rh->hashval2_0 << 24) | ((unsigned int )rh->hashval2_1 << 16)) | ((unsigned int )rh->hashval1_1 << 8)) | (unsigned int )rh->hashval1_2, 2); } } else { } { skb_pull(skb, 18U); rp->rx_packets = rp->rx_packets + 1ULL; rp->rx_bytes = rp->rx_bytes + (u64 )skb->len; skb->protocol = eth_type_trans(skb, np->dev); skb_record_rx_queue(skb, (int )((u16 )rp->rx_channel)); napi_gro_receive(napi, skb); } return (num_rcr); } } static int niu_rbr_fill(struct niu *np , struct rx_ring_info *rp , gfp_t mask ) { int blocks_per_page ; int err ; int index ; long tmp ; { blocks_per_page = (int )rp->rbr_blocks_per_page; index = (int )rp->rbr_index; err = 0; goto ldv_50642; ldv_50641: { err = niu_rbr_add_page(np, rp, mask, index); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { goto ldv_50640; } else { } index = index + blocks_per_page; ldv_50642: ; if ((unsigned int )index < rp->rbr_table_size - (unsigned int )blocks_per_page) { goto ldv_50641; } else { } ldv_50640: rp->rbr_index = (unsigned int )index; return (err); } } static void niu_rbr_free(struct niu *np , struct rx_ring_info *rp ) { int i ; struct page *page ; struct page *next ; u64 base ; { i = 0; goto ldv_50655; ldv_50654: page = *(rp->rxhash + (unsigned long )i); goto ldv_50652; ldv_50651: { next = (struct page *)page->__annonCompField37.mapping; base = (u64 )page->__annonCompField43.__annonCompField38.index; (*((np->ops)->unmap_page))(np->device, base, 4096UL, 2); page->__annonCompField43.__annonCompField38.index = 0UL; page->__annonCompField37.mapping = (struct address_space *)0; __free_pages(page, 0U); page = next; } ldv_50652: ; if ((unsigned long )page != (unsigned long )((struct page *)0)) { goto ldv_50651; } else { } i = i + 1; ldv_50655: ; if (i <= 127) { goto ldv_50654; } else { } i = 0; goto ldv_50658; ldv_50657: *(rp->rbr + (unsigned long )i) = 0U; i = i + 1; ldv_50658: ; if ((unsigned int )i < rp->rbr_table_size) { goto ldv_50657; } else { } rp->rbr_index = 0U; return; } } static int release_tx_packet(struct niu *np , struct tx_ring_info *rp , int idx ) { struct tx_buff_info *tb ; struct sk_buff *skb ; struct tx_pkt_hdr *tp ; u64 tx_flags ; int i ; int len ; unsigned int tmp ; long tmp___0 ; unsigned char *tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; { { tb = (struct tx_buff_info *)(& rp->tx_buffs) + (unsigned long )idx; skb = tb->skb; tp = (struct tx_pkt_hdr *)skb->data; tx_flags = __le64_to_cpup((__le64 const *)(& tp->flags)); rp->tx_packets = rp->tx_packets + 1ULL; rp->tx_bytes = rp->tx_bytes + (((tx_flags & 1073676288ULL) >> 16) - (tx_flags & 7ULL) / 2ULL); tmp = skb_headlen((struct sk_buff const *)skb); len = (int )tmp; (*((np->ops)->unmap_single))(np->device, tb->mapping, (size_t )len, 1); } if ((*(rp->descr + (unsigned long )idx) & 4611686018427387904ULL) != 0ULL) { rp->mark_pending = (u16 )((int )rp->mark_pending - 1); } else { } tb->skb = (struct sk_buff *)0; ldv_50671: idx = idx + 1 < rp->pending ? idx + 1 : 0; len = len + -4076; if (len > 0) { goto ldv_50671; } else { } i = 0; goto ldv_50674; ldv_50673: { tb = (struct tx_buff_info *)(& rp->tx_buffs) + (unsigned long )idx; tmp___0 = ldv__builtin_expect((unsigned long )tb->skb != (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/niu.c"), "i" (3590), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); tmp___2 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )i); (*((np->ops)->unmap_page))(np->device, tb->mapping, (size_t )tmp___2, 1); idx = idx + 1 < rp->pending ? idx + 1 : 0; i = i + 1; } ldv_50674: { tmp___3 = skb_end_pointer((struct sk_buff const *)skb); } if (i < (int )((struct skb_shared_info *)tmp___3)->nr_frags) { goto ldv_50673; } else { } { consume_skb(skb); } return (idx); } } static void niu_tx_work(struct niu *np , struct tx_ring_info *rp ) { struct netdev_queue *txq ; u16 pkt_cnt ; u16 tmp ; int cons ; int index ; u64 cs ; long tmp___0 ; u16 tmp___1 ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; bool tmp___2 ; u32 tmp___3 ; bool tmp___4 ; long tmp___5 ; u32 tmp___6 ; long tmp___7 ; { { index = (int )(((long )rp - (long )np->tx_rings) / 4208L); txq = netdev_get_tx_queue((struct net_device const *)np->dev, (unsigned int )index); cs = rp->tx_cs; tmp___0 = ldv__builtin_expect((cs & 49152ULL) == 0ULL, 0L); } if (tmp___0 != 0L) { goto out; } else { } pkt_cnt = (u16 )((cs & 1152640029630136320ULL) >> 48); tmp = pkt_cnt; pkt_cnt = (unsigned int )((int )pkt_cnt - (int )rp->last_pkt_cnt) & 4095U; rp->last_pkt_cnt = tmp; cons = rp->cons; if ((np->msg_enable & 1024U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "%s() pkt_cnt[%u] cons[%d]\n", "niu_tx_work", (int )pkt_cnt, cons); } } else { } goto ldv_50689; ldv_50688: { cons = release_tx_packet(np, rp, cons); } ldv_50689: tmp___1 = pkt_cnt; pkt_cnt = (u16 )((int )pkt_cnt - 1); if ((unsigned int )tmp___1 != 0U) { goto ldv_50688; } else { } rp->cons = cons; __asm__ volatile ("mfence": : : "memory"); out: { tmp___4 = netif_tx_queue_stopped((struct netdev_queue const *)txq); tmp___5 = ldv__builtin_expect((long )tmp___4, 0L); } if (tmp___5 != 0L) { { tmp___6 = niu_tx_avail(rp); tmp___7 = ldv__builtin_expect(tmp___6 > (u32 )(rp->pending / 4), 0L); } if (tmp___7 != 0L) { __vpp_verify = (void const *)0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_50696; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_50696; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_50696; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_50696; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_50696: pscr_ret__ = pfo_ret__; goto ldv_50702; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_50706; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_50706; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_50706; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_50706; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_50706: pscr_ret__ = pfo_ret_____0; goto ldv_50702; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_50715; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_50715; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_50715; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_50715; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_50715: pscr_ret__ = pfo_ret_____1; goto ldv_50702; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_50724; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_50724; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_50724; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_50724; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_50724: pscr_ret__ = pfo_ret_____2; goto ldv_50702; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_50702; switch_break: /* CIL Label */ ; } ldv_50702: { __netif_tx_lock(txq, pscr_ret__); tmp___2 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } if ((int )tmp___2) { { tmp___3 = niu_tx_avail(rp); } if (tmp___3 > (u32 )(rp->pending / 4)) { { netif_tx_wake_queue(txq); } } else { } } else { } { __netif_tx_unlock(txq); } } else { } } else { } return; } } __inline static void niu_sync_rx_discard_stats(struct niu *np , struct rx_ring_info *rp , int const limit ) { int rx_channel ; u32 misc ; u32 wred ; unsigned long tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; long tmp___3 ; long tmp___4 ; { { rx_channel = rp->rx_channel; tmp = readq((void const volatile *)(np->regs + ((unsigned long )rx_channel * 512UL + 6291600UL))); misc = (u32 )tmp; tmp___1 = ldv__builtin_expect(((unsigned long long )misc & 65535ULL) > (unsigned long long )limit, 0L); } if (tmp___1 != 0L) { { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )rx_channel * 512UL + 6291600UL))); rp->rx_errors = rp->rx_errors + ((unsigned long long )misc & 65535ULL); tmp___0 = ldv__builtin_expect(((unsigned long long )misc & 65536ULL) != 0ULL, 0L); } if (tmp___0 != 0L) { { dev_err((struct device const *)np->device, "rx-%d: Counter overflow RXMISC discard\n", rx_channel); } } else { } if ((np->msg_enable & 64U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "rx-%d: MISC drop=%u over=%u\n", rx_channel, misc, misc - (u32 )limit); } } else { } } else { } { tmp___2 = readq((void const volatile *)(np->regs + ((unsigned long )rx_channel * 64UL + 7012360UL))); wred = (u32 )tmp___2; tmp___4 = ldv__builtin_expect(((unsigned long long )wred & 65535ULL) > (unsigned long long )limit, 0L); } if (tmp___4 != 0L) { { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )rx_channel * 64UL + 7012360UL))); rp->rx_dropped = rp->rx_dropped + ((unsigned long long )wred & 65535ULL); tmp___3 = ldv__builtin_expect(((unsigned long long )wred & 65536ULL) != 0ULL, 0L); } if (tmp___3 != 0L) { { dev_err((struct device const *)np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel); } } else { } if ((np->msg_enable & 64U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "rx-%d: WRED drop=%u over=%u\n", rx_channel, wred, wred - (u32 )limit); } } else { } } else { } return; } } static int niu_rx_work(struct napi_struct *napi , struct niu *np , struct rx_ring_info *rp , int budget ) { int qlen ; int rcr_done ; int work_done ; struct rxdma_mailbox *mbox ; u64 stat ; unsigned long tmp ; unsigned long tmp___0 ; int _min1 ; int _min2 ; int tmp___1 ; unsigned int i ; { { rcr_done = 0; work_done = 0; mbox = rp->mbox; tmp = readq((void const volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291568UL))); stat = (u64 )tmp; tmp___0 = readq((void const volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291536UL))); qlen = (int )tmp___0 & 65535; mbox->rx_dma_ctl_stat = 0ULL; mbox->rcrstat_a = 0ULL; } if ((np->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "%s(chan[%d]), stat[%llx] qlen=%d\n", "niu_rx_work", rp->rx_channel, stat, qlen); } } else { } work_done = 0; rcr_done = work_done; _min1 = qlen; _min2 = budget; qlen = _min1 < _min2 ? _min1 : _min2; goto ldv_50756; ldv_50755: { tmp___1 = niu_process_rx_pkt(napi, np, rp); rcr_done = rcr_done + tmp___1; work_done = work_done + 1; } ldv_50756: ; if (work_done < qlen) { goto ldv_50755; } else { } if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) { i = 0U; goto ldv_50760; ldv_50759: { niu_rbr_refill(np, rp, 32U); i = i + 1U; } ldv_50760: ; if (i < rp->rbr_refill_pending) { goto ldv_50759; } else { } rp->rbr_refill_pending = 0U; } else { } { stat = ((unsigned long long )work_done | ((unsigned long long )rcr_done << 16)) | 140737488355328ULL; writeq((unsigned long )stat, (void volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291568UL))); } if (qlen > 10) { { niu_sync_rx_discard_stats(np, rp, 32767); } } else { } return (work_done); } } static int niu_poll_core(struct niu *np , struct niu_ldg *lp , int budget ) { u64 v0 ; u32 tx_vec ; u32 rx_vec ; int i ; int work_done ; struct tx_ring_info *rp ; struct rx_ring_info *rp___0 ; int this_work_done ; { v0 = lp->v0; tx_vec = (u32 )(v0 >> 32); rx_vec = (u32 )v0; work_done = 0; if ((np->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "%s() v0[%016llx]\n", "niu_poll_core", v0); } } else { } i = 0; goto ldv_50775; ldv_50774: rp = np->tx_rings + (unsigned long )i; if ((tx_vec & (u32 )(1 << (int )rp->tx_channel)) != 0U) { { niu_tx_work(np, rp); } } else { } { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )((int )rp->tx_channel + 32) + 1280UL) * 8192UL)); i = i + 1; } ldv_50775: ; if (i < np->num_tx_rings) { goto ldv_50774; } else { } i = 0; goto ldv_50780; ldv_50779: rp___0 = np->rx_rings + (unsigned long )i; if ((rx_vec & (u32 )(1 << rp___0->rx_channel)) != 0U) { { this_work_done = niu_rx_work(& lp->napi, np, rp___0, budget); budget = budget - this_work_done; work_done = work_done + this_work_done; } } else { } { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )rp___0->rx_channel + 1280UL) * 8192UL)); i = i + 1; } ldv_50780: ; if (i < np->num_rx_rings) { goto ldv_50779; } else { } return (work_done); } } static int niu_poll(struct napi_struct *napi , int budget ) { struct niu_ldg *lp ; struct napi_struct const *__mptr ; struct niu *np ; int work_done ; { { __mptr = (struct napi_struct const *)napi; lp = (struct niu_ldg *)__mptr; np = lp->np; work_done = niu_poll_core(np, lp, budget); } if (work_done < budget) { { napi_complete(napi); niu_ldg_rearm(np, lp, 1); } } else { } return (work_done); } } static void niu_log_rxchan_errors(struct niu *np , struct rx_ring_info *rp , u64 stat ) { { { netdev_err((struct net_device const *)np->dev, "RX channel %u errors ( ", rp->rx_channel); } if ((stat & 9007199254740992ULL) != 0ULL) { { printk("RBR_TMOUT "); } } else { } if ((stat & 4503599627370496ULL) != 0ULL) { { printk("RSP_CNT "); } } else { } if ((stat & 2251799813685248ULL) != 0ULL) { { printk("BYTE_EN_BUS "); } } else { } if ((stat & 1125899906842624ULL) != 0ULL) { { printk("RSP_DAT "); } } else { } if ((stat & 562949953421312ULL) != 0ULL) { { printk("RCR_ACK "); } } else { } if ((stat & 17592186044416ULL) != 0ULL) { { printk("RCR_SHA_PAR "); } } else { } if ((stat & 8796093022208ULL) != 0ULL) { { printk("RBR_PRE_PAR "); } } else { } if ((stat & 274877906944ULL) != 0ULL) { { printk("CONFIG "); } } else { } if ((stat & 137438953472ULL) != 0ULL) { { printk("RCRINCON "); } } else { } if ((stat & 68719476736ULL) != 0ULL) { { printk("RCRFULL "); } } else { } if ((stat & 17179869184ULL) != 0ULL) { { printk("RBRFULL "); } } else { } if ((stat & 8589934592ULL) != 0ULL) { { printk("RBRLOGPAGE "); } } else { } if ((stat & 4294967296ULL) != 0ULL) { { printk("CFIGLOGPAGE "); } } else { } if ((stat & 281474976710656ULL) != 0ULL) { { printk("DC_FIDO "); } } else { } { printk(")\n"); } return; } } static int niu_rx_error(struct niu *np , struct rx_ring_info *rp ) { u64 stat ; unsigned long tmp ; int err ; { { tmp = readq((void const volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291568UL))); stat = (u64 )tmp; err = 0; } if ((stat & 17759822912946176ULL) != 0ULL) { err = -22; } else { } if (err != 0) { { netdev_err((struct net_device const *)np->dev, "RX channel %u error, stat[%llx]\n", rp->rx_channel, stat); niu_log_rxchan_errors(np, rp, stat); } } else { } { writeq((unsigned long )stat & 395308789923840UL, (void volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291568UL))); } return (err); } } static void niu_log_txchan_errors(struct niu *np , struct tx_ring_info *rp , u64 cs ) { { { netdev_err((struct net_device const *)np->dev, "TX channel %u errors ( ", (int )rp->tx_channel); } if ((cs & 128ULL) != 0ULL) { { printk("MBOX "); } } else { } if ((cs & 64ULL) != 0ULL) { { printk("PKT_SIZE "); } } else { } if ((cs & 32ULL) != 0ULL) { { printk("TX_RING_OFLOW "); } } else { } if ((cs & 16ULL) != 0ULL) { { printk("PREF_BUF_PAR "); } } else { } if ((cs & 8ULL) != 0ULL) { { printk("NACK_PREF "); } } else { } if ((cs & 4ULL) != 0ULL) { { printk("NACK_PKT_RD "); } } else { } if ((cs & 2ULL) != 0ULL) { { printk("CONF_PART "); } } else { } if ((int )cs & 1) { { printk("PKT_PTR "); } } else { } { printk(")\n"); } return; } } static int niu_tx_error(struct niu *np , struct tx_ring_info *rp ) { u64 cs ; u64 logh ; u64 logl ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { tmp = readq((void const volatile *)(np->regs + ((unsigned long )rp->tx_channel * 512UL + 6553640UL))); cs = (u64 )tmp; tmp___0 = readq((void const volatile *)(np->regs + ((unsigned long )rp->tx_channel * 512UL + 6553672UL))); logh = (u64 )tmp___0; tmp___1 = readq((void const volatile *)(np->regs + ((unsigned long )rp->tx_channel * 512UL + 6553680UL))); logl = (u64 )tmp___1; netdev_err((struct net_device const *)np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n", (int )rp->tx_channel, cs, logh, logl); niu_log_txchan_errors(np, rp, cs); } return (-19); } } static int niu_mif_interrupt(struct niu *np ) { u64 mif_status ; unsigned long tmp ; int phy_mdint ; u64 xrxmac_stat ; unsigned long tmp___0 ; { { tmp = readq((void const volatile *)np->regs + 1663040U); mif_status = (u64 )tmp; phy_mdint = 0; } if ((np->flags & 65536U) != 0U) { { tmp___0 = readq((void const volatile *)np->mac_regs + 40U); xrxmac_stat = (u64 )tmp___0; } if ((xrxmac_stat & 65536ULL) != 0ULL) { phy_mdint = 1; } else { } } else { } { netdev_err((struct net_device const *)np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n", mif_status, phy_mdint); } return (-19); } } static void niu_xmac_interrupt(struct niu *np ) { struct niu_xmac_stats *mp ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { mp = & np->mac_stats.xmac; tmp = readq((void const volatile *)np->mac_regs + 32U); val = (u64 )tmp; } if ((val & 2048ULL) != 0ULL) { mp->tx_frames = mp->tx_frames + 4294967295ULL; } else { } if ((val & 1024ULL) != 0ULL) { mp->tx_bytes = mp->tx_bytes + 4294967295ULL; } else { } if ((val & 16ULL) != 0ULL) { mp->tx_fifo_errors = mp->tx_fifo_errors + 1ULL; } else { } if ((val & 8ULL) != 0ULL) { mp->tx_overflow_errors = mp->tx_overflow_errors + 1ULL; } else { } if ((val & 4ULL) != 0ULL) { mp->tx_max_pkt_size_errors = mp->tx_max_pkt_size_errors + 1ULL; } else { } if ((val & 2ULL) != 0ULL) { mp->tx_underflow_errors = mp->tx_underflow_errors + 1ULL; } else { } { tmp___0 = readq((void const volatile *)np->mac_regs + 40U); val = (u64 )tmp___0; } if ((val & 524288ULL) != 0ULL) { mp->rx_local_faults = mp->rx_local_faults + 1ULL; } else { } if ((val & 262144ULL) != 0ULL) { mp->rx_remote_faults = mp->rx_remote_faults + 1ULL; } else { } if ((val & 131072ULL) != 0ULL) { mp->rx_link_faults = mp->rx_link_faults + 255ULL; } else { } if ((val & 65536ULL) != 0ULL) { mp->rx_align_errors = mp->rx_align_errors + 255ULL; } else { } if ((val & 32768ULL) != 0ULL) { mp->rx_frags = mp->rx_frags + 2097151ULL; } else { } if ((val & 16384ULL) != 0ULL) { mp->rx_mcasts = mp->rx_mcasts + 2097151ULL; } else { } if ((val & 8192ULL) != 0ULL) { mp->rx_bcasts = mp->rx_bcasts + 2097151ULL; } else { } if ((val & 8192ULL) != 0ULL) { mp->rx_bcasts = mp->rx_bcasts + 2097151ULL; } else { } if ((val & 128ULL) != 0ULL) { mp->rx_hist_cnt1 = mp->rx_hist_cnt1 + 2097151ULL; } else { } if ((val & 256ULL) != 0ULL) { mp->rx_hist_cnt2 = mp->rx_hist_cnt2 + 2097151ULL; } else { } if ((val & 512ULL) != 0ULL) { mp->rx_hist_cnt3 = mp->rx_hist_cnt3 + 1048575ULL; } else { } if ((val & 1024ULL) != 0ULL) { mp->rx_hist_cnt4 = mp->rx_hist_cnt4 + 524287ULL; } else { } if ((val & 2048ULL) != 0ULL) { mp->rx_hist_cnt5 = mp->rx_hist_cnt5 + 262143ULL; } else { } if ((val & 4096ULL) != 0ULL) { mp->rx_hist_cnt6 = mp->rx_hist_cnt6 + 65535ULL; } else { } if ((val & 1048576ULL) != 0ULL) { mp->rx_hist_cnt7 = mp->rx_hist_cnt7 + 134217727ULL; } else { } if ((val & 64ULL) != 0ULL) { mp->rx_octets = mp->rx_octets + 4294967295ULL; } else { } if ((val & 32ULL) != 0ULL) { mp->rx_code_violations = mp->rx_code_violations + 255ULL; } else { } if ((val & 16ULL) != 0ULL) { mp->rx_len_errors = mp->rx_len_errors + 255ULL; } else { } if ((val & 8ULL) != 0ULL) { mp->rx_crc_errors = mp->rx_crc_errors + 255ULL; } else { } if ((val & 4ULL) != 0ULL) { mp->rx_underflows = mp->rx_underflows + 1ULL; } else { } if ((val & 2ULL) != 0ULL) { mp->rx_overflows = mp->rx_overflows + 1ULL; } else { } { tmp___1 = readq((void const volatile *)np->mac_regs + 48U); val = (u64 )tmp___1; } if ((val & 4ULL) != 0ULL) { mp->pause_off_state = mp->pause_off_state + 1ULL; } else { } if ((val & 2ULL) != 0ULL) { mp->pause_on_state = mp->pause_on_state + 1ULL; } else { } if ((int )val & 1) { mp->pause_received = mp->pause_received + 1ULL; } else { } return; } } static void niu_bmac_interrupt(struct niu *np ) { struct niu_bmac_stats *mp ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { mp = & np->mac_stats.bmac; tmp = readq((void const volatile *)np->mac_regs + 32U); val = (u64 )tmp; } if ((val & 2ULL) != 0ULL) { mp->tx_underflow_errors = mp->tx_underflow_errors + 1ULL; } else { } if ((val & 4ULL) != 0ULL) { mp->tx_max_pkt_size_errors = mp->tx_max_pkt_size_errors + 1ULL; } else { } if ((val & 1024ULL) != 0ULL) { mp->tx_bytes = mp->tx_bytes + 4294967295ULL; } else { } if ((val & 2048ULL) != 0ULL) { mp->tx_frames = mp->tx_frames + 4294967295ULL; } else { } { tmp___0 = readq((void const volatile *)np->mac_regs + 40U); val = (u64 )tmp___0; } if ((val & 2ULL) != 0ULL) { mp->rx_overflows = mp->rx_overflows + 1ULL; } else { } if ((val & 4ULL) != 0ULL) { mp->rx_frames = mp->rx_frames + 65535ULL; } else { } if ((val & 8ULL) != 0ULL) { mp->rx_align_errors = mp->rx_align_errors + 65535ULL; } else { } if ((val & 16ULL) != 0ULL) { mp->rx_crc_errors = mp->rx_crc_errors + 65535ULL; } else { } if ((val & 32ULL) != 0ULL) { mp->rx_len_errors = mp->rx_len_errors + 65535ULL; } else { } { tmp___1 = readq((void const volatile *)np->mac_regs + 48U); val = (u64 )tmp___1; } if ((val & 4ULL) != 0ULL) { mp->pause_off_state = mp->pause_off_state + 1ULL; } else { } if ((val & 2ULL) != 0ULL) { mp->pause_on_state = mp->pause_on_state + 1ULL; } else { } if ((int )val & 1) { mp->pause_received = mp->pause_received + 1ULL; } else { } return; } } static int niu_mac_interrupt(struct niu *np ) { { if ((np->flags & 65536U) != 0U) { { niu_xmac_interrupt(np); } } else { { niu_bmac_interrupt(np); } } return (0); } } static void niu_log_device_error(struct niu *np , u64 stat ) { { { netdev_err((struct net_device const *)np->dev, "Core device errors ( "); } if ((stat & 1024ULL) != 0ULL) { { printk("META2 "); } } else { } if ((stat & 512ULL) != 0ULL) { { printk("META1 "); } } else { } if ((stat & 256ULL) != 0ULL) { { printk("PEU "); } } else { } if ((stat & 128ULL) != 0ULL) { { printk("TXC "); } } else { } if ((stat & 64ULL) != 0ULL) { { printk("RDMC "); } } else { } if ((stat & 32ULL) != 0ULL) { { printk("TDMC "); } } else { } if ((stat & 16ULL) != 0ULL) { { printk("ZCP "); } } else { } if ((stat & 8ULL) != 0ULL) { { printk("FFLP "); } } else { } if ((stat & 4ULL) != 0ULL) { { printk("IPP "); } } else { } if ((stat & 2ULL) != 0ULL) { { printk("MAC "); } } else { } if ((int )stat & 1) { { printk("SMX "); } } else { } { printk(")\n"); } return; } } static int niu_device_error(struct niu *np ) { u64 stat ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->regs + 524440U); stat = (u64 )tmp; netdev_err((struct net_device const *)np->dev, "Core device error, stat[%llx]\n", stat); niu_log_device_error(np, stat); } return (-19); } } static int niu_slowpath_interrupt(struct niu *np , struct niu_ldg *lp , u64 v0 , u64 v1 , u64 v2 ) { int i ; int err ; u32 rx_vec ; struct rx_ring_info *rp ; int r ; int tmp ; u32 tx_vec ; struct tx_ring_info *rp___0 ; int r___0 ; int tmp___0 ; int r___1 ; int tmp___1 ; int r___2 ; int tmp___2 ; int r___3 ; int tmp___3 ; { err = 0; lp->v0 = v0; lp->v1 = v1; lp->v2 = v2; if ((v1 & 4294967295ULL) != 0ULL) { rx_vec = (u32 )v1; i = 0; goto ldv_50854; ldv_50853: rp = np->rx_rings + (unsigned long )i; if ((rx_vec & (u32 )(1 << rp->rx_channel)) != 0U) { { tmp = niu_rx_error(np, rp); r = tmp; } if (r != 0) { err = r; } else if (v0 == 0ULL) { { writeq(140737488355328UL, (void volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291568UL))); } } else { } } else { } i = i + 1; ldv_50854: ; if (i < np->num_rx_rings) { goto ldv_50853; } else { } } else { } if ((v1 & 9223372032559808512ULL) != 0ULL) { tx_vec = (u32 )(v1 >> 32) & 2147483647U; i = 0; goto ldv_50860; ldv_50859: rp___0 = np->tx_rings + (unsigned long )i; if ((tx_vec & (u32 )(1 << (int )rp___0->tx_channel)) != 0U) { { tmp___0 = niu_tx_error(np, rp___0); r___0 = tmp___0; } if (r___0 != 0) { err = r___0; } else { } } else { } i = i + 1; ldv_50860: ; if (i < np->num_tx_rings) { goto ldv_50859; } else { } } else { } if ((long )(v0 | v1) < 0L) { { tmp___1 = niu_mif_interrupt(np); r___1 = tmp___1; } if (r___1 != 0) { err = r___1; } else { } } else { } if (v2 != 0ULL) { if ((v2 & 495ULL) != 0ULL) { { tmp___2 = niu_mac_interrupt(np); r___2 = tmp___2; } if (r___2 != 0) { err = r___2; } else { } } else { } if ((v2 & 528ULL) != 0ULL) { { tmp___3 = niu_device_error(np); r___3 = tmp___3; } if (r___3 != 0) { err = r___3; } else { } } else { } } else { } if (err != 0) { { niu_enable_interrupts(np, 0); } } else { } return (err); } } static void niu_rxchan_intr(struct niu *np , struct rx_ring_info *rp , int ldn ) { struct rxdma_mailbox *mbox ; u64 stat_write ; u64 stat ; __u64 tmp ; { { mbox = rp->mbox; tmp = __le64_to_cpup((__le64 const *)(& mbox->rx_dma_ctl_stat)); stat = tmp; stat_write = 105553116266496ULL; writeq((unsigned long )stat_write, (void volatile *)(np->regs + ((unsigned long )rp->rx_channel * 512UL + 6291568UL))); } if ((np->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "%s() stat[%llx]\n", "niu_rxchan_intr", stat); } } else { } return; } } static void niu_txchan_intr(struct niu *np , struct tx_ring_info *rp , int ldn ) { unsigned long tmp ; { { tmp = readq((void const volatile *)(np->regs + ((unsigned long )rp->tx_channel * 512UL + 6553640UL))); rp->tx_cs = (u64 )tmp; } if ((np->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "%s() cs[%llx]\n", "niu_txchan_intr", rp->tx_cs); } } else { } return; } } static void __niu_fastpath_interrupt(struct niu *np , int ldg , u64 v0 ) { struct niu_parent *parent ; u32 rx_vec ; u32 tx_vec ; int i ; struct rx_ring_info *rp ; int ldn ; struct tx_ring_info *rp___0 ; int ldn___0 ; { parent = np->parent; tx_vec = (u32 )(v0 >> 32); rx_vec = (u32 )v0; i = 0; goto ldv_50893; ldv_50892: rp = np->rx_rings + (unsigned long )i; ldn = rp->rx_channel; if ((int )parent->ldg_map[ldn] != ldg) { goto ldv_50891; } else { } { writeq(3UL, (void volatile *)(np->regs + ((unsigned long )ldn + 1280UL) * 8192UL)); } if ((rx_vec & (u32 )(1 << rp->rx_channel)) != 0U) { { niu_rxchan_intr(np, rp, ldn); } } else { } ldv_50891: i = i + 1; ldv_50893: ; if (i < np->num_rx_rings) { goto ldv_50892; } else { } i = 0; goto ldv_50899; ldv_50898: rp___0 = np->tx_rings + (unsigned long )i; ldn___0 = (int )rp___0->tx_channel + 32; if ((int )parent->ldg_map[ldn___0] != ldg) { goto ldv_50897; } else { } { writeq(3UL, (void volatile *)(np->regs + ((unsigned long )ldn___0 + 1280UL) * 8192UL)); } if ((tx_vec & (u32 )(1 << (int )rp___0->tx_channel)) != 0U) { { niu_txchan_intr(np, rp___0, ldn___0); } } else { } ldv_50897: i = i + 1; ldv_50899: ; if (i < np->num_tx_rings) { goto ldv_50898; } else { } return; } } static void niu_schedule_napi(struct niu *np , struct niu_ldg *lp , u64 v0 , u64 v1 , u64 v2 ) { bool tmp ; long tmp___0 ; { { tmp = napi_schedule_prep(& lp->napi); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { { lp->v0 = v0; lp->v1 = v1; lp->v2 = v2; __niu_fastpath_interrupt(np, (int )lp->ldg_num, v0); __napi_schedule(& lp->napi); } } else { } return; } } static irqreturn_t niu_interrupt(int irq , void *dev_id ) { struct niu_ldg *lp ; struct niu *np ; int ldg ; unsigned long flags ; u64 v0 ; u64 v1 ; u64 v2 ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; long tmp___2 ; int err ; int tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; { lp = (struct niu_ldg *)dev_id; np = lp->np; ldg = (int )lp->ldg_num; if ((np->msg_enable & 512U) != 0U) { { printk("\017niu: %s() ldg[%p](%d)", "niu_interrupt", lp, ldg); } } else { } { ldv___ldv_spin_lock_97(& np->lock); tmp = readq((void const volatile *)(np->regs + ((unsigned long )ldg + 1024UL) * 8192UL)); v0 = (u64 )tmp; tmp___0 = readq((void const volatile *)(np->regs + ((unsigned long )ldg * 8192UL + 8388616UL))); v1 = (u64 )tmp___0; tmp___1 = readq((void const volatile *)(np->regs + ((unsigned long )ldg * 8192UL + 8388624UL))); v2 = (u64 )tmp___1; } if ((np->msg_enable & 512U) != 0U) { { printk(" v0[%llx] v1[%llx] v2[%llx]\n", v0, v1, v2); } } else { } { tmp___2 = ldv__builtin_expect(((v0 | v1) | v2) == 0ULL, 0L); } if (tmp___2 != 0L) { { ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return (0); } else { } { tmp___4 = ldv__builtin_expect((long )((long )v0 < 0L || v1 != 0ULL), 0L); } if (tmp___4 != 0L) { goto _L; } else { { tmp___5 = ldv__builtin_expect(v2 != 0ULL, 0L); } if (tmp___5 != 0L) { _L: /* CIL Label */ { tmp___3 = niu_slowpath_interrupt(np, lp, v0, v1, v2); err = tmp___3; } if (err != 0) { goto out; } else { } } else { } } { tmp___6 = ldv__builtin_expect((v0 & 9223372036854775807ULL) != 0ULL, 1L); } if (tmp___6 != 0L) { { niu_schedule_napi(np, lp, v0, v1, v2); } } else { { niu_ldg_rearm(np, lp, 1); } } out: { ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return (1); } } static void niu_free_rx_ring_info(struct niu *np , struct rx_ring_info *rp ) { { if ((unsigned long )rp->mbox != (unsigned long )((struct rxdma_mailbox *)0)) { { (*((np->ops)->free_coherent))(np->device, 64UL, (void *)rp->mbox, rp->mbox_dma); rp->mbox = (struct rxdma_mailbox *)0; } } else { } if ((unsigned long )rp->rcr != (unsigned long )((__le64 *)0ULL)) { { (*((np->ops)->free_coherent))(np->device, 2048UL, (void *)rp->rcr, rp->rcr_dma); rp->rcr = (__le64 *)0ULL; rp->rcr_table_size = 0U; rp->rcr_index = 0U; } } else { } if ((unsigned long )rp->rbr != (unsigned long )((__le32 *)0U)) { { niu_rbr_free(np, rp); (*((np->ops)->free_coherent))(np->device, 512UL, (void *)rp->rbr, rp->rbr_dma); rp->rbr = (__le32 *)0U; rp->rbr_table_size = 0U; rp->rbr_index = 0U; } } else { } { kfree((void const *)rp->rxhash); rp->rxhash = (struct page **)0; } return; } } static void niu_free_tx_ring_info(struct niu *np , struct tx_ring_info *rp ) { int i ; { if ((unsigned long )rp->mbox != (unsigned long )((struct txdma_mailbox *)0)) { { (*((np->ops)->free_coherent))(np->device, 64UL, (void *)rp->mbox, rp->mbox_dma); rp->mbox = (struct txdma_mailbox *)0; } } else { } if ((unsigned long )rp->descr != (unsigned long )((__le64 *)0ULL)) { i = 0; goto ldv_50932; ldv_50931: ; if ((unsigned long )rp->tx_buffs[i].skb != (unsigned long )((struct sk_buff *)0)) { { release_tx_packet(np, rp, i); } } else { } i = i + 1; ldv_50932: ; if (i <= 255) { goto ldv_50931; } else { } { (*((np->ops)->free_coherent))(np->device, 2048UL, (void *)rp->descr, rp->descr_dma); rp->descr = (__le64 *)0ULL; rp->pending = 0; rp->prod = 0; rp->cons = 0; rp->wrap_bit = 0; } } else { } return; } } static void niu_free_channels(struct niu *np ) { int i ; struct rx_ring_info *rp ; struct tx_ring_info *rp___0 ; { if ((unsigned long )np->rx_rings != (unsigned long )((struct rx_ring_info *)0)) { i = 0; goto ldv_50940; ldv_50939: { rp = np->rx_rings + (unsigned long )i; niu_free_rx_ring_info(np, rp); i = i + 1; } ldv_50940: ; if (i < np->num_rx_rings) { goto ldv_50939; } else { } { kfree((void const *)np->rx_rings); np->rx_rings = (struct rx_ring_info *)0; np->num_rx_rings = 0; } } else { } if ((unsigned long )np->tx_rings != (unsigned long )((struct tx_ring_info *)0)) { i = 0; goto ldv_50944; ldv_50943: { rp___0 = np->tx_rings + (unsigned long )i; niu_free_tx_ring_info(np, rp___0); i = i + 1; } ldv_50944: ; if (i < np->num_tx_rings) { goto ldv_50943; } else { } { kfree((void const *)np->tx_rings); np->tx_rings = (struct tx_ring_info *)0; np->num_tx_rings = 0; } } else { } return; } } extern void __compiletime_assert_4345(void) ; static int niu_alloc_rx_ring_info(struct niu *np , struct rx_ring_info *rp ) { bool __cond ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_4345(); } } else { } { tmp = kcalloc(128UL, 8UL, 208U); rp->rxhash = (struct page **)tmp; } if ((unsigned long )rp->rxhash == (unsigned long )((struct page **)0)) { return (-12); } else { } { tmp___0 = (*((np->ops)->alloc_coherent))(np->device, 64UL, & rp->mbox_dma, 208U); rp->mbox = (struct rxdma_mailbox *)tmp___0; } if ((unsigned long )rp->mbox == (unsigned long )((struct rxdma_mailbox *)0)) { return (-12); } else { } if (((unsigned long )rp->mbox & 63UL) != 0UL) { { netdev_err((struct net_device const *)np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n", rp->mbox); } return (-22); } else { } { tmp___1 = (*((np->ops)->alloc_coherent))(np->device, 2048UL, & rp->rcr_dma, 208U); rp->rcr = (__le64 *)tmp___1; } if ((unsigned long )rp->rcr == (unsigned long )((__le64 *)0ULL)) { return (-12); } else { } if (((unsigned long )rp->rcr & 63UL) != 0UL) { { netdev_err((struct net_device const *)np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n", rp->rcr); } return (-22); } else { } { rp->rcr_table_size = 256U; rp->rcr_index = 0U; tmp___2 = (*((np->ops)->alloc_coherent))(np->device, 512UL, & rp->rbr_dma, 208U); rp->rbr = (__le32 *)tmp___2; } if ((unsigned long )rp->rbr == (unsigned long )((__le32 *)0U)) { return (-12); } else { } if (((unsigned long )rp->rbr & 63UL) != 0UL) { { netdev_err((struct net_device const *)np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n", rp->rbr); } return (-22); } else { } rp->rbr_table_size = 128U; rp->rbr_index = 0U; rp->rbr_pending = 0U; return (0); } } static void niu_set_max_burst(struct niu *np , struct tx_ring_info *rp ) { int mtu ; { mtu = (int )(np->dev)->mtu; rp->max_burst = mtu + 32; if (rp->max_burst > 4096) { rp->max_burst = 4096; } else { } return; } } extern void __compiletime_assert_4408(void) ; static int niu_alloc_tx_ring_info(struct niu *np , struct tx_ring_info *rp ) { bool __cond ; void *tmp ; void *tmp___0 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_4408(); } } else { } { tmp = (*((np->ops)->alloc_coherent))(np->device, 64UL, & rp->mbox_dma, 208U); rp->mbox = (struct txdma_mailbox *)tmp; } if ((unsigned long )rp->mbox == (unsigned long )((struct txdma_mailbox *)0)) { return (-12); } else { } if (((unsigned long )rp->mbox & 63UL) != 0UL) { { netdev_err((struct net_device const *)np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n", rp->mbox); } return (-22); } else { } { tmp___0 = (*((np->ops)->alloc_coherent))(np->device, 2048UL, & rp->descr_dma, 208U); rp->descr = (__le64 *)tmp___0; } if ((unsigned long )rp->descr == (unsigned long )((__le64 *)0ULL)) { return (-12); } else { } if (((unsigned long )rp->descr & 63UL) != 0UL) { { netdev_err((struct net_device const *)np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n", rp->descr); } return (-22); } else { } { rp->pending = 256; rp->prod = 0; rp->cons = 0; rp->wrap_bit = 0; rp->mark_freq = (u16 )(rp->pending / 4); niu_set_max_burst(np, rp); } return (0); } } static void niu_size_rbr(struct niu *np , struct rx_ring_info *rp ) { u16 bss ; int _min1 ; int _min2 ; { _min1 = 12; _min2 = 15; bss = (u16 )(_min1 < _min2 ? _min1 : _min2); rp->rbr_block_size = (u16 )(1 << (int )bss); rp->rbr_blocks_per_page = (u16 )(1 << (12 - (int )bss)); rp->rbr_sizes[0] = 256U; rp->rbr_sizes[1] = 1024U; if ((np->dev)->mtu > 1500U) { { if (4096UL == 4096UL) { goto case_4096; } else { } goto switch_default; case_4096: /* CIL Label */ rp->rbr_sizes[2] = 4096U; goto ldv_50976; switch_default: /* CIL Label */ rp->rbr_sizes[2] = 8192U; goto ldv_50976; switch_break: /* CIL Label */ ; } ldv_50976: ; } else { rp->rbr_sizes[2] = 2048U; } rp->rbr_sizes[3] = rp->rbr_block_size; return; } } static int niu_alloc_channels(struct niu *np ) { struct niu_parent *parent ; int first_rx_channel ; int first_tx_channel ; int num_rx_rings ; int num_tx_rings ; struct rx_ring_info *rx_rings ; struct tx_ring_info *tx_rings ; int i ; int port ; int err ; void *tmp ; struct rx_ring_info *rp ; void *tmp___0 ; struct tx_ring_info *rp___0 ; { parent = np->parent; port = (int )np->port; first_tx_channel = 0; first_rx_channel = first_tx_channel; i = 0; goto ldv_50992; ldv_50991: first_rx_channel = first_rx_channel + (int )parent->rxchan_per_port[i]; first_tx_channel = first_tx_channel + (int )parent->txchan_per_port[i]; i = i + 1; ldv_50992: ; if (i < port) { goto ldv_50991; } else { } { num_rx_rings = (int )parent->rxchan_per_port[port]; num_tx_rings = (int )parent->txchan_per_port[port]; tmp = kcalloc((size_t )num_rx_rings, 168UL, 208U); rx_rings = (struct rx_ring_info *)tmp; err = -12; } if ((unsigned long )rx_rings == (unsigned long )((struct rx_ring_info *)0)) { goto out_err; } else { } { np->num_rx_rings = num_rx_rings; __asm__ volatile ("": : : "memory"); np->rx_rings = rx_rings; netif_set_real_num_rx_queues(np->dev, (unsigned int )num_rx_rings); i = 0; } goto ldv_50997; ldv_50996: { rp = np->rx_rings + (unsigned long )i; rp->np = np; rp->rx_channel = first_rx_channel + i; err = niu_alloc_rx_ring_info(np, rp); } if (err != 0) { goto out_err; } else { } { niu_size_rbr(np, rp); rp->nonsyn_window = 64; rp->nonsyn_threshold = (int )(rp->rcr_table_size - 64U); rp->syn_window = 64; rp->syn_threshold = (int )(rp->rcr_table_size - 64U); rp->rcr_pkt_threshold = 16; rp->rcr_timeout = 8; rp->rbr_kick_thresh = 16U; } if (rp->rbr_kick_thresh < (unsigned int )rp->rbr_blocks_per_page) { rp->rbr_kick_thresh = (unsigned int )rp->rbr_blocks_per_page; } else { } { err = niu_rbr_fill(np, rp, 208U); } if (err != 0) { return (err); } else { } i = i + 1; ldv_50997: ; if (i < np->num_rx_rings) { goto ldv_50996; } else { } { tmp___0 = kcalloc((size_t )num_tx_rings, 4208UL, 208U); tx_rings = (struct tx_ring_info *)tmp___0; err = -12; } if ((unsigned long )tx_rings == (unsigned long )((struct tx_ring_info *)0)) { goto out_err; } else { } { np->num_tx_rings = num_tx_rings; __asm__ volatile ("": : : "memory"); np->tx_rings = tx_rings; netif_set_real_num_tx_queues(np->dev, (unsigned int )num_tx_rings); i = 0; } goto ldv_51001; ldv_51000: { rp___0 = np->tx_rings + (unsigned long )i; rp___0->np = np; rp___0->tx_channel = (int )((u16 )first_tx_channel) + (int )((u16 )i); err = niu_alloc_tx_ring_info(np, rp___0); } if (err != 0) { goto out_err; } else { } i = i + 1; ldv_51001: ; if (i < np->num_tx_rings) { goto ldv_51000; } else { } return (0); out_err: { niu_free_channels(np); } return (err); } } static int niu_tx_cs_sng_poll(struct niu *np , int channel ) { int limit ; u64 val ; unsigned long tmp ; { limit = 1000; goto ldv_51010; ldv_51009: { tmp = readq((void const volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553640UL))); val = (u64 )tmp; } if ((val & 134217728ULL) != 0ULL) { return (0); } else { } ldv_51010: limit = limit - 1; if (limit > 0) { goto ldv_51009; } else { } return (-19); } } static int niu_tx_channel_stop(struct niu *np , int channel ) { u64 val ; unsigned long tmp ; int tmp___0 ; { { tmp = readq((void const volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553640UL))); val = (u64 )tmp; val = val | 268435456ULL; writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553640UL))); tmp___0 = niu_tx_cs_sng_poll(np, channel); } return (tmp___0); } } static int niu_tx_cs_reset_poll(struct niu *np , int channel ) { int limit ; u64 val ; unsigned long tmp ; { limit = 1000; goto ldv_51024; ldv_51023: { tmp = readq((void const volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553640UL))); val = (u64 )tmp; } if ((val & 2147483648ULL) == 0ULL) { return (0); } else { } ldv_51024: limit = limit - 1; if (limit > 0) { goto ldv_51023; } else { } return (-19); } } static int niu_tx_channel_reset(struct niu *np , int channel ) { u64 val ; unsigned long tmp ; int err ; { { tmp = readq((void const volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553640UL))); val = (u64 )tmp; val = val | 2147483648ULL; writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553640UL))); err = niu_tx_cs_reset_poll(np, channel); } if (err == 0) { { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553624UL))); } } else { } return (err); } } static int niu_tx_channel_lpage_init(struct niu *np , int channel ) { u64 val ; { { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 7077896UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 7077904UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 7077912UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 7077920UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 7077928UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 7077936UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 7077944UL))); val = (unsigned long long )np->port << 2; val = val | 3ULL; writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel + 13824UL) * 512UL)); } return (0); } } static void niu_txc_enable_port(struct niu *np , int on ) { unsigned long flags ; u64 val ; u64 mask ; unsigned long tmp ; { { ldv___ldv_spin_lock_100(& (np->parent)->lock); tmp = readq((void const volatile *)np->regs + 7995392U); val = (u64 )tmp; mask = 1ULL << (int )np->port; } if (on != 0) { val = (val | mask) | 16ULL; } else { val = val & ~ mask; if ((val & 0xffffffffffffffefULL) == 0ULL) { val = val & 0xffffffffffffffefULL; } else { } } { writeq((unsigned long )val, (void volatile *)np->regs + 7995392U); ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return; } } static void niu_txc_set_imask(struct niu *np , u64 imask ) { unsigned long flags ; u64 val ; unsigned long tmp ; { { ldv___ldv_spin_lock_102(& (np->parent)->lock); tmp = readq((void const volatile *)np->regs + 7996464U); val = (u64 )tmp; val = val & (u64 )(~ (63 << (int )np->port * 8)); val = val | (imask << (int )np->port * 8); ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return; } } static void niu_txc_port_dma_enable(struct niu *np , int on ) { u64 val ; int i ; { val = 0ULL; if (on != 0) { i = 0; goto ldv_51057; ldv_51056: val = val | (u64 )(1 << (int )(np->tx_rings + (unsigned long )i)->tx_channel); i = i + 1; ldv_51057: ; if (i < np->num_tx_rings) { goto ldv_51056; } else { } } else { } { writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )np->port * 256UL + 7995432UL))); } return; } } static int niu_init_one_tx_channel(struct niu *np , struct tx_ring_info *rp ) { int err ; int channel ; u64 val ; u64 ring_len ; { { channel = (int )rp->tx_channel; err = niu_tx_channel_stop(np, channel); } if (err != 0) { return (err); } else { } { err = niu_tx_channel_reset(np, channel); } if (err != 0) { return (err); } else { } { err = niu_tx_channel_lpage_init(np, channel); } if (err != 0) { return (err); } else { } { writeq((unsigned long )rp->max_burst, (void volatile *)(np->regs + ((unsigned long )channel + 1920UL) * 4096UL)); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553632UL))); } if ((rp->descr_dma & 0xfffff0000000003fULL) != 0ULL) { { netdev_err((struct net_device const *)np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n", channel, rp->descr_dma); } return (-22); } else { } { ring_len = (u64 )(rp->pending / 8); val = (ring_len << 48) | rp->descr_dma; writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel + 12800UL) * 512UL)); } if (((rp->mbox_dma >> 32) & 0xfffffffffffff000ULL) != 0ULL || ((unsigned long long )((unsigned int )rp->mbox_dma) & 0xffffffff0000003fULL) != 0ULL) { { netdev_err((struct net_device const *)np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n", channel, rp->mbox_dma); } return (-22); } else { } { writeq((unsigned long )(rp->mbox_dma >> 32), (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553648UL))); writeq((unsigned long )rp->mbox_dma & 4294967232UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553656UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6553640UL))); rp->last_pkt_cnt = 0U; } return (0); } } static void niu_init_rdc_groups(struct niu *np ) { struct niu_rdc_tables *tp ; int i ; int first_table_num ; struct rdc_table *tbl ; int this_table ; int slot ; { tp = (struct niu_rdc_tables *)(& (np->parent)->rdc_group_cfg) + (unsigned long )np->port; first_table_num = tp->first_table_num; i = 0; goto ldv_51080; ldv_51079: tbl = (struct rdc_table *)(& tp->tables) + (unsigned long )i; this_table = first_table_num + i; slot = 0; goto ldv_51077; ldv_51076: { writeq((unsigned long )tbl->rxdma_channel[slot], (void volatile *)(np->regs + (((unsigned long )this_table + 45568UL) * 16UL + (unsigned long )slot) * 8UL)); slot = slot + 1; } ldv_51077: ; if (slot <= 15) { goto ldv_51076; } else { } i = i + 1; ldv_51080: ; if (i < tp->num_tables) { goto ldv_51079; } else { } { writeq((unsigned long )(np->parent)->rdc_default[(int )np->port], (void volatile *)(np->regs + ((unsigned long )np->port + 851969UL) * 8UL)); } return; } } static void niu_init_drr_weight(struct niu *np ) { int type ; u32 tmp ; u64 val ; { { tmp = phy_decode((np->parent)->port_phy, (int )np->port); type = (int )tmp; } { if (type == 1) { goto case_1; } else { } if (type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ val = 1024ULL; goto ldv_51088; case_2: /* CIL Label */ ; switch_default: /* CIL Label */ val = 102ULL; goto ldv_51088; switch_break: /* CIL Label */ ; } ldv_51088: { writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )np->port + 851973UL) * 8UL)); } return; } } static int niu_init_hostinfo(struct niu *np ) { struct niu_parent *parent ; struct niu_rdc_tables *tp ; int i ; int err ; int num_alt ; int tmp ; int first_rdc_table ; { { parent = np->parent; tp = (struct niu_rdc_tables *)(& parent->rdc_group_cfg) + (unsigned long )np->port; tmp = niu_num_alt_addr(np); num_alt = tmp; first_rdc_table = tp->first_table_num; err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1); } if (err != 0) { return (err); } else { } { err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1); } if (err != 0) { return (err); } else { } i = 0; goto ldv_51101; ldv_51100: { err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1); } if (err != 0) { return (err); } else { } i = i + 1; ldv_51101: ; if (i < num_alt) { goto ldv_51100; } else { } return (0); } } extern void __compiletime_assert_4793(void) ; static int niu_rx_channel_reset(struct niu *np , int channel ) { bool __cond ; int tmp ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_4793(); } } else { } { tmp = __niu_set_and_wait_clear(np, ((unsigned long )channel + 12288UL) * 512UL, 1073741824ULL, 1000, 10, "RXDMA_CFIG1"); } return (tmp); } } static int niu_rx_channel_lpage_init(struct niu *np , int channel ) { u64 val ; { { writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 64UL + 6946824UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 64UL + 6946832UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 64UL + 6946840UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 64UL + 6946848UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 64UL + 6946856UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 64UL + 6946864UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 64UL + 6946872UL))); val = (unsigned long long )np->port << 2; val = val | 3ULL; writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel + 108544UL) * 64UL)); } return (0); } } static void niu_rx_channel_wred_init(struct niu *np , struct rx_ring_info *rp ) { u64 val ; { { val = (((unsigned long long )rp->nonsyn_window | ((unsigned long long )rp->nonsyn_threshold << 4)) | ((unsigned long long )rp->syn_window << 16)) | ((unsigned long long )rp->syn_threshold << 20); writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )rp->rx_channel + 109568UL) * 64UL)); } return; } } static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp , u64 *ret ) { u64 val ; { val = 0ULL; *ret = 0ULL; { if ((int )rp->rbr_block_size == 4096) { goto case_4096; } else { } if ((int )rp->rbr_block_size == 8192) { goto case_8192; } else { } if ((int )rp->rbr_block_size == 16384) { goto case_16384; } else { } if ((int )rp->rbr_block_size == 32768) { goto case_32768; } else { } goto switch_default; case_4096: /* CIL Label */ val = val; goto ldv_51128; case_8192: /* CIL Label */ val = val | 16777216ULL; goto ldv_51128; case_16384: /* CIL Label */ val = val | 33554432ULL; goto ldv_51128; case_32768: /* CIL Label */ val = val | 50331648ULL; goto ldv_51128; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_51128: val = val | 8388608ULL; { if ((int )rp->rbr_sizes[2] == 2048) { goto case_2048; } else { } if ((int )rp->rbr_sizes[2] == 4096) { goto case_4096___0; } else { } if ((int )rp->rbr_sizes[2] == 8192) { goto case_8192___0; } else { } if ((int )rp->rbr_sizes[2] == 16384) { goto case_16384___0; } else { } goto switch_default___0; case_2048: /* CIL Label */ val = val; goto ldv_51134; case_4096___0: /* CIL Label */ val = val | 65536ULL; goto ldv_51134; case_8192___0: /* CIL Label */ val = val | 131072ULL; goto ldv_51134; case_16384___0: /* CIL Label */ val = val | 196608ULL; goto ldv_51134; switch_default___0: /* CIL Label */ ; return (-22); switch_break___0: /* CIL Label */ ; } ldv_51134: val = val | 32768ULL; { if ((int )rp->rbr_sizes[1] == 1024) { goto case_1024; } else { } if ((int )rp->rbr_sizes[1] == 2048) { goto case_2048___0; } else { } if ((int )rp->rbr_sizes[1] == 4096) { goto case_4096___1; } else { } if ((int )rp->rbr_sizes[1] == 8192) { goto case_8192___1; } else { } goto switch_default___1; case_1024: /* CIL Label */ val = val; goto ldv_51140; case_2048___0: /* CIL Label */ val = val | 256ULL; goto ldv_51140; case_4096___1: /* CIL Label */ val = val | 512ULL; goto ldv_51140; case_8192___1: /* CIL Label */ val = val | 768ULL; goto ldv_51140; switch_default___1: /* CIL Label */ ; return (-22); switch_break___1: /* CIL Label */ ; } ldv_51140: val = val | 128ULL; { if ((int )rp->rbr_sizes[0] == 256) { goto case_256; } else { } if ((int )rp->rbr_sizes[0] == 512) { goto case_512; } else { } if ((int )rp->rbr_sizes[0] == 1024) { goto case_1024___0; } else { } if ((int )rp->rbr_sizes[0] == 2048) { goto case_2048___1; } else { } goto switch_default___2; case_256: /* CIL Label */ val = val; goto ldv_51146; case_512: /* CIL Label */ val = val | 1ULL; goto ldv_51146; case_1024___0: /* CIL Label */ val = val | 2ULL; goto ldv_51146; case_2048___1: /* CIL Label */ val = val | 3ULL; goto ldv_51146; switch_default___2: /* CIL Label */ ; return (-22); switch_break___2: /* CIL Label */ ; } ldv_51146: *ret = val; return (0); } } static int niu_enable_rx_channel(struct niu *np , int channel , int on ) { u64 val ; unsigned long tmp ; int limit ; unsigned long tmp___0 ; { { tmp = readq((void const volatile *)(np->regs + ((unsigned long )channel + 12288UL) * 512UL)); val = (u64 )tmp; } if (on != 0) { val = val | 2147483648ULL; } else { val = val & 0xffffffff7fffffffULL; } { writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel + 12288UL) * 512UL)); limit = 1000; } goto ldv_51160; ldv_51159: { tmp___0 = readq((void const volatile *)(np->regs + ((unsigned long )channel + 12288UL) * 512UL)); } if (((unsigned long long )tmp___0 & 536870912ULL) != 0ULL) { goto ldv_51158; } else { } { __const_udelay(42950UL); } ldv_51160: limit = limit - 1; if (limit > 0) { goto ldv_51159; } else { } ldv_51158: ; if (limit <= 0) { return (-19); } else { } return (0); } } static int niu_init_one_rx_channel(struct niu *np , struct rx_ring_info *rp ) { int err ; int channel ; u64 val ; unsigned long tmp ; { { channel = rp->rx_channel; err = niu_rx_channel_reset(np, channel); } if (err != 0) { return (err); } else { } { err = niu_rx_channel_lpage_init(np, channel); } if (err != 0) { return (err); } else { } { niu_rx_channel_wred_init(np, rp); writeq(8UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291560UL))); writeq(246324964360192UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291568UL))); writeq((unsigned long )(rp->mbox_dma >> 32), (void volatile *)(np->regs + ((unsigned long )channel + 12288UL) * 512UL)); writeq((unsigned long )((rp->mbox_dma & 4294967232ULL) | 1ULL), (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291464UL))); writeq((unsigned long )(((unsigned long long )rp->rbr_table_size << 48) | (rp->rbr_dma & 17592186044352ULL)), (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291472UL))); err = niu_compute_rbr_cfig_b(rp, & val); } if (err != 0) { return (err); } else { } { writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291480UL))); writeq((unsigned long )(((unsigned long long )rp->rcr_table_size << 48) | (rp->rcr_dma & 17592186044352ULL)), (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291520UL))); writeq((unsigned long )((((unsigned long long )rp->rcr_pkt_threshold << 16) | (unsigned long long )rp->rcr_timeout) | 32768ULL), (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291528UL))); err = niu_enable_rx_channel(np, channel, 1); } if (err != 0) { return (err); } else { } { writeq((unsigned long )rp->rbr_index, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291488UL))); tmp = readq((void const volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291568UL))); val = (u64 )tmp; val = val | 34359738368ULL; writeq((unsigned long )val, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291568UL))); } return (0); } } static int niu_init_rx_channels(struct niu *np ) { unsigned long flags ; u64 seed ; int err ; int i ; struct rx_ring_info *rp ; { { seed = jiffies_64; ldv___ldv_spin_lock_104(& (np->parent)->lock); writeq((unsigned long )(np->parent)->rxdma_clock_divider, (void volatile *)np->regs + 6815744U); writeq((unsigned long )((seed & 65535ULL) | 65536ULL), (void volatile *)np->regs + 6815848U); ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); niu_init_rdc_groups(np); niu_init_drr_weight(np); err = niu_init_hostinfo(np); } if (err != 0) { return (err); } else { } i = 0; goto ldv_51177; ldv_51176: { rp = np->rx_rings + (unsigned long )i; err = niu_init_one_rx_channel(np, rp); } if (err != 0) { return (err); } else { } i = i + 1; ldv_51177: ; if (i < np->num_rx_rings) { goto ldv_51176; } else { } return (0); } } static int niu_set_ip_frag_rule(struct niu *np ) { struct niu_parent *parent ; struct niu_classifier *cp ; struct niu_tcam_entry *tp ; int index ; int err ; { { parent = np->parent; cp = & np->clas; index = (int )cp->tcam_top; tp = (struct niu_tcam_entry *)(& parent->tcam) + (unsigned long )index; memset((void *)tp, 0, 80UL); tp->key[1] = 288230376151711744ULL; tp->key_mask[1] = 288230376151711744ULL; tp->assoc_data = 1024ULL; err = tcam_write(np, index, (u64 *)(& tp->key), (u64 *)(& tp->key_mask)); } if (err != 0) { return (err); } else { } { err = tcam_assoc_write(np, index, tp->assoc_data); } if (err != 0) { return (err); } else { } tp->valid = 1U; cp->tcam_valid_entries = (u16 )((int )cp->tcam_valid_entries + 1); return (0); } } static int niu_init_classifier_hw(struct niu *np ) { struct niu_parent *parent ; struct niu_classifier *cp ; int i ; int err ; struct niu_vlan_rdc *vp ; struct niu_altmac_rdc *ap ; int index ; { { parent = np->parent; cp = & np->clas; writeq((unsigned long )cp->h1_init, (void volatile *)np->regs + 3932256U); writeq((unsigned long )cp->h2_init, (void volatile *)np->regs + 3932264U); err = niu_init_hostinfo(np); } if (err != 0) { return (err); } else { } i = 0; goto ldv_51196; ldv_51195: { vp = (struct niu_vlan_rdc *)(& cp->vlan_mappings) + (unsigned long )i; vlan_tbl_write(np, (unsigned long )i, (int )np->port, (int )vp->vlan_pref, (int )vp->rdc_num); i = i + 1; } ldv_51196: ; if (i <= 4095) { goto ldv_51195; } else { } i = 0; goto ldv_51200; ldv_51199: { ap = (struct niu_altmac_rdc *)(& cp->alt_mac_mappings) + (unsigned long )i; err = niu_set_alt_mac_rdc_table(np, (int )ap->alt_mac_num, (int )ap->rdc_num, (int )ap->mac_pref); } if (err != 0) { return (err); } else { } i = i + 1; ldv_51200: ; if (i < (int )cp->num_alt_mac_mappings) { goto ldv_51199; } else { } i = 4; goto ldv_51204; ldv_51203: { index = i + -4; err = niu_set_tcam_key(np, (unsigned long )i, parent->tcam_key[index]); } if (err != 0) { return (err); } else { } { err = niu_set_flow_key(np, (unsigned long )i, parent->flow_key[index]); } if (err != 0) { return (err); } else { } i = i + 1; ldv_51204: ; if (i <= 15) { goto ldv_51203; } else { } { err = niu_set_ip_frag_rule(np); } if (err != 0) { return (err); } else { } { tcam_enable(np, 1); } return (0); } } extern void __compiletime_assert_5105(void) ; static int niu_zcp_write(struct niu *np , int index , u64 *data ) { bool __cond ; int tmp ; { { writeq((unsigned long )*data, (void volatile *)np->regs + 5767256U); writeq((unsigned long )*(data + 1UL), (void volatile *)np->regs + 5767264U); writeq((unsigned long )*(data + 2UL), (void volatile *)np->regs + 5767272U); writeq((unsigned long )*(data + 3UL), (void volatile *)np->regs + 5767280U); writeq((unsigned long )*(data + 4UL), (void volatile *)np->regs + 5767288U); writeq(131071UL, (void volatile *)np->regs + 5767296U); writeq((unsigned long )((unsigned long long )(((int )np->port + 16) << 12)), (void volatile *)np->regs + 5767304U); __cond = 0; } if ((int )__cond) { { __compiletime_assert_5105(); } } else { } { tmp = __niu_wait_bits_clear(np, 5767304UL, 2147483648ULL, 1000, 100); } return (tmp); } } extern void __compiletime_assert_5113(void) ; extern void __compiletime_assert_5126(void) ; static int niu_zcp_read(struct niu *np , int index , u64 *data ) { int err ; bool __cond ; int tmp ; unsigned long tmp___0 ; bool __cond___0 ; int tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_5113(); } } else { } { tmp = __niu_wait_bits_clear(np, 5767304UL, 2147483648ULL, 1000, 100); err = tmp; } if (err != 0) { { tmp___0 = readq((void const volatile *)np->regs + 5767304U); netdev_err((struct net_device const *)np->dev, "ZCP read busy won\'t clear, ZCP_RAM_ACC[%llx]\n", (unsigned long long )tmp___0); } return (err); } else { } { writeq((unsigned long )((unsigned long long )((((int )np->port + 16) << 12) | 1073741824)), (void volatile *)np->regs + 5767304U); __cond___0 = 0; } if ((int )__cond___0) { { __compiletime_assert_5126(); } } else { } { tmp___1 = __niu_wait_bits_clear(np, 5767304UL, 2147483648ULL, 1000, 100); err = tmp___1; } if (err != 0) { { tmp___2 = readq((void const volatile *)np->regs + 5767304U); netdev_err((struct net_device const *)np->dev, "ZCP read busy2 won\'t clear, ZCP_RAM_ACC[%llx]\n", (unsigned long long )tmp___2); } return (err); } else { } { tmp___3 = readq((void const volatile *)np->regs + 5767256U); *data = (u64 )tmp___3; tmp___4 = readq((void const volatile *)np->regs + 5767264U); *(data + 1UL) = (u64 )tmp___4; tmp___5 = readq((void const volatile *)np->regs + 5767272U); *(data + 2UL) = (u64 )tmp___5; tmp___6 = readq((void const volatile *)np->regs + 5767280U); *(data + 3UL) = (u64 )tmp___6; tmp___7 = readq((void const volatile *)np->regs + 5767288U); *(data + 4UL) = (u64 )tmp___7; } return (0); } } static void niu_zcp_cfifo_reset(struct niu *np ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->regs + 5767320U); val = (u64 )tmp; val = val | (u64 )(1 << (int )np->port); writeq((unsigned long )val, (void volatile *)np->regs + 5767320U); __const_udelay(42950UL); val = val & (u64 )(~ (1 << (int )np->port)); writeq((unsigned long )val, (void volatile *)np->regs + 5767320U); } return; } } static int niu_init_zcp(struct niu *np ) { u64 data[5U] ; u64 rbuf[5U] ; int i ; int max ; int err ; { if ((unsigned int )(np->parent)->plat_type != 2U) { if ((unsigned int )np->port <= 1U) { max = 2048; } else { max = 1024; } } else { max = 1024; } data[0] = 0ULL; data[1] = 0ULL; data[2] = 0ULL; data[3] = 0ULL; data[4] = 0ULL; i = 0; goto ldv_51245; ldv_51244: { err = niu_zcp_write(np, i, (u64 *)(& data)); } if (err != 0) { return (err); } else { } { err = niu_zcp_read(np, i, (u64 *)(& rbuf)); } if (err != 0) { return (err); } else { } i = i + 1; ldv_51245: ; if (i < max) { goto ldv_51244; } else { } { niu_zcp_cfifo_reset(np); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )np->port + 720916UL) * 8UL)); writeq(65535UL, (void volatile *)np->regs + 5767176U); readq((void const volatile *)np->regs + 5767176U); writeq(65535UL, (void volatile *)np->regs + 5767184U); } return (0); } } static void niu_ipp_write(struct niu *np , int index , u64 *data ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)(np->regs + (np->ipp_off + 2621440UL))); val = (u64 )tmp; writeq((unsigned long )(val | 32ULL), (void volatile *)(np->regs + (np->ipp_off + 2621440UL))); writeq((unsigned long )index, (void volatile *)(np->regs + (np->ipp_off + 2621720UL))); writeq((unsigned long )*data, (void volatile *)(np->regs + (np->ipp_off + 2621672UL))); writeq((unsigned long )*(data + 1UL), (void volatile *)(np->regs + (np->ipp_off + 2621680UL))); writeq((unsigned long )*(data + 2UL), (void volatile *)(np->regs + (np->ipp_off + 2621688UL))); writeq((unsigned long )*(data + 3UL), (void volatile *)(np->regs + (np->ipp_off + 2621696UL))); writeq((unsigned long )*(data + 4UL), (void volatile *)(np->regs + (np->ipp_off + 2621704UL))); writeq((unsigned long )val & 0xffffffffffffffdfUL, (void volatile *)(np->regs + (np->ipp_off + 2621440UL))); } return; } } static void niu_ipp_read(struct niu *np , int index , u64 *data ) { unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { writeq((unsigned long )index, (void volatile *)(np->regs + (np->ipp_off + 2621712UL))); tmp = readq((void const volatile *)(np->regs + (np->ipp_off + 2621632UL))); *data = (u64 )tmp; tmp___0 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621640UL))); *(data + 1UL) = (u64 )tmp___0; tmp___1 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621648UL))); *(data + 2UL) = (u64 )tmp___1; tmp___2 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621656UL))); *(data + 3UL) = (u64 )tmp___2; tmp___3 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621664UL))); *(data + 4UL) = (u64 )tmp___3; } return; } } extern void __compiletime_assert_5218(void) ; static int niu_ipp_reset(struct niu *np ) { bool __cond ; int tmp ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_5218(); } } else { } { tmp = __niu_set_and_wait_clear_ipp(np, 2621440UL, 2147483648ULL, 1000, 100, "IPP_CFIG"); } return (tmp); } } static int niu_init_ipp(struct niu *np ) { u64 data[5U] ; u64 rbuf[5U] ; u64 val ; int i ; int max ; int err ; unsigned long tmp ; { if ((unsigned int )(np->parent)->plat_type != 2U) { if ((unsigned int )np->port <= 1U) { max = 2048; } else { max = 1024; } } else { max = 1024; } data[0] = 0ULL; data[1] = 0ULL; data[2] = 0ULL; data[3] = 0ULL; data[4] = 0ULL; i = 0; goto ldv_51276; ldv_51275: { niu_ipp_write(np, i, (u64 *)(& data)); niu_ipp_read(np, i, (u64 *)(& rbuf)); i = i + 1; } ldv_51276: ; if (i < max) { goto ldv_51275; } else { } { readq((void const volatile *)(np->regs + (np->ipp_off + 2621504UL))); readq((void const volatile *)(np->regs + (np->ipp_off + 2621504UL))); err = niu_ipp_reset(np); } if (err != 0) { return (err); } else { } { readq((void const volatile *)(np->regs + (np->ipp_off + 2621472UL))); readq((void const volatile *)(np->regs + (np->ipp_off + 2621480UL))); readq((void const volatile *)(np->regs + (np->ipp_off + 2621488UL))); readq((void const volatile *)(np->regs + (np->ipp_off + 2621504UL))); writeq(0xffffffffffffff00UL, (void volatile *)(np->regs + (np->ipp_off + 2621512UL))); tmp = readq((void const volatile *)(np->regs + (np->ipp_off + 2621440UL))); val = (u64 )tmp; val = val & 0xfffffffffe0000ffULL; val = val | 33554205ULL; writeq((unsigned long )val, (void volatile *)(np->regs + (np->ipp_off + 2621440UL))); } return (0); } } static void niu_handle_led(struct niu *np , int status ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; } if (*((unsigned int *)np + 10UL) == 393216U) { if (status != 0) { val = val | 4194304ULL; val = val & 0xffffffffffdfffffULL; } else { val = val | 2097152ULL; val = val & 0xffffffffffbfffffULL; } } else { } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); } return; } } static void niu_init_xif_xmac(struct niu *np ) { struct niu_link_config *lp ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { lp = & np->link_config; if ((np->flags & 524288U) != 0U) { { tmp = readq((void const volatile *)np->regs + 1663008U); val = (u64 )tmp; val = val | 65536ULL; writeq((unsigned long )val, (void volatile *)np->regs + 1663008U); } } else { } { tmp___0 = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp___0; val = val & 0xffffffffff7fffffULL; val = val | 16777216ULL; } if ((unsigned int )lp->loopback_mode == 2U) { val = val & 0xffffffffff7fffffULL; val = val | 33554432ULL; } else { val = val & 0xfffffffffdffffffULL; } if ((np->flags & 262144U) != 0U) { val = val & 0xfffffffffbffffffULL; } else { val = val | 67108864ULL; if (*((unsigned int *)np + 10UL) == 0U) { val = val | 1073741824ULL; } else { val = val & 0xffffffffbfffffffULL; } } val = val & 0xffffffffdfffffffULL; if ((unsigned int )lp->active_speed == 100U) { val = val | 2147483648ULL; } else { val = val & 0xffffffff7fffffffULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); tmp___1 = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp___1; val = val & 0xffffffffe7ffffffULL; } if ((np->flags & 262144U) != 0U) { val = val; } else if ((unsigned int )lp->active_speed == 1000U) { val = val | 134217728ULL; } else { val = val | 268435456ULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); } return; } } static void niu_init_xif_bmac(struct niu *np ) { struct niu_link_config *lp ; u64 val ; { lp = & np->link_config; val = 1ULL; if ((unsigned int )lp->loopback_mode == 2U) { val = val | 2ULL; } else { val = val & 0xfffffffffffffffdULL; } if ((unsigned int )lp->active_speed == 1000U) { val = val | 8ULL; } else { val = val & 0xfffffffffffffff7ULL; } val = val & 0xffffffffffffff9fULL; if (*((unsigned int *)np + 10UL) == 0U && (unsigned int )lp->active_speed == 100U) { val = val | 128ULL; } else { val = val & 0xffffffffffffff7fULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 120U); } return; } } static void niu_init_xif(struct niu *np ) { { if ((np->flags & 65536U) != 0U) { { niu_init_xif_xmac(np); } } else { { niu_init_xif_bmac(np); } } return; } } static void niu_pcs_mii_reset(struct niu *np ) { int limit ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; { { limit = 1000; tmp = readq((void const volatile *)(np->regs + (np->pcs_off + 1572864UL))); val = (u64 )tmp; val = val | 32768ULL; writeq((unsigned long )val, (void volatile *)(np->regs + (np->pcs_off + 1572864UL))); } goto ldv_51302; ldv_51301: { __const_udelay(429500UL); tmp___0 = readq((void const volatile *)(np->regs + (np->pcs_off + 1572864UL))); val = (u64 )tmp___0; } ldv_51302: limit = limit - 1; if (limit >= 0 && (val & 32768ULL) != 0ULL) { goto ldv_51301; } else { } return; } } static void niu_xpcs_reset(struct niu *np ) { int limit ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; { { limit = 1000; tmp = readq((void const volatile *)(np->regs + (np->xpcs_off + 1572864UL))); val = (u64 )tmp; val = val | 32768ULL; writeq((unsigned long )val, (void volatile *)(np->regs + (np->xpcs_off + 1572864UL))); } goto ldv_51310; ldv_51309: { __const_udelay(429500UL); tmp___0 = readq((void const volatile *)(np->regs + (np->xpcs_off + 1572864UL))); val = (u64 )tmp___0; } ldv_51310: limit = limit - 1; if (limit >= 0 && (val & 32768ULL) != 0ULL) { goto ldv_51309; } else { } return; } } static int niu_init_pcs(struct niu *np ) { struct niu_link_config *lp ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; { lp = & np->link_config; { if ((np->flags & 917504U) == 131072U) { goto case_131072; } else { } if ((np->flags & 917504U) == 262144U) { goto case_262144; } else { } if ((np->flags & 917504U) == 393216U) { goto case_393216; } else { } if ((np->flags & 917504U) == 786432U) { goto case_786432; } else { } if ((np->flags & 917504U) == 524288U) { goto case_524288; } else { } if ((np->flags & 917504U) == 0U) { goto case_0; } else { } if ((np->flags & 917504U) == 655360U) { goto case_655360; } else { } goto switch_default; case_131072: /* CIL Label */ { writeq(65UL, (void volatile *)(np->regs + (np->pcs_off + 1572896UL))); writeq(0UL, (void volatile *)(np->regs + (np->pcs_off + 1573024UL))); niu_pcs_mii_reset(np); } goto ldv_51318; case_262144: /* CIL Label */ ; case_393216: /* CIL Label */ ; case_786432: /* CIL Label */ ; if ((np->flags & 65536U) == 0U) { return (-22); } else { } { tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; val = val & 0xffffffffdfffffffULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); niu_xpcs_reset(np); tmp___0 = readq((void const volatile *)(np->regs + (np->xpcs_off + 1572864UL))); val = (u64 )tmp___0; } if ((unsigned int )lp->loopback_mode == 1U) { val = val | 16384ULL; } else { val = val & 0xffffffffffffbfffULL; } { writeq((unsigned long )val, (void volatile *)(np->regs + (np->xpcs_off + 1572864UL))); writeq(0UL, (void volatile *)(np->regs + (np->xpcs_off + 1572984UL))); readq((void const volatile *)(np->regs + (np->xpcs_off + 1572992UL))); readq((void const volatile *)(np->regs + (np->xpcs_off + 1573000UL))); } goto ldv_51318; case_524288: /* CIL Label */ { niu_pcs_mii_reset(np); writeq(65UL, (void volatile *)(np->regs + (np->pcs_off + 1572896UL))); writeq(0UL, (void volatile *)(np->regs + (np->pcs_off + 1573024UL))); } goto ldv_51318; case_0: /* CIL Label */ ; case_655360: /* CIL Label */ { writeq(2UL, (void volatile *)(np->regs + (np->pcs_off + 1573024UL))); niu_pcs_mii_reset(np); } goto ldv_51318; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_51318: ; return (0); } } extern void __compiletime_assert_5479(void) ; static int niu_reset_tx_xmac(struct niu *np ) { bool __cond ; int tmp ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_5479(); } } else { } { tmp = __niu_set_and_wait_clear_mac(np, 0UL, 3ULL, 1000, 100, "XTXMAC_SW_RST"); } return (tmp); } } static int niu_reset_tx_bmac(struct niu *np ) { int limit ; unsigned long tmp ; unsigned long tmp___0 ; { { writeq(1UL, (void volatile *)np->mac_regs); limit = 1000; } goto ldv_51340; ldv_51339: { tmp = readq((void const volatile *)np->mac_regs); } if (((unsigned long long )tmp & 1ULL) == 0ULL) { goto ldv_51338; } else { } { __const_udelay(429500UL); } ldv_51340: limit = limit - 1; if (limit >= 0) { goto ldv_51339; } else { } ldv_51338: ; if (limit < 0) { { tmp___0 = readq((void const volatile *)np->mac_regs); dev_err((struct device const *)np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n", (int )np->port, (unsigned long long )tmp___0); } return (-19); } else { } return (0); } } static int niu_reset_tx_mac(struct niu *np ) { int tmp ; int tmp___0 ; { if ((np->flags & 65536U) != 0U) { { tmp = niu_reset_tx_xmac(np); } return (tmp); } else { { tmp___0 = niu_reset_tx_bmac(np); } return (tmp___0); } } } static void niu_init_tx_xmac(struct niu *np , u64 min , u64 max ) { u64 val ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { tmp = readq((void const volatile *)np->mac_regs + 136U); val = (u64 )tmp; val = val & 0xffffffffc00ffc00ULL; val = val | (min << 20); val = val | min; writeq((unsigned long )val, (void volatile *)np->mac_regs + 136U); writeq((unsigned long )max, (void volatile *)np->mac_regs + 144U); writeq(0xffffffffffffffffUL, (void volatile *)np->mac_regs + 64U); tmp___0 = readq((void const volatile *)np->mac_regs + 128U); val = (u64 )tmp___0; } if ((np->flags & 262144U) != 0U) { val = val & 0xfffffffffffffff8ULL; val = val | 3ULL; } else { val = val & 0xffffffffffff00ffULL; val = val | 2560ULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 128U); tmp___1 = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp___1; val = val & 0xfffffffffffffff0ULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); writeq(0UL, (void volatile *)np->mac_regs + 368U); writeq(0UL, (void volatile *)np->mac_regs + 376U); } return; } } static void niu_init_tx_bmac(struct niu *np , u64 min , u64 max ) { u64 val ; unsigned long tmp ; { { writeq((unsigned long )min, (void volatile *)np->mac_regs + 160U); writeq((unsigned long )max, (void volatile *)np->mac_regs + 168U); writeq(0xffffffffffffffffUL, (void volatile *)np->mac_regs + 64U); writeq(34824UL, (void volatile *)np->mac_regs + 200U); writeq(7UL, (void volatile *)np->mac_regs + 176U); tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; val = val & 0xfffffffffffffffcULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); } return; } } static void niu_init_tx_mac(struct niu *np ) { u64 min ; u64 max ; long tmp ; { min = 64ULL; if ((np->dev)->mtu > 1500U) { max = 9216ULL; } else { max = 1522ULL; } { tmp = ldv__builtin_expect((min & 7ULL) != 0ULL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/niu.c"), "i" (5577), "i" (12UL)); __builtin_unreachable(); } } else { } if ((np->flags & 65536U) != 0U) { { niu_init_tx_xmac(np, min, max); } } else { { niu_init_tx_bmac(np, min, max); } } return; } } static int niu_reset_rx_xmac(struct niu *np ) { int limit ; unsigned long tmp ; unsigned long tmp___0 ; { { writeq(3UL, (void volatile *)np->mac_regs + 8U); limit = 1000; } goto ldv_51367; ldv_51366: { tmp = readq((void const volatile *)np->mac_regs + 8U); } if (((unsigned long long )tmp & 3ULL) == 0ULL) { goto ldv_51365; } else { } { __const_udelay(429500UL); } ldv_51367: limit = limit - 1; if (limit >= 0) { goto ldv_51366; } else { } ldv_51365: ; if (limit < 0) { { tmp___0 = readq((void const volatile *)np->mac_regs + 8U); dev_err((struct device const *)np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n", (int )np->port, (unsigned long long )tmp___0); } return (-19); } else { } return (0); } } static int niu_reset_rx_bmac(struct niu *np ) { int limit ; unsigned long tmp ; unsigned long tmp___0 ; { { writeq(1UL, (void volatile *)np->mac_regs + 8U); limit = 1000; } goto ldv_51374; ldv_51373: { tmp = readq((void const volatile *)np->mac_regs + 8U); } if (((unsigned long long )tmp & 1ULL) == 0ULL) { goto ldv_51372; } else { } { __const_udelay(429500UL); } ldv_51374: limit = limit - 1; if (limit >= 0) { goto ldv_51373; } else { } ldv_51372: ; if (limit < 0) { { tmp___0 = readq((void const volatile *)np->mac_regs + 8U); dev_err((struct device const *)np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n", (int )np->port, (unsigned long long )tmp___0); } return (-19); } else { } return (0); } } static int niu_reset_rx_mac(struct niu *np ) { int tmp ; int tmp___0 ; { if ((np->flags & 65536U) != 0U) { { tmp = niu_reset_rx_xmac(np); } return (tmp); } else { { tmp___0 = niu_reset_rx_bmac(np); } return (tmp___0); } } } static void niu_init_rx_xmac(struct niu *np ) { struct niu_parent *parent ; struct niu_rdc_tables *tp ; int first_rdc_table ; unsigned long i ; u64 val ; unsigned long tmp ; { { parent = np->parent; tp = (struct niu_rdc_tables *)(& parent->rdc_group_cfg) + (unsigned long )np->port; first_rdc_table = tp->first_table_num; writeq(0UL, (void volatile *)np->mac_regs + 2072U); writeq(0UL, (void volatile *)np->mac_regs + 2080U); writeq(0UL, (void volatile *)np->mac_regs + 2088U); writeq(0UL, (void volatile *)np->mac_regs + 2096U); writeq(0UL, (void volatile *)np->mac_regs + 2104U); i = 0UL; } goto ldv_51387; ldv_51386: { writeq(0UL, (void volatile *)(np->mac_regs + (i + 264UL) * 8UL)); i = i + 1UL; } ldv_51387: ; if (i <= 15UL) { goto ldv_51386; } else { } { writeq(0xffffffffffffffffUL, (void volatile *)np->mac_regs + 72U); niu_set_primary_mac_rdc_table(np, first_rdc_table, 1); niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1); tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; val = val & 0xffffffffffe080ffULL; val = val | 32768ULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); writeq(0UL, (void volatile *)np->mac_regs + 256U); writeq(0UL, (void volatile *)np->mac_regs + 264U); writeq(0UL, (void volatile *)np->mac_regs + 272U); writeq(0UL, (void volatile *)np->mac_regs + 280U); writeq(0UL, (void volatile *)np->mac_regs + 288U); writeq(0UL, (void volatile *)np->mac_regs + 296U); writeq(0UL, (void volatile *)np->mac_regs + 304U); writeq(0UL, (void volatile *)np->mac_regs + 312U); writeq(0UL, (void volatile *)np->mac_regs + 320U); writeq(0UL, (void volatile *)np->mac_regs + 328U); writeq(0UL, (void volatile *)np->mac_regs + 392U); writeq(0UL, (void volatile *)np->mac_regs + 336U); writeq(0UL, (void volatile *)np->mac_regs + 344U); writeq(0UL, (void volatile *)np->mac_regs + 352U); writeq(0UL, (void volatile *)np->mac_regs + 384U); } return; } } static void niu_init_rx_bmac(struct niu *np ) { struct niu_parent *parent ; struct niu_rdc_tables *tp ; int first_rdc_table ; unsigned long i ; u64 val ; unsigned long tmp ; unsigned long tmp___0 ; { { parent = np->parent; tp = (struct niu_rdc_tables *)(& parent->rdc_group_cfg) + (unsigned long )np->port; first_rdc_table = tp->first_table_num; writeq(0UL, (void volatile *)np->mac_regs + 664U); writeq(0UL, (void volatile *)np->mac_regs + 672U); writeq(0UL, (void volatile *)np->mac_regs + 680U); writeq(0UL, (void volatile *)np->mac_regs + 688U); writeq(0UL, (void volatile *)np->mac_regs + 696U); i = 0UL; } goto ldv_51398; ldv_51397: { writeq(0UL, (void volatile *)(np->mac_regs + (i + 88UL) * 8UL)); i = i + 1UL; } ldv_51398: ; if (i <= 15UL) { goto ldv_51397; } else { } { niu_set_primary_mac_rdc_table(np, first_rdc_table, 1); niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1); writeq(0xffffffffffffffffUL, (void volatile *)np->mac_regs + 72U); tmp = readq((void const volatile *)np->mac_regs + 104U); val = (u64 )tmp; val = val & 0xffffffffffffff20ULL; val = val | 32ULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 104U); tmp___0 = readq((void const volatile *)np->mac_regs + 1016U); val = (u64 )tmp___0; val = val | 1ULL; writeq((unsigned long )val, (void volatile *)np->mac_regs + 1016U); } return; } } static void niu_init_rx_mac(struct niu *np ) { { { niu_set_primary_mac(np, (np->dev)->dev_addr); } if ((np->flags & 65536U) != 0U) { { niu_init_rx_xmac(np); } } else { { niu_init_rx_bmac(np); } } return; } } static void niu_enable_tx_xmac(struct niu *np , int on ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; } if (on != 0) { val = val | 1ULL; } else { val = val & 0xfffffffffffffffeULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); } return; } } static void niu_enable_tx_bmac(struct niu *np , int on ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; } if (on != 0) { val = val | 1ULL; } else { val = val & 0xfffffffffffffffeULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); } return; } } static void niu_enable_tx_mac(struct niu *np , int on ) { { if ((np->flags & 65536U) != 0U) { { niu_enable_tx_xmac(np, on); } } else { { niu_enable_tx_bmac(np, on); } } return; } } static void niu_enable_rx_xmac(struct niu *np , int on ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->mac_regs + 96U); val = (u64 )tmp; val = val & 0xffffffffffff7dffULL; } if ((np->flags & 2097152U) != 0U) { val = val | 32768ULL; } else { } if ((np->flags & 1048576U) != 0U) { val = val | 512ULL; } else { } if (on != 0) { val = val | 256ULL; } else { val = val & 0xfffffffffffffeffULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); } return; } } static void niu_enable_rx_bmac(struct niu *np , int on ) { u64 val ; unsigned long tmp ; { { tmp = readq((void const volatile *)np->mac_regs + 104U); val = (u64 )tmp; val = val & 0xffffffffffffffd7ULL; } if ((np->flags & 2097152U) != 0U) { val = val | 32ULL; } else { } if ((np->flags & 1048576U) != 0U) { val = val | 8ULL; } else { } if (on != 0) { val = val | 1ULL; } else { val = val & 0xfffffffffffffffeULL; } { writeq((unsigned long )val, (void volatile *)np->mac_regs + 104U); } return; } } static void niu_enable_rx_mac(struct niu *np , int on ) { { if ((np->flags & 65536U) != 0U) { { niu_enable_rx_xmac(np, on); } } else { { niu_enable_rx_bmac(np, on); } } return; } } static int niu_init_mac(struct niu *np ) { int err ; { { niu_init_xif(np); err = niu_init_pcs(np); } if (err != 0) { return (err); } else { } { err = niu_reset_tx_mac(np); } if (err != 0) { return (err); } else { } { niu_init_tx_mac(np); err = niu_reset_rx_mac(np); } if (err != 0) { return (err); } else { } { niu_init_rx_mac(np); niu_init_tx_mac(np); niu_enable_tx_mac(np, 1); niu_enable_rx_mac(np, 1); } return (0); } } static void niu_stop_one_tx_channel(struct niu *np , struct tx_ring_info *rp ) { { { niu_tx_channel_stop(np, (int )rp->tx_channel); } return; } } static void niu_stop_tx_channels(struct niu *np ) { int i ; struct tx_ring_info *rp ; { i = 0; goto ldv_51445; ldv_51444: { rp = np->tx_rings + (unsigned long )i; niu_stop_one_tx_channel(np, rp); i = i + 1; } ldv_51445: ; if (i < np->num_tx_rings) { goto ldv_51444; } else { } return; } } static void niu_reset_one_tx_channel(struct niu *np , struct tx_ring_info *rp ) { { { niu_tx_channel_reset(np, (int )rp->tx_channel); } return; } } static void niu_reset_tx_channels(struct niu *np ) { int i ; struct tx_ring_info *rp ; { i = 0; goto ldv_51457; ldv_51456: { rp = np->tx_rings + (unsigned long )i; niu_reset_one_tx_channel(np, rp); i = i + 1; } ldv_51457: ; if (i < np->num_tx_rings) { goto ldv_51456; } else { } return; } } static void niu_stop_one_rx_channel(struct niu *np , struct rx_ring_info *rp ) { { { niu_enable_rx_channel(np, rp->rx_channel, 0); } return; } } static void niu_stop_rx_channels(struct niu *np ) { int i ; struct rx_ring_info *rp ; { i = 0; goto ldv_51469; ldv_51468: { rp = np->rx_rings + (unsigned long )i; niu_stop_one_rx_channel(np, rp); i = i + 1; } ldv_51469: ; if (i < np->num_rx_rings) { goto ldv_51468; } else { } return; } } static void niu_reset_one_rx_channel(struct niu *np , struct rx_ring_info *rp ) { int channel ; { { channel = rp->rx_channel; niu_rx_channel_reset(np, channel); writeq(4161535UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291560UL))); writeq(0UL, (void volatile *)(np->regs + ((unsigned long )channel * 512UL + 6291568UL))); niu_enable_rx_channel(np, channel, 0); } return; } } static void niu_reset_rx_channels(struct niu *np ) { int i ; struct rx_ring_info *rp ; { i = 0; goto ldv_51482; ldv_51481: { rp = np->rx_rings + (unsigned long )i; niu_reset_one_rx_channel(np, rp); i = i + 1; } ldv_51482: ; if (i < np->num_rx_rings) { goto ldv_51481; } else { } return; } } static void niu_disable_ipp(struct niu *np ) { u64 rd ; u64 wr ; u64 val ; int limit ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; { { tmp = readq((void const volatile *)(np->regs + (np->ipp_off + 2621712UL))); rd = (u64 )tmp; tmp___0 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621720UL))); wr = (u64 )tmp___0; limit = 100; } goto ldv_51492; ldv_51491: { tmp___1 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621712UL))); rd = (u64 )tmp___1; tmp___2 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621720UL))); wr = (u64 )tmp___2; } ldv_51492: limit = limit - 1; if (limit >= 0 && rd != wr) { goto ldv_51491; } else { } if (limit < 0 && (rd != 0ULL && wr != 1ULL)) { { tmp___3 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621720UL))); tmp___4 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621712UL))); netdev_err((struct net_device const *)np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n", (unsigned long long )tmp___4, (unsigned long long )tmp___3); } } else { } { tmp___5 = readq((void const volatile *)(np->regs + (np->ipp_off + 2621440UL))); val = (u64 )tmp___5; val = val & 0xffffffffffffffe2ULL; writeq((unsigned long )val, (void volatile *)(np->regs + (np->ipp_off + 2621440UL))); niu_ipp_reset(np); } return; } } static int niu_init_hw(struct niu *np ) { int i ; int err ; struct tx_ring_info *rp ; { if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Initialize TXC\n"); } } else { } { niu_txc_enable_port(np, 1); niu_txc_port_dma_enable(np, 1); niu_txc_set_imask(np, 0ULL); } if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Initialize TX channels\n"); } } else { } i = 0; goto ldv_51501; ldv_51500: { rp = np->tx_rings + (unsigned long )i; err = niu_init_one_tx_channel(np, rp); } if (err != 0) { return (err); } else { } i = i + 1; ldv_51501: ; if (i < np->num_tx_rings) { goto ldv_51500; } else { } if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Initialize RX channels\n"); } } else { } { err = niu_init_rx_channels(np); } if (err != 0) { goto out_uninit_tx_channels; } else { } if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Initialize classifier\n"); } } else { } { err = niu_init_classifier_hw(np); } if (err != 0) { goto out_uninit_rx_channels; } else { } if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Initialize ZCP\n"); } } else { } { err = niu_init_zcp(np); } if (err != 0) { goto out_uninit_rx_channels; } else { } if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Initialize IPP\n"); } } else { } { err = niu_init_ipp(np); } if (err != 0) { goto out_uninit_rx_channels; } else { } if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Initialize MAC\n"); } } else { } { err = niu_init_mac(np); } if (err != 0) { goto out_uninit_ipp; } else { } return (0); out_uninit_ipp: ; if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Uninit IPP\n"); } } else { } { niu_disable_ipp(np); } out_uninit_rx_channels: ; if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Uninit RX channels\n"); } } else { } { niu_stop_rx_channels(np); niu_reset_rx_channels(np); } out_uninit_tx_channels: ; if ((np->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Uninit TX channels\n"); } } else { } { niu_stop_tx_channels(np); niu_reset_tx_channels(np); } return (err); } } static void niu_stop_hw(struct niu *np ) { { if ((np->msg_enable & 16U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Disable interrupts\n"); } } else { } { niu_enable_interrupts(np, 0); } if ((np->msg_enable & 16U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Disable RX MAC\n"); } } else { } { niu_enable_rx_mac(np, 0); } if ((np->msg_enable & 16U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Disable IPP\n"); } } else { } { niu_disable_ipp(np); } if ((np->msg_enable & 16U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Stop TX channels\n"); } } else { } { niu_stop_tx_channels(np); } if ((np->msg_enable & 16U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Stop RX channels\n"); } } else { } { niu_stop_rx_channels(np); } if ((np->msg_enable & 16U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Reset TX channels\n"); } } else { } { niu_reset_tx_channels(np); } if ((np->msg_enable & 16U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "Reset RX channels\n"); } } else { } { niu_reset_rx_channels(np); } return; } } static void niu_set_irq_name(struct niu *np ) { int port ; int i ; int j ; { { port = (int )np->port; j = 1; sprintf((char *)(& np->irq_name), "%s:MAC", (char *)(& (np->dev)->name)); } if (port == 0) { { sprintf((char *)(& np->irq_name) + 1U, "%s:MIF", (char *)(& (np->dev)->name)); sprintf((char *)(& np->irq_name) + 2U, "%s:SYSERR", (char *)(& (np->dev)->name)); j = 3; } } else { } i = 0; goto ldv_51516; ldv_51515: ; if (i < np->num_rx_rings) { { sprintf((char *)(& np->irq_name) + (unsigned long )(i + j), "%s-rx-%d", (char *)(& (np->dev)->name), i); } } else if (i < np->num_tx_rings + np->num_rx_rings) { { sprintf((char *)(& np->irq_name) + (unsigned long )(i + j), "%s-tx-%d", (char *)(& (np->dev)->name), i - np->num_rx_rings); } } else { } i = i + 1; ldv_51516: ; if (i < np->num_ldg - j) { goto ldv_51515; } else { } return; } } static int niu_request_irq(struct niu *np ) { int i ; int j ; int err ; struct niu_ldg *lp ; struct niu_ldg *lp___0 ; { { niu_set_irq_name(np); err = 0; i = 0; } goto ldv_51527; ldv_51526: { lp = (struct niu_ldg *)(& np->ldg) + (unsigned long )i; err = ldv_request_irq_106(lp->irq, & niu_interrupt, 128UL, (char const *)(& np->irq_name) + (unsigned long )i, (void *)lp); } if (err != 0) { goto out_free_irqs; } else { } i = i + 1; ldv_51527: ; if (i < np->num_ldg) { goto ldv_51526; } else { } return (0); out_free_irqs: j = 0; goto ldv_51531; ldv_51530: { lp___0 = (struct niu_ldg *)(& np->ldg) + (unsigned long )j; ldv_free_irq_107(lp___0->irq, (void *)lp___0); j = j + 1; } ldv_51531: ; if (j < i) { goto ldv_51530; } else { } return (err); } } static void niu_free_irq(struct niu *np ) { int i ; struct niu_ldg *lp ; { i = 0; goto ldv_51539; ldv_51538: { lp = (struct niu_ldg *)(& np->ldg) + (unsigned long )i; ldv_free_irq_108(lp->irq, (void *)lp); i = i + 1; } ldv_51539: ; if (i < np->num_ldg) { goto ldv_51538; } else { } return; } } static void niu_enable_napi(struct niu *np ) { int i ; { i = 0; goto ldv_51546; ldv_51545: { napi_enable(& np->ldg[i].napi); i = i + 1; } ldv_51546: ; if (i < np->num_ldg) { goto ldv_51545; } else { } return; } } static void niu_disable_napi(struct niu *np ) { int i ; { i = 0; goto ldv_51553; ldv_51552: { napi_disable(& np->ldg[i].napi); i = i + 1; } ldv_51553: ; if (i < np->num_ldg) { goto ldv_51552; } else { } return; } } static int niu_open(struct net_device *dev ) { struct niu *np ; void *tmp ; int err ; struct lock_class_key __key ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; netif_carrier_off(dev); err = niu_alloc_channels(np); } if (err != 0) { goto out_err; } else { } { err = niu_enable_interrupts(np, 0); } if (err != 0) { goto out_free_channels; } else { } { err = niu_request_irq(np); } if (err != 0) { goto out_free_channels; } else { } { niu_enable_napi(np); ldv_spin_lock_irq_109(& np->lock); err = niu_init_hw(np); } if (err == 0) { { init_timer_key(& np->timer, 0U, "(&np->timer)", & __key); np->timer.expires = (unsigned long )jiffies + 250UL; np->timer.data = (unsigned long )np; np->timer.function = & niu_timer; err = niu_enable_interrupts(np, 1); } if (err != 0) { { niu_stop_hw(np); } } else { } } else { } { ldv_spin_unlock_irq_110(& np->lock); } if (err != 0) { { niu_disable_napi(np); } goto out_free_irq; } else { } { netif_tx_start_all_queues(dev); } if ((unsigned int )np->link_config.loopback_mode != 0U) { { netif_carrier_on(dev); } } else { } { add_timer(& np->timer); } return (0); out_free_irq: { niu_free_irq(np); } out_free_channels: { niu_free_channels(np); } out_err: ; return (err); } } static void niu_full_shutdown(struct niu *np , struct net_device *dev ) { { { cancel_work_sync(& np->reset_task); niu_disable_napi(np); netif_tx_stop_all_queues(dev); ldv_del_timer_sync_111(& np->timer); ldv_spin_lock_irq_109(& np->lock); niu_stop_hw(np); ldv_spin_unlock_irq_110(& np->lock); } return; } } static int niu_close(struct net_device *dev ) { struct niu *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; niu_full_shutdown(np, dev); niu_free_irq(np); niu_free_channels(np); niu_handle_led(np, 0); } return (0); } } static void niu_sync_xmac_stats(struct niu *np ) { struct niu_xmac_stats *mp ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; unsigned long tmp___8 ; unsigned long tmp___9 ; unsigned long tmp___10 ; unsigned long tmp___11 ; unsigned long tmp___12 ; unsigned long tmp___13 ; unsigned long tmp___14 ; unsigned long tmp___15 ; unsigned long tmp___16 ; { { mp = & np->mac_stats.xmac; tmp = readq((void const volatile *)np->mac_regs + 368U); mp->tx_frames = mp->tx_frames + (unsigned long long )tmp; tmp___0 = readq((void const volatile *)np->mac_regs + 376U); mp->tx_bytes = mp->tx_bytes + (unsigned long long )tmp___0; tmp___1 = readq((void const volatile *)np->mac_regs + 384U); mp->rx_link_faults = mp->rx_link_faults + (unsigned long long )tmp___1; tmp___2 = readq((void const volatile *)np->mac_regs + 360U); mp->rx_align_errors = mp->rx_align_errors + (unsigned long long )tmp___2; tmp___3 = readq((void const volatile *)np->mac_regs + 280U); mp->rx_frags = mp->rx_frags + (unsigned long long )tmp___3; tmp___4 = readq((void const volatile *)np->mac_regs + 272U); mp->rx_mcasts = mp->rx_mcasts + (unsigned long long )tmp___4; tmp___5 = readq((void const volatile *)np->mac_regs + 264U); mp->rx_bcasts = mp->rx_bcasts + (unsigned long long )tmp___5; tmp___6 = readq((void const volatile *)np->mac_regs + 288U); mp->rx_hist_cnt1 = mp->rx_hist_cnt1 + (unsigned long long )tmp___6; tmp___7 = readq((void const volatile *)np->mac_regs + 296U); mp->rx_hist_cnt2 = mp->rx_hist_cnt2 + (unsigned long long )tmp___7; tmp___8 = readq((void const volatile *)np->mac_regs + 304U); mp->rx_hist_cnt3 = mp->rx_hist_cnt3 + (unsigned long long )tmp___8; tmp___9 = readq((void const volatile *)np->mac_regs + 312U); mp->rx_hist_cnt4 = mp->rx_hist_cnt4 + (unsigned long long )tmp___9; tmp___10 = readq((void const volatile *)np->mac_regs + 320U); mp->rx_hist_cnt5 = mp->rx_hist_cnt5 + (unsigned long long )tmp___10; tmp___11 = readq((void const volatile *)np->mac_regs + 328U); mp->rx_hist_cnt6 = mp->rx_hist_cnt6 + (unsigned long long )tmp___11; tmp___12 = readq((void const volatile *)np->mac_regs + 392U); mp->rx_hist_cnt7 = mp->rx_hist_cnt7 + (unsigned long long )tmp___12; tmp___13 = readq((void const volatile *)np->mac_regs + 256U); mp->rx_octets = mp->rx_octets + (unsigned long long )tmp___13; tmp___14 = readq((void const volatile *)np->mac_regs + 352U); mp->rx_code_violations = mp->rx_code_violations + (unsigned long long )tmp___14; tmp___15 = readq((void const volatile *)np->mac_regs + 336U); mp->rx_len_errors = mp->rx_len_errors + (unsigned long long )tmp___15; tmp___16 = readq((void const volatile *)np->mac_regs + 344U); mp->rx_crc_errors = mp->rx_crc_errors + (unsigned long long )tmp___16; } return; } } static void niu_sync_bmac_stats(struct niu *np ) { struct niu_bmac_stats *mp ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; { { mp = & np->mac_stats.bmac; tmp = readq((void const volatile *)np->mac_regs + 1096U); mp->tx_bytes = mp->tx_bytes + (unsigned long long )tmp; tmp___0 = readq((void const volatile *)np->mac_regs + 1104U); mp->tx_frames = mp->tx_frames + (unsigned long long )tmp___0; tmp___1 = readq((void const volatile *)np->mac_regs + 880U); mp->rx_frames = mp->rx_frames + (unsigned long long )tmp___1; tmp___2 = readq((void const volatile *)np->mac_regs + 896U); mp->rx_align_errors = mp->rx_align_errors + (unsigned long long )tmp___2; tmp___3 = readq((void const volatile *)np->mac_regs + 896U); mp->rx_crc_errors = mp->rx_crc_errors + (unsigned long long )tmp___3; tmp___4 = readq((void const volatile *)np->mac_regs + 912U); mp->rx_len_errors = mp->rx_len_errors + (unsigned long long )tmp___4; } return; } } static void niu_sync_mac_stats(struct niu *np ) { { if ((np->flags & 65536U) != 0U) { { niu_sync_xmac_stats(np); } } else { { niu_sync_bmac_stats(np); } } return; } } static void niu_get_rx_stats(struct niu *np , struct rtnl_link_stats64 *stats ) { u64 pkts ; u64 dropped ; u64 errors ; u64 bytes ; struct rx_ring_info *rx_rings ; int i ; struct rx_ring_info *rp ; { bytes = 0ULL; errors = bytes; dropped = errors; pkts = dropped; rx_rings = *((struct rx_ring_info * volatile *)(& np->rx_rings)); if ((unsigned long )rx_rings == (unsigned long )((struct rx_ring_info *)0)) { goto no_rings; } else { } i = 0; goto ldv_51596; ldv_51595: { rp = rx_rings + (unsigned long )i; niu_sync_rx_discard_stats(np, rp, 0); pkts = pkts + rp->rx_packets; bytes = bytes + rp->rx_bytes; dropped = dropped + rp->rx_dropped; errors = errors + rp->rx_errors; i = i + 1; } ldv_51596: ; if (i < np->num_rx_rings) { goto ldv_51595; } else { } no_rings: stats->rx_packets = pkts; stats->rx_bytes = bytes; stats->rx_dropped = dropped; stats->rx_errors = errors; return; } } static void niu_get_tx_stats(struct niu *np , struct rtnl_link_stats64 *stats ) { u64 pkts ; u64 errors ; u64 bytes ; struct tx_ring_info *tx_rings ; int i ; struct tx_ring_info *rp ; { bytes = 0ULL; errors = bytes; pkts = errors; tx_rings = *((struct tx_ring_info * volatile *)(& np->tx_rings)); if ((unsigned long )tx_rings == (unsigned long )((struct tx_ring_info *)0)) { goto no_rings; } else { } i = 0; goto ldv_51610; ldv_51609: rp = tx_rings + (unsigned long )i; pkts = pkts + rp->tx_packets; bytes = bytes + rp->tx_bytes; errors = errors + rp->tx_errors; i = i + 1; ldv_51610: ; if (i < np->num_tx_rings) { goto ldv_51609; } else { } no_rings: stats->tx_packets = pkts; stats->tx_bytes = bytes; stats->tx_errors = errors; return; } } static struct rtnl_link_stats64 *niu_get_stats(struct net_device *dev , struct rtnl_link_stats64 *stats ) { struct niu *np ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { niu_get_rx_stats(np, stats); niu_get_tx_stats(np, stats); } } else { } return (stats); } } static void niu_load_hash_xmac(struct niu *np , u16 *hash ) { int i ; { i = 0; goto ldv_51623; ldv_51622: { writeq((unsigned long )*(hash + (unsigned long )i), (void volatile *)(np->mac_regs + ((unsigned long )i + 264UL) * 8UL)); i = i + 1; } ldv_51623: ; if (i <= 15) { goto ldv_51622; } else { } return; } } static void niu_load_hash_bmac(struct niu *np , u16 *hash ) { int i ; { i = 0; goto ldv_51631; ldv_51630: { writeq((unsigned long )*(hash + (unsigned long )i), (void volatile *)(np->mac_regs + ((unsigned long )i + 88UL) * 8UL)); i = i + 1; } ldv_51631: ; if (i <= 15) { goto ldv_51630; } else { } return; } } static void niu_load_hash(struct niu *np , u16 *hash ) { { if ((np->flags & 65536U) != 0U) { { niu_load_hash_xmac(np, hash); } } else { { niu_load_hash_bmac(np, hash); } } return; } } static void niu_set_rx_mode(struct net_device *dev ) { struct niu *np ; void *tmp ; int i ; int alt_cnt ; int err ; struct netdev_hw_addr *ha ; unsigned long flags ; u16 hash[16U] ; unsigned int tmp___0 ; int tmp___1 ; int index ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int alt_start ; int tmp___2 ; struct list_head const *__mptr___1 ; u32 crc ; u32 tmp___3 ; struct list_head const *__mptr___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; hash[0] = 0U; tmp___0 = 1U; } { while (1) { while_continue: /* CIL Label */ ; if (tmp___0 >= 16U) { goto while_break; } else { } hash[tmp___0] = (unsigned short)0; tmp___0 = tmp___0 + 1U; } while_break: /* CIL Label */ ; } { ldv___ldv_spin_lock_114(& np->lock); niu_enable_rx_mac(np, 0); np->flags = np->flags & 4291821567U; } if ((dev->flags & 256U) != 0U) { np->flags = np->flags | 1048576U; } else { } if ((dev->flags & 512U) != 0U || dev->mc.count != 0) { np->flags = np->flags | 2097152U; } else { } { alt_cnt = dev->uc.count; tmp___1 = niu_num_alt_addr(np); } if (alt_cnt > tmp___1) { alt_cnt = 0; np->flags = np->flags | 1048576U; } else { } if (alt_cnt != 0) { index = 0; __mptr = (struct list_head const *)dev->uc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_51653; ldv_51652: { err = niu_set_alt_mac(np, index, (unsigned char *)(& ha->addr)); } if (err != 0) { { netdev_warn((struct net_device const *)dev, "Error %d adding alt mac %d\n", err, index); } } else { } { err = niu_enable_alt_mac(np, index, 1); } if (err != 0) { { netdev_warn((struct net_device const *)dev, "Error %d enabling alt mac %d\n", err, index); } } else { } index = index + 1; __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_51653: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->uc.list)) { goto ldv_51652; } else { } } else { if ((np->flags & 65536U) != 0U) { alt_start = 0; } else { alt_start = 1; } i = alt_start; goto ldv_51657; ldv_51656: { err = niu_enable_alt_mac(np, i, 0); } if (err != 0) { { netdev_warn((struct net_device const *)dev, "Error %d disabling alt mac %d\n", err, i); } } else { } i = i + 1; ldv_51657: { tmp___2 = niu_num_alt_addr(np); } if (i < tmp___2) { goto ldv_51656; } else { } } if ((dev->flags & 512U) != 0U) { i = 0; goto ldv_51660; ldv_51659: hash[i] = 65535U; i = i + 1; ldv_51660: ; if (i <= 15) { goto ldv_51659; } else { } } else if (dev->mc.count != 0) { __mptr___1 = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr___1; goto ldv_51668; ldv_51667: { tmp___3 = crc32_le(4294967295U, (unsigned char const *)(& ha->addr), 6UL); crc = tmp___3; crc = crc >> 24; hash[crc >> 4] = (u16 )((int )((short )hash[crc >> 4]) | (int )((short )(1 << ((int )(~ crc) & 15)))); __mptr___2 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___2; } ldv_51668: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_51667; } else { } } else { } if ((np->flags & 2097152U) != 0U) { { niu_load_hash(np, (u16 *)(& hash)); } } else { } { niu_enable_rx_mac(np, 1); ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return; } } static int niu_set_mac_addr(struct net_device *dev , void *p ) { struct niu *np ; void *tmp ; struct sockaddr *addr ; unsigned long flags ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), 6UL); tmp___2 = netif_running((struct net_device const *)dev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } { ldv___ldv_spin_lock_116(& np->lock); niu_enable_rx_mac(np, 0); niu_set_primary_mac(np, dev->dev_addr); niu_enable_rx_mac(np, 1); ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return (0); } } static int niu_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { { return (-95); } } static void niu_netif_stop(struct niu *np ) { { { (np->dev)->trans_start = jiffies; niu_disable_napi(np); netif_tx_disable(np->dev); } return; } } static void niu_netif_start(struct niu *np ) { { { netif_tx_wake_all_queues(np->dev); niu_enable_napi(np); niu_enable_interrupts(np, 1); } return; } } static void niu_reset_buffers(struct niu *np ) { int i ; int j ; int k ; int err ; struct rx_ring_info *rp ; struct page *page ; struct page *next ; u64 base ; int tmp ; long tmp___0 ; struct tx_ring_info *rp___0 ; { if ((unsigned long )np->rx_rings != (unsigned long )((struct rx_ring_info *)0)) { i = 0; goto ldv_51709; ldv_51708: rp = np->rx_rings + (unsigned long )i; j = 0; k = 0; goto ldv_51703; ldv_51702: page = *(rp->rxhash + (unsigned long )j); goto ldv_51700; ldv_51699: next = (struct page *)page->__annonCompField37.mapping; base = (u64 )page->__annonCompField43.__annonCompField38.index; base = base >> 12; tmp = k; k = k + 1; *(rp->rbr + (unsigned long )tmp) = (unsigned int )base; page = next; ldv_51700: ; if ((unsigned long )page != (unsigned long )((struct page *)0)) { goto ldv_51699; } else { } j = j + 1; ldv_51703: ; if (j <= 127) { goto ldv_51702; } else { } goto ldv_51707; ldv_51706: { err = niu_rbr_add_page(np, rp, 32U, k); tmp___0 = ldv__builtin_expect(err != 0, 0L); } if (tmp___0 != 0L) { goto ldv_51705; } else { } k = k + 1; ldv_51707: ; if (k <= 127) { goto ldv_51706; } else { } ldv_51705: rp->rbr_index = rp->rbr_table_size - 1U; rp->rcr_index = 0U; rp->rbr_pending = 0U; rp->rbr_refill_pending = 0U; i = i + 1; ldv_51709: ; if (i < np->num_rx_rings) { goto ldv_51708; } else { } } else { } if ((unsigned long )np->tx_rings != (unsigned long )((struct tx_ring_info *)0)) { i = 0; goto ldv_51716; ldv_51715: rp___0 = np->tx_rings + (unsigned long )i; j = 0; goto ldv_51713; ldv_51712: ; if ((unsigned long )rp___0->tx_buffs[j].skb != (unsigned long )((struct sk_buff *)0)) { { release_tx_packet(np, rp___0, j); } } else { } j = j + 1; ldv_51713: ; if (j <= 255) { goto ldv_51712; } else { } rp___0->pending = 256; rp___0->prod = 0; rp___0->cons = 0; rp___0->wrap_bit = 0; i = i + 1; ldv_51716: ; if (i < np->num_tx_rings) { goto ldv_51715; } else { } } else { } return; } } static void niu_reset_task(struct work_struct *work ) { struct niu *np ; struct work_struct const *__mptr ; unsigned long flags ; int err ; bool tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; np = (struct niu *)__mptr + 0xffffffffffffbff0UL; ldv___ldv_spin_lock_118(& np->lock); tmp = netif_running((struct net_device const *)np->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return; } else { } { ldv_spin_unlock_irqrestore_80(& np->lock, flags); ldv_del_timer_sync_121(& np->timer); niu_netif_stop(np); ldv___ldv_spin_lock_122(& np->lock); niu_stop_hw(np); ldv_spin_unlock_irqrestore_80(& np->lock, flags); niu_reset_buffers(np); ldv___ldv_spin_lock_124(& np->lock); err = niu_init_hw(np); } if (err == 0) { { np->timer.expires = (unsigned long )jiffies + 250UL; add_timer(& np->timer); niu_netif_start(np); } } else { } { ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return; } } static void niu_tx_timeout(struct net_device *dev ) { struct niu *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; dev_err((struct device const *)np->device, "%s: Transmit timed out, resetting\n", (char *)(& dev->name)); schedule_work(& np->reset_task); } return; } } static void niu_set_txd(struct tx_ring_info *rp , int index , u64 mapping , u64 len , u64 mark , u64 n_frags ) { __le64 *desc ; { desc = rp->descr + (unsigned long )index; *desc = ((mark | (n_frags << 58)) | (len << 44)) | (mapping & 17592186044415ULL); return; } } static u64 niu_compute_tx_flags(struct sk_buff *skb , struct ethhdr *ehdr , u64 pad_bytes , u64 len ) { u16 eth_proto ; u16 eth_proto_inner ; u64 csum_bits ; u64 l3off ; u64 ihl ; u64 ret ; u8 ip_proto ; int ipv6 ; __u16 tmp ; struct vlan_ethhdr *vp ; __be16 val ; __u16 tmp___0 ; struct iphdr *tmp___1 ; struct iphdr *tmp___2 ; struct ipv6hdr *tmp___3 ; u64 start ; u64 stuff ; int tmp___4 ; int tmp___5 ; { { tmp = __fswab16((int )ehdr->h_proto); eth_proto = tmp; eth_proto_inner = eth_proto; } if ((unsigned int )eth_proto == 33024U) { { vp = (struct vlan_ethhdr *)ehdr; val = vp->h_vlan_encapsulated_proto; tmp___0 = __fswab16((int )val); eth_proto_inner = tmp___0; } } else { } ihl = 0ULL; ipv6 = 0; { if ((int )skb->protocol == 8) { goto case_8; } else { } if ((int )skb->protocol == 56710) { goto case_56710; } else { } goto switch_default; case_8: /* CIL Label */ { tmp___1 = ip_hdr((struct sk_buff const *)skb); ip_proto = tmp___1->protocol; tmp___2 = ip_hdr((struct sk_buff const *)skb); ihl = (u64 )tmp___2->ihl; } goto ldv_51756; case_56710: /* CIL Label */ { tmp___3 = ipv6_hdr((struct sk_buff const *)skb); ip_proto = tmp___3->nexthdr; ihl = 10ULL; ipv6 = 1; } goto ldv_51756; switch_default: /* CIL Label */ ihl = 0ULL; ip_proto = 0U; goto ldv_51756; switch_break: /* CIL Label */ ; } ldv_51756: csum_bits = 0ULL; if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { { csum_bits = (unsigned int )ip_proto != 6U ? ((unsigned int )ip_proto == 17U ? 0x8000000000000000ULL : 0xc000000000000000ULL) : 4611686018427387904ULL; tmp___4 = skb_checksum_start_offset((struct sk_buff const *)skb); start = ((unsigned long long )tmp___4 - pad_bytes) - 16ULL; stuff = start + (u64 )skb->__annonCompField68.__annonCompField67.csum_offset; csum_bits = csum_bits | (start / 2ULL << 40); csum_bits = csum_bits | (stuff / 2ULL << 32); } } else { } { tmp___5 = skb_network_offset((struct sk_buff const *)skb); l3off = ((unsigned long long )tmp___5 - pad_bytes) - 16ULL; ret = ((((((pad_bytes / 2ULL | (len << 16)) | (l3off / 2ULL << 48)) | (ihl << 52)) | ((unsigned int )eth_proto_inner <= 1535U ? 144115188075855872ULL : 0ULL)) | ((unsigned int )eth_proto == 33024U ? 72057594037927936ULL : 0ULL)) | (ipv6 != 0 ? 2305843009213693952ULL : 0ULL)) | csum_bits; } return (ret); } } static netdev_tx_t niu_start_xmit(struct sk_buff *skb , struct net_device *dev ) { struct niu *np ; void *tmp ; unsigned long align ; unsigned long headroom ; struct netdev_queue *txq ; struct tx_ring_info *rp ; struct tx_pkt_hdr *tp ; unsigned int len ; unsigned int nfg ; struct ethhdr *ehdr ; int prod ; int i ; int tlen ; u64 mapping ; u64 mrk ; u16 tmp___0 ; u32 tmp___1 ; unsigned char *tmp___2 ; unsigned int pad_bytes ; int tmp___3 ; struct sk_buff *skb_new ; unsigned int tmp___4 ; unsigned char *tmp___5 ; unsigned char *tmp___6 ; unsigned int this_len ; skb_frag_t const *frag ; unsigned char *tmp___7 ; struct page *tmp___8 ; unsigned char *tmp___9 ; u32 tmp___10 ; u32 tmp___11 ; long tmp___12 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; tmp___0 = skb_get_queue_mapping((struct sk_buff const *)skb); i = (int )tmp___0; rp = np->tx_rings + (unsigned long )i; txq = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )i); tmp___1 = niu_tx_avail(rp); tmp___2 = skb_end_pointer((struct sk_buff const *)skb); } if (tmp___1 <= (u32 )((int )((struct skb_shared_info *)tmp___2)->nr_frags + 1)) { { netif_tx_stop_queue(txq); dev_err((struct device const *)np->device, "%s: BUG! Tx ring full when queue awake!\n", (char *)(& dev->name)); rp->tx_errors = rp->tx_errors + 1ULL; } return (16); } else { } if (skb->len <= 59U) { { pad_bytes = 60U - skb->len; tmp___3 = skb_pad(skb, (int )pad_bytes); } if (tmp___3 != 0) { goto out; } else { } { skb_put(skb, pad_bytes); } } else { } { len = 31U; tmp___4 = skb_headroom((struct sk_buff const *)skb); } if (tmp___4 < len) { { skb_new = skb_realloc_headroom(skb, len); } if ((unsigned long )skb_new == (unsigned long )((struct sk_buff *)0)) { rp->tx_errors = rp->tx_errors + 1ULL; goto out_drop; } else { } { kfree_skb(skb); skb = skb_new; } } else { { skb_orphan(skb); } } { align = (unsigned long )skb->data & 15UL; headroom = align + 16UL; ehdr = (struct ethhdr *)skb->data; tmp___5 = skb_push(skb, (unsigned int )headroom); tp = (struct tx_pkt_hdr *)tmp___5; len = skb->len - 16U; tp->flags = niu_compute_tx_flags(skb, ehdr, (u64 )align, (u64 )len); tp->resv = 0ULL; len = skb_headlen((struct sk_buff const *)skb); mapping = (*((np->ops)->map_single))(np->device, (void *)skb->data, (size_t )len, 1); prod = rp->prod; rp->tx_buffs[prod].skb = skb; rp->tx_buffs[prod].mapping = mapping; mrk = 0x8000000000000000ULL; rp->mark_counter = (u16 )((int )rp->mark_counter + 1); } if ((int )rp->mark_counter == (int )rp->mark_freq) { rp->mark_counter = 0U; mrk = mrk | 4611686018427387904ULL; rp->mark_pending = (u16 )((int )rp->mark_pending + 1); } else { } { tlen = (int )len; tmp___6 = skb_end_pointer((struct sk_buff const *)skb); nfg = (unsigned int )((struct skb_shared_info *)tmp___6)->nr_frags; } goto ldv_51784; ldv_51783: tlen = tlen + -4076; nfg = nfg + 1U; ldv_51784: ; if (tlen > 0) { goto ldv_51783; } else { } goto ldv_51788; ldv_51787: this_len = len; if (this_len > 4076U) { this_len = 4076U; } else { } { niu_set_txd(rp, prod, mapping, (u64 )this_len, mrk, (u64 )nfg); nfg = 0U; mrk = 0ULL; prod = prod + 1 < rp->pending ? prod + 1 : 0; mapping = mapping + (u64 )this_len; len = len - this_len; } ldv_51788: ; if (len != 0U) { goto ldv_51787; } else { } i = 0; goto ldv_51792; ldv_51791: { tmp___7 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___7)->frags) + (unsigned long )i; len = skb_frag_size(frag); tmp___8 = skb_frag_page(frag); mapping = (*((np->ops)->map_page))(np->device, tmp___8, (unsigned long )frag->page_offset, (size_t )len, 1); rp->tx_buffs[prod].skb = (struct sk_buff *)0; rp->tx_buffs[prod].mapping = mapping; niu_set_txd(rp, prod, mapping, (u64 )len, 0ULL, 0ULL); prod = prod + 1 < rp->pending ? prod + 1 : 0; i = i + 1; } ldv_51792: { tmp___9 = skb_end_pointer((struct sk_buff const *)skb); } if (i < (int )((struct skb_shared_info *)tmp___9)->nr_frags) { goto ldv_51791; } else { } if (prod < rp->prod) { rp->wrap_bit = rp->wrap_bit ^ 524288; } else { } { rp->prod = prod; writeq((unsigned long )(rp->wrap_bit | (prod << 3)), (void volatile *)(np->regs + ((unsigned long )rp->tx_channel * 512UL + 6553624UL))); tmp___11 = niu_tx_avail(rp); tmp___12 = ldv__builtin_expect(tmp___11 <= 18U, 0L); } if (tmp___12 != 0L) { { netif_tx_stop_queue(txq); tmp___10 = niu_tx_avail(rp); } if (tmp___10 > (u32 )(rp->pending / 4)) { { netif_tx_wake_queue(txq); } } else { } } else { } out: ; return (0); out_drop: { rp->tx_errors = rp->tx_errors + 1ULL; kfree_skb(skb); } goto out; } } static int niu_change_mtu(struct net_device *dev , int new_mtu ) { struct niu *np ; void *tmp ; int err ; int orig_jumbo ; int new_jumbo ; bool tmp___0 ; int tmp___1 ; struct lock_class_key __key ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; } if ((unsigned int )new_mtu - 68U > 9148U) { return (-22); } else { } { orig_jumbo = dev->mtu > 1500U; new_jumbo = new_mtu > 1500; dev->mtu = (unsigned int )new_mtu; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1 || orig_jumbo == new_jumbo) { return (0); } else { } { niu_full_shutdown(np, dev); niu_free_channels(np); niu_enable_napi(np); err = niu_alloc_channels(np); } if (err != 0) { return (err); } else { } { ldv_spin_lock_irq_109(& np->lock); err = niu_init_hw(np); } if (err == 0) { { init_timer_key(& np->timer, 0U, "(&np->timer)", & __key); np->timer.expires = (unsigned long )jiffies + 250UL; np->timer.data = (unsigned long )np; np->timer.function = & niu_timer; err = niu_enable_interrupts(np, 1); } if (err != 0) { { niu_stop_hw(np); } } else { } } else { } { ldv_spin_unlock_irq_110(& np->lock); } if (err == 0) { { netif_tx_start_all_queues(dev); } if ((unsigned int )np->link_config.loopback_mode != 0U) { { netif_carrier_on(dev); } } else { } { add_timer(& np->timer); } } else { } return (err); } } static void niu_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct niu *np ; void *tmp ; struct niu_vpd *vpd ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; vpd = & np->vpd; strlcpy((char *)(& info->driver), "niu", 32UL); strlcpy((char *)(& info->version), "1.1", 32UL); snprintf((char *)(& info->fw_version), 32UL, "%d.%d", vpd->fcode_major, vpd->fcode_minor); } if ((unsigned int )(np->parent)->plat_type != 2U) { { tmp___0 = pci_name((struct pci_dev const *)np->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); } } else { } return; } } static int niu_get_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct niu *np ; void *tmp ; struct niu_link_config *lp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; lp = & np->link_config; memset((void *)cmd, 0, 44UL); cmd->phy_address = (__u8 )np->phy_addr; cmd->supported = lp->supported; cmd->advertising = lp->active_advertising; cmd->autoneg = lp->active_autoneg; ethtool_cmd_speed_set(cmd, (__u32 )lp->active_speed); cmd->duplex = lp->active_duplex; cmd->port = (np->flags & 131072U) != 0U ? 3U : 0U; cmd->transceiver = (np->flags & 524288U) != 0U; } return (0); } } static int niu_set_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct niu *np ; void *tmp ; struct niu_link_config *lp ; __u32 tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; lp = & np->link_config; lp->advertising = cmd->advertising; tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)cmd); lp->speed = (u16 )tmp___0; lp->duplex = cmd->duplex; lp->autoneg = cmd->autoneg; tmp___1 = niu_init_link(np); } return (tmp___1); } } static u32 niu_get_msglevel(struct net_device *dev ) { struct niu *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; } return (np->msg_enable); } } static void niu_set_msglevel(struct net_device *dev , u32 value ) { struct niu *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; np->msg_enable = value; } return; } } static int niu_nway_reset(struct net_device *dev ) { struct niu *np ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; } if ((unsigned int )np->link_config.autoneg != 0U) { { tmp___0 = niu_init_link(np); } return (tmp___0); } else { } return (0); } } static int niu_get_eeprom_len(struct net_device *dev ) { struct niu *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; } return ((int )np->eeprom_len); } } static int niu_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct niu *np ; void *tmp ; u32 offset ; u32 len ; u32 val ; __u32 tmp___0 ; u32 b_offset ; u32 b_count ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; offset = eeprom->offset; len = eeprom->len; } if (offset + len < offset) { return (-22); } else { } if (offset >= np->eeprom_len) { return (-22); } else { } if (offset + len > np->eeprom_len) { tmp___0 = np->eeprom_len - offset; eeprom->len = tmp___0; len = tmp___0; } else { } if ((offset & 3U) != 0U) { b_offset = offset & 3U; b_count = 4U - b_offset; if (b_count > len) { b_count = len; } else { } { tmp___1 = readq((void const volatile *)(np->regs + ((unsigned long )((offset - b_offset) / 4U) + 1671172UL) * 8UL)); val = (u32 )tmp___1; memcpy((void *)data, (void const *)(& val) + (unsigned long )b_offset, (size_t )b_count); data = data + (unsigned long )b_count; len = len - b_count; offset = offset + b_count; } } else { } goto ldv_51850; ldv_51849: { tmp___2 = readq((void const volatile *)(np->regs + ((unsigned long )(offset / 4U) + 1671172UL) * 8UL)); val = (u32 )tmp___2; memcpy((void *)data, (void const *)(& val), 4UL); data = data + 4UL; len = len - 4U; offset = offset + 4U; } ldv_51850: ; if (len > 3U) { goto ldv_51849; } else { } if (len != 0U) { { tmp___3 = readq((void const volatile *)(np->regs + ((unsigned long )(offset / 4U) + 1671172UL) * 8UL)); val = (u32 )tmp___3; memcpy((void *)data, (void const *)(& val), (size_t )len); } } else { } return (0); } } static void niu_ethflow_to_l3proto(int flow_type , u8 *pid ) { { { if (flow_type == 1) { goto case_1; } else { } if (flow_type == 5) { goto case_5; } else { } if (flow_type == 2) { goto case_2; } else { } if (flow_type == 6) { goto case_6; } else { } if (flow_type == 3) { goto case_3; } else { } if (flow_type == 7) { goto case_7; } else { } if (flow_type == 9) { goto case_9; } else { } if (flow_type == 11) { goto case_11; } else { } if (flow_type == 10) { goto case_10; } else { } if (flow_type == 12) { goto case_12; } else { } goto switch_default; case_1: /* CIL Label */ ; case_5: /* CIL Label */ *pid = 6U; goto ldv_51858; case_2: /* CIL Label */ ; case_6: /* CIL Label */ *pid = 17U; goto ldv_51858; case_3: /* CIL Label */ ; case_7: /* CIL Label */ *pid = 132U; goto ldv_51858; case_9: /* CIL Label */ ; case_11: /* CIL Label */ *pid = 51U; goto ldv_51858; case_10: /* CIL Label */ ; case_12: /* CIL Label */ *pid = 50U; goto ldv_51858; switch_default: /* CIL Label */ *pid = 0U; goto ldv_51858; switch_break: /* CIL Label */ ; } ldv_51858: ; return; } } static int niu_class_to_ethflow(u64 class , int *flow_type ) { { { if (class == 8ULL) { goto case_8; } else { } if (class == 9ULL) { goto case_9; } else { } if (class == 10ULL) { goto case_10; } else { } if (class == 11ULL) { goto case_11; } else { } if (class == 12ULL) { goto case_12; } else { } if (class == 13ULL) { goto case_13; } else { } if (class == 14ULL) { goto case_14; } else { } if (class == 15ULL) { goto case_15; } else { } if (class == 4ULL) { goto case_4; } else { } if (class == 5ULL) { goto case_5; } else { } if (class == 6ULL) { goto case_6; } else { } if (class == 7ULL) { goto case_7; } else { } goto switch_default; case_8: /* CIL Label */ *flow_type = 1; goto ldv_51873; case_9: /* CIL Label */ *flow_type = 2; goto ldv_51873; case_10: /* CIL Label */ *flow_type = 9; goto ldv_51873; case_11: /* CIL Label */ *flow_type = 3; goto ldv_51873; case_12: /* CIL Label */ *flow_type = 5; goto ldv_51873; case_13: /* CIL Label */ *flow_type = 6; goto ldv_51873; case_14: /* CIL Label */ *flow_type = 11; goto ldv_51873; case_15: /* CIL Label */ *flow_type = 7; goto ldv_51873; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ *flow_type = 13; goto ldv_51873; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_51873: ; return (1); } } static int niu_ethflow_to_class(int flow_type , u64 *class ) { { { if (flow_type == 1) { goto case_1; } else { } if (flow_type == 2) { goto case_2; } else { } if (flow_type == 4) { goto case_4; } else { } if (flow_type == 9) { goto case_9; } else { } if (flow_type == 10) { goto case_10; } else { } if (flow_type == 3) { goto case_3; } else { } if (flow_type == 5) { goto case_5; } else { } if (flow_type == 6) { goto case_6; } else { } if (flow_type == 8) { goto case_8; } else { } if (flow_type == 11) { goto case_11; } else { } if (flow_type == 12) { goto case_12; } else { } if (flow_type == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ *class = 8ULL; goto ldv_51891; case_2: /* CIL Label */ *class = 9ULL; goto ldv_51891; case_4: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ *class = 10ULL; goto ldv_51891; case_3: /* CIL Label */ *class = 11ULL; goto ldv_51891; case_5: /* CIL Label */ *class = 12ULL; goto ldv_51891; case_6: /* CIL Label */ *class = 13ULL; goto ldv_51891; case_8: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ *class = 14ULL; goto ldv_51891; case_7: /* CIL Label */ *class = 15ULL; goto ldv_51891; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_51891: ; return (1); } } static u64 niu_flowkey_to_ethflow(u64 flow_key ) { u64 ethflow ; { ethflow = 0ULL; if ((flow_key & 256ULL) != 0ULL) { ethflow = ethflow | 2ULL; } else { } if ((flow_key & 128ULL) != 0ULL) { ethflow = ethflow | 4ULL; } else { } if ((flow_key & 64ULL) != 0ULL) { ethflow = ethflow | 16ULL; } else { } if ((flow_key & 32ULL) != 0ULL) { ethflow = ethflow | 32ULL; } else { } if ((flow_key & 16ULL) != 0ULL) { ethflow = ethflow | 8ULL; } else { } if ((flow_key & 8ULL) != 0ULL) { ethflow = ethflow | 64ULL; } else { } if ((flow_key & 2ULL) != 0ULL) { ethflow = ethflow | 128ULL; } else { } return (ethflow); } } static int niu_ethflow_to_flowkey(u64 ethflow , u64 *flow_key ) { u64 key ; { key = 0ULL; if ((ethflow & 2ULL) != 0ULL) { key = key | 256ULL; } else { } if ((ethflow & 4ULL) != 0ULL) { key = key | 128ULL; } else { } if ((ethflow & 16ULL) != 0ULL) { key = key | 64ULL; } else { } if ((ethflow & 32ULL) != 0ULL) { key = key | 32ULL; } else { } if ((ethflow & 8ULL) != 0ULL) { key = key | 16ULL; } else { } if ((ethflow & 64ULL) != 0ULL) { key = key | 8ULL; } else { } if ((ethflow & 128ULL) != 0ULL) { key = key | 2ULL; } else { } *flow_key = key; return (1); } } static int niu_get_hash_opts(struct niu *np , struct ethtool_rxnfc *nfc ) { u64 class ; int tmp ; { { nfc->data = 0ULL; tmp = niu_ethflow_to_class((int )nfc->flow_type, & class); } if (tmp == 0) { return (-22); } else { } if (((np->parent)->tcam_key[class - 4ULL] & 8ULL) != 0ULL) { nfc->data = 0xffffffff80000000ULL; } else { { nfc->data = niu_flowkey_to_ethflow((np->parent)->flow_key[class - 4ULL]); } } return (0); } } static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp , struct ethtool_rx_flow_spec *fsp ) { u32 tmp ; u16 prt ; __u32 tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; __u32 tmp___3 ; __u16 tmp___4 ; __u16 tmp___5 ; __u16 tmp___6 ; __u16 tmp___7 ; __u32 tmp___8 ; __u32 tmp___9 ; __u32 tmp___10 ; __u32 tmp___11 ; { { tmp = (u32 )(tp->key[3] >> 32); tmp___0 = __fswab32(tmp); fsp->h_u.tcp_ip4_spec.ip4src = tmp___0; tmp = (u32 )tp->key[3]; tmp___1 = __fswab32(tmp); fsp->h_u.tcp_ip4_spec.ip4dst = tmp___1; tmp = (u32 )(tp->key_mask[3] >> 32); tmp___2 = __fswab32(tmp); fsp->m_u.tcp_ip4_spec.ip4src = tmp___2; tmp = (u32 )tp->key_mask[3]; tmp___3 = __fswab32(tmp); fsp->m_u.tcp_ip4_spec.ip4dst = tmp___3; fsp->h_u.tcp_ip4_spec.tos = (__u8 )((tp->key[2] & 280375465082880ULL) >> 40); fsp->m_u.tcp_ip4_spec.tos = (__u8 )((tp->key_mask[2] & 280375465082880ULL) >> 40); } { if (fsp->flow_type == 1U) { goto case_1; } else { } if (fsp->flow_type == 2U) { goto case_2; } else { } if (fsp->flow_type == 3U) { goto case_3; } else { } if (fsp->flow_type == 9U) { goto case_9; } else { } if (fsp->flow_type == 10U) { goto case_10; } else { } if (fsp->flow_type == 13U) { goto case_13; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ { prt = (u16 )((tp->key[2] & 4294967295ULL) >> 16); tmp___4 = __fswab16((int )prt); fsp->h_u.tcp_ip4_spec.psrc = tmp___4; prt = (u16 )tp->key[2]; tmp___5 = __fswab16((int )prt); fsp->h_u.tcp_ip4_spec.pdst = tmp___5; prt = (u16 )((tp->key_mask[2] & 4294967295ULL) >> 16); tmp___6 = __fswab16((int )prt); fsp->m_u.tcp_ip4_spec.psrc = tmp___6; prt = (u16 )tp->key_mask[2]; tmp___7 = __fswab16((int )prt); fsp->m_u.tcp_ip4_spec.pdst = tmp___7; } goto ldv_51927; case_9: /* CIL Label */ ; case_10: /* CIL Label */ { tmp = (u32 )tp->key[2]; tmp___8 = __fswab32(tmp); fsp->h_u.ah_ip4_spec.spi = tmp___8; tmp = (u32 )tp->key_mask[2]; tmp___9 = __fswab32(tmp); fsp->m_u.ah_ip4_spec.spi = tmp___9; } goto ldv_51927; case_13: /* CIL Label */ { tmp = (u32 )tp->key[2]; tmp___10 = __fswab32(tmp); fsp->h_u.usr_ip4_spec.l4_4_bytes = tmp___10; tmp = (u32 )tp->key_mask[2]; tmp___11 = __fswab32(tmp); fsp->m_u.usr_ip4_spec.l4_4_bytes = tmp___11; fsp->h_u.usr_ip4_spec.proto = (__u8 )((tp->key[2] & 1095216660480ULL) >> 32); fsp->m_u.usr_ip4_spec.proto = (__u8 )((tp->key_mask[2] & 1095216660480ULL) >> 32); fsp->h_u.usr_ip4_spec.ip_ver = 1U; } goto ldv_51927; switch_default: /* CIL Label */ ; goto ldv_51927; switch_break: /* CIL Label */ ; } ldv_51927: ; return; } } static int niu_get_ethtool_tcam_entry(struct niu *np , struct ethtool_rxnfc *nfc ) { struct niu_parent *parent ; struct niu_tcam_entry *tp ; struct ethtool_rx_flow_spec *fsp ; u16 idx ; u64 class ; int ret ; u32 proto ; u16 tmp ; { { parent = np->parent; fsp = & nfc->fs; ret = 0; idx = tcam_get_index(np, (int )((unsigned short )nfc->fs.location)); tp = (struct niu_tcam_entry *)(& parent->tcam) + (unsigned long )idx; } if ((unsigned int )tp->valid == 0U) { { netdev_info((struct net_device const *)np->dev, "niu%d: entry [%d] invalid for idx[%d]\n", parent->index, (int )((unsigned short )nfc->fs.location), (int )idx); } return (-22); } else { } { class = (tp->key[0] & 248ULL) >> 3; ret = niu_class_to_ethflow(class, (int *)(& fsp->flow_type)); } if (ret < 0) { { netdev_info((struct net_device const *)np->dev, "niu%d: niu_class_to_ethflow failed\n", parent->index); ret = -22; } goto out; } else { } if (fsp->flow_type == 9U || fsp->flow_type == 11U) { proto = (u32 )((tp->key[2] & 1095216660480ULL) >> 32); if (proto == 50U) { if (fsp->flow_type == 9U) { fsp->flow_type = 10U; } else { fsp->flow_type = 12U; } } else { } } else { } { if (fsp->flow_type == 1U) { goto case_1; } else { } if (fsp->flow_type == 2U) { goto case_2; } else { } if (fsp->flow_type == 3U) { goto case_3; } else { } if (fsp->flow_type == 9U) { goto case_9; } else { } if (fsp->flow_type == 10U) { goto case_10; } else { } if (fsp->flow_type == 5U) { goto case_5; } else { } if (fsp->flow_type == 6U) { goto case_6; } else { } if (fsp->flow_type == 7U) { goto case_7; } else { } if (fsp->flow_type == 11U) { goto case_11; } else { } if (fsp->flow_type == 12U) { goto case_12; } else { } if (fsp->flow_type == 13U) { goto case_13; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ { niu_get_ip4fs_from_tcam_key(tp, fsp); } goto ldv_51949; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ret = -22; goto ldv_51949; case_13: /* CIL Label */ { niu_get_ip4fs_from_tcam_key(tp, fsp); } goto ldv_51949; switch_default: /* CIL Label */ ret = -22; goto ldv_51949; switch_break: /* CIL Label */ ; } ldv_51949: ; if (ret < 0) { goto out; } else { } if ((tp->assoc_data & 4096ULL) != 0ULL) { fsp->ring_cookie = 0xffffffffffffffffULL; } else { fsp->ring_cookie = (tp->assoc_data & 124ULL) >> 2; } { tmp = tcam_get_size(np); nfc->data = (__u64 )tmp; } out: ; return (ret); } } static int niu_get_ethtool_tcam_all(struct niu *np , struct ethtool_rxnfc *nfc , u32 *rule_locs ) { struct niu_parent *parent ; struct niu_tcam_entry *tp ; int i ; int idx ; int cnt ; unsigned long flags ; int ret ; u16 tmp ; u16 tmp___0 ; { { parent = np->parent; ret = 0; tmp = tcam_get_size(np); nfc->data = (__u64 )tmp; ldv___ldv_spin_lock_128(& (np->parent)->lock); cnt = 0; i = 0; } goto ldv_51972; ldv_51971: { tmp___0 = tcam_get_index(np, (int )((u16 )i)); idx = (int )tmp___0; tp = (struct niu_tcam_entry *)(& parent->tcam) + (unsigned long )idx; } if ((unsigned int )tp->valid == 0U) { goto ldv_51969; } else { } if ((__u32 )cnt == nfc->rule_cnt) { ret = -90; goto ldv_51970; } else { } *(rule_locs + (unsigned long )cnt) = (u32 )i; cnt = cnt + 1; ldv_51969: i = i + 1; ldv_51972: ; if ((__u64 )i < nfc->data) { goto ldv_51971; } else { } ldv_51970: { ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); nfc->rule_cnt = (__u32 )cnt; } return (ret); } } static int niu_get_nfc(struct net_device *dev , struct ethtool_rxnfc *cmd , u32 *rule_locs ) { struct niu *np ; void *tmp ; int ret ; u16 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; ret = 0; } { if (cmd->cmd == 41U) { goto case_41; } else { } if (cmd->cmd == 45U) { goto case_45; } else { } if (cmd->cmd == 46U) { goto case_46; } else { } if (cmd->cmd == 47U) { goto case_47; } else { } if (cmd->cmd == 48U) { goto case_48; } else { } goto switch_default; case_41: /* CIL Label */ { ret = niu_get_hash_opts(np, cmd); } goto ldv_51981; case_45: /* CIL Label */ cmd->data = (__u64 )np->num_rx_rings; goto ldv_51981; case_46: /* CIL Label */ { tmp___0 = tcam_get_valid_entry_cnt(np); cmd->rule_cnt = (__u32 )tmp___0; } goto ldv_51981; case_47: /* CIL Label */ { ret = niu_get_ethtool_tcam_entry(np, cmd); } goto ldv_51981; case_48: /* CIL Label */ { ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs); } goto ldv_51981; switch_default: /* CIL Label */ ret = -22; goto ldv_51981; switch_break: /* CIL Label */ ; } ldv_51981: ; return (ret); } } static int niu_set_hash_opts(struct niu *np , struct ethtool_rxnfc *nfc ) { u64 class ; u64 flow_key ; unsigned long flags ; int tmp ; int tmp___0 ; { { flow_key = 0ULL; tmp = niu_ethflow_to_class((int )nfc->flow_type, & class); } if (tmp == 0) { return (-22); } else { } if (class - 4ULL > 11ULL) { return (-22); } else { } if ((nfc->data & 0xffffffff80000000ULL) != 0ULL) { { ldv___ldv_spin_lock_130(& (np->parent)->lock); flow_key = (np->parent)->tcam_key[class - 4ULL]; flow_key = flow_key | 8ULL; writeq((unsigned long )flow_key, (void volatile *)(np->regs + (class + 475138ULL) * 8ULL)); (np->parent)->tcam_key[class - 4ULL] = flow_key; ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return (0); } else if (((np->parent)->tcam_key[class - 4ULL] & 8ULL) != 0ULL) { { ldv___ldv_spin_lock_132(& (np->parent)->lock); flow_key = (np->parent)->tcam_key[class - 4ULL]; flow_key = flow_key & 0xfffffffffffffff7ULL; writeq((unsigned long )flow_key, (void volatile *)(np->regs + (class + 475138ULL) * 8ULL)); (np->parent)->tcam_key[class - 4ULL] = flow_key; ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } } else { } { tmp___0 = niu_ethflow_to_flowkey(nfc->data, & flow_key); } if (tmp___0 == 0) { return (-22); } else { } { ldv___ldv_spin_lock_134(& (np->parent)->lock); writeq((unsigned long )flow_key, (void volatile *)(np->regs + (class + 491516ULL) * 8ULL)); (np->parent)->flow_key[class - 4ULL] = flow_key; ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return (0); } } static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp , struct niu_tcam_entry *tp , int l2_rdc_tab , u64 class ) { u8 pid ; u32 sip ; u32 dip ; u32 sipm ; u32 dipm ; u32 spi ; u32 spim ; u16 sport ; u16 dport ; u16 spm ; u16 dpm ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; __u16 tmp___3 ; __u16 tmp___4 ; __u16 tmp___5 ; __u16 tmp___6 ; __u32 tmp___7 ; __u32 tmp___8 ; __u32 tmp___9 ; __u32 tmp___10 ; { { pid = 0U; tmp = __fswab32(fsp->h_u.tcp_ip4_spec.ip4src); sip = tmp; tmp___0 = __fswab32(fsp->m_u.tcp_ip4_spec.ip4src); sipm = tmp___0; tmp___1 = __fswab32(fsp->h_u.tcp_ip4_spec.ip4dst); dip = tmp___1; tmp___2 = __fswab32(fsp->m_u.tcp_ip4_spec.ip4dst); dipm = tmp___2; tp->key[0] = class << 3; tp->key_mask[0] = 248ULL; tp->key[1] = (unsigned long long )l2_rdc_tab << 59; tp->key_mask[1] = 0xf800000000000000ULL; tp->key[3] = (unsigned long long )sip << 32; tp->key[3] = tp->key[3] | (u64 )dip; tp->key_mask[3] = (unsigned long long )sipm << 32; tp->key_mask[3] = tp->key_mask[3] | (u64 )dipm; tp->key[2] = tp->key[2] | ((unsigned long long )fsp->h_u.tcp_ip4_spec.tos << 40); tp->key_mask[2] = tp->key_mask[2] | ((unsigned long long )fsp->m_u.tcp_ip4_spec.tos << 40); } { if (fsp->flow_type == 1U) { goto case_1; } else { } if (fsp->flow_type == 2U) { goto case_2; } else { } if (fsp->flow_type == 3U) { goto case_3; } else { } if (fsp->flow_type == 9U) { goto case_9; } else { } if (fsp->flow_type == 10U) { goto case_10; } else { } if (fsp->flow_type == 13U) { goto case_13; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ { tmp___3 = __fswab16((int )fsp->h_u.tcp_ip4_spec.psrc); sport = tmp___3; tmp___4 = __fswab16((int )fsp->m_u.tcp_ip4_spec.psrc); spm = tmp___4; tmp___5 = __fswab16((int )fsp->h_u.tcp_ip4_spec.pdst); dport = tmp___5; tmp___6 = __fswab16((int )fsp->m_u.tcp_ip4_spec.pdst); dpm = tmp___6; tp->key[2] = tp->key[2] | (((unsigned long long )sport << 16) | (unsigned long long )dport); tp->key_mask[2] = tp->key_mask[2] | (((unsigned long long )spm << 16) | (unsigned long long )dpm); niu_ethflow_to_l3proto((int )fsp->flow_type, & pid); } goto ldv_52014; case_9: /* CIL Label */ ; case_10: /* CIL Label */ { tmp___7 = __fswab32(fsp->h_u.ah_ip4_spec.spi); spi = tmp___7; tmp___8 = __fswab32(fsp->m_u.ah_ip4_spec.spi); spim = tmp___8; tp->key[2] = tp->key[2] | (u64 )spi; tp->key_mask[2] = tp->key_mask[2] | (u64 )spim; niu_ethflow_to_l3proto((int )fsp->flow_type, & pid); } goto ldv_52014; case_13: /* CIL Label */ { tmp___9 = __fswab32(fsp->h_u.usr_ip4_spec.l4_4_bytes); spi = tmp___9; tmp___10 = __fswab32(fsp->m_u.usr_ip4_spec.l4_4_bytes); spim = tmp___10; tp->key[2] = tp->key[2] | (u64 )spi; tp->key_mask[2] = tp->key_mask[2] | (u64 )spim; pid = fsp->h_u.usr_ip4_spec.proto; } goto ldv_52014; switch_default: /* CIL Label */ ; goto ldv_52014; switch_break: /* CIL Label */ ; } ldv_52014: tp->key[2] = tp->key[2] | ((unsigned long long )pid << 32); if ((unsigned int )pid != 0U) { tp->key_mask[2] = tp->key_mask[2] | 1095216660480ULL; } else { } return; } } static int niu_add_ethtool_tcam_entry(struct niu *np , struct ethtool_rxnfc *nfc ) { struct niu_parent *parent ; struct niu_tcam_entry *tp ; struct ethtool_rx_flow_spec *fsp ; struct niu_rdc_tables *rdc_table ; int l2_rdc_table ; u16 idx ; u64 class ; unsigned long flags ; int err ; int ret ; u16 tmp ; int i ; int add_usr_cls ; struct ethtool_usrip4_spec *uspec ; struct ethtool_usrip4_spec *umask ; int tmp___0 ; { { parent = np->parent; fsp = & nfc->fs; rdc_table = (struct niu_rdc_tables *)(& parent->rdc_group_cfg) + (unsigned long )np->port; l2_rdc_table = rdc_table->first_table_num; ret = 0; idx = (u16 )nfc->fs.location; tmp = tcam_get_size(np); } if ((int )idx >= (int )tmp) { return (-22); } else { } if (fsp->flow_type == 13U) { add_usr_cls = 0; uspec = & fsp->h_u.usr_ip4_spec; umask = & fsp->m_u.usr_ip4_spec; if ((unsigned int )uspec->ip_ver != 1U) { return (-22); } else { } { ldv___ldv_spin_lock_136(& (np->parent)->lock); i = 0; } goto ldv_52046; ldv_52045: ; if (parent->l3_cls[i] != 0ULL) { if ((int )uspec->proto == (int )parent->l3_cls_pid[i]) { class = parent->l3_cls[i]; parent->l3_cls_refcnt[i] = (u16 )((int )parent->l3_cls_refcnt[i] + 1); add_usr_cls = 1; goto ldv_52037; } else { } } else { { if (i == 0) { goto case_0; } else { } if (i == 1) { goto case_1; } else { } if (i == 2) { goto case_2; } else { } if (i == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ class = 4ULL; goto ldv_52039; case_1: /* CIL Label */ class = 5ULL; goto ldv_52039; case_2: /* CIL Label */ class = 6ULL; goto ldv_52039; case_3: /* CIL Label */ class = 7ULL; goto ldv_52039; switch_default: /* CIL Label */ ; goto ldv_52039; switch_break: /* CIL Label */ ; } ldv_52039: { ret = tcam_user_ip_class_set(np, (unsigned long )class, 0, (u64 )uspec->proto, (u64 )uspec->tos, (u64 )umask->tos); } if (ret != 0) { goto out; } else { } { ret = tcam_user_ip_class_enable(np, (unsigned long )class, 1); } if (ret != 0) { goto out; } else { } parent->l3_cls[i] = class; parent->l3_cls_pid[i] = uspec->proto; parent->l3_cls_refcnt[i] = (u16 )((int )parent->l3_cls_refcnt[i] + 1); add_usr_cls = 1; goto ldv_52037; } i = i + 1; ldv_52046: ; if (i <= 3) { goto ldv_52045; } else { } ldv_52037: ; if (add_usr_cls == 0) { { netdev_info((struct net_device const *)np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n", parent->index, "niu_add_ethtool_tcam_entry", (int )uspec->proto); ret = -22; } goto out; } else { } { ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } } else { { tmp___0 = niu_ethflow_to_class((int )fsp->flow_type, & class); } if (tmp___0 == 0) { return (-22); } else { } } { ldv___ldv_spin_lock_138(& (np->parent)->lock); idx = tcam_get_index(np, (int )idx); tp = (struct niu_tcam_entry *)(& parent->tcam) + (unsigned long )idx; memset((void *)tp, 0, 80UL); } { if (fsp->flow_type == 1U) { goto case_1___0; } else { } if (fsp->flow_type == 2U) { goto case_2___0; } else { } if (fsp->flow_type == 3U) { goto case_3___0; } else { } if (fsp->flow_type == 9U) { goto case_9; } else { } if (fsp->flow_type == 10U) { goto case_10; } else { } if (fsp->flow_type == 5U) { goto case_5; } else { } if (fsp->flow_type == 6U) { goto case_6; } else { } if (fsp->flow_type == 7U) { goto case_7; } else { } if (fsp->flow_type == 11U) { goto case_11; } else { } if (fsp->flow_type == 12U) { goto case_12; } else { } if (fsp->flow_type == 13U) { goto case_13; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; case_2___0: /* CIL Label */ ; case_3___0: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ { niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class); } goto ldv_52053; case_5: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ { netdev_info((struct net_device const *)np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n", parent->index, "niu_add_ethtool_tcam_entry", fsp->flow_type); ret = -22; } goto out; case_13: /* CIL Label */ { niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class); } goto ldv_52053; switch_default___0: /* CIL Label */ { netdev_info((struct net_device const *)np->dev, "niu%d: In %s(): Unknown flow type %d\n", parent->index, "niu_add_ethtool_tcam_entry", fsp->flow_type); ret = -22; } goto out; switch_break___0: /* CIL Label */ ; } ldv_52053: ; if (fsp->ring_cookie == 0xffffffffffffffffULL) { tp->assoc_data = 4096ULL; } else { if (fsp->ring_cookie >= (__u64 )np->num_rx_rings) { { netdev_info((struct net_device const *)np->dev, "niu%d: In %s(): Invalid RX ring %lld\n", parent->index, "niu_add_ethtool_tcam_entry", (long long )fsp->ring_cookie); ret = -22; } goto out; } else { } tp->assoc_data = (fsp->ring_cookie << 2) | 1024ULL; } { err = tcam_write(np, (int )idx, (u64 *)(& tp->key), (u64 *)(& tp->key_mask)); } if (err != 0) { ret = -22; goto out; } else { } { err = tcam_assoc_write(np, (int )idx, tp->assoc_data); } if (err != 0) { ret = -22; goto out; } else { } tp->valid = 1U; np->clas.tcam_valid_entries = (u16 )((int )np->clas.tcam_valid_entries + 1); out: { ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return (ret); } } static int niu_del_ethtool_tcam_entry(struct niu *np , u32 loc ) { struct niu_parent *parent ; struct niu_tcam_entry *tp ; u16 idx ; unsigned long flags ; u64 class ; int ret ; u16 tmp ; int i ; { { parent = np->parent; ret = 0; tmp = tcam_get_size(np); } if (loc >= (u32 )tmp) { return (-22); } else { } { ldv___ldv_spin_lock_140(& (np->parent)->lock); idx = tcam_get_index(np, (int )((u16 )loc)); tp = (struct niu_tcam_entry *)(& parent->tcam) + (unsigned long )idx; class = (tp->key[0] & 248ULL) >> 3; } if (class - 4ULL <= 3ULL) { i = 0; goto ldv_52075; ldv_52074: ; if (parent->l3_cls[i] == class) { parent->l3_cls_refcnt[i] = (u16 )((int )parent->l3_cls_refcnt[i] - 1); if ((unsigned int )parent->l3_cls_refcnt[i] == 0U) { { ret = tcam_user_ip_class_enable(np, (unsigned long )class, 0); } if (ret != 0) { goto out; } else { } parent->l3_cls[i] = 0ULL; parent->l3_cls_pid[i] = 0U; } else { } goto ldv_52073; } else { } i = i + 1; ldv_52075: ; if (i <= 3) { goto ldv_52074; } else { } ldv_52073: ; if (i == 4) { { netdev_info((struct net_device const *)np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n", parent->index, "niu_del_ethtool_tcam_entry", class); ret = -22; } goto out; } else { } } else { } { ret = tcam_flush(np, (int )idx); } if (ret != 0) { goto out; } else { } tp->valid = 0U; np->clas.tcam_valid_entries = (u16 )((int )np->clas.tcam_valid_entries - 1); out: { ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return (ret); } } static int niu_set_nfc(struct net_device *dev , struct ethtool_rxnfc *cmd ) { struct niu *np ; void *tmp ; int ret ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; ret = 0; } { if (cmd->cmd == 42U) { goto case_42; } else { } if (cmd->cmd == 50U) { goto case_50; } else { } if (cmd->cmd == 49U) { goto case_49; } else { } goto switch_default; case_42: /* CIL Label */ { ret = niu_set_hash_opts(np, cmd); } goto ldv_52084; case_50: /* CIL Label */ { ret = niu_add_ethtool_tcam_entry(np, cmd); } goto ldv_52084; case_49: /* CIL Label */ { ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location); } goto ldv_52084; switch_default: /* CIL Label */ ret = -22; goto ldv_52084; switch_break: /* CIL Label */ ; } ldv_52084: ; return (ret); } } static struct __anonstruct_niu_xmac_stat_keys_276 const niu_xmac_stat_keys[29U] = { {{'t', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'o', 'v', 'e', 'r', 'f', 'l', 'o', 'w', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'm', 'a', 'x', '_', 'p', 'k', 't', '_', 's', 'i', 'z', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'u', 'n', 'd', 'e', 'r', 'f', 'l', 'o', 'w', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'l', 'o', 'c', 'a', 'l', '_', 'f', 'a', 'u', 'l', 't', 's', '\000'}}, {{'r', 'x', '_', 'r', 'e', 'm', 'o', 't', 'e', '_', 'f', 'a', 'u', 'l', 't', 's', '\000'}}, {{'r', 'x', '_', 'l', 'i', 'n', 'k', '_', 'f', 'a', 'u', 'l', 't', 's', '\000'}}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'g', 's', '\000'}}, {{'r', 'x', '_', 'm', 'c', 'a', 's', 't', 's', '\000'}}, {{'r', 'x', '_', 'b', 'c', 'a', 's', 't', 's', '\000'}}, {{'r', 'x', '_', 'h', 'i', 's', 't', '_', 'c', 'n', 't', '1', '\000'}}, {{'r', 'x', '_', 'h', 'i', 's', 't', '_', 'c', 'n', 't', '2', '\000'}}, {{'r', 'x', '_', 'h', 'i', 's', 't', '_', 'c', 'n', 't', '3', '\000'}}, {{'r', 'x', '_', 'h', 'i', 's', 't', '_', 'c', 'n', 't', '4', '\000'}}, {{'r', 'x', '_', 'h', 'i', 's', 't', '_', 'c', 'n', 't', '5', '\000'}}, {{'r', 'x', '_', 'h', 'i', 's', 't', '_', 'c', 'n', 't', '6', '\000'}}, {{'r', 'x', '_', 'h', 'i', 's', 't', '_', 'c', 'n', 't', '7', '\000'}}, {{'r', 'x', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'c', 'o', 'd', 'e', '_', 'v', 'i', 'o', 'l', 'a', 't', 'i', 'o', 'n', 's', '\000'}}, {{'r', 'x', '_', 'l', 'e', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'u', 'n', 'd', 'e', 'r', 'f', 'l', 'o', 'w', 's', '\000'}}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', 'f', 'l', 'o', 'w', 's', '\000'}}, {{'p', 'a', 'u', 's', 'e', '_', 'o', 'f', 'f', '_', 's', 't', 'a', 't', 'e', '\000'}}, {{'p', 'a', 'u', 's', 'e', '_', 'o', 'n', '_', 's', 't', 'a', 't', 'e', '\000'}}, {{'p', 'a', 'u', 's', 'e', '_', 'r', 'e', 'c', 'e', 'i', 'v', 'e', 'd', '\000'}}}; static struct __anonstruct_niu_bmac_stat_keys_277 const niu_bmac_stat_keys[12U] = { {{'t', 'x', '_', 'u', 'n', 'd', 'e', 'r', 'f', 'l', 'o', 'w', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'm', 'a', 'x', '_', 'p', 'k', 't', '_', 's', 'i', 'z', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', 'f', 'l', 'o', 'w', 's', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'l', 'e', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'p', 'a', 'u', 's', 'e', '_', 'o', 'f', 'f', '_', 's', 't', 'a', 't', 'e', '\000'}}, {{'p', 'a', 'u', 's', 'e', '_', 'o', 'n', '_', 's', 't', 'a', 't', 'e', '\000'}}, {{'p', 'a', 'u', 's', 'e', '_', 'r', 'e', 'c', 'e', 'i', 'v', 'e', 'd', '\000'}}}; static struct __anonstruct_niu_rxchan_stat_keys_278 const niu_rxchan_stat_keys[5U] = { {{'r', 'x', '_', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}}, {{'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'r', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}}; static struct __anonstruct_niu_txchan_stat_keys_279 const niu_txchan_stat_keys[4U] = { {{'t', 'x', '_', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}}, {{'t', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}}; static void niu_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { struct niu *np ; void *tmp ; int i ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; } if (stringset != 1U) { return; } else { } if ((np->flags & 65536U) != 0U) { { memcpy((void *)data, (void const *)(& niu_xmac_stat_keys), 928UL); data = data + 928UL; } } else { { memcpy((void *)data, (void const *)(& niu_bmac_stat_keys), 384UL); data = data + 384UL; } } i = 0; goto ldv_52108; ldv_52107: { memcpy((void *)data, (void const *)(& niu_rxchan_stat_keys), 160UL); data = data + 160UL; i = i + 1; } ldv_52108: ; if (i < np->num_rx_rings) { goto ldv_52107; } else { } i = 0; goto ldv_52111; ldv_52110: { memcpy((void *)data, (void const *)(& niu_txchan_stat_keys), 128UL); data = data + 128UL; i = i + 1; } ldv_52111: ; if (i < np->num_tx_rings) { goto ldv_52110; } else { } return; } } static int niu_get_sset_count(struct net_device *dev , int stringset ) { struct niu *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; } if (stringset != 1) { return (-22); } else { } return ((int )(((np->flags & 65536U) != 0U ? 29U : 12U) + ((unsigned int )((unsigned long )np->num_tx_rings) * 4U + (unsigned int )((unsigned long )np->num_rx_rings) * 5U))); } } static void niu_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { struct niu *np ; void *tmp ; int i ; struct rx_ring_info *rp ; struct tx_ring_info *rp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; niu_sync_mac_stats(np); } if ((np->flags & 65536U) != 0U) { { memcpy((void *)data, (void const *)(& np->mac_stats.xmac), 232UL); data = data + 29UL; } } else { { memcpy((void *)data, (void const *)(& np->mac_stats.bmac), 96UL); data = data + 12UL; } } i = 0; goto ldv_52135; ldv_52134: { rp = np->rx_rings + (unsigned long )i; niu_sync_rx_discard_stats(np, rp, 0); *data = (u64 )rp->rx_channel; *(data + 1UL) = rp->rx_packets; *(data + 2UL) = rp->rx_bytes; *(data + 3UL) = rp->rx_dropped; *(data + 4UL) = rp->rx_errors; data = data + 5UL; i = i + 1; } ldv_52135: ; if (i < np->num_rx_rings) { goto ldv_52134; } else { } i = 0; goto ldv_52139; ldv_52138: rp___0 = np->tx_rings + (unsigned long )i; *data = (u64 )rp___0->tx_channel; *(data + 1UL) = rp___0->tx_packets; *(data + 2UL) = rp___0->tx_bytes; *(data + 3UL) = rp___0->tx_errors; data = data + 4UL; i = i + 1; ldv_52139: ; if (i < np->num_tx_rings) { goto ldv_52138; } else { } return; } } static u64 niu_led_state_save(struct niu *np ) { unsigned long tmp ; unsigned long tmp___0 ; { if ((np->flags & 65536U) != 0U) { { tmp = readq((void const volatile *)np->mac_regs + 96U); } return ((u64 )tmp); } else { { tmp___0 = readq((void const volatile *)np->mac_regs + 120U); } return ((u64 )tmp___0); } } } static void niu_led_state_restore(struct niu *np , u64 val ) { { if ((np->flags & 65536U) != 0U) { { writeq((unsigned long )val, (void volatile *)np->mac_regs + 96U); } } else { { writeq((unsigned long )val, (void volatile *)np->mac_regs + 120U); } } return; } } static void niu_force_led(struct niu *np , int on ) { u64 val ; u64 reg ; u64 bit ; unsigned long tmp ; { if ((np->flags & 65536U) != 0U) { reg = 96ULL; bit = 2097152ULL; } else { reg = 120ULL; bit = 32ULL; } { tmp = readq((void const volatile *)(np->mac_regs + reg)); val = (u64 )tmp; } if (on != 0) { val = val | bit; } else { val = val & ~ bit; } { writeq((unsigned long )val, (void volatile *)(np->mac_regs + reg)); } return; } } static int niu_set_phys_id(struct net_device *dev , enum ethtool_phys_id_state state ) { struct niu *np ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-11); } else { } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } if ((unsigned int )state == 3U) { goto case_3; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ { np->orig_led_state = niu_led_state_save(np); } return (1); case_2: /* CIL Label */ { niu_force_led(np, 1); } goto ldv_52162; case_3: /* CIL Label */ { niu_force_led(np, 0); } goto ldv_52162; case_0: /* CIL Label */ { niu_led_state_restore(np, np->orig_led_state); } switch_break: /* CIL Label */ ; } ldv_52162: ; return (0); } } static struct ethtool_ops const niu_ethtool_ops = {& niu_get_settings, & niu_set_settings, & niu_get_drvinfo, 0, 0, 0, 0, & niu_get_msglevel, & niu_set_msglevel, & niu_nway_reset, & ethtool_op_get_link, & niu_get_eeprom_len, & niu_get_eeprom, 0, 0, 0, 0, 0, 0, 0, 0, & niu_get_strings, & niu_set_phys_id, & niu_get_ethtool_stats, 0, 0, 0, 0, & niu_get_sset_count, & niu_get_nfc, & niu_set_nfc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int niu_ldg_assign_ldn(struct niu *np , struct niu_parent *parent , int ldg , int ldn ) { unsigned long tmp ; unsigned long tmp___0 ; { if ((unsigned int )ldg > 63U) { return (-22); } else { } if ((unsigned int )ldn > 68U) { return (-22); } else { } parent->ldg_map[ldn] = (u8 )ldg; if ((unsigned int )(np->parent)->plat_type == 2U) { { tmp___0 = readq((void const volatile *)(np->regs + ((unsigned long )ldn + 81920UL) * 8UL)); } if (tmp___0 != (unsigned long )ldg) { { tmp = readq((void const volatile *)(np->regs + ((unsigned long )ldn + 81920UL) * 8UL)); dev_err((struct device const *)np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n", (int )np->port, ldn, ldg, (unsigned long long )tmp); } return (-22); } else { } } else { { writeq((unsigned long )ldg, (void volatile *)(np->regs + ((unsigned long )ldn + 81920UL) * 8UL)); } } return (0); } } static int niu_set_ldg_timer_res(struct niu *np , int res ) { { if ((unsigned int )res > 1048575U) { return (-22); } else { } { writeq((unsigned long )res, (void volatile *)np->regs + 524296U); } return (0); } } static int niu_set_ldg_sid(struct niu *np , int ldg , int func , int vector ) { { if (((unsigned int )ldg > 63U || (unsigned int )func > 3U) || (unsigned int )vector > 31U) { return (-22); } else { } { writeq((unsigned long )((func << 5) | vector), (void volatile *)(np->regs + ((unsigned long )ldg + 73792UL) * 8UL)); } return (0); } } static int niu_pci_eeprom_read(struct niu *np , u32 addr ) { u64 frame ; u64 frame_base ; int limit ; unsigned long tmp ; int tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; unsigned long tmp___3 ; { frame_base = (unsigned long long )((addr << 8) | 2147483648U); if (addr > 262143U) { return (-22); } else { } { frame = frame_base; writeq((unsigned long )frame, (void volatile *)np->regs + 13369352U); limit = 64; } ldv_52190: { __const_udelay(21475UL); tmp = readq((void const volatile *)np->regs + 13369352U); frame = (u64 )tmp; } if ((frame & 1073741824ULL) != 0ULL) { goto ldv_52189; } else { } tmp___0 = limit; limit = limit - 1; if (tmp___0 != 0) { goto ldv_52190; } else { } ldv_52189: ; if ((frame & 1073741824ULL) == 0ULL) { { dev_err((struct device const *)np->device, "EEPROM read timeout frame[%llx]\n", frame); } return (-19); } else { } { frame = frame_base; writeq((unsigned long )frame, (void volatile *)np->regs + 13369352U); limit = 64; } ldv_52192: { __const_udelay(21475UL); tmp___1 = readq((void const volatile *)np->regs + 13369352U); frame = (u64 )tmp___1; } if ((frame & 1073741824ULL) != 0ULL) { goto ldv_52191; } else { } tmp___2 = limit; limit = limit - 1; if (tmp___2 != 0) { goto ldv_52192; } else { } ldv_52191: ; if ((frame & 1073741824ULL) == 0ULL) { { dev_err((struct device const *)np->device, "EEPROM read timeout frame[%llx]\n", frame); } return (-19); } else { } { tmp___3 = readq((void const volatile *)np->regs + 13369352U); frame = (u64 )tmp___3; } return ((int )frame & 255); } } static int niu_pci_eeprom_read16(struct niu *np , u32 off ) { int err ; int tmp ; u16 val ; { { tmp = niu_pci_eeprom_read(np, off); err = tmp; } if (err < 0) { return (err); } else { } { val = (int )((u16 )err) << 8U; err = niu_pci_eeprom_read(np, off + 1U); } if (err < 0) { return (err); } else { } val = (u16 )((int )((short )val) | ((int )((short )err) & 255)); return ((int )val); } } static int niu_pci_eeprom_read16_swp(struct niu *np , u32 off ) { int err ; int tmp ; u16 val ; { { tmp = niu_pci_eeprom_read(np, off); err = tmp; } if (err < 0) { return (err); } else { } { val = (unsigned int )((u16 )err) & 255U; err = niu_pci_eeprom_read(np, off + 1U); } if (err < 0) { return (err); } else { } val = (u16 )((int )((short )val) | (int )((short )(err << 8))); return ((int )val); } } static int niu_pci_vpd_get_propname(struct niu *np , u32 off , char *namebuf , int namebuf_len ) { int i ; int err ; int tmp ; char *tmp___0 ; { i = 0; goto ldv_52215; ldv_52214: { tmp = niu_pci_eeprom_read(np, off + (u32 )i); err = tmp; } if (err < 0) { return (err); } else { } tmp___0 = namebuf; namebuf = namebuf + 1; *tmp___0 = (char )err; if (err == 0) { goto ldv_52213; } else { } i = i + 1; ldv_52215: ; if (i < namebuf_len) { goto ldv_52214; } else { } ldv_52213: ; if (i >= namebuf_len) { return (-22); } else { } return (i + 1); } } static void niu_vpd_parse_version(struct niu *np ) { struct niu_vpd *vpd ; int len ; size_t tmp ; char const *s ; int i ; int tmp___0 ; { { vpd = & np->vpd; tmp = strlen((char const *)(& vpd->version)); len = (int )((unsigned int )tmp + 1U); s = (char const *)(& vpd->version); i = 0; } goto ldv_52225; ldv_52224: { tmp___0 = strncmp(s + (unsigned long )i, "FCode ", 6UL); } if (tmp___0 == 0) { goto ldv_52223; } else { } i = i + 1; ldv_52225: ; if (i < len + -5) { goto ldv_52224; } else { } ldv_52223: ; if (i >= len + -5) { return; } else { } { s = s + ((unsigned long )i + 5UL); sscanf(s, "%d.%d", & vpd->fcode_major, & vpd->fcode_minor); } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "VPD_SCAN: FCODE major(%d) minor(%d)\n", vpd->fcode_major, vpd->fcode_minor); } } else { } if (vpd->fcode_major > 3 || (vpd->fcode_major == 3 && vpd->fcode_minor > 3)) { np->flags = np->flags | 8388608U; } else { } return; } } static int niu_pci_vpd_scan_props(struct niu *np , u32 start , u32 end ) { unsigned int found_mask ; int len ; int err ; int prop_len ; char namebuf[64U] ; u8 *prop_buf ; int max_len ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; u32 off ; int i ; u8 *tmp___5 ; int tmp___6 ; { found_mask = 0U; if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "VPD_SCAN: start[%x] end[%x]\n", start, end); } } else { } goto ldv_52244; ldv_52243: ; if (found_mask == 63U) { { niu_vpd_parse_version(np); } return (1); } else { } { err = niu_pci_eeprom_read(np, start + 2U); } if (err < 0) { return (err); } else { } { len = err; start = start + 3U; prop_len = niu_pci_eeprom_read(np, start + 4U); err = niu_pci_vpd_get_propname(np, start + 5U, (char *)(& namebuf), 64); } if (err < 0) { return (err); } else { } { prop_buf = (u8 *)0U; max_len = 0; tmp___4 = strcmp((char const *)(& namebuf), "model"); } if (tmp___4 == 0) { prop_buf = (u8 *)(& np->vpd.model); max_len = 32; found_mask = found_mask | 1U; } else { { tmp___3 = strcmp((char const *)(& namebuf), "board-model"); } if (tmp___3 == 0) { prop_buf = (u8 *)(& np->vpd.board_model); max_len = 16; found_mask = found_mask | 2U; } else { { tmp___2 = strcmp((char const *)(& namebuf), "version"); } if (tmp___2 == 0) { prop_buf = (u8 *)(& np->vpd.version); max_len = 64; found_mask = found_mask | 4U; } else { { tmp___1 = strcmp((char const *)(& namebuf), "local-mac-address"); } if (tmp___1 == 0) { prop_buf = (u8 *)(& np->vpd.local_mac); max_len = 6; found_mask = found_mask | 8U; } else { { tmp___0 = strcmp((char const *)(& namebuf), "num-mac-addresses"); } if (tmp___0 == 0) { prop_buf = & np->vpd.mac_num; max_len = 1; found_mask = found_mask | 16U; } else { { tmp = strcmp((char const *)(& namebuf), "phy-type"); } if (tmp == 0) { prop_buf = (u8 *)(& np->vpd.phy_type); max_len = 8; found_mask = found_mask | 32U; } else { } } } } } } if (max_len != 0 && prop_len > max_len) { { dev_err((struct device const *)np->device, "Property \'%s\' length (%d) is too long\n", (char *)(& namebuf), prop_len); } return (-22); } else { } if ((unsigned long )prop_buf != (unsigned long )((u8 *)0U)) { off = (start + (u32 )err) + 5U; if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "VPD_SCAN: Reading in property [%s] len[%d]\n", (char *)(& namebuf), prop_len); } } else { } i = 0; goto ldv_52241; ldv_52240: { tmp___5 = prop_buf; prop_buf = prop_buf + 1; tmp___6 = niu_pci_eeprom_read(np, off + (u32 )i); *tmp___5 = (u8 )tmp___6; i = i + 1; } ldv_52241: ; if (i < prop_len) { goto ldv_52240; } else { } } else { } start = start + (u32 )len; ldv_52244: ; if (start < end) { goto ldv_52243; } else { } return (0); } } static void niu_pci_vpd_fetch(struct niu *np , u32 start ) { u32 offset ; int err ; u32 here ; u32 end ; { { err = niu_pci_eeprom_read16_swp(np, start + 1U); } if (err < 0) { return; } else { } offset = (u32 )(err + 3); goto ldv_52255; ldv_52254: { here = start + offset; err = niu_pci_eeprom_read(np, here); } if (err != 144) { return; } else { } { err = niu_pci_eeprom_read16_swp(np, here + 1U); } if (err < 0) { return; } else { } { here = (start + offset) + 3U; end = (start + offset) + (u32 )err; offset = offset + (u32 )err; err = niu_pci_vpd_scan_props(np, here, end); } if (err < 0 || err == 1) { return; } else { } ldv_52255: ; if (start + offset <= 1048575U) { goto ldv_52254; } else { } return; } } static u32 niu_pci_vpd_offset(struct niu *np ) { u32 start ; u32 end ; u32 ret ; int err ; { start = 0U; end = 1048576U; goto ldv_52264; ldv_52265: { ret = start; err = niu_pci_eeprom_read16(np, start); } if (err != 21930) { return (0U); } else { } { err = niu_pci_eeprom_read16(np, start + 23U); } if (err < 0) { return (0U); } else { } { start = start + (u32 )err; err = niu_pci_eeprom_read16(np, start); } if (err != 20547) { return (0U); } else { } { err = niu_pci_eeprom_read16(np, start + 2U); } if (err != 18770) { return (0U); } else { } { err = niu_pci_eeprom_read(np, start + 20U); } if (err < 0) { return (0U); } else { } if (err != 1) { { err = niu_pci_eeprom_read(np, ret + 2U); } if (err < 0) { return (0U); } else { } start = ret + (u32 )(err * 512); goto ldv_52264; } else { } { err = niu_pci_eeprom_read16_swp(np, start + 8U); } if (err < 0) { return ((u32 )err); } else { } { ret = ret + (u32 )err; err = niu_pci_eeprom_read(np, ret); } if (err != 130) { return (0U); } else { } return (ret); ldv_52264: ; if (start < end) { goto ldv_52265; } else { } return (0U); } } static int niu_phy_type_prop_decode(struct niu *np , char const *phy_prop ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp___4 = strcmp(phy_prop, "mif"); } if (tmp___4 == 0) { np->flags = np->flags & 4294574079U; np->mac_xcvr = 1U; } else { { tmp___3 = strcmp(phy_prop, "xgf"); } if (tmp___3 == 0) { np->flags = np->flags | 393216U; np->mac_xcvr = 3U; } else { { tmp___2 = strcmp(phy_prop, "pcs"); } if (tmp___2 == 0) { np->flags = np->flags & 4294705151U; np->flags = np->flags | 131072U; np->mac_xcvr = 2U; } else { { tmp___1 = strcmp(phy_prop, "xgc"); } if (tmp___1 == 0) { np->flags = np->flags | 262144U; np->flags = np->flags & 4294836223U; np->mac_xcvr = 3U; } else { { tmp = strcmp(phy_prop, "xgsd"); } if (tmp == 0) { np->flags = np->flags | 262144U; np->flags = np->flags & 4294836223U; np->flags = np->flags | 524288U; np->mac_xcvr = 3U; } else { { tmp___0 = strcmp(phy_prop, "gsd"); } if (tmp___0 == 0) { np->flags = np->flags | 262144U; np->flags = np->flags & 4294836223U; np->flags = np->flags | 524288U; np->mac_xcvr = 3U; } else { return (-22); } } } } } } return (0); } } static int niu_pci_vpd_get_nports(struct niu *np ) { int ports ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { { ports = 0; tmp___3 = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-qgc"); } if (tmp___3 == 0) { ports = 4; } else { { tmp___4 = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-qgc-pem"); } if (tmp___4 == 0) { ports = 4; } else { { tmp___5 = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-neptune"); } if (tmp___5 == 0) { ports = 4; } else { { tmp___6 = strcmp((char const *)(& np->vpd.model), "SUNW,CP3260"); } if (tmp___6 == 0) { ports = 4; } else { { tmp___7 = strcmp((char const *)(& np->vpd.model), "SUNW,CP3220"); } if (tmp___7 == 0) { ports = 4; } else { { tmp = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-2xgf"); } if (tmp == 0) { ports = 2; } else { { tmp___0 = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-2xgf-pem"); } if (tmp___0 == 0) { ports = 2; } else { { tmp___1 = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-rfem"); } if (tmp___1 == 0) { ports = 2; } else { { tmp___2 = strcmp((char const *)(& np->vpd.model), "SysKonnect,pcie-2xgf"); } if (tmp___2 == 0) { ports = 2; } else { } } } } } } } } } return (ports); } } static void niu_pci_vpd_validate(struct niu *np ) { struct net_device *dev ; struct niu_vpd *vpd ; u8 val8 ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { dev = np->dev; vpd = & np->vpd; tmp = is_valid_ether_addr((u8 const *)(& vpd->local_mac)); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { dev_err((struct device const *)np->device, "VPD MAC invalid, falling back to SPROM\n"); np->flags = np->flags & 4286578687U; } return; } else { } { tmp___3 = strcmp((char const *)(& np->vpd.model), "SUNW,CP3220"); } if (tmp___3 == 0) { goto _L; } else { { tmp___4 = strcmp((char const *)(& np->vpd.model), "SUNW,CP3260"); } if (tmp___4 == 0) { _L: /* CIL Label */ np->flags = np->flags | 262144U; np->flags = np->flags & 4294836223U; np->flags = np->flags | 524288U; np->mac_xcvr = 2U; if ((unsigned int )np->port > 1U) { np->flags = np->flags | 131072U; np->flags = np->flags & 4294705151U; } else { } if ((np->flags & 262144U) != 0U) { np->mac_xcvr = 3U; } else { } } else { { tmp___2 = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-rfem"); } if (tmp___2 == 0) { np->flags = np->flags | 17170432U; } else { { tmp___1 = niu_phy_type_prop_decode(np, (char const *)(& np->vpd.phy_type)); } if (tmp___1 != 0) { { dev_err((struct device const *)np->device, "Illegal phy string [%s]\n", (char *)(& np->vpd.phy_type)); dev_err((struct device const *)np->device, "Falling back to SPROM\n"); np->flags = np->flags & 4286578687U; } return; } else { } } } } { memcpy((void *)dev->dev_addr, (void const *)(& vpd->local_mac), 6UL); val8 = *(dev->dev_addr + 5UL); *(dev->dev_addr + 5UL) = (int )*(dev->dev_addr + 5UL) + (int )np->port; } if ((int )*(dev->dev_addr + 5UL) < (int )val8) { *(dev->dev_addr + 4UL) = (unsigned char )((int )*(dev->dev_addr + 4UL) + 1); } else { } return; } } static int niu_pci_probe_sprom(struct niu *np ) { struct net_device *dev ; int len ; int i ; u64 val ; u64 sum ; u8 val8 ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; bool tmp___4 ; int tmp___5 ; unsigned long tmp___6 ; u64 tmp___7 ; unsigned long tmp___8 ; unsigned long tmp___9 ; u64 tmp___10 ; unsigned long tmp___11 ; unsigned long tmp___12 ; { { dev = np->dev; tmp = readq((void const volatile *)np->regs + 13369544U); val = (unsigned long long )tmp & 4294901760ULL; val = val >> 16; len = (int )(val / 4ULL); np->eeprom_len = (u32 )len; } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: Image size %llu\n", val); } } else { } sum = 0ULL; i = 0; goto ldv_52291; ldv_52290: { tmp___0 = readq((void const volatile *)(np->regs + ((unsigned long )i + 1671172UL) * 8UL)); val = (u64 )tmp___0; sum = sum + (val & 255ULL); sum = sum + ((val >> 8) & 255ULL); sum = sum + ((val >> 16) & 255ULL); sum = sum + ((val >> 24) & 255ULL); i = i + 1; } ldv_52291: ; if (i < len) { goto ldv_52290; } else { } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: Checksum %x\n", (int )sum & 255); } } else { } if ((sum & 255ULL) != 171ULL) { { dev_err((struct device const *)np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int )sum & 255); } return (-22); } else { } { tmp___1 = readq((void const volatile *)np->regs + 13369520U); val = (u64 )tmp___1; } { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } if ((int )np->port == 2) { goto case_2; } else { } if ((int )np->port == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ val8 = (u8 )((val & 4278190080ULL) >> 24); goto ldv_52294; case_1: /* CIL Label */ val8 = (u8 )((val & 16711680ULL) >> 16); goto ldv_52294; case_2: /* CIL Label */ val8 = (u8 )((val & 65280ULL) >> 8); goto ldv_52294; case_3: /* CIL Label */ val8 = (u8 )val; goto ldv_52294; switch_default: /* CIL Label */ { dev_err((struct device const *)np->device, "Bogus port number %u\n", (int )np->port); } return (-22); switch_break: /* CIL Label */ ; } ldv_52294: ; if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: PHY type %x\n", (int )val8); } } else { } { if ((int )val8 == 3) { goto case_3___0; } else { } if ((int )val8 == 2) { goto case_2___0; } else { } if ((int )val8 == 1) { goto case_1___0; } else { } if ((int )val8 == 0) { goto case_0___0; } else { } goto switch_default___0; case_3___0: /* CIL Label */ np->flags = np->flags & 4294574079U; np->mac_xcvr = 1U; goto ldv_52300; case_2___0: /* CIL Label */ np->flags = np->flags & 4294705151U; np->flags = np->flags | 131072U; np->mac_xcvr = 2U; goto ldv_52300; case_1___0: /* CIL Label */ np->flags = np->flags | 262144U; np->flags = np->flags & 4294836223U; np->mac_xcvr = 3U; goto ldv_52300; case_0___0: /* CIL Label */ np->flags = np->flags | 393216U; np->mac_xcvr = 3U; goto ldv_52300; switch_default___0: /* CIL Label */ { dev_err((struct device const *)np->device, "Bogus SPROM phy type %u\n", (int )val8); } return (-22); switch_break___0: /* CIL Label */ ; } ldv_52300: { tmp___2 = readq((void const volatile *)np->regs + 13369376U); val = (u64 )tmp___2; } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: MAC_ADDR0[%08llx]\n", val); } } else { } { *(dev->dev_addr) = (unsigned char )val; *(dev->dev_addr + 1UL) = (unsigned char )(val >> 8); *(dev->dev_addr + 2UL) = (unsigned char )(val >> 16); *(dev->dev_addr + 3UL) = (unsigned char )(val >> 24); tmp___3 = readq((void const volatile *)np->regs + 13369384U); val = (u64 )tmp___3; } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: MAC_ADDR1[%08llx]\n", val); } } else { } { *(dev->dev_addr + 4UL) = (unsigned char )val; *(dev->dev_addr + 5UL) = (unsigned char )(val >> 8); tmp___4 = is_valid_ether_addr((u8 const *)dev->dev_addr); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { dev_err((struct device const *)np->device, "SPROM MAC address invalid [ %pM ]\n", dev->dev_addr); } return (-22); } else { } val8 = *(dev->dev_addr + 5UL); *(dev->dev_addr + 5UL) = (int )*(dev->dev_addr + 5UL) + (int )np->port; if ((int )*(dev->dev_addr + 5UL) < (int )val8) { *(dev->dev_addr + 4UL) = (unsigned char )((int )*(dev->dev_addr + 4UL) + 1); } else { } { tmp___6 = readq((void const volatile *)np->regs + 13369408U); val = (u64 )tmp___6; } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: MOD_STR_LEN[%llu]\n", val); } } else { } if (val > 31ULL) { return (-22); } else { } i = 0; goto ldv_52307; ldv_52306: { tmp___8 = readq((void const volatile *)(np->regs + ((unsigned long )(i / 4 + 5) + 1671172UL) * 8UL)); tmp___7 = (u64 )tmp___8; np->vpd.model[i + 3] = (char )tmp___7; np->vpd.model[i + 2] = (char )(tmp___7 >> 8); np->vpd.model[i + 1] = (char )(tmp___7 >> 16); np->vpd.model[i] = (char )(tmp___7 >> 24); i = i + 4; } ldv_52307: ; if ((u64 )i < val) { goto ldv_52306; } else { } { np->vpd.model[val] = 0; tmp___9 = readq((void const volatile *)np->regs + 13369480U); val = (u64 )tmp___9; } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: BD_MOD_STR_LEN[%llu]\n", val); } } else { } if (val > 15ULL) { return (-22); } else { } i = 0; goto ldv_52311; ldv_52310: { tmp___11 = readq((void const volatile *)(np->regs + ((unsigned long )(i / 4 + 14) + 1671172UL) * 8UL)); tmp___10 = (u64 )tmp___11; np->vpd.board_model[i + 3] = (char )tmp___10; np->vpd.board_model[i + 2] = (char )(tmp___10 >> 8); np->vpd.board_model[i + 1] = (char )(tmp___10 >> 16); np->vpd.board_model[i] = (char )(tmp___10 >> 24); i = i + 4; } ldv_52311: ; if ((u64 )i < val) { goto ldv_52310; } else { } { np->vpd.board_model[val] = 0; tmp___12 = readq((void const volatile *)np->regs + 13369392U); np->vpd.mac_num = (u8 )tmp___12; } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "SPROM: NUM_PORTS_MACS[%d]\n", (int )np->vpd.mac_num); } } else { } return (0); } } static int niu_get_and_validate_port(struct niu *np ) { struct niu_parent *parent ; int tmp ; unsigned long tmp___0 ; { parent = np->parent; if ((unsigned int )np->port <= 1U) { np->flags = np->flags | 65536U; } else { } if ((unsigned int )parent->num_ports == 0U) { if ((unsigned int )parent->plat_type == 2U) { parent->num_ports = 2U; } else { { tmp = niu_pci_vpd_get_nports(np); parent->num_ports = (u8 )tmp; } if ((unsigned int )parent->num_ports == 0U) { { tmp___0 = readq((void const volatile *)np->regs + 13369392U); parent->num_ports = (u8 )tmp___0; } if ((unsigned int )parent->num_ports == 0U) { parent->num_ports = 4U; } else { } } else { } } } else { } if ((int )np->port >= (int )parent->num_ports) { return (-19); } else { } return (0); } } static int phy_record(struct niu_parent *parent , struct phy_probe_info *p , int dev_id_1 , int dev_id_2 , u8 phy_port , int type ) { u32 id ; u8 idx ; { id = (u32 )((dev_id_1 << 16) | dev_id_2); if (dev_id_1 < 0 || dev_id_2 < 0) { return (0); } else { } if ((unsigned int )type <= 1U) { if ((id & 4294963440U) != 2121776U && (id & 4294963440U) != 21037088U) { return (0); } else { } } else if ((id & 4294963440U) != 2121904U) { return (0); } else { } { printk("\016niu: niu%d: Found PHY %08x type %s at phy_port %u\n", parent->index, id, type != 0 ? (type == 1 ? (char *)"PCS" : (char *)"MII") : (char *)"PMA/PMD", (int )phy_port); } if ((unsigned int )p->cur[type] > 3U) { { printk("\vniu: Too many PHY ports\n"); } return (-22); } else { } idx = p->cur[type]; p->phy_id[type][(int )idx] = id; p->phy_port[type][(int )idx] = phy_port; p->cur[type] = (unsigned int )idx + 1U; return (0); } } static int port_has_10g(struct phy_probe_info *p , int port ) { int i ; { i = 0; goto ldv_52333; ldv_52332: ; if ((int )p->phy_port[0][i] == port) { return (1); } else { } i = i + 1; ldv_52333: ; if (i < (int )p->cur[0]) { goto ldv_52332; } else { } i = 0; goto ldv_52336; ldv_52335: ; if ((int )p->phy_port[1][i] == port) { return (1); } else { } i = i + 1; ldv_52336: ; if (i < (int )p->cur[1]) { goto ldv_52335; } else { } return (0); } } static int count_10g_ports(struct phy_probe_info *p , int *lowest ) { int port ; int cnt ; int tmp ; { cnt = 0; *lowest = 32; port = 8; goto ldv_52345; ldv_52344: { tmp = port_has_10g(p, port); } if (tmp != 0) { if (cnt == 0) { *lowest = port; } else { } cnt = cnt + 1; } else { } port = port + 1; ldv_52345: ; if (port <= 31) { goto ldv_52344; } else { } return (cnt); } } static int count_1g_ports(struct phy_probe_info *p , int *lowest ) { { *lowest = 32; if ((unsigned int )p->cur[2] != 0U) { *lowest = (int )p->phy_port[2][0]; } else { } return ((int )p->cur[2]); } } static void niu_n2_divide_channels(struct niu_parent *parent ) { int num_ports ; int i ; { num_ports = (int )parent->num_ports; i = 0; goto ldv_52357; ldv_52356: { parent->rxchan_per_port[i] = (u8 )(16 / num_ports); parent->txchan_per_port[i] = (u8 )(16 / num_ports); printk("\016niu: niu%d: Port %u [%u RX chans] [%u TX chans]\n", parent->index, i, (int )parent->rxchan_per_port[i], (int )parent->txchan_per_port[i]); i = i + 1; } ldv_52357: ; if (i < num_ports) { goto ldv_52356; } else { } return; } } static void niu_divide_channels(struct niu_parent *parent , int num_10g , int num_1g ) { int num_ports ; int rx_chans_per_10g ; int rx_chans_per_1g ; int tx_chans_per_10g ; int tx_chans_per_1g ; int i ; int tot_rx ; int tot_tx ; int type ; u32 tmp ; { num_ports = (int )parent->num_ports; if (num_10g == 0 || num_1g == 0) { rx_chans_per_1g = 16 / num_ports; rx_chans_per_10g = rx_chans_per_1g; tx_chans_per_1g = 24 / num_ports; tx_chans_per_10g = tx_chans_per_1g; } else { rx_chans_per_1g = 2; rx_chans_per_10g = (16 - rx_chans_per_1g * num_1g) / num_10g; tx_chans_per_1g = 4; tx_chans_per_10g = (24 - tx_chans_per_1g * num_1g) / num_10g; } tot_tx = 0; tot_rx = tot_tx; i = 0; goto ldv_52374; ldv_52373: { tmp = phy_decode(parent->port_phy, i); type = (int )tmp; } if (type == 1) { parent->rxchan_per_port[i] = (u8 )rx_chans_per_10g; parent->txchan_per_port[i] = (u8 )tx_chans_per_10g; } else { parent->rxchan_per_port[i] = (u8 )rx_chans_per_1g; parent->txchan_per_port[i] = (u8 )tx_chans_per_1g; } { printk("\016niu: niu%d: Port %u [%u RX chans] [%u TX chans]\n", parent->index, i, (int )parent->rxchan_per_port[i], (int )parent->txchan_per_port[i]); tot_rx = tot_rx + (int )parent->rxchan_per_port[i]; tot_tx = tot_tx + (int )parent->txchan_per_port[i]; i = i + 1; } ldv_52374: ; if (i < num_ports) { goto ldv_52373; } else { } if (tot_rx > 16) { { printk("\vniu: niu%d: Too many RX channels (%d), resetting to one per port\n", parent->index, tot_rx); i = 0; } goto ldv_52377; ldv_52376: parent->rxchan_per_port[i] = 1U; i = i + 1; ldv_52377: ; if (i < num_ports) { goto ldv_52376; } else { } } else { } if (tot_tx > 24) { { printk("\vniu: niu%d: Too many TX channels (%d), resetting to one per port\n", parent->index, tot_tx); i = 0; } goto ldv_52380; ldv_52379: parent->txchan_per_port[i] = 1U; i = i + 1; ldv_52380: ; if (i < num_ports) { goto ldv_52379; } else { } } else { } if (tot_rx <= 15 || tot_tx <= 23) { { printk("\fniu: niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n", parent->index, tot_rx, tot_tx); } } else { } return; } } static void niu_divide_rdc_groups(struct niu_parent *parent , int num_10g , int num_1g ) { int i ; int num_ports ; int rdc_group ; int rdc_groups_per_port ; int rdc_channel_base ; struct niu_rdc_tables *tp ; int grp ; int num_channels ; int this_channel_offset ; struct rdc_table *rt ; int slot ; { num_ports = (int )parent->num_ports; rdc_group = 0; rdc_groups_per_port = 8 / num_ports; rdc_channel_base = 0; i = 0; goto ldv_52405; ldv_52404: tp = (struct niu_rdc_tables *)(& parent->rdc_group_cfg) + (unsigned long )i; num_channels = (int )parent->rxchan_per_port[i]; tp->first_table_num = rdc_group; tp->num_tables = rdc_groups_per_port; this_channel_offset = 0; grp = 0; goto ldv_52402; ldv_52401: { rt = (struct rdc_table *)(& tp->tables) + (unsigned long )grp; printk("\016niu: niu%d: Port %d RDC tbl(%d) [ ", parent->index, i, tp->first_table_num + grp); slot = 0; } goto ldv_52399; ldv_52398: { rt->rxdma_channel[slot] = (int )((u8 )rdc_channel_base) + (int )((u8 )this_channel_offset); printk("%d ", (int )rt->rxdma_channel[slot]); this_channel_offset = this_channel_offset + 1; } if (this_channel_offset == num_channels) { this_channel_offset = 0; } else { } slot = slot + 1; ldv_52399: ; if (slot <= 15) { goto ldv_52398; } else { } { printk("]\n"); grp = grp + 1; } ldv_52402: ; if (grp < tp->num_tables) { goto ldv_52401; } else { } parent->rdc_default[i] = (u8 )rdc_channel_base; rdc_channel_base = rdc_channel_base + num_channels; rdc_group = rdc_group + rdc_groups_per_port; i = i + 1; ldv_52405: ; if (i < num_ports) { goto ldv_52404; } else { } return; } } static int fill_phy_probe_info(struct niu *np , struct niu_parent *parent , struct phy_probe_info *info ) { unsigned long flags ; int port ; int err ; int dev_id_1 ; int dev_id_2 ; { { memset((void *)info, 0, 1792UL); ldv___ldv_spin_lock_142(& (np->parent)->lock); err = 0; port = 8; } goto ldv_52419; ldv_52418: { dev_id_1 = mdio_read(np, port, 1, 2); dev_id_2 = mdio_read(np, port, 1, 3); err = phy_record(parent, info, dev_id_1, dev_id_2, (int )((u8 )port), 0); } if (err != 0) { goto ldv_52417; } else { } { dev_id_1 = mdio_read(np, port, 3, 2); dev_id_2 = mdio_read(np, port, 3, 3); err = phy_record(parent, info, dev_id_1, dev_id_2, (int )((u8 )port), 1); } if (err != 0) { goto ldv_52417; } else { } { dev_id_1 = mii_read(np, port, 2); dev_id_2 = mii_read(np, port, 3); err = phy_record(parent, info, dev_id_1, dev_id_2, (int )((u8 )port), 2); } if (err != 0) { goto ldv_52417; } else { } port = port + 1; ldv_52419: ; if (port <= 31) { goto ldv_52418; } else { } ldv_52417: { ldv_spin_unlock_irqrestore_96(& (np->parent)->lock, flags); } return (err); } } static int walk_phys(struct niu *np , struct niu_parent *parent ) { struct phy_probe_info *info ; int lowest_10g ; int lowest_1g ; int num_10g ; int num_1g ; u32 val ; int err ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; u32 tmp___10 ; u32 tmp___11 ; u32 tmp___12 ; u32 tmp___13 ; u32 tmp___14 ; u32 tmp___15 ; u32 tmp___16 ; u32 tmp___17 ; u32 tmp___18 ; u32 tmp___19 ; u32 tmp___20 ; u32 tmp___21 ; u32 tmp___22 ; u32 tmp___23 ; u32 tmp___24 ; u32 tmp___25 ; u32 tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; { { info = & parent->phy_probe_info; num_1g = 0; num_10g = num_1g; tmp___28 = strcmp((char const *)(& np->vpd.model), "SUNW,CP3220"); } if (tmp___28 == 0) { goto _L; } else { { tmp___29 = strcmp((char const *)(& np->vpd.model), "SUNW,CP3260"); } if (tmp___29 == 0) { _L: /* CIL Label */ { num_10g = 0; num_1g = 2; parent->plat_type = 8U; parent->num_ports = 4U; tmp = phy_encode(2U, 0); tmp___0 = phy_encode(2U, 1); tmp___1 = phy_encode(2U, 2); tmp___2 = phy_encode(2U, 3); val = ((tmp | tmp___0) | tmp___1) | tmp___2; } } else { { tmp___27 = strcmp((char const *)(& np->vpd.model), "SUNW,pcie-rfem"); } if (tmp___27 == 0) { { num_10g = 2; num_1g = 0; parent->num_ports = 2U; tmp___3 = phy_encode(1U, 0); tmp___4 = phy_encode(1U, 1); val = tmp___3 | tmp___4; } } else if ((np->flags & 524288U) != 0U && (unsigned int )parent->plat_type == 2U) { if ((np->flags & 262144U) != 0U) { { tmp___5 = phy_encode(1U, 0); tmp___6 = phy_encode(1U, 1); val = tmp___5 | tmp___6; } } else { { tmp___7 = phy_encode(2U, 0); tmp___8 = phy_encode(2U, 1); val = tmp___7 | tmp___8; } } } else { { err = fill_phy_probe_info(np, parent, info); } if (err != 0) { return (err); } else { } { num_10g = count_10g_ports(info, & lowest_10g); num_1g = count_1g_ports(info, & lowest_1g); } { if (((num_10g << 4) | num_1g) == 36) { goto case_36; } else { } if (((num_10g << 4) | num_1g) == 34) { goto case_34; } else { } if (((num_10g << 4) | num_1g) == 32) { goto case_32; } else { } if (((num_10g << 4) | num_1g) == 16) { goto case_16; } else { } if (((num_10g << 4) | num_1g) == 20) { goto case_20; } else { } if (((num_10g << 4) | num_1g) == 19) { goto case_19; } else { } if (((num_10g << 4) | num_1g) == 4) { goto case_4; } else { } goto switch_default; case_36: /* CIL Label */ ; if (lowest_1g == 10) { parent->plat_type = 3U; } else if (lowest_1g == 26) { parent->plat_type = 4U; } else { goto unknown_vg_1g_port; } case_34: /* CIL Label */ { tmp___9 = phy_encode(1U, 0); tmp___10 = phy_encode(1U, 1); tmp___11 = phy_encode(2U, 2); tmp___12 = phy_encode(2U, 3); val = ((tmp___9 | tmp___10) | tmp___11) | tmp___12; } goto ldv_52434; case_32: /* CIL Label */ { tmp___13 = phy_encode(1U, 0); tmp___14 = phy_encode(1U, 1); val = tmp___13 | tmp___14; } goto ldv_52434; case_16: /* CIL Label */ { val = phy_encode(1U, (int )np->port); } goto ldv_52434; case_20: /* CIL Label */ ; if (lowest_1g == 10) { parent->plat_type = 3U; } else if (lowest_1g == 26) { parent->plat_type = 4U; } else { goto unknown_vg_1g_port; } case_19: /* CIL Label */ ; if ((lowest_10g & 7) == 0) { { tmp___15 = phy_encode(1U, 0); tmp___16 = phy_encode(2U, 1); tmp___17 = phy_encode(2U, 2); tmp___18 = phy_encode(2U, 3); val = ((tmp___15 | tmp___16) | tmp___17) | tmp___18; } } else { { tmp___19 = phy_encode(2U, 0); tmp___20 = phy_encode(1U, 1); tmp___21 = phy_encode(2U, 2); tmp___22 = phy_encode(2U, 3); val = ((tmp___19 | tmp___20) | tmp___21) | tmp___22; } } goto ldv_52434; case_4: /* CIL Label */ ; if (lowest_1g == 10) { parent->plat_type = 3U; } else if (lowest_1g == 26) { parent->plat_type = 4U; } else { goto unknown_vg_1g_port; } { tmp___23 = phy_encode(2U, 0); tmp___24 = phy_encode(2U, 1); tmp___25 = phy_encode(2U, 2); tmp___26 = phy_encode(2U, 3); val = ((tmp___23 | tmp___24) | tmp___25) | tmp___26; } goto ldv_52434; switch_default: /* CIL Label */ { printk("\vniu: Unsupported port config 10G[%d] 1G[%d]\n", num_10g, num_1g); } return (-22); switch_break: /* CIL Label */ ; } ldv_52434: ; } } } parent->port_phy = val; if ((unsigned int )parent->plat_type == 2U) { { niu_n2_divide_channels(parent); } } else { { niu_divide_channels(parent, num_10g, num_1g); } } { niu_divide_rdc_groups(parent, num_10g, num_1g); } return (0); unknown_vg_1g_port: { printk("\vniu: Cannot identify platform type, 1gport=%d\n", lowest_1g); } return (-22); } } static int niu_probe_ports(struct niu *np ) { struct niu_parent *parent ; int err ; int i ; { parent = np->parent; if (parent->port_phy == 0U) { { err = walk_phys(np, parent); } if (err != 0) { return (err); } else { } { niu_set_ldg_timer_res(np, 2); i = 0; } goto ldv_52448; ldv_52447: { niu_ldn_irq_enable(np, i, 0); i = i + 1; } ldv_52448: ; if (i <= 68) { goto ldv_52447; } else { } } else { } if (parent->port_phy == 4294967295U) { return (-22); } else { } return (0); } } static int niu_classifier_swstate_init(struct niu *np ) { struct niu_classifier *cp ; int tmp ; { { cp = & np->clas; cp->tcam_top = (unsigned short )np->port; cp->tcam_sz = (u16 )((int )(np->parent)->tcam_num_entries / (int )(np->parent)->num_ports); cp->h1_init = 4294967295U; cp->h2_init = 65535U; tmp = fflp_early_init(np); } return (tmp); } } static void niu_link_config_init(struct niu *np ) { struct niu_link_config *lp ; u16 tmp ; { lp = & np->link_config; lp->advertising = 4223U; tmp = 65535U; lp->active_speed = tmp; lp->speed = tmp; lp->duplex = 1U; lp->active_duplex = 255U; lp->autoneg = 1U; lp->loopback_mode = 0U; return; } } static int niu_init_mac_ipp_pcs_base(struct niu *np ) { { { if ((int )np->port == 0) { goto case_0; } else { } if ((int )np->port == 1) { goto case_1; } else { } if ((int )np->port == 2) { goto case_2; } else { } if ((int )np->port == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ np->mac_regs = np->regs + 1572864UL; np->ipp_off = 0UL; np->pcs_off = 16384UL; np->xpcs_off = 8192UL; goto ldv_52462; case_1: /* CIL Label */ np->mac_regs = np->regs + 1597440UL; np->ipp_off = 32768UL; np->pcs_off = 40960UL; np->xpcs_off = 32768UL; goto ldv_52462; case_2: /* CIL Label */ np->mac_regs = np->regs + 1622016UL; np->ipp_off = 16384UL; np->pcs_off = 57344UL; np->xpcs_off = 0xffffffffffffffffUL; goto ldv_52462; case_3: /* CIL Label */ np->mac_regs = np->regs + 1638400UL; np->ipp_off = 49152UL; np->pcs_off = 73728UL; np->xpcs_off = 0xffffffffffffffffUL; goto ldv_52462; switch_default: /* CIL Label */ { dev_err((struct device const *)np->device, "Port %u is invalid, cannot compute MAC block offset\n", (int )np->port); } return (-22); switch_break: /* CIL Label */ ; } ldv_52462: ; return (0); } } static void niu_try_msix(struct niu *np , u8 *ldg_num_map ) { struct msix_entry msi_vec[64U] ; struct niu_parent *parent ; struct pci_dev *pdev ; int i ; int num_irqs ; int err ; u8 first_ldg ; long tmp ; { parent = np->parent; pdev = np->pdev; first_ldg = (int )((u8 )(64 / (int )parent->num_ports)) * (int )np->port; i = 0; goto ldv_52479; ldv_52478: *(ldg_num_map + (unsigned long )i) = (int )first_ldg + (int )((u8 )i); i = i + 1; ldv_52479: ; if (i < 64 / (int )parent->num_ports) { goto ldv_52478; } else { } { num_irqs = ((int )parent->rxchan_per_port[(int )np->port] + (int )parent->txchan_per_port[(int )np->port]) + ((unsigned int )np->port == 0U ? 3 : 1); tmp = ldv__builtin_expect(num_irqs > 64 / (int )parent->num_ports, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/niu.c"), "i" (9054), "i" (12UL)); __builtin_unreachable(); } } else { } retry: i = 0; goto ldv_52483; ldv_52482: msi_vec[i].vector = 0U; msi_vec[i].entry = (u16 )i; i = i + 1; ldv_52483: ; if (i < num_irqs) { goto ldv_52482; } else { } { err = pci_enable_msix(pdev, (struct msix_entry *)(& msi_vec), num_irqs); } if (err < 0) { np->flags = np->flags & 4290772991U; return; } else { } if (err > 0) { num_irqs = err; goto retry; } else { } np->flags = np->flags | 4194304U; i = 0; goto ldv_52486; ldv_52485: np->ldg[i].irq = msi_vec[i].vector; i = i + 1; ldv_52486: ; if (i < num_irqs) { goto ldv_52485; } else { } np->num_ldg = num_irqs; return; } } static int niu_n2_irq_init(struct niu *np , u8 *ldg_num_map ) { { return (-22); } } static int niu_ldg_init(struct niu *np ) { struct niu_parent *parent ; u8 ldg_num_map[64U] ; int first_chan ; int num_chan ; int i ; int err ; int ldg_rotor ; u8 port ; struct niu_ldg *lp ; { parent = np->parent; np->num_ldg = 1; np->ldg[0].irq = (unsigned int )(np->dev)->irq; if ((unsigned int )parent->plat_type == 2U) { { err = niu_n2_irq_init(np, (u8 *)(& ldg_num_map)); } if (err != 0) { return (err); } else { } } else { { niu_try_msix(np, (u8 *)(& ldg_num_map)); } } port = np->port; i = 0; goto ldv_52505; ldv_52504: { lp = (struct niu_ldg *)(& np->ldg) + (unsigned long )i; netif_napi_add(np->dev, & lp->napi, & niu_poll, 64); lp->np = np; lp->ldg_num = ldg_num_map[i]; lp->timer = 2U; } if ((unsigned int )(np->parent)->plat_type != 2U) { { err = niu_set_ldg_sid(np, (int )lp->ldg_num, (int )port, i); } if (err != 0) { return (err); } else { } } else { } i = i + 1; ldv_52505: ; if (i < np->num_ldg) { goto ldv_52504; } else { } { ldg_rotor = 0; err = niu_ldg_assign_ldn(np, parent, (int )ldg_num_map[ldg_rotor], (int )port + 64); } if (err != 0) { return (err); } else { } ldg_rotor = ldg_rotor + 1; if (ldg_rotor == np->num_ldg) { ldg_rotor = 0; } else { } if ((unsigned int )port == 0U) { { err = niu_ldg_assign_ldn(np, parent, (int )ldg_num_map[ldg_rotor], 63); } if (err != 0) { return (err); } else { } ldg_rotor = ldg_rotor + 1; if (ldg_rotor == np->num_ldg) { ldg_rotor = 0; } else { } { err = niu_ldg_assign_ldn(np, parent, (int )ldg_num_map[ldg_rotor], 68); } if (err != 0) { return (err); } else { } ldg_rotor = ldg_rotor + 1; if (ldg_rotor == np->num_ldg) { ldg_rotor = 0; } else { } } else { } first_chan = 0; i = 0; goto ldv_52508; ldv_52507: first_chan = first_chan + (int )parent->rxchan_per_port[i]; i = i + 1; ldv_52508: ; if (i < (int )port) { goto ldv_52507; } else { } num_chan = (int )parent->rxchan_per_port[(int )port]; i = first_chan; goto ldv_52511; ldv_52510: { err = niu_ldg_assign_ldn(np, parent, (int )ldg_num_map[ldg_rotor], i); } if (err != 0) { return (err); } else { } ldg_rotor = ldg_rotor + 1; if (ldg_rotor == np->num_ldg) { ldg_rotor = 0; } else { } i = i + 1; ldv_52511: ; if (i < first_chan + num_chan) { goto ldv_52510; } else { } first_chan = 0; i = 0; goto ldv_52514; ldv_52513: first_chan = first_chan + (int )parent->txchan_per_port[i]; i = i + 1; ldv_52514: ; if (i < (int )port) { goto ldv_52513; } else { } num_chan = (int )parent->txchan_per_port[(int )port]; i = first_chan; goto ldv_52517; ldv_52516: { err = niu_ldg_assign_ldn(np, parent, (int )ldg_num_map[ldg_rotor], i + 32); } if (err != 0) { return (err); } else { } ldg_rotor = ldg_rotor + 1; if (ldg_rotor == np->num_ldg) { ldg_rotor = 0; } else { } i = i + 1; ldv_52517: ; if (i < first_chan + num_chan) { goto ldv_52516; } else { } return (0); } } static void niu_ldg_free(struct niu *np ) { { if ((np->flags & 4194304U) != 0U) { { pci_disable_msix(np->pdev); } } else { } return; } } static int niu_get_of_props(struct niu *np ) { { return (-22); } } static int niu_get_invariants(struct niu *np ) { int err ; int have_props ; u32 offset ; { { err = niu_get_of_props(np); } if (err == -19) { return (err); } else { } { have_props = err == 0; err = niu_init_mac_ipp_pcs_base(np); } if (err != 0) { return (err); } else { } if (have_props != 0) { { err = niu_get_and_validate_port(np); } if (err != 0) { return (err); } else { } } else { if ((unsigned int )(np->parent)->plat_type == 2U) { return (-22); } else { } { writeq(1UL, (void volatile *)np->regs + 13369344U); offset = niu_pci_vpd_offset(np); } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "%s() VPD offset [%08x]\n", "niu_get_invariants", offset); } } else { } if (offset != 0U) { { niu_pci_vpd_fetch(np, offset); } } else { } { writeq(0UL, (void volatile *)np->regs + 13369344U); } if ((np->flags & 8388608U) != 0U) { { niu_pci_vpd_validate(np); err = niu_get_and_validate_port(np); } if (err != 0) { return (err); } else { } } else { } if ((np->flags & 8388608U) == 0U) { { err = niu_get_and_validate_port(np); } if (err != 0) { return (err); } else { } { err = niu_pci_probe_sprom(np); } if (err != 0) { return (err); } else { } } else { } } { err = niu_probe_ports(np); } if (err != 0) { return (err); } else { } { niu_ldg_init(np); niu_classifier_swstate_init(np); niu_link_config_init(np); err = niu_determine_phy_disposition(np); } if (err == 0) { { err = niu_init_link(np); } } else { } return (err); } } static struct list_head niu_parent_list = {& niu_parent_list, & niu_parent_list}; static struct mutex niu_parent_lock = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, (void *)-1, {0, {0, 0}, "niu_parent_lock.wait_lock", 0, 0UL}}}}, {& niu_parent_lock.wait_list, & niu_parent_lock.wait_list}, 0, 0, (void *)(& niu_parent_lock), {0, {0, 0}, "niu_parent_lock", 0, 0UL}}; static int niu_parent_index ; static ssize_t show_port_phy(struct device *dev , struct device_attribute *attr , char *buf ) { struct platform_device *plat_dev ; struct device const *__mptr ; struct niu_parent *p ; void *tmp ; u32 port_phy ; char *orig_buf ; int i ; char const *type_str ; int type ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; { { __mptr = (struct device const *)dev; plat_dev = (struct platform_device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_platdata((struct device const *)(& plat_dev->dev)); p = (struct niu_parent *)tmp; port_phy = p->port_phy; orig_buf = buf; } if (port_phy - 1U > 4294967293U) { return (0L); } else { } i = 0; goto ldv_52551; ldv_52550: { tmp___0 = phy_decode(port_phy, i); type = (int )tmp___0; } if (type == 1) { type_str = "10G"; } else { type_str = "1G"; } { tmp___1 = sprintf(buf, i == 0 ? "%s" : " %s", type_str); buf = buf + (unsigned long )tmp___1; i = i + 1; } ldv_52551: ; if (i < (int )p->num_ports) { goto ldv_52550; } else { } { tmp___2 = sprintf(buf, "\n"); buf = buf + (unsigned long )tmp___2; } return ((long )buf - (long )orig_buf); } } static ssize_t show_plat_type(struct device *dev , struct device_attribute *attr , char *buf ) { struct platform_device *plat_dev ; struct device const *__mptr ; struct niu_parent *p ; void *tmp ; char const *type_str ; int tmp___0 ; { { __mptr = (struct device const *)dev; plat_dev = (struct platform_device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_platdata((struct device const *)(& plat_dev->dev)); p = (struct niu_parent *)tmp; } { if ((int )p->plat_type == 1) { goto case_1; } else { } if ((int )p->plat_type == 2) { goto case_2; } else { } if ((int )p->plat_type == 3) { goto case_3; } else { } if ((int )p->plat_type == 4) { goto case_4; } else { } goto switch_default; case_1: /* CIL Label */ type_str = "atlas"; goto ldv_52564; case_2: /* CIL Label */ type_str = "niu"; goto ldv_52564; case_3: /* CIL Label */ type_str = "vf_p0"; goto ldv_52564; case_4: /* CIL Label */ type_str = "vf_p1"; goto ldv_52564; switch_default: /* CIL Label */ type_str = "unknown"; goto ldv_52564; switch_break: /* CIL Label */ ; } ldv_52564: { tmp___0 = sprintf(buf, "%s\n", type_str); } return ((ssize_t )tmp___0); } } static ssize_t __show_chan_per_port(struct device *dev , struct device_attribute *attr , char *buf , int rx ) { struct platform_device *plat_dev ; struct device const *__mptr ; struct niu_parent *p ; void *tmp ; char *orig_buf ; u8 *arr ; int i ; int tmp___0 ; int tmp___1 ; { { __mptr = (struct device const *)dev; plat_dev = (struct platform_device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_platdata((struct device const *)(& plat_dev->dev)); p = (struct niu_parent *)tmp; orig_buf = buf; arr = rx != 0 ? (u8 *)(& p->rxchan_per_port) : (u8 *)(& p->txchan_per_port); i = 0; } goto ldv_52583; ldv_52582: { tmp___0 = sprintf(buf, i == 0 ? "%d" : " %d", (int )*(arr + (unsigned long )i)); buf = buf + (unsigned long )tmp___0; i = i + 1; } ldv_52583: ; if (i < (int )p->num_ports) { goto ldv_52582; } else { } { tmp___1 = sprintf(buf, "\n"); buf = buf + (unsigned long )tmp___1; } return ((long )buf - (long )orig_buf); } } static ssize_t show_rxchan_per_port(struct device *dev , struct device_attribute *attr , char *buf ) { ssize_t tmp ; { { tmp = __show_chan_per_port(dev, attr, buf, 1); } return (tmp); } } static ssize_t show_txchan_per_port(struct device *dev , struct device_attribute *attr , char *buf ) { ssize_t tmp ; { { tmp = __show_chan_per_port(dev, attr, buf, 1); } return (tmp); } } static ssize_t show_num_ports(struct device *dev , struct device_attribute *attr , char *buf ) { struct platform_device *plat_dev ; struct device const *__mptr ; struct niu_parent *p ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; plat_dev = (struct platform_device *)__mptr + 0xfffffffffffffff0UL; tmp = dev_get_platdata((struct device const *)(& plat_dev->dev)); p = (struct niu_parent *)tmp; tmp___0 = sprintf(buf, "%d\n", (int )p->num_ports); } return ((ssize_t )tmp___0); } } static struct device_attribute niu_parent_attributes[6U] = { {{"port_phy", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_port_phy, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"plat_type", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_plat_type, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"rxchan_per_port", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rxchan_per_port, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"txchan_per_port", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_txchan_per_port, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}, {{"num_ports", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_num_ports, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}}; static struct niu_parent *niu_new_parent(struct niu *np , union niu_parent_id *id , u8 ptype ) { struct platform_device *plat_dev ; struct niu_parent *p ; int i ; long tmp ; int err ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; struct lock_class_key __key ; int index ; { { plat_dev = platform_device_register_simple("niu-board", niu_parent_index, (struct resource const *)0, 0U); tmp = IS_ERR((void const *)plat_dev); } if (tmp != 0L) { return ((struct niu_parent *)0); } else { } i = 0; goto ldv_52616; ldv_52615: { tmp___0 = device_create_file(& plat_dev->dev, (struct device_attribute const *)(& niu_parent_attributes) + (unsigned long )i); err = tmp___0; } if (err != 0) { goto fail_unregister; } else { } i = i + 1; ldv_52616: ; if ((unsigned long )niu_parent_attributes[i].attr.name != (unsigned long )((char const *)0)) { goto ldv_52615; } else { } { tmp___1 = kzalloc(23336UL, 208U); p = (struct niu_parent *)tmp___1; } if ((unsigned long )p == (unsigned long )((struct niu_parent *)0)) { goto fail_unregister; } else { } { tmp___2 = niu_parent_index; niu_parent_index = niu_parent_index + 1; p->index = tmp___2; plat_dev->dev.platform_data = (void *)p; p->plat_dev = plat_dev; memcpy((void *)(& p->id), (void const *)id, 16UL); p->plat_type = ptype; INIT_LIST_HEAD(& p->list); atomic_set(& p->refcnt, 0); list_add(& p->list, & niu_parent_list); spinlock_check(& p->lock); __raw_spin_lock_init(& p->lock.__annonCompField19.rlock, "&(&p->lock)->rlock", & __key); p->rxdma_clock_divider = 7500; p->tcam_num_entries = 256U; } if ((unsigned int )p->plat_type == 2U) { p->tcam_num_entries = 128U; } else { } i = 4; goto ldv_52621; ldv_52620: index = i + -4; p->tcam_key[index] = 4ULL; p->flow_key[index] = 122ULL; i = i + 1; ldv_52621: ; if (i <= 15) { goto ldv_52620; } else { } i = 0; goto ldv_52624; ldv_52623: p->ldg_map[i] = 255U; i = i + 1; ldv_52624: ; if (i <= 68) { goto ldv_52623; } else { } return (p); fail_unregister: { platform_device_unregister(plat_dev); } return ((struct niu_parent *)0); } } static struct niu_parent *niu_get_parent(struct niu *np , union niu_parent_id *id , u8 ptype ) { struct niu_parent *p ; struct niu_parent *tmp ; int port ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; char port_name[6U] ; int err ; { { port = (int )np->port; mutex_lock_nested(& niu_parent_lock, 0U); p = (struct niu_parent *)0; __mptr = (struct list_head const *)niu_parent_list.next; tmp = (struct niu_parent *)__mptr + 0xffffffffffffffb8UL; } goto ldv_52640; ldv_52639: { tmp___0 = memcmp((void const *)id, (void const *)(& tmp->id), 16UL); } if (tmp___0 == 0) { p = tmp; goto ldv_52638; } else { } __mptr___0 = (struct list_head const *)tmp->list.next; tmp = (struct niu_parent *)__mptr___0 + 0xffffffffffffffb8UL; ldv_52640: ; if ((unsigned long )(& tmp->list) != (unsigned long )(& niu_parent_list)) { goto ldv_52639; } else { } ldv_52638: ; if ((unsigned long )p == (unsigned long )((struct niu_parent *)0)) { { p = niu_new_parent(np, id, (int )ptype); } } else { } if ((unsigned long )p != (unsigned long )((struct niu_parent *)0)) { { sprintf((char *)(& port_name), "port%d", port); err = sysfs_create_link(& (p->plat_dev)->dev.kobj, & (np->device)->kobj, (char const *)(& port_name)); } if (err == 0) { { p->ports[port] = np; atomic_inc(& p->refcnt); } } else { } } else { } { mutex_unlock(& niu_parent_lock); } return (p); } } static void niu_put_parent(struct niu *np ) { struct niu_parent *p ; u8 port ; char port_name[6U] ; long tmp ; long tmp___0 ; int tmp___1 ; { { p = np->parent; port = np->port; tmp = ldv__builtin_expect((unsigned long )p == (unsigned long )((struct niu_parent *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/niu.c"), "i" (9576), "i" (12UL)); __builtin_unreachable(); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )p->ports[(int )port] != (unsigned long )np, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/niu.c"), "i" (9576), "i" (12UL)); __builtin_unreachable(); } } else { } } if ((np->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)np->dev, "%s() port[%u]\n", "niu_put_parent", (int )port); } } else { } { sprintf((char *)(& port_name), "port%d", (int )port); mutex_lock_nested(& niu_parent_lock, 0U); sysfs_remove_link(& (p->plat_dev)->dev.kobj, (char const *)(& port_name)); p->ports[(int )port] = (struct niu *)0; np->parent = (struct niu_parent *)0; tmp___1 = atomic_dec_and_test(& p->refcnt); } if (tmp___1 != 0) { { list_del(& p->list); platform_device_unregister(p->plat_dev); } } else { } { mutex_unlock(& niu_parent_lock); } return; } } static void *niu_pci_alloc_coherent(struct device *dev , size_t size , u64 *handle , gfp_t flag ) { dma_addr_t dh ; void *ret ; { { ret = dma_alloc_attrs(dev, size, & dh, flag, (struct dma_attrs *)0); } if ((unsigned long )ret != (unsigned long )((void *)0)) { *handle = dh; } else { } return (ret); } } static void niu_pci_free_coherent(struct device *dev , size_t size , void *cpu_addr , u64 handle ) { { { dma_free_attrs(dev, size, cpu_addr, handle, (struct dma_attrs *)0); } return; } } static u64 niu_pci_map_page(struct device *dev , struct page *page , unsigned long offset , size_t size , enum dma_data_direction direction ) { dma_addr_t tmp ; { { tmp = dma_map_page(dev, page, offset, size, direction); } return (tmp); } } static void niu_pci_unmap_page(struct device *dev , u64 dma_address , size_t size , enum dma_data_direction direction ) { { { dma_unmap_page(dev, dma_address, size, direction); } return; } } static u64 niu_pci_map_single(struct device *dev , void *cpu_addr , size_t size , enum dma_data_direction direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs(dev, cpu_addr, size, direction, (struct dma_attrs *)0); } return (tmp); } } static void niu_pci_unmap_single(struct device *dev , u64 dma_address , size_t size , enum dma_data_direction direction ) { { { dma_unmap_single_attrs(dev, dma_address, size, direction, (struct dma_attrs *)0); } return; } } static struct niu_ops const niu_pci_ops = {& niu_pci_alloc_coherent, & niu_pci_free_coherent, & niu_pci_map_page, & niu_pci_unmap_page, & niu_pci_map_single, & niu_pci_unmap_single}; static void niu_driver_version(void) { int niu_version_printed ; int tmp ; { tmp = niu_version_printed; niu_version_printed = niu_version_printed + 1; if (tmp == 0) { { printk("\016niu: %s", (char *)(& version)); } } else { } return; } } static struct net_device *niu_alloc_and_init(struct device *gen_dev , struct pci_dev *pdev , struct platform_device *op , struct niu_ops const *ops , u8 port ) { struct net_device *dev ; struct niu *np ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; { { dev = ldv_alloc_etherdev_mqs_144(24904, 24U, 24U); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { return ((struct net_device *)0); } else { } { dev->dev.parent = gen_dev; tmp = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp; np->dev = dev; np->pdev = pdev; np->op = op; np->device = gen_dev; np->ops = ops; np->msg_enable = (u32 )niu_debug; spinlock_check(& np->lock); __raw_spin_lock_init(& np->lock.__annonCompField19.rlock, "&(&np->lock)->rlock", & __key); __init_work(& np->reset_task, 0); __constr_expr_0.counter = 137438953408L; np->reset_task.data = __constr_expr_0; lockdep_init_map(& np->reset_task.lockdep_map, "(&np->reset_task)", & __key___0, 0); INIT_LIST_HEAD(& np->reset_task.entry); np->reset_task.func = & niu_reset_task; np->port = port; } return (dev); } } static struct net_device_ops const niu_netdev_ops = {0, 0, & niu_open, & niu_close, & niu_start_xmit, 0, 0, & niu_set_rx_mode, & niu_set_mac_addr, & eth_validate_addr, & niu_ioctl, 0, & niu_change_mtu, 0, & niu_tx_timeout, & niu_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void niu_assign_netdev_ops(struct net_device *dev ) { { dev->netdev_ops = & niu_netdev_ops; dev->ethtool_ops = & niu_ethtool_ops; dev->watchdog_timeo = 1250; return; } } static void niu_device_announce(struct niu *np ) { struct net_device *dev ; { { dev = np->dev; printk("\016niu: %s: NIU Ethernet %pM\n", (char *)(& dev->name), dev->dev_addr); } if ((unsigned int )(np->parent)->plat_type == 8U) { { printk("\016niu: %s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n", (char *)(& dev->name), (np->flags & 65536U) != 0U ? (char *)"XMAC" : (char *)"BMAC", (np->flags & 262144U) != 0U ? (char *)"10G" : (char *)"1G", (np->flags & 131072U) != 0U ? (char *)"RGMII FIBER" : (char *)"SERDES", (unsigned int )np->mac_xcvr != 1U ? ((unsigned int )np->mac_xcvr == 2U ? (char *)"PCS" : (char *)"XPCS") : (char *)"MII", (char *)(& np->vpd.phy_type)); } } else { { printk("\016niu: %s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n", (char *)(& dev->name), (np->flags & 65536U) != 0U ? (char *)"XMAC" : (char *)"BMAC", (np->flags & 262144U) != 0U ? (char *)"10G" : (char *)"1G", (np->flags & 131072U) == 0U ? ((np->flags & 524288U) != 0U ? (char *)"SERDES" : (char *)"COPPER") : (char *)"FIBER", (unsigned int )np->mac_xcvr != 1U ? ((unsigned int )np->mac_xcvr == 2U ? (char *)"PCS" : (char *)"XPCS") : (char *)"MII", (char *)(& np->vpd.phy_type)); } } return; } } static void niu_set_basic_features(struct net_device *dev ) { { dev->hw_features = 2147483657ULL; dev->features = (dev->features | dev->hw_features) | 4294967296ULL; return; } } static int niu_pci_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { union niu_parent_id parent_id ; struct net_device *dev ; struct niu *np ; int err ; u64 dma_mask ; bool tmp ; int tmp___0 ; void *tmp___1 ; { { niu_driver_version(); err = pci_enable_device(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable PCI device, aborting\n"); } return (err); } else { } if ((pdev->resource[0].flags & 512UL) == 0UL || (pdev->resource[2].flags & 512UL) == 0UL) { { dev_err((struct device const *)(& pdev->dev), "Cannot find proper PCI device base addresses, aborting\n"); err = -19; } goto err_out_disable_pdev; } else { } { err = pci_request_regions(pdev, "niu"); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot obtain PCI resources, aborting\n"); } goto err_out_disable_pdev; } else { } { tmp = pci_is_pcie(pdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { dev_err((struct device const *)(& pdev->dev), "Cannot find PCI Express capability, aborting\n"); err = -19; } goto err_out_free_res; } else { } { dev = niu_alloc_and_init(& pdev->dev, pdev, (struct platform_device *)0, & niu_pci_ops, (int )((u8 )pdev->devfn) & 7); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_free_res; } else { } { tmp___1 = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp___1; memset((void *)(& parent_id), 0, 16UL); parent_id.pci.domain = pci_domain_nr(pdev->bus); parent_id.pci.bus = (int )(pdev->bus)->number; parent_id.pci.device = (int )(pdev->devfn >> 3) & 31; np->parent = niu_get_parent(np, & parent_id, 1); } if ((unsigned long )np->parent == (unsigned long )((struct niu_parent *)0)) { err = -12; goto err_out_free_dev; } else { } { pcie_capability_clear_and_set_word(pdev, 8, 2048, 31); dma_mask = 17592186044415ULL; err = pci_set_dma_mask(pdev, dma_mask); } if (err == 0) { { dev->features = dev->features | 32ULL; err = pci_set_consistent_dma_mask(pdev, dma_mask); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to obtain 44 bit DMA for consistent allocations, aborting\n"); } goto err_out_release_parent; } else { } } else { } if (err != 0) { { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration, aborting\n"); } goto err_out_release_parent; } else { } } else { } { niu_set_basic_features(dev); dev->priv_flags = dev->priv_flags | 131072U; np->regs = pci_ioremap_bar(pdev, 0); } if ((unsigned long )np->regs == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Cannot map device registers, aborting\n"); err = -12; } goto err_out_release_parent; } else { } { pci_set_master(pdev); pci_save_state(pdev); dev->irq = (int )pdev->irq; niu_assign_netdev_ops(dev); err = niu_get_invariants(np); } if (err != 0) { if (err != -19) { { dev_err((struct device const *)(& pdev->dev), "Problem fetching invariants of chip, aborting\n"); } } else { } goto err_out_iounmap; } else { } { err = ldv_register_netdev_145(dev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot register net device, aborting\n"); } goto err_out_iounmap; } else { } { pci_set_drvdata(pdev, (void *)dev); niu_device_announce(np); } return (0); err_out_iounmap: ; if ((unsigned long )np->regs != (unsigned long )((void *)0)) { { iounmap((void volatile *)np->regs); np->regs = (void *)0; } } else { } err_out_release_parent: { niu_put_parent(np); } err_out_free_dev: { ldv_free_netdev_146(dev); } err_out_free_res: { pci_release_regions(pdev); } err_out_disable_pdev: { pci_disable_device(pdev); } return (err); } } static void niu_pci_remove_one(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct niu *np ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; } if ((unsigned long )dev != (unsigned long )((struct net_device *)0)) { { tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp___0; ldv_unregister_netdev_147(dev); } if ((unsigned long )np->regs != (unsigned long )((void *)0)) { { iounmap((void volatile *)np->regs); np->regs = (void *)0; } } else { } { niu_ldg_free(np); niu_put_parent(np); ldv_free_netdev_148(dev); pci_release_regions(pdev); pci_disable_device(pdev); } } else { } return; } } static int niu_suspend(struct pci_dev *pdev , pm_message_t state ) { struct net_device *dev ; void *tmp ; struct niu *np ; void *tmp___0 ; unsigned long flags ; bool tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp___0; tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } { flush_work(& np->reset_task); niu_netif_stop(np); ldv_del_timer_sync_149(& np->timer); ldv___ldv_spin_lock_150(& np->lock); niu_enable_interrupts(np, 0); ldv_spin_unlock_irqrestore_80(& np->lock, flags); netif_device_detach(dev); ldv___ldv_spin_lock_152(& np->lock); niu_stop_hw(np); ldv_spin_unlock_irqrestore_80(& np->lock, flags); pci_save_state(pdev); } return (0); } } static int niu_resume(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct niu *np ; void *tmp___0 ; unsigned long flags ; int err ; bool tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct niu *)tmp___0; tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } { pci_restore_state(pdev); netif_device_attach(dev); ldv___ldv_spin_lock_154(& np->lock); err = niu_init_hw(np); } if (err == 0) { { np->timer.expires = (unsigned long )jiffies + 250UL; add_timer(& np->timer); niu_netif_start(np); } } else { } { ldv_spin_unlock_irqrestore_80(& np->lock, flags); } return (err); } } static struct pci_driver niu_pci_driver = {{0, 0}, "niu", (struct pci_device_id const *)(& niu_pci_tbl), & niu_pci_init_one, & niu_pci_remove_one, & niu_suspend, 0, 0, & niu_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; extern void __compiletime_assert_10207(void) ; static int niu_init(void) { int err ; bool __cond ; u32 tmp ; { err = 0; __cond = 0; if ((int )__cond) { { __compiletime_assert_10207(); } } else { } { tmp = netif_msg_init(debug, 7); niu_debug = (int )tmp; } if (err == 0) { { err = ldv___pci_register_driver_156(& niu_pci_driver, & __this_module, "niu"); } } else { } return (err); } } static void niu_exit(void) { { { ldv_pci_unregister_driver_157(& niu_pci_driver); } return; } } void ldv_EMGentry_exit_niu_exit_27_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_niu_init_27_15(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_24_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_25_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_17_27_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_13_27_5(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_27_6(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_15_27_7(void) ; void ldv_dispatch_instance_deregister_19_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_17_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_20_1(int arg0 ) ; void ldv_dispatch_irq_register_23_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_22_4(struct net_device *arg0 ) ; void ldv_dispatch_register_26_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_factory_17_27_8(void) ; void ldv_dispatch_register_dummy_resourceless_instance_13_27_9(void) ; void ldv_dispatch_register_dummy_resourceless_instance_14_27_10(void) ; void ldv_dispatch_register_dummy_resourceless_instance_15_27_11(void) ; void ldv_dummy_resourceless_instance_callback_10_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_10_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_10_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_11_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_11_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_11_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_12_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_12_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_12_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_13_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_13_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_13_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_14_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_14_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_14_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_15_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_15_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_15_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_11(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_14(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_16(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_23(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_26(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_29(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_32(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_33(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_35(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_37(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_39(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_43(int (*arg0)(struct net_device * , struct ethtool_rxnfc * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_44(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_12(unsigned long long (*arg0)(struct device * , struct page * , unsigned long , unsigned long , enum dma_data_direction ) , struct device *arg1 , struct page *arg2 , unsigned long arg3 , unsigned long arg4 , enum dma_data_direction arg5 ) ; void ldv_dummy_resourceless_instance_callback_8_15(unsigned long long (*arg0)(struct device * , void * , unsigned long , enum dma_data_direction ) , struct device *arg1 , void *arg2 , unsigned long arg3 , enum dma_data_direction arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_18(void (*arg0)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) , struct device *arg1 , unsigned long long arg2 , unsigned long arg3 , enum dma_data_direction arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_21(void (*arg0)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) , struct device *arg1 , unsigned long long arg2 , unsigned long arg3 , enum dma_data_direction arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_3(void *(*arg0)(struct device * , unsigned long , unsigned long long * , unsigned int ) , struct device *arg1 , unsigned long arg2 , unsigned long long *arg3 , unsigned int arg4 ) ; void ldv_dummy_resourceless_instance_callback_8_9(void (*arg0)(struct device * , unsigned long , void * , unsigned long long ) , struct device *arg1 , unsigned long arg2 , void *arg3 , unsigned long long arg4 ) ; void ldv_dummy_resourceless_instance_callback_9_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) ; void ldv_dummy_resourceless_instance_callback_9_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) ; void ldv_entry_EMGentry_27(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_22_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_niu_ops_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_niu_phy_template_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_struct_niu_phy_template_dummy_resourceless_instance_11(void *arg0 ) ; void ldv_struct_niu_phy_template_dummy_resourceless_instance_12(void *arg0 ) ; void ldv_struct_niu_phy_template_dummy_resourceless_instance_13(void *arg0 ) ; void ldv_struct_niu_phy_template_dummy_resourceless_instance_14(void *arg0 ) ; void ldv_struct_niu_phy_template_dummy_resourceless_instance_15(void *arg0 ) ; void ldv_struct_niu_phy_template_dummy_resourceless_instance_9(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; int ldv_switch_3(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_10_1(void) ; void ldv_switch_automaton_state_10_5(void) ; void ldv_switch_automaton_state_11_1(void) ; void ldv_switch_automaton_state_11_5(void) ; void ldv_switch_automaton_state_12_1(void) ; void ldv_switch_automaton_state_12_5(void) ; void ldv_switch_automaton_state_13_1(void) ; void ldv_switch_automaton_state_13_5(void) ; void ldv_switch_automaton_state_14_1(void) ; void ldv_switch_automaton_state_14_5(void) ; void ldv_switch_automaton_state_15_1(void) ; void ldv_switch_automaton_state_15_5(void) ; void ldv_switch_automaton_state_16_1(void) ; void ldv_switch_automaton_state_16_3(void) ; void ldv_switch_automaton_state_17_1(void) ; void ldv_switch_automaton_state_17_4(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_5(void) ; void ldv_switch_automaton_state_6_1(void) ; void ldv_switch_automaton_state_6_5(void) ; void ldv_switch_automaton_state_7_1(void) ; void ldv_switch_automaton_state_7_5(void) ; void ldv_switch_automaton_state_8_1(void) ; void ldv_switch_automaton_state_8_5(void) ; void ldv_switch_automaton_state_9_1(void) ; void ldv_switch_automaton_state_9_5(void) ; void ldv_timer_dummy_factory_17(void *arg0 ) ; void ldv_timer_instance_callback_16_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_16(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_24_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; int (*ldv_10_callback_link_status)(struct niu * , int * ) ; int (*ldv_10_callback_serdes_init)(struct niu * ) ; int (*ldv_10_callback_xcvr_init)(struct niu * ) ; struct niu *ldv_10_container_struct_niu_ptr ; int *ldv_10_ldv_param_3_1_default ; int (*ldv_11_callback_link_status)(struct niu * , int * ) ; int (*ldv_11_callback_serdes_init)(struct niu * ) ; int (*ldv_11_callback_xcvr_init)(struct niu * ) ; struct niu *ldv_11_container_struct_niu_ptr ; int *ldv_11_ldv_param_3_1_default ; int (*ldv_12_callback_link_status)(struct niu * , int * ) ; int (*ldv_12_callback_serdes_init)(struct niu * ) ; int (*ldv_12_callback_xcvr_init)(struct niu * ) ; struct niu *ldv_12_container_struct_niu_ptr ; int *ldv_12_ldv_param_3_1_default ; int (*ldv_13_callback_link_status)(struct niu * , int * ) ; int (*ldv_13_callback_serdes_init)(struct niu * ) ; int (*ldv_13_callback_xcvr_init)(struct niu * ) ; struct niu *ldv_13_container_struct_niu_ptr ; int *ldv_13_ldv_param_3_1_default ; int (*ldv_14_callback_link_status)(struct niu * , int * ) ; int (*ldv_14_callback_serdes_init)(struct niu * ) ; int (*ldv_14_callback_xcvr_init)(struct niu * ) ; struct niu *ldv_14_container_struct_niu_ptr ; int *ldv_14_ldv_param_3_1_default ; int (*ldv_15_callback_link_status)(struct niu * , int * ) ; int (*ldv_15_callback_serdes_init)(struct niu * ) ; int (*ldv_15_callback_xcvr_init)(struct niu * ) ; struct niu *ldv_15_container_struct_niu_ptr ; int *ldv_15_ldv_param_3_1_default ; struct timer_list *ldv_16_container_timer_list ; struct timer_list *ldv_17_container_timer_list ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; int (*ldv_1_callback_get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_nway_reset)(struct net_device * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; int (*ldv_1_callback_set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; enum ethtool_phys_id_state ldv_1_container_enum_ethtool_phys_id_state ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct ethtool_rxnfc *ldv_1_container_struct_ethtool_rxnfc_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct rtnl_link_stats64 *ldv_1_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; unsigned long long *ldv_1_ldv_param_11_2_default ; unsigned int *ldv_1_ldv_param_16_2_default ; int ldv_1_ldv_param_20_1_default ; unsigned int ldv_1_ldv_param_23_1_default ; unsigned char *ldv_1_ldv_param_23_2_default ; int ldv_1_ldv_param_26_1_default ; int ldv_1_ldv_param_29_2_default ; unsigned int ldv_1_ldv_param_39_1_default ; unsigned char *ldv_1_ldv_param_7_2_default ; void (*ldv_27_exit_niu_exit_default)(void) ; int (*ldv_27_init_niu_init_default)(void) ; int ldv_27_ret_default ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_3_container_struct_device_attribute ; struct device *ldv_3_container_struct_device_ptr ; char *ldv_3_ldv_param_3_2_default ; char *ldv_3_ldv_param_9_2_default ; unsigned long ldv_3_ldv_param_9_3_default ; long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_4_container_struct_device_attribute ; struct device *ldv_4_container_struct_device_ptr ; char *ldv_4_ldv_param_3_2_default ; char *ldv_4_ldv_param_9_2_default ; unsigned long ldv_4_ldv_param_9_3_default ; long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_5_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_5_container_struct_device_attribute ; struct device *ldv_5_container_struct_device_ptr ; char *ldv_5_ldv_param_3_2_default ; char *ldv_5_ldv_param_9_2_default ; unsigned long ldv_5_ldv_param_9_3_default ; long (*ldv_6_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_6_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_6_container_struct_device_attribute ; struct device *ldv_6_container_struct_device_ptr ; char *ldv_6_ldv_param_3_2_default ; char *ldv_6_ldv_param_9_2_default ; unsigned long ldv_6_ldv_param_9_3_default ; long (*ldv_7_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_7_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_7_container_struct_device_attribute ; struct device *ldv_7_container_struct_device_ptr ; char *ldv_7_ldv_param_3_2_default ; char *ldv_7_ldv_param_9_2_default ; unsigned long ldv_7_ldv_param_9_3_default ; void *(*ldv_8_callback_alloc_coherent)(struct device * , unsigned long , unsigned long long * , unsigned int ) ; void (*ldv_8_callback_free_coherent)(struct device * , unsigned long , void * , unsigned long long ) ; unsigned long long (*ldv_8_callback_map_page)(struct device * , struct page * , unsigned long , unsigned long , enum dma_data_direction ) ; unsigned long long (*ldv_8_callback_map_single)(struct device * , void * , unsigned long , enum dma_data_direction ) ; void (*ldv_8_callback_unmap_page)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) ; void (*ldv_8_callback_unmap_single)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) ; enum dma_data_direction ldv_8_container_enum_dma_data_direction ; struct device *ldv_8_container_struct_device_ptr ; struct page *ldv_8_container_struct_page_ptr ; unsigned long ldv_8_ldv_param_12_2_default ; unsigned long ldv_8_ldv_param_12_3_default ; unsigned long ldv_8_ldv_param_15_2_default ; unsigned long long ldv_8_ldv_param_18_1_default ; unsigned long ldv_8_ldv_param_18_2_default ; unsigned long long ldv_8_ldv_param_21_1_default ; unsigned long ldv_8_ldv_param_21_2_default ; unsigned long ldv_8_ldv_param_3_1_default ; unsigned long long *ldv_8_ldv_param_3_2_default ; unsigned int ldv_8_ldv_param_3_3_default ; unsigned long ldv_8_ldv_param_9_1_default ; unsigned long long ldv_8_ldv_param_9_3_default ; int (*ldv_9_callback_link_status)(struct niu * , int * ) ; int (*ldv_9_callback_serdes_init)(struct niu * ) ; int (*ldv_9_callback_xcvr_init)(struct niu * ) ; struct niu *ldv_9_container_struct_niu_ptr ; int *ldv_9_ldv_param_3_1_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_10 ; int ldv_statevar_11 ; int ldv_statevar_12 ; int ldv_statevar_13 ; int ldv_statevar_14 ; int ldv_statevar_15 ; int ldv_statevar_16 ; int ldv_statevar_17 ; int ldv_statevar_2 ; int ldv_statevar_27 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; int ldv_statevar_7 ; int ldv_statevar_8 ; int ldv_statevar_9 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & niu_interrupt; int (*ldv_10_callback_link_status)(struct niu * , int * ) = & link_status_10g_hotplug; int (*ldv_10_callback_serdes_init)(struct niu * ) = & serdes_init_niu_10g_fiber; int (*ldv_10_callback_xcvr_init)(struct niu * ) = & xcvr_init_10g_bcm8706; int (*ldv_11_callback_link_status)(struct niu * , int * ) = & link_status_10g_serdes; int (*ldv_11_callback_serdes_init)(struct niu * ) = & serdes_init_niu_10g_serdes; int (*ldv_11_callback_xcvr_init)(struct niu * ) = & xcvr_init_1g_rgmii; int (*ldv_12_callback_link_status)(struct niu * , int * ) = & link_status_1g; int (*ldv_12_callback_serdes_init)(struct niu * ) = & serdes_init_1g; int (*ldv_12_callback_xcvr_init)(struct niu * ) = & xcvr_init_1g; int (*ldv_13_callback_link_status)(struct niu * , int * ) = & link_status_1g_rgmii; int (*ldv_13_callback_serdes_init)(struct niu * ) = & serdes_init_niu_1g_serdes; int (*ldv_13_callback_xcvr_init)(struct niu * ) = & xcvr_init_1g_rgmii; int (*ldv_14_callback_link_status)(struct niu * , int * ) = & link_status_1g_serdes; int (*ldv_14_callback_serdes_init)(struct niu * ) = & serdes_init_niu_1g_serdes; int (*ldv_14_callback_xcvr_init)(struct niu * ) = & xcvr_init_1g_rgmii; int (*ldv_15_callback_link_status)(struct niu * , int * ) = & link_status_10g; int (*ldv_15_callback_serdes_init)(struct niu * ) = & serdes_init_10g_serdes; int (*ldv_15_callback_xcvr_init)(struct niu * ) = & xcvr_init_1g_rgmii; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & niu_get_drvinfo; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & niu_get_eeprom; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) = & niu_get_eeprom_len; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & niu_get_ethtool_stats; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) = & niu_get_msglevel; int (*ldv_1_callback_get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) = & niu_get_nfc; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & niu_get_settings; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) = & niu_get_sset_count; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & niu_get_strings; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & niu_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & niu_ioctl; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & niu_get_stats; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & niu_set_mac_addr; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & niu_set_rx_mode; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & niu_start_xmit; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & niu_tx_timeout; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; int (*ldv_1_callback_nway_reset)(struct net_device * ) = & niu_nway_reset; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) = & niu_set_msglevel; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) = & niu_set_phys_id; int (*ldv_1_callback_set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) = & niu_set_nfc; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & niu_set_settings; void (*ldv_27_exit_niu_exit_default)(void) = & niu_exit; int (*ldv_27_init_niu_init_default)(void) = & niu_init; long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) = & show_num_ports; long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) = & show_plat_type; long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) = & show_port_phy; long (*ldv_6_callback_show)(struct device * , struct device_attribute * , char * ) = & show_rxchan_per_port; long (*ldv_7_callback_show)(struct device * , struct device_attribute * , char * ) = & show_txchan_per_port; void *(*ldv_8_callback_alloc_coherent)(struct device * , unsigned long , unsigned long long * , unsigned int ) = & niu_pci_alloc_coherent; void (*ldv_8_callback_free_coherent)(struct device * , unsigned long , void * , unsigned long long ) = & niu_pci_free_coherent; unsigned long long (*ldv_8_callback_map_page)(struct device * , struct page * , unsigned long , unsigned long , enum dma_data_direction ) = & niu_pci_map_page; unsigned long long (*ldv_8_callback_map_single)(struct device * , void * , unsigned long , enum dma_data_direction ) = & niu_pci_map_single; void (*ldv_8_callback_unmap_page)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) = & niu_pci_unmap_page; void (*ldv_8_callback_unmap_single)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) = & niu_pci_unmap_single; int (*ldv_9_callback_link_status)(struct niu * , int * ) = & link_status_10g; int (*ldv_9_callback_serdes_init)(struct niu * ) = & serdes_init_10g; int (*ldv_9_callback_xcvr_init)(struct niu * ) = & xcvr_init_10g; void ldv_EMGentry_exit_niu_exit_27_2(void (*arg0)(void) ) { { { niu_exit(); } return; } } int ldv_EMGentry_init_niu_init_27_15(int (*arg0)(void) ) { int tmp ; { { tmp = niu_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_26_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_26_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_26_2(ldv_26_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_18_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_18_netdev_net_device = (struct net_device *)tmp; } return (ldv_18_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void *ldv_malloc(size_t size ) ; void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_1_container_struct_ethtool_cmd_ptr = ldv_malloc(sizeof(struct ethtool_cmd)); ldv_1_container_struct_ethtool_drvinfo_ptr = ldv_malloc(sizeof(struct ethtool_drvinfo)); ldv_1_container_struct_ethtool_eeprom_ptr = ldv_malloc(sizeof(struct ethtool_eeprom)); ldv_1_container_struct_ethtool_rxnfc_ptr = ldv_malloc(sizeof(struct ethtool_rxnfc)); ldv_1_container_struct_ethtool_stats_ptr = ldv_malloc(sizeof(struct ethtool_stats)); ldv_1_container_struct_ifreq_ptr = ldv_malloc(sizeof(struct ifreq)); ldv_1_container_struct_rtnl_link_stats64_ptr = ldv_malloc(sizeof(struct rtnl_link_stats64)); ldv_1_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_1_ldv_param_11_2_default = ldv_malloc(sizeof(unsigned long long)); ldv_1_ldv_param_16_2_default = ldv_malloc(sizeof(unsigned int)); ldv_1_ldv_param_23_2_default = ldv_malloc(sizeof(unsigned char)); ldv_1_ldv_param_7_2_default = ldv_malloc(sizeof(unsigned char)); ldv_2_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_3_callback_store = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0; ldv_3_container_struct_device_attribute = ldv_malloc(sizeof(struct device_attribute)); ldv_3_container_struct_device_ptr = ldv_malloc(sizeof(struct device)); ldv_3_ldv_param_3_2_default = ldv_malloc(sizeof(char)); ldv_3_ldv_param_9_2_default = ldv_malloc(sizeof(char)); ldv_4_callback_store = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0; ldv_4_container_struct_device_attribute = ldv_malloc(sizeof(struct device_attribute)); ldv_4_container_struct_device_ptr = ldv_malloc(sizeof(struct device)); ldv_4_ldv_param_3_2_default = ldv_malloc(sizeof(char)); ldv_4_ldv_param_9_2_default = ldv_malloc(sizeof(char)); ldv_5_callback_store = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0; ldv_5_container_struct_device_attribute = ldv_malloc(sizeof(struct device_attribute)); ldv_5_container_struct_device_ptr = ldv_malloc(sizeof(struct device)); ldv_5_ldv_param_3_2_default = ldv_malloc(sizeof(char)); ldv_5_ldv_param_9_2_default = ldv_malloc(sizeof(char)); ldv_6_callback_store = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0; ldv_6_container_struct_device_attribute = ldv_malloc(sizeof(struct device_attribute)); ldv_6_container_struct_device_ptr = ldv_malloc(sizeof(struct device)); ldv_6_ldv_param_3_2_default = ldv_malloc(sizeof(char)); ldv_6_ldv_param_9_2_default = ldv_malloc(sizeof(char)); ldv_7_callback_store = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0; ldv_7_container_struct_device_attribute = ldv_malloc(sizeof(struct device_attribute)); ldv_7_container_struct_device_ptr = ldv_malloc(sizeof(struct device)); ldv_7_ldv_param_3_2_default = ldv_malloc(sizeof(char)); ldv_7_ldv_param_9_2_default = ldv_malloc(sizeof(char)); ldv_8_container_struct_device_ptr = ldv_malloc(sizeof(struct device)); ldv_8_container_struct_page_ptr = ldv_malloc(sizeof(struct page)); ldv_8_ldv_param_3_2_default = ldv_malloc(sizeof(unsigned long long)); ldv_9_container_struct_niu_ptr = ldv_malloc(sizeof(struct niu)); ldv_9_ldv_param_3_1_default = ldv_malloc(sizeof(int)); ldv_10_container_struct_niu_ptr = ldv_malloc(sizeof(struct niu)); ldv_10_ldv_param_3_1_default = ldv_malloc(sizeof(int)); ldv_11_container_struct_niu_ptr = ldv_malloc(sizeof(struct niu)); ldv_11_ldv_param_3_1_default = ldv_malloc(sizeof(int)); ldv_12_container_struct_niu_ptr = ldv_malloc(sizeof(struct niu)); ldv_12_ldv_param_3_1_default = ldv_malloc(sizeof(int)); ldv_13_container_struct_niu_ptr = ldv_malloc(sizeof(struct niu)); ldv_13_ldv_param_3_1_default = ldv_malloc(sizeof(int)); ldv_14_container_struct_niu_ptr = ldv_malloc(sizeof(struct niu)); ldv_14_ldv_param_3_1_default = ldv_malloc(sizeof(int)); ldv_15_container_struct_niu_ptr = ldv_malloc(sizeof(struct niu)); ldv_15_ldv_param_3_1_default = ldv_malloc(sizeof(int)); ldv_16_container_timer_list = ldv_malloc(sizeof(struct timer_list)); ldv_17_container_timer_list = ldv_malloc(sizeof(struct timer_list)); } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_19_timer_list_timer_list ; { { ldv_19_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_16 == 2); ldv_dispatch_instance_deregister_19_1(ldv_19_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_24_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_25_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_dummy_factory_17_27_4(void) { { { ldv_switch_automaton_state_17_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_13_27_5(void) { { { ldv_switch_automaton_state_3_1(); ldv_switch_automaton_state_4_1(); ldv_switch_automaton_state_5_1(); ldv_switch_automaton_state_6_1(); ldv_switch_automaton_state_7_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_27_6(void) { { { ldv_switch_automaton_state_8_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_15_27_7(void) { { { ldv_switch_automaton_state_9_1(); ldv_switch_automaton_state_10_1(); ldv_switch_automaton_state_11_1(); ldv_switch_automaton_state_12_1(); ldv_switch_automaton_state_13_1(); ldv_switch_automaton_state_14_1(); ldv_switch_automaton_state_15_1(); } return; } } void ldv_dispatch_instance_deregister_19_1(struct timer_list *arg0 ) { { { ldv_16_container_timer_list = arg0; ldv_switch_automaton_state_16_1(); } return; } } void ldv_dispatch_instance_register_17_3(struct timer_list *arg0 ) { { { ldv_16_container_timer_list = arg0; ldv_switch_automaton_state_16_3(); } return; } } void ldv_dispatch_irq_deregister_20_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_23_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_22_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_26_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_dummy_factory_17_27_8(void) { { { ldv_switch_automaton_state_17_4(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_13_27_9(void) { { { ldv_switch_automaton_state_3_5(); ldv_switch_automaton_state_4_5(); ldv_switch_automaton_state_5_5(); ldv_switch_automaton_state_6_5(); ldv_switch_automaton_state_7_5(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_27_10(void) { { { ldv_switch_automaton_state_8_5(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_15_27_11(void) { { { ldv_switch_automaton_state_9_5(); ldv_switch_automaton_state_10_5(); ldv_switch_automaton_state_11_5(); ldv_switch_automaton_state_12_5(); ldv_switch_automaton_state_13_5(); ldv_switch_automaton_state_14_5(); ldv_switch_automaton_state_15_5(); } return; } } void ldv_dummy_resourceless_instance_callback_10_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { xcvr_init_10g_bcm8706(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_10_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) { { { link_status_10g_hotplug(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_10_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { serdes_init_niu_10g_fiber(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_11_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { xcvr_init_1g_rgmii(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_11_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) { { { link_status_10g_serdes(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_11_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { serdes_init_niu_10g_serdes(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_12_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { xcvr_init_1g(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_12_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) { { { link_status_1g(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_12_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { serdes_init_1g(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_13_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { xcvr_init_1g_rgmii(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_13_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) { { { link_status_1g_rgmii(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_13_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { serdes_init_niu_1g_serdes(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_14_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { xcvr_init_1g_rgmii(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_14_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) { { { link_status_1g_serdes(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_14_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { serdes_init_niu_1g_serdes(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_15_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { xcvr_init_1g_rgmii(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_15_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) { { { link_status_10g(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_15_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { serdes_init_10g_serdes(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { niu_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { niu_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { niu_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(int (*arg0)(struct net_device * , struct ethtool_rxnfc * , unsigned int * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 , unsigned int *arg3 ) { { { niu_get_nfc(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { niu_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { niu_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { niu_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_26(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { niu_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_29(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { niu_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { niu_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_32(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { niu_get_stats(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_33(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { niu_set_mac_addr(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { niu_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { niu_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { niu_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_37(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { niu_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_39(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { niu_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { niu_set_phys_id(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_43(int (*arg0)(struct net_device * , struct ethtool_rxnfc * ) , struct net_device *arg1 , struct ethtool_rxnfc *arg2 ) { { { niu_set_nfc(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_44(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { niu_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { niu_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_num_ports(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_plat_type(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_port_phy(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_rxchan_per_port(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_txchan_per_port(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_12(unsigned long long (*arg0)(struct device * , struct page * , unsigned long , unsigned long , enum dma_data_direction ) , struct device *arg1 , struct page *arg2 , unsigned long arg3 , unsigned long arg4 , enum dma_data_direction arg5 ) { { { niu_pci_map_page(arg1, arg2, arg3, arg4, arg5); } return; } } void ldv_dummy_resourceless_instance_callback_8_15(unsigned long long (*arg0)(struct device * , void * , unsigned long , enum dma_data_direction ) , struct device *arg1 , void *arg2 , unsigned long arg3 , enum dma_data_direction arg4 ) { { { niu_pci_map_single(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_18(void (*arg0)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) , struct device *arg1 , unsigned long long arg2 , unsigned long arg3 , enum dma_data_direction arg4 ) { { { niu_pci_unmap_page(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_21(void (*arg0)(struct device * , unsigned long long , unsigned long , enum dma_data_direction ) , struct device *arg1 , unsigned long long arg2 , unsigned long arg3 , enum dma_data_direction arg4 ) { { { niu_pci_unmap_single(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(void *(*arg0)(struct device * , unsigned long , unsigned long long * , unsigned int ) , struct device *arg1 , unsigned long arg2 , unsigned long long *arg3 , unsigned int arg4 ) { { { niu_pci_alloc_coherent(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_8_9(void (*arg0)(struct device * , unsigned long , void * , unsigned long long ) , struct device *arg1 , unsigned long arg2 , void *arg3 , unsigned long long arg4 ) { { { niu_pci_free_coherent(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_9_10(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { xcvr_init_10g(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct niu * , int * ) , struct niu *arg1 , int *arg2 ) { { { link_status_10g(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_9_9(int (*arg0)(struct niu * ) , struct niu *arg1 ) { { { serdes_init_10g(arg1); } return; } } void ldv_entry_EMGentry_27(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_27 == 2) { goto case_2; } else { } if (ldv_statevar_27 == 3) { goto case_3; } else { } if (ldv_statevar_27 == 4) { goto case_4; } else { } if (ldv_statevar_27 == 5) { goto case_5; } else { } if (ldv_statevar_27 == 6) { goto case_6; } else { } if (ldv_statevar_27 == 7) { goto case_7; } else { } if (ldv_statevar_27 == 8) { goto case_8; } else { } if (ldv_statevar_27 == 9) { goto case_9; } else { } if (ldv_statevar_27 == 10) { goto case_10; } else { } if (ldv_statevar_27 == 11) { goto case_11; } else { } if (ldv_statevar_27 == 12) { goto case_12; } else { } if (ldv_statevar_27 == 14) { goto case_14; } else { } if (ldv_statevar_27 == 15) { goto case_15; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_niu_exit_27_2(ldv_27_exit_niu_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_27 = 15; } goto ldv_54440; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_niu_exit_27_2(ldv_27_exit_niu_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_27 = 15; } goto ldv_54440; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_17 == 2); ldv_dispatch_deregister_dummy_factory_17_27_4(); ldv_statevar_27 = 2; } goto ldv_54440; case_5: /* CIL Label */ { ldv_assume((((ldv_statevar_3 == 1 || ldv_statevar_4 == 1) || ldv_statevar_5 == 1) || ldv_statevar_6 == 1) || ldv_statevar_7 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_13_27_5(); ldv_statevar_27 = 4; } goto ldv_54440; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_8 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_14_27_6(); ldv_statevar_27 = 5; } goto ldv_54440; case_7: /* CIL Label */ { ldv_assume((((((ldv_statevar_9 == 1 || ldv_statevar_10 == 1) || ldv_statevar_11 == 1) || ldv_statevar_12 == 1) || ldv_statevar_13 == 1) || ldv_statevar_14 == 1) || ldv_statevar_15 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_15_27_7(); ldv_statevar_27 = 6; } goto ldv_54440; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_17 == 4); ldv_dispatch_register_dummy_factory_17_27_8(); ldv_statevar_27 = 7; } goto ldv_54440; case_9: /* CIL Label */ { ldv_assume((((ldv_statevar_3 == 5 || ldv_statevar_4 == 5) || ldv_statevar_5 == 5) || ldv_statevar_6 == 5) || ldv_statevar_7 == 5); ldv_dispatch_register_dummy_resourceless_instance_13_27_9(); ldv_statevar_27 = 8; } goto ldv_54440; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_8 == 5); ldv_dispatch_register_dummy_resourceless_instance_14_27_10(); ldv_statevar_27 = 9; } goto ldv_54440; case_11: /* CIL Label */ { ldv_assume((((((ldv_statevar_9 == 5 || ldv_statevar_10 == 5) || ldv_statevar_11 == 5) || ldv_statevar_12 == 5) || ldv_statevar_13 == 5) || ldv_statevar_14 == 5) || ldv_statevar_15 == 5); ldv_dispatch_register_dummy_resourceless_instance_15_27_11(); ldv_statevar_27 = 10; } goto ldv_54440; case_12: /* CIL Label */ { ldv_assume(ldv_27_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_27 = 3; } else { ldv_statevar_27 = 11; } goto ldv_54440; case_14: /* CIL Label */ { ldv_assume(ldv_27_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_27 = 15; } goto ldv_54440; case_15: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_27_ret_default = ldv_EMGentry_init_niu_init_27_15(ldv_27_init_niu_init_default); ldv_27_ret_default = ldv_post_init(ldv_27_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_27 = 12; } else { ldv_statevar_27 = 14; } goto ldv_54440; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54440: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_27 = 15; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 5; ldv_statevar_4 = 5; ldv_statevar_5 = 5; ldv_statevar_6 = 5; ldv_statevar_7 = 5; ldv_statevar_8 = 5; ldv_statevar_9 = 5; ldv_statevar_10 = 5; ldv_statevar_11 = 5; ldv_statevar_12 = 5; ldv_statevar_13 = 5; ldv_statevar_14 = 5; ldv_statevar_15 = 5; ldv_statevar_16 = 3; ldv_statevar_17 = 4; } ldv_54477: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_27((void *)0); } goto ldv_54457; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_54457; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_54457; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_54457; case_4: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_3((void *)0); } goto ldv_54457; case_5: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_4((void *)0); } goto ldv_54457; case_6: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_5((void *)0); } goto ldv_54457; case_7: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_6((void *)0); } goto ldv_54457; case_8: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_7((void *)0); } goto ldv_54457; case_9: /* CIL Label */ { ldv_struct_niu_ops_dummy_resourceless_instance_8((void *)0); } goto ldv_54457; case_10: /* CIL Label */ { ldv_struct_niu_phy_template_dummy_resourceless_instance_9((void *)0); } goto ldv_54457; case_11: /* CIL Label */ { ldv_struct_niu_phy_template_dummy_resourceless_instance_10((void *)0); } goto ldv_54457; case_12: /* CIL Label */ { ldv_struct_niu_phy_template_dummy_resourceless_instance_11((void *)0); } goto ldv_54457; case_13: /* CIL Label */ { ldv_struct_niu_phy_template_dummy_resourceless_instance_12((void *)0); } goto ldv_54457; case_14: /* CIL Label */ { ldv_struct_niu_phy_template_dummy_resourceless_instance_13((void *)0); } goto ldv_54457; case_15: /* CIL Label */ { ldv_struct_niu_phy_template_dummy_resourceless_instance_14((void *)0); } goto ldv_54457; case_16: /* CIL Label */ { ldv_struct_niu_phy_template_dummy_resourceless_instance_15((void *)0); } goto ldv_54457; case_17: /* CIL Label */ { ldv_timer_timer_instance_16((void *)0); } goto ldv_54457; case_18: /* CIL Label */ { ldv_timer_dummy_factory_17((void *)0); } goto ldv_54457; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54457: ; goto ldv_54477; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_20_line_line ; { { ldv_20_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_20_1(ldv_20_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_21_netdev_net_device ; { { ldv_21_netdev_net_device = arg1; ldv_free((void *)ldv_21_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = niu_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_54509; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_54509; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_54509; case_6: /* CIL Label */ ; goto ldv_54509; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54509: ; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } if (ldv_statevar_1 == 17) { goto case_17; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } if (ldv_statevar_1 == 21) { goto case_21; } else { } if (ldv_statevar_1 == 24) { goto case_24; } else { } if (ldv_statevar_1 == 27) { goto case_27; } else { } if (ldv_statevar_1 == 30) { goto case_30; } else { } if (ldv_statevar_1 == 32) { goto case_32; } else { } if (ldv_statevar_1 == 33) { goto case_33; } else { } if (ldv_statevar_1 == 34) { goto case_34; } else { } if (ldv_statevar_1 == 35) { goto case_35; } else { } if (ldv_statevar_1 == 36) { goto case_36; } else { } if (ldv_statevar_1 == 37) { goto case_37; } else { } if (ldv_statevar_1 == 38) { goto case_38; } else { } if (ldv_statevar_1 == 40) { goto case_40; } else { } if (ldv_statevar_1 == 42) { goto case_42; } else { } if (ldv_statevar_1 == 43) { goto case_43; } else { } if (ldv_statevar_1 == 44) { goto case_44; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54518; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_54518; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_54518; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_54518; case_5: /* CIL Label */ ; goto ldv_54518; case_8: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_1_ldv_param_7_2_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_7_2_default); ldv_free((void *)ldv_1_ldv_param_7_2_default); ldv_statevar_1 = 2; } goto ldv_54518; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_12: /* CIL Label */ { tmp___0 = ldv_xmalloc(8UL); ldv_1_ldv_param_11_2_default = (unsigned long long *)tmp___0; ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_11_2_default); ldv_free((void *)ldv_1_ldv_param_11_2_default); ldv_statevar_1 = 2; } goto ldv_54518; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_msglevel, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_17: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_1_ldv_param_16_2_default = (unsigned int *)tmp___1; ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_get_rxnfc, ldv_1_container_net_device, ldv_1_container_struct_ethtool_rxnfc_ptr, ldv_1_ldv_param_16_2_default); ldv_free((void *)ldv_1_ldv_param_16_2_default); ldv_statevar_1 = 2; } goto ldv_54518; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_54518; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_20_1_default); ldv_statevar_1 = 2; } goto ldv_54518; case_24: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_1_ldv_param_23_2_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_23_1_default, ldv_1_ldv_param_23_2_default); ldv_free((void *)ldv_1_ldv_param_23_2_default); ldv_statevar_1 = 2; } goto ldv_54518; case_27: /* CIL Label */ { ldv_assume(ldv_statevar_16 == 2); ldv_dummy_resourceless_instance_callback_1_26(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_26_1_default); ldv_statevar_1 = 2; } goto ldv_54518; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_29(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_29_2_default); ldv_statevar_1 = 2; } goto ldv_54518; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_32(ldv_1_callback_ndo_get_stats64, ldv_1_container_net_device, ldv_1_container_struct_rtnl_link_stats64_ptr); ldv_statevar_1 = 2; } goto ldv_54518; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_33(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_54518; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_34(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_36(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_37(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_38(ldv_1_callback_nway_reset, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_54518; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_39(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_39_1_default); ldv_statevar_1 = 2; } goto ldv_54518; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_42(ldv_1_callback_set_phys_id, ldv_1_container_net_device, ldv_1_container_enum_ethtool_phys_id_state); ldv_statevar_1 = 2; } goto ldv_54518; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_43(ldv_1_callback_set_rxnfc, ldv_1_container_net_device, ldv_1_container_struct_ethtool_rxnfc_ptr); ldv_statevar_1 = 2; } goto ldv_54518; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_44(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_54518; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54518: ; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = niu_pci_init_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { niu_pci_remove_one(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { niu_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = niu_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_54591; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_54591; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 2; goto ldv_54591; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_54591; case_5: /* CIL Label */ { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); ldv_statevar_2 = 4; } goto ldv_54591; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_54591; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_54591; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_16 == 2); ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_54591; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_54591; case_10: /* CIL Label */ ldv_statevar_2 = 9; goto ldv_54591; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_54591; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_54591; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_54591; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_54591; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_54591; case_20: /* CIL Label */ ; goto ldv_54591; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54591: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_25_pci_driver_pci_driver ; { { ldv_25_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_25_1(ldv_25_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_22_netdev_net_device ; int ldv_22_ret_default ; int tmp ; int tmp___0 ; { { ldv_22_ret_default = 1; ldv_22_ret_default = ldv_pre_register_netdev(); ldv_22_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_22_ret_default == 0); ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_0 == 2); ldv_22_ret_default = ldv_register_netdev_open_22_6((ldv_22_netdev_net_device->netdev_ops)->ndo_open, ldv_22_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_22_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_22_4(ldv_22_netdev_net_device); } } else { { ldv_assume(ldv_22_ret_default != 0); } } } else { { ldv_assume(ldv_22_ret_default != 0); } } return (ldv_22_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_22_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = niu_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_23_callback_handler)(int , void * ) ; void *ldv_23_data_data ; int ldv_23_line_line ; enum irqreturn (*ldv_23_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_23_line_line = (int )arg1; ldv_23_callback_handler = arg2; ldv_23_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_23_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_23_2(ldv_23_line_line, ldv_23_callback_handler, ldv_23_thread_thread, ldv_23_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54646; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 1; } else { ldv_statevar_3 = 7; } goto ldv_54646; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_show, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_3_2_default); ldv_free((void *)ldv_3_ldv_param_3_2_default); ldv_statevar_3 = 2; } goto ldv_54646; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 1; } else { ldv_statevar_3 = 7; } goto ldv_54646; case_5: /* CIL Label */ ; goto ldv_54646; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_3_ldv_param_3_2_default = (char *)tmp___1; tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_3 = 3; } else { ldv_statevar_3 = 10; } goto ldv_54646; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_2_default = (char *)tmp___3; } if ((unsigned long )ldv_3_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_store, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_9_2_default, ldv_3_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_3_ldv_param_9_2_default); ldv_free((void *)ldv_3_ldv_param_3_2_default); ldv_statevar_3 = 2; } goto ldv_54646; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54646: ; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54658; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 1; } else { ldv_statevar_4 = 7; } goto ldv_54658; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_show, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_3_2_default); ldv_free((void *)ldv_4_ldv_param_3_2_default); ldv_statevar_4 = 2; } goto ldv_54658; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 1; } else { ldv_statevar_4 = 7; } goto ldv_54658; case_5: /* CIL Label */ ; goto ldv_54658; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_4_ldv_param_3_2_default = (char *)tmp___1; tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_4 = 3; } else { ldv_statevar_4 = 10; } goto ldv_54658; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (char *)tmp___3; } if ((unsigned long )ldv_4_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_store, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_9_2_default, ldv_4_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_9_2_default); ldv_free((void *)ldv_4_ldv_param_3_2_default); ldv_statevar_4 = 2; } goto ldv_54658; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54658: ; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54670; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 1; } else { ldv_statevar_5 = 7; } goto ldv_54670; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_show, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_3_2_default); ldv_free((void *)ldv_5_ldv_param_3_2_default); ldv_statevar_5 = 2; } goto ldv_54670; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 1; } else { ldv_statevar_5 = 7; } goto ldv_54670; case_5: /* CIL Label */ ; goto ldv_54670; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_5_ldv_param_3_2_default = (char *)tmp___1; tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_5 = 3; } else { ldv_statevar_5 = 10; } goto ldv_54670; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_5_ldv_param_9_2_default = (char *)tmp___3; } if ((unsigned long )ldv_5_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_store, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_9_2_default, ldv_5_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_5_ldv_param_9_2_default); ldv_free((void *)ldv_5_ldv_param_3_2_default); ldv_statevar_5 = 2; } goto ldv_54670; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54670: ; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_6(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_6 == 1) { goto case_1; } else { } if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 3) { goto case_3; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } if (ldv_statevar_6 == 5) { goto case_5; } else { } if (ldv_statevar_6 == 7) { goto case_7; } else { } if (ldv_statevar_6 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54682; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_6 = 1; } else { ldv_statevar_6 = 7; } goto ldv_54682; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_show, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_3_2_default); ldv_free((void *)ldv_6_ldv_param_3_2_default); ldv_statevar_6 = 2; } goto ldv_54682; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_6 = 1; } else { ldv_statevar_6 = 7; } goto ldv_54682; case_5: /* CIL Label */ ; goto ldv_54682; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_6_ldv_param_3_2_default = (char *)tmp___1; tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_6 = 3; } else { ldv_statevar_6 = 10; } goto ldv_54682; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_6_ldv_param_9_2_default = (char *)tmp___3; } if ((unsigned long )ldv_6_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_6_9(ldv_6_callback_store, ldv_6_container_struct_device_ptr, ldv_6_container_struct_device_attribute, ldv_6_ldv_param_9_2_default, ldv_6_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_6_ldv_param_9_2_default); ldv_free((void *)ldv_6_ldv_param_3_2_default); ldv_statevar_6 = 2; } goto ldv_54682; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54682: ; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_7(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_7 == 1) { goto case_1; } else { } if (ldv_statevar_7 == 2) { goto case_2; } else { } if (ldv_statevar_7 == 3) { goto case_3; } else { } if (ldv_statevar_7 == 4) { goto case_4; } else { } if (ldv_statevar_7 == 5) { goto case_5; } else { } if (ldv_statevar_7 == 7) { goto case_7; } else { } if (ldv_statevar_7 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54694; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 7; } goto ldv_54694; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_show, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_3_2_default); ldv_free((void *)ldv_7_ldv_param_3_2_default); ldv_statevar_7 = 2; } goto ldv_54694; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 7; } goto ldv_54694; case_5: /* CIL Label */ ; goto ldv_54694; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_7_ldv_param_3_2_default = (char *)tmp___1; tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_7 = 3; } else { ldv_statevar_7 = 10; } goto ldv_54694; case_10: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_7_ldv_param_9_2_default = (char *)tmp___3; } if ((unsigned long )ldv_7_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_store, ldv_7_container_struct_device_ptr, ldv_7_container_struct_device_attribute, ldv_7_ldv_param_9_2_default, ldv_7_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_7_ldv_param_9_2_default); ldv_free((void *)ldv_7_ldv_param_3_2_default); ldv_statevar_7 = 2; } goto ldv_54694; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54694: ; return; } } void ldv_struct_niu_ops_dummy_resourceless_instance_8(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_8 == 1) { goto case_1; } else { } if (ldv_statevar_8 == 2) { goto case_2; } else { } if (ldv_statevar_8 == 3) { goto case_3; } else { } if (ldv_statevar_8 == 4) { goto case_4; } else { } if (ldv_statevar_8 == 5) { goto case_5; } else { } if (ldv_statevar_8 == 7) { goto case_7; } else { } if (ldv_statevar_8 == 10) { goto case_10; } else { } if (ldv_statevar_8 == 13) { goto case_13; } else { } if (ldv_statevar_8 == 16) { goto case_16; } else { } if (ldv_statevar_8 == 19) { goto case_19; } else { } if (ldv_statevar_8 == 22) { goto case_22; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54706; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_8 = 1; } else { ldv_statevar_8 = 7; } goto ldv_54706; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_alloc_coherent, ldv_8_container_struct_device_ptr, ldv_8_ldv_param_3_1_default, ldv_8_ldv_param_3_2_default, ldv_8_ldv_param_3_3_default); ldv_free((void *)ldv_8_ldv_param_3_2_default); ldv_statevar_8 = 2; } goto ldv_54706; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_8 = 1; } else { ldv_statevar_8 = 7; } goto ldv_54706; case_5: /* CIL Label */ ; goto ldv_54706; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(8UL); ldv_8_ldv_param_3_2_default = (unsigned long long *)tmp___1; ldv_statevar_8 = ldv_switch_2(); } goto ldv_54706; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_9(ldv_8_callback_free_coherent, ldv_8_container_struct_device_ptr, ldv_8_ldv_param_9_1_default, (void *)ldv_8_container_struct_page_ptr, ldv_8_ldv_param_9_3_default); ldv_free((void *)ldv_8_ldv_param_3_2_default); ldv_statevar_8 = 2; } goto ldv_54706; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_12(ldv_8_callback_map_page, ldv_8_container_struct_device_ptr, ldv_8_container_struct_page_ptr, ldv_8_ldv_param_12_2_default, ldv_8_ldv_param_12_3_default, ldv_8_container_enum_dma_data_direction); ldv_free((void *)ldv_8_ldv_param_3_2_default); ldv_statevar_8 = 2; } goto ldv_54706; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_15(ldv_8_callback_map_single, ldv_8_container_struct_device_ptr, (void *)ldv_8_container_struct_page_ptr, ldv_8_ldv_param_15_2_default, ldv_8_container_enum_dma_data_direction); ldv_free((void *)ldv_8_ldv_param_3_2_default); ldv_statevar_8 = 2; } goto ldv_54706; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_18(ldv_8_callback_unmap_page, ldv_8_container_struct_device_ptr, ldv_8_ldv_param_18_1_default, ldv_8_ldv_param_18_2_default, ldv_8_container_enum_dma_data_direction); ldv_free((void *)ldv_8_ldv_param_3_2_default); ldv_statevar_8 = 2; } goto ldv_54706; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_21(ldv_8_callback_unmap_single, ldv_8_container_struct_device_ptr, ldv_8_ldv_param_21_1_default, ldv_8_ldv_param_21_2_default, ldv_8_container_enum_dma_data_direction); ldv_free((void *)ldv_8_ldv_param_3_2_default); ldv_statevar_8 = 2; } goto ldv_54706; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54706: ; return; } } void ldv_struct_niu_phy_template_dummy_resourceless_instance_10(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_10 == 1) { goto case_1; } else { } if (ldv_statevar_10 == 2) { goto case_2; } else { } if (ldv_statevar_10 == 3) { goto case_3; } else { } if (ldv_statevar_10 == 4) { goto case_4; } else { } if (ldv_statevar_10 == 5) { goto case_5; } else { } if (ldv_statevar_10 == 7) { goto case_7; } else { } if (ldv_statevar_10 == 9) { goto case_9; } else { } if (ldv_statevar_10 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54722; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_10 = 1; } else { ldv_statevar_10 = 7; } goto ldv_54722; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_link_status, ldv_10_container_struct_niu_ptr, ldv_10_ldv_param_3_1_default); ldv_free((void *)ldv_10_ldv_param_3_1_default); ldv_statevar_10 = 2; } goto ldv_54722; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_10 = 1; } else { ldv_statevar_10 = 7; } goto ldv_54722; case_5: /* CIL Label */ ; goto ldv_54722; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_10_ldv_param_3_1_default = (int *)tmp___1; ldv_statevar_10 = ldv_switch_3(); } goto ldv_54722; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_9(ldv_10_callback_serdes_init, ldv_10_container_struct_niu_ptr); ldv_free((void *)ldv_10_ldv_param_3_1_default); ldv_statevar_10 = 2; } goto ldv_54722; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_10(ldv_10_callback_xcvr_init, ldv_10_container_struct_niu_ptr); ldv_free((void *)ldv_10_ldv_param_3_1_default); ldv_statevar_10 = 2; } goto ldv_54722; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54722: ; return; } } void ldv_struct_niu_phy_template_dummy_resourceless_instance_11(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_11 == 1) { goto case_1; } else { } if (ldv_statevar_11 == 2) { goto case_2; } else { } if (ldv_statevar_11 == 3) { goto case_3; } else { } if (ldv_statevar_11 == 4) { goto case_4; } else { } if (ldv_statevar_11 == 5) { goto case_5; } else { } if (ldv_statevar_11 == 7) { goto case_7; } else { } if (ldv_statevar_11 == 9) { goto case_9; } else { } if (ldv_statevar_11 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54735; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_11 = 1; } else { ldv_statevar_11 = 7; } goto ldv_54735; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_3(ldv_11_callback_link_status, ldv_11_container_struct_niu_ptr, ldv_11_ldv_param_3_1_default); ldv_free((void *)ldv_11_ldv_param_3_1_default); ldv_statevar_11 = 2; } goto ldv_54735; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_11 = 1; } else { ldv_statevar_11 = 7; } goto ldv_54735; case_5: /* CIL Label */ ; goto ldv_54735; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_11_ldv_param_3_1_default = (int *)tmp___1; ldv_statevar_11 = ldv_switch_3(); } goto ldv_54735; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_9(ldv_11_callback_serdes_init, ldv_11_container_struct_niu_ptr); ldv_free((void *)ldv_11_ldv_param_3_1_default); ldv_statevar_11 = 2; } goto ldv_54735; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_10(ldv_11_callback_xcvr_init, ldv_11_container_struct_niu_ptr); ldv_free((void *)ldv_11_ldv_param_3_1_default); ldv_statevar_11 = 2; } goto ldv_54735; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54735: ; return; } } void ldv_struct_niu_phy_template_dummy_resourceless_instance_12(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_12 == 1) { goto case_1; } else { } if (ldv_statevar_12 == 2) { goto case_2; } else { } if (ldv_statevar_12 == 3) { goto case_3; } else { } if (ldv_statevar_12 == 4) { goto case_4; } else { } if (ldv_statevar_12 == 5) { goto case_5; } else { } if (ldv_statevar_12 == 7) { goto case_7; } else { } if (ldv_statevar_12 == 9) { goto case_9; } else { } if (ldv_statevar_12 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54748; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_12 = 1; } else { ldv_statevar_12 = 7; } goto ldv_54748; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_12_3(ldv_12_callback_link_status, ldv_12_container_struct_niu_ptr, ldv_12_ldv_param_3_1_default); ldv_free((void *)ldv_12_ldv_param_3_1_default); ldv_statevar_12 = 2; } goto ldv_54748; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_12 = 1; } else { ldv_statevar_12 = 7; } goto ldv_54748; case_5: /* CIL Label */ ; goto ldv_54748; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_12_ldv_param_3_1_default = (int *)tmp___1; ldv_statevar_12 = ldv_switch_3(); } goto ldv_54748; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_12_9(ldv_12_callback_serdes_init, ldv_12_container_struct_niu_ptr); ldv_free((void *)ldv_12_ldv_param_3_1_default); ldv_statevar_12 = 2; } goto ldv_54748; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_12_10(ldv_12_callback_xcvr_init, ldv_12_container_struct_niu_ptr); ldv_free((void *)ldv_12_ldv_param_3_1_default); ldv_statevar_12 = 2; } goto ldv_54748; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54748: ; return; } } void ldv_struct_niu_phy_template_dummy_resourceless_instance_13(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_13 == 1) { goto case_1; } else { } if (ldv_statevar_13 == 2) { goto case_2; } else { } if (ldv_statevar_13 == 3) { goto case_3; } else { } if (ldv_statevar_13 == 4) { goto case_4; } else { } if (ldv_statevar_13 == 5) { goto case_5; } else { } if (ldv_statevar_13 == 7) { goto case_7; } else { } if (ldv_statevar_13 == 9) { goto case_9; } else { } if (ldv_statevar_13 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54761; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_13 = 1; } else { ldv_statevar_13 = 7; } goto ldv_54761; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_13_3(ldv_13_callback_link_status, ldv_13_container_struct_niu_ptr, ldv_13_ldv_param_3_1_default); ldv_free((void *)ldv_13_ldv_param_3_1_default); ldv_statevar_13 = 2; } goto ldv_54761; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_13 = 1; } else { ldv_statevar_13 = 7; } goto ldv_54761; case_5: /* CIL Label */ ; goto ldv_54761; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_13_ldv_param_3_1_default = (int *)tmp___1; ldv_statevar_13 = ldv_switch_3(); } goto ldv_54761; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_13_9(ldv_13_callback_serdes_init, ldv_13_container_struct_niu_ptr); ldv_free((void *)ldv_13_ldv_param_3_1_default); ldv_statevar_13 = 2; } goto ldv_54761; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_13_10(ldv_13_callback_xcvr_init, ldv_13_container_struct_niu_ptr); ldv_free((void *)ldv_13_ldv_param_3_1_default); ldv_statevar_13 = 2; } goto ldv_54761; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54761: ; return; } } void ldv_struct_niu_phy_template_dummy_resourceless_instance_14(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_14 == 1) { goto case_1; } else { } if (ldv_statevar_14 == 2) { goto case_2; } else { } if (ldv_statevar_14 == 3) { goto case_3; } else { } if (ldv_statevar_14 == 4) { goto case_4; } else { } if (ldv_statevar_14 == 5) { goto case_5; } else { } if (ldv_statevar_14 == 7) { goto case_7; } else { } if (ldv_statevar_14 == 9) { goto case_9; } else { } if (ldv_statevar_14 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54774; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_14 = 1; } else { ldv_statevar_14 = 7; } goto ldv_54774; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_14_3(ldv_14_callback_link_status, ldv_14_container_struct_niu_ptr, ldv_14_ldv_param_3_1_default); ldv_free((void *)ldv_14_ldv_param_3_1_default); ldv_statevar_14 = 2; } goto ldv_54774; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_14 = 1; } else { ldv_statevar_14 = 7; } goto ldv_54774; case_5: /* CIL Label */ ; goto ldv_54774; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_14_ldv_param_3_1_default = (int *)tmp___1; ldv_statevar_14 = ldv_switch_3(); } goto ldv_54774; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_14_9(ldv_14_callback_serdes_init, ldv_14_container_struct_niu_ptr); ldv_free((void *)ldv_14_ldv_param_3_1_default); ldv_statevar_14 = 2; } goto ldv_54774; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_14_10(ldv_14_callback_xcvr_init, ldv_14_container_struct_niu_ptr); ldv_free((void *)ldv_14_ldv_param_3_1_default); ldv_statevar_14 = 2; } goto ldv_54774; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54774: ; return; } } void ldv_struct_niu_phy_template_dummy_resourceless_instance_15(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_15 == 1) { goto case_1; } else { } if (ldv_statevar_15 == 2) { goto case_2; } else { } if (ldv_statevar_15 == 3) { goto case_3; } else { } if (ldv_statevar_15 == 4) { goto case_4; } else { } if (ldv_statevar_15 == 5) { goto case_5; } else { } if (ldv_statevar_15 == 7) { goto case_7; } else { } if (ldv_statevar_15 == 9) { goto case_9; } else { } if (ldv_statevar_15 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54787; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_15 = 1; } else { ldv_statevar_15 = 7; } goto ldv_54787; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_15_3(ldv_15_callback_link_status, ldv_15_container_struct_niu_ptr, ldv_15_ldv_param_3_1_default); ldv_free((void *)ldv_15_ldv_param_3_1_default); ldv_statevar_15 = 2; } goto ldv_54787; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_15 = 1; } else { ldv_statevar_15 = 7; } goto ldv_54787; case_5: /* CIL Label */ ; goto ldv_54787; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_15_ldv_param_3_1_default = (int *)tmp___1; ldv_statevar_15 = ldv_switch_3(); } goto ldv_54787; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_15_9(ldv_15_callback_serdes_init, ldv_15_container_struct_niu_ptr); ldv_free((void *)ldv_15_ldv_param_3_1_default); ldv_statevar_15 = 2; } goto ldv_54787; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_15_10(ldv_15_callback_xcvr_init, ldv_15_container_struct_niu_ptr); ldv_free((void *)ldv_15_ldv_param_3_1_default); ldv_statevar_15 = 2; } goto ldv_54787; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54787: ; return; } } void ldv_struct_niu_phy_template_dummy_resourceless_instance_9(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_9 == 1) { goto case_1; } else { } if (ldv_statevar_9 == 2) { goto case_2; } else { } if (ldv_statevar_9 == 3) { goto case_3; } else { } if (ldv_statevar_9 == 4) { goto case_4; } else { } if (ldv_statevar_9 == 5) { goto case_5; } else { } if (ldv_statevar_9 == 7) { goto case_7; } else { } if (ldv_statevar_9 == 9) { goto case_9; } else { } if (ldv_statevar_9 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_54800; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_9 = 1; } else { ldv_statevar_9 = 7; } goto ldv_54800; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_link_status, ldv_9_container_struct_niu_ptr, ldv_9_ldv_param_3_1_default); ldv_free((void *)ldv_9_ldv_param_3_1_default); ldv_statevar_9 = 2; } goto ldv_54800; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_9 = 1; } else { ldv_statevar_9 = 7; } goto ldv_54800; case_5: /* CIL Label */ ; goto ldv_54800; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(4UL); ldv_9_ldv_param_3_1_default = (int *)tmp___1; ldv_statevar_9 = ldv_switch_3(); } goto ldv_54800; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_9(ldv_9_callback_serdes_init, ldv_9_container_struct_niu_ptr); ldv_free((void *)ldv_9_ldv_param_3_1_default); ldv_statevar_9 = 2; } goto ldv_54800; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_10(ldv_9_callback_xcvr_init, ldv_9_container_struct_niu_ptr); ldv_free((void *)ldv_9_ldv_param_3_1_default); ldv_statevar_9 = 2; } goto ldv_54800; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54800: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); case_4: /* CIL Label */ ; return (12); case_5: /* CIL Label */ ; return (14); case_6: /* CIL Label */ ; return (15); case_7: /* CIL Label */ ; return (17); case_8: /* CIL Label */ ; return (19); case_9: /* CIL Label */ ; return (21); case_10: /* CIL Label */ ; return (24); case_11: /* CIL Label */ ; return (27); case_12: /* CIL Label */ ; return (30); case_13: /* CIL Label */ ; return (32); case_14: /* CIL Label */ ; return (33); case_15: /* CIL Label */ ; return (34); case_16: /* CIL Label */ ; return (35); case_17: /* CIL Label */ ; return (36); case_18: /* CIL Label */ ; return (37); case_19: /* CIL Label */ ; return (38); case_20: /* CIL Label */ ; return (40); case_21: /* CIL Label */ ; return (42); case_22: /* CIL Label */ ; return (43); case_23: /* CIL Label */ ; return (44); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (10); case_2: /* CIL Label */ ; return (13); case_3: /* CIL Label */ ; return (16); case_4: /* CIL Label */ ; return (19); case_5: /* CIL Label */ ; return (22); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_3(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (9); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_10_1(void) { { ldv_statevar_10 = 5; return; } } void ldv_switch_automaton_state_10_5(void) { { ldv_statevar_10 = 4; return; } } void ldv_switch_automaton_state_11_1(void) { { ldv_statevar_11 = 5; return; } } void ldv_switch_automaton_state_11_5(void) { { ldv_statevar_11 = 4; return; } } void ldv_switch_automaton_state_12_1(void) { { ldv_statevar_12 = 5; return; } } void ldv_switch_automaton_state_12_5(void) { { ldv_statevar_12 = 4; return; } } void ldv_switch_automaton_state_13_1(void) { { ldv_statevar_13 = 5; return; } } void ldv_switch_automaton_state_13_5(void) { { ldv_statevar_13 = 4; return; } } void ldv_switch_automaton_state_14_1(void) { { ldv_statevar_14 = 5; return; } } void ldv_switch_automaton_state_14_5(void) { { ldv_statevar_14 = 4; return; } } void ldv_switch_automaton_state_15_1(void) { { ldv_statevar_15 = 5; return; } } void ldv_switch_automaton_state_15_5(void) { { ldv_statevar_15 = 4; return; } } void ldv_switch_automaton_state_16_1(void) { { ldv_statevar_16 = 3; return; } } void ldv_switch_automaton_state_16_3(void) { { ldv_statevar_16 = 2; return; } } void ldv_switch_automaton_state_17_1(void) { { ldv_statevar_17 = 4; return; } } void ldv_switch_automaton_state_17_4(void) { { ldv_statevar_17 = 3; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_statevar_3 = 4; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 5; return; } } void ldv_switch_automaton_state_5_5(void) { { ldv_statevar_5 = 4; return; } } void ldv_switch_automaton_state_6_1(void) { { ldv_statevar_6 = 5; return; } } void ldv_switch_automaton_state_6_5(void) { { ldv_statevar_6 = 4; return; } } void ldv_switch_automaton_state_7_1(void) { { ldv_statevar_7 = 5; return; } } void ldv_switch_automaton_state_7_5(void) { { ldv_statevar_7 = 4; return; } } void ldv_switch_automaton_state_8_1(void) { { ldv_statevar_8 = 5; return; } } void ldv_switch_automaton_state_8_5(void) { { ldv_statevar_8 = 4; return; } } void ldv_switch_automaton_state_9_1(void) { { ldv_statevar_9 = 5; return; } } void ldv_switch_automaton_state_9_5(void) { { ldv_statevar_9 = 4; return; } } void ldv_timer_dummy_factory_17(void *arg0 ) { { { if (ldv_statevar_17 == 2) { goto case_2; } else { } if (ldv_statevar_17 == 3) { goto case_3; } else { } if (ldv_statevar_17 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ ldv_statevar_17 = 4; goto ldv_54933; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_16 == 3); ldv_dispatch_instance_register_17_3(ldv_17_container_timer_list); ldv_statevar_17 = 2; } goto ldv_54933; case_4: /* CIL Label */ ; goto ldv_54933; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54933: ; return; } } void ldv_timer_instance_callback_16_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_16(void *arg0 ) { { { if (ldv_statevar_16 == 2) { goto case_2; } else { } if (ldv_statevar_16 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_16_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_16_2(ldv_16_container_timer_list->function, ldv_16_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_16 = 3; } goto ldv_54946; case_3: /* CIL Label */ ; goto ldv_54946; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54946: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_24_netdev_net_device ; { { ldv_24_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_16 == 2); ldv_unregister_netdev_stop_24_2((ldv_24_netdev_net_device->netdev_ops)->ndo_stop, ldv_24_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_24_1(ldv_24_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_24_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { niu_close(arg1); } return; } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_lock_46(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static void ldv___ldv_spin_lock_79(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_80(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_niu(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_81(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_87(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_89(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_91(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_93(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_96(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_niu_parent(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_97(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_100(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_102(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_104(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static int ldv_request_irq_106(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_107(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static void ldv_spin_lock_irq_109(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_niu(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_110(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_niu(); spin_unlock_irq(lock); } return; } } static int ldv_del_timer_sync_111(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_114(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_116(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_118(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv_del_timer_sync_121(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_122(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_124(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_128(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_130(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_132(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_134(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_136(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_138(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_140(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_142(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu_parent(); __ldv_spin_lock(ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_144(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___3 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_145(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_146(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_147(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_148(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_149(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_150(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_152(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_154(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_niu(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_156(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_157(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_niu = 1; void ldv_spin_lock_lock_of_niu(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_niu == 1); ldv_assume(ldv_spin_lock_of_niu == 1); ldv_spin_lock_of_niu = 2; } return; } } void ldv_spin_unlock_lock_of_niu(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_niu == 2); ldv_assume(ldv_spin_lock_of_niu == 2); ldv_spin_lock_of_niu = 1; } return; } } int ldv_spin_trylock_lock_of_niu(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_niu == 1); ldv_assume(ldv_spin_lock_of_niu == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_niu = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_niu(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_niu == 1); ldv_assume(ldv_spin_lock_of_niu == 1); } return; } } int ldv_spin_is_locked_lock_of_niu(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_niu == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_niu(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_niu(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_niu(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_niu(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_niu == 1); ldv_assume(ldv_spin_lock_of_niu == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_niu = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_niu_parent = 1; void ldv_spin_lock_lock_of_niu_parent(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_niu_parent == 1); ldv_assume(ldv_spin_lock_of_niu_parent == 1); ldv_spin_lock_of_niu_parent = 2; } return; } } void ldv_spin_unlock_lock_of_niu_parent(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_niu_parent == 2); ldv_assume(ldv_spin_lock_of_niu_parent == 2); ldv_spin_lock_of_niu_parent = 1; } return; } } int ldv_spin_trylock_lock_of_niu_parent(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_niu_parent == 1); ldv_assume(ldv_spin_lock_of_niu_parent == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_niu_parent = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_niu_parent(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_niu_parent == 1); ldv_assume(ldv_spin_lock_of_niu_parent == 1); } return; } } int ldv_spin_is_locked_lock_of_niu_parent(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_niu_parent == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_niu_parent(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_niu_parent(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_niu_parent(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_niu_parent(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_niu_parent == 1); ldv_assume(ldv_spin_lock_of_niu_parent == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_niu_parent = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_niu == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_niu_parent == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_res_counter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_niu == 2) { return (1); } else { } if (ldv_spin_lock_of_niu_parent == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-kernel-locking-spinlock__drivers-net-ethernet-sun-niu_true-unreach-call.cil.env.c" #include "model/common.env.c"