extern void abort(void); #include void reach_error() { assert(0); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __le32; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct module; typedef void (*ctor_fn_t)(void); struct file_operations; struct device; struct completion; struct pt_regs; struct pid; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_2024_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_2024_8 ldv_2024 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_ldv_2031_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct_ldv_2031_10 ldv_2031 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_2096_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2111_13 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2112_11 { struct __anonstruct_ldv_2096_12 ldv_2096 ; struct __anonstruct_ldv_2111_13 ldv_2111 ; }; struct desc_struct { union __anonunion_ldv_2112_11 ldv_2112 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct cpumask; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2767_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2767_18 ldv_2767 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5125_23 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5131_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5132_22 { struct __anonstruct_ldv_5125_23 ldv_5125 ; struct __anonstruct_ldv_5131_24 ldv_5131 ; }; union __anonunion_ldv_5141_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5132_22 ldv_5132 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5141_25 ldv_5141 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5960_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5961_28 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5960_29 ldv_5960 ; }; struct spinlock { union __anonunion_ldv_5961_28 ldv_5961 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; typedef uid_t kuid_t; typedef gid_t kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_36 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_36 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; int cpu ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool ignore_children ; bool early_init ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct pci_bus; struct __anonstruct_mm_context_t_101 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_101 mm_context_t; struct vm_area_struct; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct cred; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; void const *(*namespace)(struct kobject * , struct attribute const * ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_13862_134 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_13862_134 ldv_13862 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct static_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mem_cgroup; struct __anonstruct_ldv_14380_136 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion_ldv_14381_135 { struct kmem_cache *memcg_caches[0U] ; struct __anonstruct_ldv_14380_136 ldv_14380 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_14381_135 ldv_14381 ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct uprobe; struct uprobe_task { enum uprobe_task_state state ; struct arch_uprobe_task autask ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; unsigned long vaddr ; }; struct xol_area { wait_queue_head_t wq ; atomic_t slot_count ; unsigned long *bitmap ; struct page *page ; unsigned long vaddr ; }; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion_ldv_14889_139 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_14899_143 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_14901_142 { atomic_t _mapcount ; struct __anonstruct_ldv_14899_143 ldv_14899 ; int units ; }; struct __anonstruct_ldv_14903_141 { union __anonunion_ldv_14901_142 ldv_14901 ; atomic_t _count ; }; union __anonunion_ldv_14904_140 { unsigned long counters ; struct __anonstruct_ldv_14903_141 ldv_14903 ; }; struct __anonstruct_ldv_14905_138 { union __anonunion_ldv_14889_139 ldv_14889 ; union __anonunion_ldv_14904_140 ldv_14904 ; }; struct __anonstruct_ldv_14912_145 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_14916_144 { struct list_head lru ; struct __anonstruct_ldv_14912_145 ldv_14912 ; struct list_head list ; struct slab *slab_page ; }; union __anonunion_ldv_14921_146 { unsigned long private ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; struct address_space *mapping ; struct __anonstruct_ldv_14905_138 ldv_14905 ; union __anonunion_ldv_14916_144 ldv_14916 ; union __anonunion_ldv_14921_146 ldv_14921 ; unsigned long debug_flags ; int _last_nid ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_148 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_147 { struct __anonstruct_linear_148 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_147 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_next_reset ; unsigned long numa_scan_offset ; int numa_scan_seq ; int first_nid ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_149 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_149 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_151 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_152 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_153 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_154 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_155 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_156 { long _band ; int _fd ; }; struct __anonstruct__sigsys_157 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_150 { int _pad[28U] ; struct __anonstruct__kill_151 _kill ; struct __anonstruct__timer_152 _timer ; struct __anonstruct__rt_153 _rt ; struct __anonstruct__sigchld_154 _sigchld ; struct __anonstruct__sigfault_155 _sigfault ; struct __anonstruct__sigpoll_156 _sigpoll ; struct __anonstruct__sigsys_157 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_150 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct plist_head wait_list ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_list; union __anonunion_ldv_16186_160 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_16195_161 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_162 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_163 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_16186_160 ldv_16186 ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_16195_161 ldv_16195 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_162 type_data ; union __anonunion_payload_163 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct thread_group_cred; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kioctx; union __anonunion_ki_obj_164 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_164 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct list_head ki_batch ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct callback_head callback_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*migrate_task_rq)(struct task_struct * , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; int numa_migrate_seq ; unsigned int numa_scan_period ; u64 node_stamp ; struct callback_head numa_work ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; atomic_t ptrace_bp_refcnt ; struct uprobe_task *utask ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[16U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; void const *(*namespace)(struct class * , struct class_attribute const * ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_dev_node { void *handle ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct proc_dir_entry; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; }; enum fe_type { FE_QPSK = 0, FE_QAM = 1, FE_OFDM = 2, FE_ATSC = 3 } ; typedef enum fe_type fe_type_t; enum fe_caps { FE_IS_STUPID = 0, FE_CAN_INVERSION_AUTO = 1, FE_CAN_FEC_1_2 = 2, FE_CAN_FEC_2_3 = 4, FE_CAN_FEC_3_4 = 8, FE_CAN_FEC_4_5 = 16, FE_CAN_FEC_5_6 = 32, FE_CAN_FEC_6_7 = 64, FE_CAN_FEC_7_8 = 128, FE_CAN_FEC_8_9 = 256, FE_CAN_FEC_AUTO = 512, FE_CAN_QPSK = 1024, FE_CAN_QAM_16 = 2048, FE_CAN_QAM_32 = 4096, FE_CAN_QAM_64 = 8192, FE_CAN_QAM_128 = 16384, FE_CAN_QAM_256 = 32768, FE_CAN_QAM_AUTO = 65536, FE_CAN_TRANSMISSION_MODE_AUTO = 131072, FE_CAN_BANDWIDTH_AUTO = 262144, FE_CAN_GUARD_INTERVAL_AUTO = 524288, FE_CAN_HIERARCHY_AUTO = 1048576, FE_CAN_8VSB = 2097152, FE_CAN_16VSB = 4194304, FE_HAS_EXTENDED_CAPS = 8388608, FE_CAN_MULTISTREAM = 67108864, FE_CAN_TURBO_FEC = 134217728, FE_CAN_2G_MODULATION = 268435456, FE_NEEDS_BENDING = 536870912, FE_CAN_RECOVER = 1073741824, FE_CAN_MUTE_TS = 2147483648U } ; typedef enum fe_caps fe_caps_t; struct dvb_frontend_info { char name[128U] ; fe_type_t type ; __u32 frequency_min ; __u32 frequency_max ; __u32 frequency_stepsize ; __u32 frequency_tolerance ; __u32 symbol_rate_min ; __u32 symbol_rate_max ; __u32 symbol_rate_tolerance ; __u32 notifier_delay ; fe_caps_t caps ; }; struct dvb_diseqc_master_cmd { __u8 msg[6U] ; __u8 msg_len ; }; struct dvb_diseqc_slave_reply { __u8 msg[4U] ; __u8 msg_len ; int timeout ; }; enum fe_sec_voltage { SEC_VOLTAGE_13 = 0, SEC_VOLTAGE_18 = 1, SEC_VOLTAGE_OFF = 2 } ; typedef enum fe_sec_voltage fe_sec_voltage_t; enum fe_sec_tone_mode { SEC_TONE_ON = 0, SEC_TONE_OFF = 1 } ; typedef enum fe_sec_tone_mode fe_sec_tone_mode_t; enum fe_sec_mini_cmd { SEC_MINI_A = 0, SEC_MINI_B = 1 } ; typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t; enum fe_status { FE_HAS_SIGNAL = 1, FE_HAS_CARRIER = 2, FE_HAS_VITERBI = 4, FE_HAS_SYNC = 8, FE_HAS_LOCK = 16, FE_TIMEDOUT = 32, FE_REINIT = 64 } ; typedef enum fe_status fe_status_t; enum fe_spectral_inversion { INVERSION_OFF = 0, INVERSION_ON = 1, INVERSION_AUTO = 2 } ; typedef enum fe_spectral_inversion fe_spectral_inversion_t; enum fe_code_rate { FEC_NONE = 0, FEC_1_2 = 1, FEC_2_3 = 2, FEC_3_4 = 3, FEC_4_5 = 4, FEC_5_6 = 5, FEC_6_7 = 6, FEC_7_8 = 7, FEC_8_9 = 8, FEC_AUTO = 9, FEC_3_5 = 10, FEC_9_10 = 11, FEC_2_5 = 12 } ; typedef enum fe_code_rate fe_code_rate_t; enum fe_modulation { QPSK = 0, QAM_16 = 1, QAM_32 = 2, QAM_64 = 3, QAM_128 = 4, QAM_256 = 5, QAM_AUTO = 6, VSB_8 = 7, VSB_16 = 8, PSK_8 = 9, APSK_16 = 10, APSK_32 = 11, DQPSK = 12, QAM_4_NR = 13 } ; typedef enum fe_modulation fe_modulation_t; enum fe_transmit_mode { TRANSMISSION_MODE_2K = 0, TRANSMISSION_MODE_8K = 1, TRANSMISSION_MODE_AUTO = 2, TRANSMISSION_MODE_4K = 3, TRANSMISSION_MODE_1K = 4, TRANSMISSION_MODE_16K = 5, TRANSMISSION_MODE_32K = 6, TRANSMISSION_MODE_C1 = 7, TRANSMISSION_MODE_C3780 = 8 } ; typedef enum fe_transmit_mode fe_transmit_mode_t; enum fe_guard_interval { GUARD_INTERVAL_1_32 = 0, GUARD_INTERVAL_1_16 = 1, GUARD_INTERVAL_1_8 = 2, GUARD_INTERVAL_1_4 = 3, GUARD_INTERVAL_AUTO = 4, GUARD_INTERVAL_1_128 = 5, GUARD_INTERVAL_19_128 = 6, GUARD_INTERVAL_19_256 = 7, GUARD_INTERVAL_PN420 = 8, GUARD_INTERVAL_PN595 = 9, GUARD_INTERVAL_PN945 = 10 } ; typedef enum fe_guard_interval fe_guard_interval_t; enum fe_hierarchy { HIERARCHY_NONE = 0, HIERARCHY_1 = 1, HIERARCHY_2 = 2, HIERARCHY_4 = 3, HIERARCHY_AUTO = 4 } ; typedef enum fe_hierarchy fe_hierarchy_t; enum fe_interleaving { INTERLEAVING_NONE = 0, INTERLEAVING_AUTO = 1, INTERLEAVING_240 = 2, INTERLEAVING_720 = 3 } ; enum fe_pilot { PILOT_ON = 0, PILOT_OFF = 1, PILOT_AUTO = 2 } ; typedef enum fe_pilot fe_pilot_t; enum fe_rolloff { ROLLOFF_35 = 0, ROLLOFF_20 = 1, ROLLOFF_25 = 2, ROLLOFF_AUTO = 3 } ; typedef enum fe_rolloff fe_rolloff_t; enum fe_delivery_system { SYS_UNDEFINED = 0, SYS_DVBC_ANNEX_A = 1, SYS_DVBC_ANNEX_B = 2, SYS_DVBT = 3, SYS_DSS = 4, SYS_DVBS = 5, SYS_DVBS2 = 6, SYS_DVBH = 7, SYS_ISDBT = 8, SYS_ISDBS = 9, SYS_ISDBC = 10, SYS_ATSC = 11, SYS_ATSCMH = 12, SYS_DTMB = 13, SYS_CMMB = 14, SYS_DAB = 15, SYS_DVBT2 = 16, SYS_TURBO = 17, SYS_DVBC_ANNEX_C = 18 } ; typedef enum fe_delivery_system fe_delivery_system_t; struct __anonstruct_buffer_168 { __u8 data[32U] ; __u32 len ; __u32 reserved1[3U] ; void *reserved2 ; }; union __anonunion_u_167 { __u32 data ; struct __anonstruct_buffer_168 buffer ; }; struct dtv_property { __u32 cmd ; __u32 reserved[3U] ; union __anonunion_u_167 u ; int result ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct_ldv_19898_170 { u32 hash ; u32 len ; }; union __anonunion_ldv_19900_169 { struct __anonstruct_ldv_19898_170 ldv_19898 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_19900_169 ldv_19900 ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_171 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_171 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; }; struct shrinker { int (*shrink)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; struct list_head list ; atomic_long_t nr_in_batch ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t projid_t; typedef projid_t kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_20649_172 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_20649_172 ldv_20649 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; union __anonunion_arg_174 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_173 { size_t written ; size_t count ; union __anonunion_arg_174 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_173 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_21083_175 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_21103_176 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_21119_177 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_21083_175 ldv_21083 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_21103_176 ldv_21103 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_21119_177 ldv_21119 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_178 { struct list_head fu_list ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_178 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_180 { struct list_head link ; int state ; }; union __anonunion_fl_u_179 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_180 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_179 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_mounts ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; spinlock_t s_inode_lru_lock ; struct list_head s_inode_lru ; int s_nr_inodes_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; int (*nr_cached_objects)(struct super_block * ) ; void (*free_cached_objects)(struct super_block * , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct dvb_frontend; struct dvb_device; struct dvb_adapter { int num ; struct list_head list_head ; struct list_head device_list ; char const *name ; u8 proposed_mac[6U] ; void *priv ; struct device *device ; struct module *module ; int mfe_shared ; struct dvb_device *mfe_dvbdev ; struct mutex mfe_lock ; }; struct dvb_device { struct list_head list_head ; struct file_operations const *fops ; struct dvb_adapter *adapter ; int type ; int minor ; u32 id ; int readers ; int writers ; int users ; wait_queue_head_t wait_queue ; int (*kernel_ioctl)(struct file * , unsigned int , void * ) ; void *priv ; }; struct dvb_frontend_tune_settings { int min_delay_ms ; int step_size ; int max_drift ; }; struct dvb_tuner_info { char name[128U] ; u32 frequency_min ; u32 frequency_max ; u32 frequency_step ; u32 bandwidth_min ; u32 bandwidth_max ; u32 bandwidth_step ; }; struct analog_parameters { unsigned int frequency ; unsigned int mode ; unsigned int audmode ; u64 std ; }; enum tuner_param { DVBFE_TUNER_FREQUENCY = 1, DVBFE_TUNER_TUNERSTEP = 2, DVBFE_TUNER_IFFREQ = 4, DVBFE_TUNER_BANDWIDTH = 8, DVBFE_TUNER_REFCLOCK = 16, DVBFE_TUNER_IQSENSE = 32, DVBFE_TUNER_DUMMY = (-0x7FFFFFFF-1) } ; enum dvbfe_algo { DVBFE_ALGO_HW = 1, DVBFE_ALGO_SW = 2, DVBFE_ALGO_CUSTOM = 4, DVBFE_ALGO_RECOVERY = (-0x7FFFFFFF-1) } ; struct tuner_state { u32 frequency ; u32 tunerstep ; u32 ifreq ; u32 bandwidth ; u32 iqsense ; u32 refclock ; }; enum dvbfe_search { DVBFE_ALGO_SEARCH_SUCCESS = 1, DVBFE_ALGO_SEARCH_ASLEEP = 2, DVBFE_ALGO_SEARCH_FAILED = 4, DVBFE_ALGO_SEARCH_INVALID = 8, DVBFE_ALGO_SEARCH_AGAIN = 16, DVBFE_ALGO_SEARCH_ERROR = (-0x7FFFFFFF-1) } ; struct dvb_tuner_ops { struct dvb_tuner_info info ; int (*release)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*set_params)(struct dvb_frontend * ) ; int (*set_analog_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*calc_regs)(struct dvb_frontend * , u8 * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; int (*get_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*get_if_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_status)(struct dvb_frontend * , u32 * ) ; int (*get_rf_strength)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; int (*set_frequency)(struct dvb_frontend * , u32 ) ; int (*set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*set_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; int (*get_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; }; struct analog_demod_info { char *name ; }; struct analog_demod_ops { struct analog_demod_info info ; void (*set_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*has_signal)(struct dvb_frontend * ) ; int (*get_afc)(struct dvb_frontend * ) ; void (*tuner_status)(struct dvb_frontend * ) ; void (*standby)(struct dvb_frontend * ) ; void (*release)(struct dvb_frontend * ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; }; struct dtv_frontend_properties; struct dvb_frontend_ops { struct dvb_frontend_info info ; u8 delsys[8U] ; void (*release)(struct dvb_frontend * ) ; void (*release_sec)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*write)(struct dvb_frontend * , u8 const * , int ) ; int (*tune)(struct dvb_frontend * , bool , unsigned int , unsigned int * , fe_status_t * ) ; enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend * ) ; int (*set_frontend)(struct dvb_frontend * ) ; int (*get_tune_settings)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ) ; int (*get_frontend)(struct dvb_frontend * ) ; int (*read_status)(struct dvb_frontend * , fe_status_t * ) ; int (*read_ber)(struct dvb_frontend * , u32 * ) ; int (*read_signal_strength)(struct dvb_frontend * , u16 * ) ; int (*read_snr)(struct dvb_frontend * , u16 * ) ; int (*read_ucblocks)(struct dvb_frontend * , u32 * ) ; int (*diseqc_reset_overload)(struct dvb_frontend * ) ; int (*diseqc_send_master_cmd)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ) ; int (*diseqc_recv_slave_reply)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ) ; int (*diseqc_send_burst)(struct dvb_frontend * , fe_sec_mini_cmd_t ) ; int (*set_tone)(struct dvb_frontend * , fe_sec_tone_mode_t ) ; int (*set_voltage)(struct dvb_frontend * , fe_sec_voltage_t ) ; int (*enable_high_lnb_voltage)(struct dvb_frontend * , long ) ; int (*dishnetwork_send_legacy_command)(struct dvb_frontend * , unsigned long ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*ts_bus_ctrl)(struct dvb_frontend * , int ) ; int (*set_lna)(struct dvb_frontend * ) ; enum dvbfe_search (*search)(struct dvb_frontend * ) ; struct dvb_tuner_ops tuner_ops ; struct analog_demod_ops analog_ops ; int (*set_property)(struct dvb_frontend * , struct dtv_property * ) ; int (*get_property)(struct dvb_frontend * , struct dtv_property * ) ; }; struct __anonstruct_layer_182 { u8 segment_count ; fe_code_rate_t fec ; fe_modulation_t modulation ; u8 interleaving ; }; struct dtv_frontend_properties { u32 state ; u32 frequency ; fe_modulation_t modulation ; fe_sec_voltage_t voltage ; fe_sec_tone_mode_t sectone ; fe_spectral_inversion_t inversion ; fe_code_rate_t fec_inner ; fe_transmit_mode_t transmission_mode ; u32 bandwidth_hz ; fe_guard_interval_t guard_interval ; fe_hierarchy_t hierarchy ; u32 symbol_rate ; fe_code_rate_t code_rate_HP ; fe_code_rate_t code_rate_LP ; fe_pilot_t pilot ; fe_rolloff_t rolloff ; fe_delivery_system_t delivery_system ; enum fe_interleaving interleaving ; u8 isdbt_partial_reception ; u8 isdbt_sb_mode ; u8 isdbt_sb_subchannel ; u32 isdbt_sb_segment_idx ; u32 isdbt_sb_segment_count ; u8 isdbt_layer_enabled ; struct __anonstruct_layer_182 layer[3U] ; u32 stream_id ; u8 atscmh_fic_ver ; u8 atscmh_parade_id ; u8 atscmh_nog ; u8 atscmh_tnog ; u8 atscmh_sgn ; u8 atscmh_prc ; u8 atscmh_rs_frame_mode ; u8 atscmh_rs_frame_ensemble ; u8 atscmh_rs_code_mode_pri ; u8 atscmh_rs_code_mode_sec ; u8 atscmh_sccc_block_mode ; u8 atscmh_sccc_code_mode_a ; u8 atscmh_sccc_code_mode_b ; u8 atscmh_sccc_code_mode_c ; u8 atscmh_sccc_code_mode_d ; u32 lna ; }; struct dvb_frontend { struct dvb_frontend_ops ops ; struct dvb_adapter *dvb ; void *demodulator_priv ; void *tuner_priv ; void *frontend_priv ; void *sec_priv ; void *analog_demod_priv ; struct dtv_frontend_properties dtv_property_cache ; int (*callback)(void * , int , int , int ) ; int id ; }; struct dst_gpio_enable { u32 mask ; u32 enable ; }; struct dst_gpio_output { u32 mask ; u32 highvals ; }; struct dst_gpio_read { unsigned long value ; }; union dst_gpio_packet { struct dst_gpio_enable enb ; struct dst_gpio_output outp ; struct dst_gpio_read rd ; int psize ; }; struct bt878; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion_ldv_25244_184 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; int pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char is_pcie : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct kset *msi_kset ; struct pci_vpd *vpd ; union __anonunion_ldv_25244_184 ldv_25244 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct bt878 { struct mutex gpio_lock ; unsigned int nr ; unsigned int bttv_nr ; struct i2c_adapter *adapter ; struct pci_dev *dev ; unsigned int id ; unsigned int TS_Size ; unsigned char revision ; unsigned int irq ; unsigned long bt878_adr ; void volatile *bt878_mem ; u32 volatile finished_block ; u32 volatile last_block ; u32 block_count ; u32 block_bytes ; u32 line_bytes ; u32 line_count ; u32 buf_size ; u8 *buf_cpu ; dma_addr_t buf_dma ; u32 risc_size ; __le32 *risc_cpu ; dma_addr_t risc_dma ; u32 risc_pos ; struct tasklet_struct tasklet ; int shutdown ; }; struct dst_state; struct dst_config; struct dst_state { struct i2c_adapter *i2c ; struct bt878 *bt ; struct dst_config const *config ; struct dvb_frontend frontend ; u8 tx_tuna[10U] ; u8 rx_tuna[10U] ; u8 rxbuffer[10U] ; u8 diseq_flags ; u8 dst_type ; u32 type_flags ; u32 frequency ; fe_spectral_inversion_t inversion ; u32 symbol_rate ; fe_code_rate_t fec ; fe_sec_voltage_t voltage ; fe_sec_tone_mode_t tone ; u32 decode_freq ; u8 decode_lock ; u16 decode_strength ; u16 decode_snr ; unsigned long cur_jiff ; u8 k22 ; u32 bandwidth ; u32 dst_hw_cap ; u8 dst_fw_version ; fe_sec_mini_cmd_t minicmd ; fe_modulation_t modulation ; u8 messages[256U] ; u8 mac_address[8U] ; u8 fw_version[8U] ; u8 card_info[8U] ; u8 vendor[8U] ; u8 board_info[8U] ; u32 tuner_type ; char *tuner_name ; struct mutex dst_mutex ; u8 fw_name[8U] ; struct dvb_device *dst_ca ; }; struct tuner_types { u32 tuner_type ; char *tuner_name ; char *board_name ; char *fw_name ; }; struct dst_types { char *device_id ; int offset ; u8 dst_type ; u32 type_flags ; u32 dst_feature ; u32 tuner_type ; }; struct dst_config { u8 demod_address ; }; typedef int ldv_func_ret_type___4; extern int printk(char const * , ...) ; extern void *memmove(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern int strcmp(char const * , char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_6(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_4(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_cred_guard_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_cred_guard_mutex(struct mutex *lock ) ; void ldv_mutex_lock_dst_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_dst_mutex(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex(struct mutex *lock ) ; int ldv_mutex_trylock_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_mutex(struct mutex *lock ) ; extern unsigned long volatile jiffies ; extern void __symbol_put(char const * ) ; extern void kfree(void const * ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern int i2c_transfer(struct i2c_adapter * , struct i2c_msg * , int ) ; extern void dvb_unregister_device(struct dvb_device * ) ; extern int bt878_device_control(struct bt878 * , unsigned int , union dst_gpio_packet * ) ; int rdc_reset_state(struct dst_state *state ) ; int dst_wait_dst_ready(struct dst_state *state , u8 delay_mode ) ; int dst_pio_disable(struct dst_state *state ) ; int dst_error_recovery(struct dst_state *state ) ; int dst_error_bailout(struct dst_state *state ) ; int dst_comm_init(struct dst_state *state ) ; int write_dst(struct dst_state *state , u8 *data , u8 len ) ; int read_dst(struct dst_state *state , u8 *ret , u8 len ) ; u8 dst_check_sum(u8 *buf , u32 len ) ; struct dst_state *dst_attach(struct dst_state *state , struct dvb_adapter *dvb_adapter ) ; static unsigned int verbose = 1U; static unsigned int dst_addons ; static unsigned int dst_algo ; static int dst_command(struct dst_state *state , u8 *data , u8 len ) ; static void dst_packsize(struct dst_state *state , int psize ) { union dst_gpio_packet bits ; { bits.psize = psize; bt878_device_control(state->bt, 3U, & bits); return; } } static int dst_gpio_outb(struct dst_state *state , u32 mask , u32 enbb , u32 outhigh , int delay ) { union dst_gpio_packet enb ; union dst_gpio_packet bits ; int err ; { enb.enb.mask = mask; enb.enb.enable = enbb; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: mask=[%04x], enbb=[%04x], outhigh=[%04x]\n", (state->bt)->nr, "dst_gpio_outb", mask, enbb, outhigh); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: mask=[%04x], enbb=[%04x], outhigh=[%04x]\n", (state->bt)->nr, "dst_gpio_outb", mask, enbb, outhigh); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: mask=[%04x], enbb=[%04x], outhigh=[%04x]\n", (state->bt)->nr, "dst_gpio_outb", mask, enbb, outhigh); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: mask=[%04x], enbb=[%04x], outhigh=[%04x]\n", (state->bt)->nr, "dst_gpio_outb", mask, enbb, outhigh); } else if (verbose > 2U) { printk("mask=[%04x], enbb=[%04x], outhigh=[%04x]", mask, enbb, outhigh); } else { } err = bt878_device_control(state->bt, 0U, & enb); if (err < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: dst_gpio_enb error (err == %i, mask == %02x, enb == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, mask, enbb); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: dst_gpio_enb error (err == %i, mask == %02x, enb == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, mask, enbb); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: dst_gpio_enb error (err == %i, mask == %02x, enb == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, mask, enbb); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: dst_gpio_enb error (err == %i, mask == %02x, enb == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, mask, enbb); } else if (verbose > 2U) { printk("dst_gpio_enb error (err == %i, mask == %02x, enb == %02x)", err, mask, enbb); } else { } return (-121); } else { } __const_udelay(4295000UL); if (enbb == 0U) { return (0); } else { } if (delay != 0) { msleep(10U); } else { } bits.outp.mask = enbb; bits.outp.highvals = outhigh; err = bt878_device_control(state->bt, 1U, & bits); if (err < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: dst_gpio_outb error (err == %i, enbb == %02x, outhigh == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, enbb, outhigh); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: dst_gpio_outb error (err == %i, enbb == %02x, outhigh == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, enbb, outhigh); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: dst_gpio_outb error (err == %i, enbb == %02x, outhigh == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, enbb, outhigh); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: dst_gpio_outb error (err == %i, enbb == %02x, outhigh == %02x)\n", (state->bt)->nr, "dst_gpio_outb", err, enbb, outhigh); } else if (verbose > 2U) { printk("dst_gpio_outb error (err == %i, enbb == %02x, outhigh == %02x)", err, enbb, outhigh); } else { } return (-121); } else { } return (0); } } static int dst_gpio_inb(struct dst_state *state , u8 *result ) { union dst_gpio_packet rd_packet ; int err ; { *result = 0U; err = bt878_device_control(state->bt, 2U, & rd_packet); if (err < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_inb error (err == %i)\n", (state->bt)->nr, "dst_gpio_inb", err); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_inb error (err == %i)\n", (state->bt)->nr, "dst_gpio_inb", err); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_inb error (err == %i)\n", (state->bt)->nr, "dst_gpio_inb", err); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_inb error (err == %i)\n", (state->bt)->nr, "dst_gpio_inb", err); } else if (verbose != 0U) { printk("dst_gpio_inb error (err == %i)", err); } else { } return (-121); } else { } *result = (unsigned char )rd_packet.rd.value; return (0); } } int rdc_reset_state(struct dst_state *state ) { int tmp ; int tmp___0 ; { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Resetting state machine\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Resetting state machine\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Resetting state machine\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Resetting state machine\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 2U) { printk("Resetting state machine"); } else { } tmp = dst_gpio_outb(state, 2U, 2U, 0U, 0); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose != 0U) { printk("dst_gpio_outb ERROR !"); } else { } return (-1); } else { } msleep(10U); tmp___0 = dst_gpio_outb(state, 2U, 2U, 2U, 0); if (tmp___0 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_reset_state"); } else if (verbose != 0U) { printk("dst_gpio_outb ERROR !"); } else { } msleep(10U); return (-1); } else { } return (0); } } static int rdc_8820_reset(struct dst_state *state ) { int tmp ; int tmp___0 ; { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: Resetting DST\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: Resetting DST\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: Resetting DST\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: Resetting DST\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 3U) { printk("Resetting DST"); } else { } tmp = dst_gpio_outb(state, 4U, 4U, 0U, 0); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose != 0U) { printk("dst_gpio_outb ERROR !"); } else { } return (-1); } else { } __const_udelay(4295000UL); tmp___0 = dst_gpio_outb(state, 4U, 4U, 4U, 1); if (tmp___0 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "rdc_8820_reset"); } else if (verbose != 0U) { printk("dst_gpio_outb ERROR !"); } else { } return (-1); } else { } return (0); } } static int dst_pio_enable(struct dst_state *state ) { int tmp ; { tmp = dst_gpio_outb(state, 4294967295U, 1U, 0U, 0); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_enable"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_enable"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_enable"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_enable"); } else if (verbose != 0U) { printk("dst_gpio_outb ERROR !"); } else { } return (-1); } else { } __const_udelay(4295000UL); return (0); } } int dst_pio_disable(struct dst_state *state ) { int tmp ; { tmp = dst_gpio_outb(state, 4294967295U, 0U, 0U, 0); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_disable"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_disable"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_disable"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_outb ERROR !\n", (state->bt)->nr, "dst_pio_disable"); } else if (verbose != 0U) { printk("dst_gpio_outb ERROR !"); } else { } return (-1); } else { } if ((state->type_flags & 8U) != 0U) { __const_udelay(4295000UL); } else { } return (0); } } int dst_wait_dst_ready(struct dst_state *state , u8 delay_mode ) { u8 reply ; int i ; int tmp ; { i = 0; goto ldv_32620; ldv_32619: tmp = dst_gpio_inb(state, & reply); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: dst_gpio_inb ERROR !\n", (state->bt)->nr, "dst_wait_dst_ready"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: dst_gpio_inb ERROR !\n", (state->bt)->nr, "dst_wait_dst_ready"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: dst_gpio_inb ERROR !\n", (state->bt)->nr, "dst_wait_dst_ready"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: dst_gpio_inb ERROR !\n", (state->bt)->nr, "dst_wait_dst_ready"); } else if (verbose != 0U) { printk("dst_gpio_inb ERROR !"); } else { } return (-1); } else { } if (((int )reply & 1) == 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: dst wait ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: dst wait ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: dst wait ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: dst wait ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 2U) { printk("dst wait ready after %d", i); } else { } return (1); } else { } msleep(10U); i = i + 1; ldv_32620: ; if (i <= 199) { goto ldv_32619; } else { } if (verbose != 0U && verbose > 1U) { printk("\vdst(%d) %s: dst wait NOT ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 1U && verbose > 1U) { printk("\rdst(%d) %s: dst wait NOT ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 2U && verbose > 1U) { printk("\016dst(%d) %s: dst wait NOT ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 3U && verbose > 1U) { printk("\017dst(%d) %s: dst wait NOT ready after %d\n", (state->bt)->nr, "dst_wait_dst_ready", i); } else if (verbose > 1U) { printk("dst wait NOT ready after %d", i); } else { } return (0); } } int dst_error_recovery(struct dst_state *state ) { { if (verbose != 0U && verbose > 1U) { printk("\vdst(%d) %s: Trying to return from previous errors.\n", (state->bt)->nr, "dst_error_recovery"); } else if (verbose > 1U && verbose > 1U) { printk("\rdst(%d) %s: Trying to return from previous errors.\n", (state->bt)->nr, "dst_error_recovery"); } else if (verbose > 2U && verbose > 1U) { printk("\016dst(%d) %s: Trying to return from previous errors.\n", (state->bt)->nr, "dst_error_recovery"); } else if (verbose > 3U && verbose > 1U) { printk("\017dst(%d) %s: Trying to return from previous errors.\n", (state->bt)->nr, "dst_error_recovery"); } else if (verbose > 1U) { printk("Trying to return from previous errors."); } else { } dst_pio_disable(state); msleep(10U); dst_pio_enable(state); msleep(10U); return (0); } } int dst_error_bailout(struct dst_state *state ) { { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Trying to bailout from previous error.\n", (state->bt)->nr, "dst_error_bailout"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Trying to bailout from previous error.\n", (state->bt)->nr, "dst_error_bailout"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Trying to bailout from previous error.\n", (state->bt)->nr, "dst_error_bailout"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Trying to bailout from previous error.\n", (state->bt)->nr, "dst_error_bailout"); } else if (verbose > 2U) { printk("Trying to bailout from previous error."); } else { } rdc_8820_reset(state); dst_pio_disable(state); msleep(10U); return (0); } } int dst_comm_init(struct dst_state *state ) { int tmp ; int tmp___0 ; { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Initializing DST.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Initializing DST.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Initializing DST.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Initializing DST.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 2U) { printk("Initializing DST."); } else { } tmp = dst_pio_enable(state); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: PIO Enable Failed\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: PIO Enable Failed\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: PIO Enable Failed\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: PIO Enable Failed\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose != 0U) { printk("PIO Enable Failed"); } else { } return (-1); } else { } tmp___0 = rdc_reset_state(state); if (tmp___0 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: RDC 8820 State RESET Failed.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: RDC 8820 State RESET Failed.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: RDC 8820 State RESET Failed.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: RDC 8820 State RESET Failed.\n", (state->bt)->nr, "dst_comm_init"); } else if (verbose != 0U) { printk("RDC 8820 State RESET Failed."); } else { } return (-1); } else { } if ((state->type_flags & 8U) != 0U) { msleep(100U); } else { msleep(5U); } return (0); } } int write_dst(struct dst_state *state , u8 *data , u8 len ) { struct i2c_msg msg ; int err ; u8 cnt ; u8 i ; { msg.addr = (unsigned short )(state->config)->demod_address; msg.flags = 0U; msg.len = (unsigned short )len; msg.buf = data; i = 0U; goto ldv_32670; ldv_32669: i = (u8 )((int )i + 1); ldv_32670: ; if ((int )i < (int )len) { goto ldv_32669; } else { } cnt = 0U; goto ldv_32675; ldv_32674: err = i2c_transfer(state->i2c, & msg, 1); if (err < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: _write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "write_dst", err, (int )len, (int )*data); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: _write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "write_dst", err, (int )len, (int )*data); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: _write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "write_dst", err, (int )len, (int )*data); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: _write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "write_dst", err, (int )len, (int )*data); } else if (verbose > 2U) { printk("_write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)", err, (int )len, (int )*data); } else { } dst_error_recovery(state); goto ldv_32672; } else { goto ldv_32673; } ldv_32672: cnt = (u8 )((int )cnt + 1); ldv_32675: ; if ((unsigned int )cnt <= 1U) { goto ldv_32674; } else { } ldv_32673: ; if ((unsigned int )cnt > 1U) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "write_dst"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "write_dst"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "write_dst"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "write_dst"); } else if (verbose > 2U) { printk("RDC 8820 RESET"); } else { } dst_error_bailout(state); return (-1); } else { } return (0); } } int read_dst(struct dst_state *state , u8 *ret , u8 len ) { struct i2c_msg msg ; int err ; int cnt ; { msg.addr = (unsigned short )(state->config)->demod_address; msg.flags = 1U; msg.len = (unsigned short )len; msg.buf = ret; cnt = 0; goto ldv_32696; ldv_32695: err = i2c_transfer(state->i2c, & msg, 1); if (err < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "read_dst", err, (int )len, (int )*ret); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "read_dst", err, (int )len, (int )*ret); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "read_dst", err, (int )len, (int )*ret); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", (state->bt)->nr, "read_dst", err, (int )len, (int )*ret); } else if (verbose > 2U) { printk("read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)", err, (int )len, (int )*ret); } else { } dst_error_recovery(state); goto ldv_32693; } else { goto ldv_32694; } ldv_32693: cnt = cnt + 1; ldv_32696: ; if (cnt <= 1) { goto ldv_32695; } else { } ldv_32694: ; if (cnt > 1) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "read_dst"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "read_dst"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "read_dst"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: RDC 8820 RESET\n", (state->bt)->nr, "read_dst"); } else if (verbose > 2U) { printk("RDC 8820 RESET"); } else { } dst_error_bailout(state); return (-1); } else { } if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: reply is 0x%x\n", (state->bt)->nr, "read_dst", (int )*ret); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: reply is 0x%x\n", (state->bt)->nr, "read_dst", (int )*ret); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: reply is 0x%x\n", (state->bt)->nr, "read_dst", (int )*ret); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: reply is 0x%x\n", (state->bt)->nr, "read_dst", (int )*ret); } else if (verbose > 3U) { printk("reply is 0x%x", (int )*ret); } else { } err = 1; goto ldv_32698; ldv_32697: err = err + 1; ldv_32698: ; if ((int )len > err) { goto ldv_32697; } else { } return (0); } } static int dst_set_polarization(struct dst_state *state ) { { switch ((unsigned int )state->voltage) { case 0U: ; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Polarization=[Vertical]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Polarization=[Vertical]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Polarization=[Vertical]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Polarization=[Vertical]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 2U) { printk("Polarization=[Vertical]"); } else { } state->tx_tuna[8] = (unsigned int )state->tx_tuna[8] & 191U; goto ldv_32713; case 1U: ; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Polarization=[Horizontal]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Polarization=[Horizontal]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Polarization=[Horizontal]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Polarization=[Horizontal]\n", (state->bt)->nr, "dst_set_polarization"); } else if (verbose > 2U) { printk("Polarization=[Horizontal]"); } else { } state->tx_tuna[8] = (u8 )((unsigned int )state->tx_tuna[8] | 64U); goto ldv_32713; case 2U: ; goto ldv_32713; } ldv_32713: ; return (0); } } static int dst_set_freq(struct dst_state *state , u32 freq ) { { state->frequency = freq; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: set Frequency %u\n", (state->bt)->nr, "dst_set_freq", freq); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: set Frequency %u\n", (state->bt)->nr, "dst_set_freq", freq); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: set Frequency %u\n", (state->bt)->nr, "dst_set_freq", freq); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: set Frequency %u\n", (state->bt)->nr, "dst_set_freq", freq); } else if (verbose > 2U) { printk("set Frequency %u", freq); } else { } if ((unsigned int )state->dst_type == 0U) { freq = freq / 1000U; if (freq <= 949U || freq > 2150U) { return (-22); } else { } state->tx_tuna[2] = (u8 )(freq >> 8); state->tx_tuna[3] = (unsigned char )freq; state->tx_tuna[4] = 1U; state->tx_tuna[8] = (unsigned int )state->tx_tuna[8] & 251U; if ((state->type_flags & 128U) != 0U) { if (freq <= 1530U) { state->tx_tuna[8] = (u8 )((unsigned int )state->tx_tuna[8] | 4U); } else { } } else { } } else if ((unsigned int )state->dst_type == 1U) { freq = freq / 1000U; if (freq <= 136999U || freq > 858000U) { return (-22); } else { } state->tx_tuna[2] = (u8 )(freq >> 16); state->tx_tuna[3] = (u8 )(freq >> 8); state->tx_tuna[4] = (unsigned char )freq; } else if ((unsigned int )state->dst_type == 2U) { freq = freq / 1000U; state->tx_tuna[2] = (u8 )(freq >> 16); state->tx_tuna[3] = (u8 )(freq >> 8); state->tx_tuna[4] = (unsigned char )freq; } else if ((unsigned int )state->dst_type == 3U) { freq = freq / 1000U; if (freq <= 50999U || freq > 858000U) { return (-22); } else { } state->tx_tuna[2] = (u8 )(freq >> 16); state->tx_tuna[3] = (u8 )(freq >> 8); state->tx_tuna[4] = (unsigned char )freq; state->tx_tuna[5] = 0U; state->tx_tuna[6] = 0U; if ((state->dst_hw_cap & 64U) != 0U) { state->tx_tuna[7] = 0U; } else { } } else { return (-22); } return (0); } } static int dst_set_bandwidth(struct dst_state *state , u32 bandwidth ) { { state->bandwidth = bandwidth; if ((unsigned int )state->dst_type != 1U) { return (-95); } else { } switch (bandwidth) { case 6000000U: ; if ((state->dst_hw_cap & 32U) != 0U) { state->tx_tuna[7] = 6U; } else { state->tx_tuna[6] = 6U; state->tx_tuna[7] = 0U; } goto ldv_32726; case 7000000U: ; if ((state->dst_hw_cap & 32U) != 0U) { state->tx_tuna[7] = 7U; } else { state->tx_tuna[6] = 7U; state->tx_tuna[7] = 0U; } goto ldv_32726; case 8000000U: ; if ((state->dst_hw_cap & 32U) != 0U) { state->tx_tuna[7] = 8U; } else { state->tx_tuna[6] = 8U; state->tx_tuna[7] = 0U; } goto ldv_32726; default: ; return (-22); } ldv_32726: ; return (0); } } static int dst_set_inversion(struct dst_state *state , fe_spectral_inversion_t inversion ) { { state->inversion = inversion; switch ((unsigned int )inversion) { case 0U: state->tx_tuna[8] = (unsigned int )state->tx_tuna[8] & 127U; goto ldv_32735; case 1U: state->tx_tuna[8] = (u8 )((unsigned int )state->tx_tuna[8] | 128U); goto ldv_32735; default: ; return (-22); } ldv_32735: ; return (0); } } static int dst_set_fec(struct dst_state *state , fe_code_rate_t fec ) { { state->fec = fec; return (0); } } static fe_code_rate_t dst_get_fec(struct dst_state *state ) { { return (state->fec); } } static int dst_set_symbolrate(struct dst_state *state , u32 srate ) { u32 symcalc ; u64 sval ; uint32_t __base ; uint32_t __rem ; int tmp ; int tmp___0 ; { state->symbol_rate = srate; if ((unsigned int )state->dst_type == 1U) { return (-95); } else { } if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: set symrate %u\n", (state->bt)->nr, "dst_set_symbolrate", srate); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: set symrate %u\n", (state->bt)->nr, "dst_set_symbolrate", srate); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: set symrate %u\n", (state->bt)->nr, "dst_set_symbolrate", srate); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: set symrate %u\n", (state->bt)->nr, "dst_set_symbolrate", srate); } else if (verbose > 2U) { printk("set symrate %u", srate); } else { } srate = srate / 1000U; if ((unsigned int )state->dst_type == 0U) { if ((state->type_flags & 4U) != 0U) { sval = (u64 )srate; sval = sval << 20; __base = 88000U; __rem = (uint32_t )(sval % (u64 )__base); sval = sval / (u64 )__base; symcalc = (unsigned int )sval; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: set symcalc %u\n", (state->bt)->nr, "dst_set_symbolrate", symcalc); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: set symcalc %u\n", (state->bt)->nr, "dst_set_symbolrate", symcalc); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: set symcalc %u\n", (state->bt)->nr, "dst_set_symbolrate", symcalc); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: set symcalc %u\n", (state->bt)->nr, "dst_set_symbolrate", symcalc); } else if (verbose > 2U) { printk("set symcalc %u", symcalc); } else { } state->tx_tuna[5] = (unsigned char )(symcalc >> 12); state->tx_tuna[6] = (unsigned char )(symcalc >> 4); state->tx_tuna[7] = (int )((unsigned char )symcalc) << 4U; } else { state->tx_tuna[5] = (unsigned int )((u8 )(srate >> 16)) & 127U; state->tx_tuna[6] = (unsigned char )(srate >> 8); state->tx_tuna[7] = (unsigned char )srate; } state->tx_tuna[8] = (unsigned int )state->tx_tuna[8] & 223U; if ((state->type_flags & 128U) != 0U) { if (srate > 8000U) { state->tx_tuna[8] = (u8 )((unsigned int )state->tx_tuna[8] | 32U); } else { } } else { } } else if ((unsigned int )state->dst_type == 2U) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: %s\n", (state->bt)->nr, "dst_set_symbolrate", (u8 *)(& state->fw_name)); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: %s\n", (state->bt)->nr, "dst_set_symbolrate", (u8 *)(& state->fw_name)); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: %s\n", (state->bt)->nr, "dst_set_symbolrate", (u8 *)(& state->fw_name)); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: %s\n", (state->bt)->nr, "dst_set_symbolrate", (u8 *)(& state->fw_name)); } else if (verbose > 3U) { printk("%s", (u8 *)(& state->fw_name)); } else { } tmp___0 = strncmp((char const *)(& state->fw_name), "DCTNEW", 6UL); if (tmp___0 == 0) { state->tx_tuna[5] = (unsigned char )(srate >> 8); state->tx_tuna[6] = (unsigned char )srate; state->tx_tuna[7] = 0U; } else { tmp = strncmp((char const *)(& state->fw_name), "DCT-CI", 6UL); if (tmp == 0) { state->tx_tuna[5] = 0U; state->tx_tuna[6] = (unsigned char )(srate >> 8); state->tx_tuna[7] = (unsigned char )srate; } else { } } } else { } return (0); } } static int dst_set_modulation(struct dst_state *state , fe_modulation_t modulation ) { int tmp ; int tmp___0 ; { if ((unsigned int )state->dst_type != 2U) { return (-95); } else { } state->modulation = modulation; switch ((unsigned int )modulation) { case 1U: state->tx_tuna[8] = 16U; goto ldv_32760; case 2U: state->tx_tuna[8] = 32U; goto ldv_32760; case 3U: state->tx_tuna[8] = 64U; goto ldv_32760; case 4U: state->tx_tuna[8] = 128U; goto ldv_32760; case 5U: tmp___0 = strncmp((char const *)(& state->fw_name), "DCTNEW", 6UL); if (tmp___0 == 0) { state->tx_tuna[8] = 255U; } else { tmp = strncmp((char const *)(& state->fw_name), "DCT-CI", 6UL); if (tmp == 0) { state->tx_tuna[8] = 0U; } else { } } goto ldv_32760; case 0U: ; case 6U: ; case 7U: ; case 8U: ; default: ; return (-22); } ldv_32760: ; return (0); } } static fe_modulation_t dst_get_modulation(struct dst_state *state ) { { return (state->modulation); } } u8 dst_check_sum(u8 *buf , u32 len ) { u32 i ; u8 val ; { val = 0U; if (len == 0U) { return (0U); } else { } i = 0U; goto ldv_32780; ldv_32779: val = (int )*(buf + (unsigned long )i) + (int )val; i = i + 1U; ldv_32780: ; if (i < len) { goto ldv_32779; } else { } return (- ((int )val)); } } static void dst_type_flags_print(struct dst_state *state ) { u32 type_flags ; { type_flags = state->type_flags; return; } } static int dst_type_print(struct dst_state *state , u8 type ) { char *otype ; { switch ((int )type) { case 0: otype = (char *)"satellite"; goto ldv_32800; case 1: otype = (char *)"terrestrial"; goto ldv_32800; case 2: otype = (char *)"cable"; goto ldv_32800; case 3: otype = (char *)"atsc"; goto ldv_32800; default: ; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: invalid dst type %d\n", (state->bt)->nr, "dst_type_print", (int )type); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: invalid dst type %d\n", (state->bt)->nr, "dst_type_print", (int )type); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: invalid dst type %d\n", (state->bt)->nr, "dst_type_print", (int )type); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: invalid dst type %d\n", (state->bt)->nr, "dst_type_print", (int )type); } else if (verbose > 2U) { printk("invalid dst type %d", (int )type); } else { } return (-22); } ldv_32800: ; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: DST type: %s\n", (state->bt)->nr, "dst_type_print", otype); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: DST type: %s\n", (state->bt)->nr, "dst_type_print", otype); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: DST type: %s\n", (state->bt)->nr, "dst_type_print", otype); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: DST type: %s\n", (state->bt)->nr, "dst_type_print", otype); } else if (verbose > 2U) { printk("DST type: %s", otype); } else { } return (0); } } static struct tuner_types tuner_list[17U] = { {4U, (char *)"L 64724", (char *)"UNKNOWN", (char *)"UNKNOWN"}, {8U, (char *)"STV 0299", (char *)"VP1020", (char *)"DST-MOT"}, {8U, (char *)"STV 0299", (char *)"VP1020", (char *)"DST-03T"}, {16U, (char *)"MB 86A15", (char *)"VP1022", (char *)"DST-03T"}, {16U, (char *)"MB 86A15", (char *)"VP1025", (char *)"DST-03T"}, {8U, (char *)"STV 0299", (char *)"VP1030", (char *)"DST-CI"}, {8U, (char *)"STV 0299", (char *)"VP1030", (char *)"DSTMCI"}, {2U, (char *)"UNKNOWN", (char *)"VP2021", (char *)"DCTNEW"}, {2U, (char *)"UNKNOWN", (char *)"VP2030", (char *)"DCT-CI"}, {2U, (char *)"UNKNOWN", (char *)"VP2031", (char *)"DCT-CI"}, {2U, (char *)"UNKNOWN", (char *)"VP2040", (char *)"DCT-CI"}, {2U, (char *)"UNKNOWN", (char *)"VP3020", (char *)"DTTFTA"}, {2U, (char *)"UNKNOWN", (char *)"VP3021", (char *)"DTTFTA"}, {32U, (char *)"TDA10046", (char *)"VP3040", (char *)"DTT-CI"}, {2U, (char *)"UNKNOWN", (char *)"VP3051", (char *)"DTTNXT"}, {64U, (char *)"NXT200x", (char *)"VP3220", (char *)"ATSCDI"}, {64U, (char *)"NXT200x", (char *)"VP3250", (char *)"ATSCAD"}}; static struct dst_types dst_tlist[16U] = { {(char *)"200103A", 0, 0U, 140U, 0U, 0U}, {(char *)"DST-020", 0, 0U, 12U, 0U, 0U}, {(char *)"DST-030", 0, 0U, 11U, 0U, 0U}, {(char *)"DST-03T", 0, 0U, 22U, 31U, 1U}, {(char *)"DST-MOT", 0, 0U, 12U, 0U, 0U}, {(char *)"DST-CI", 1, 0U, 10U, 32U, 0U}, {(char *)"DSTMCI", 1, 0U, 4433U, 55U, 1U}, {(char *)"DSTFCI", 1, 0U, 9U, 0U, 0U}, {(char *)"DCT-CI", 1, 2U, 4632U, 32U, 0U}, {(char *)"DCTNEW", 1, 2U, 609U, 0U, 0U}, {(char *)"DTT-CI", 1, 1U, 4624U, 32U, 0U}, {(char *)"DTTDIG", 1, 1U, 16U, 0U, 0U}, {(char *)"DTTNXT", 1, 1U, 16U, 64U, 0U}, {(char *)"ATSCDI", 1, 3U, 16U, 0U, 0U}, {(char *)"ATSCAD", 1, 3U, 592U, 65U, 0U}}; static int dst_get_mac(struct dst_state *state ) { u8 get_mac[8U] ; int tmp ; size_t __len ; void *__ret ; { get_mac[0] = 0U; get_mac[1] = 10U; get_mac[2] = 0U; get_mac[3] = 0U; get_mac[4] = 0U; get_mac[5] = 0U; get_mac[6] = 0U; get_mac[7] = 0U; get_mac[7] = dst_check_sum((u8 *)(& get_mac), 7U); tmp = dst_command(state, (u8 *)(& get_mac), 8); if (tmp < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_mac"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_mac"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_mac"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_mac"); } else if (verbose > 2U) { printk("Unsupported Command"); } else { } return (-1); } else { } memset((void *)(& state->mac_address), 0, 8UL); __len = 6UL; if (__len > 63UL) { __ret = memmove((void *)(& state->mac_address), (void const *)(& state->rxbuffer), __len); } else { __ret = memmove((void *)(& state->mac_address), (void const *)(& state->rxbuffer), __len); } if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: MAC Address=[%pM]\n", (state->bt)->nr, "dst_get_mac", (u8 *)(& state->mac_address)); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: MAC Address=[%pM]\n", (state->bt)->nr, "dst_get_mac", (u8 *)(& state->mac_address)); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: MAC Address=[%pM]\n", (state->bt)->nr, "dst_get_mac", (u8 *)(& state->mac_address)); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: MAC Address=[%pM]\n", (state->bt)->nr, "dst_get_mac", (u8 *)(& state->mac_address)); } else if (verbose != 0U) { printk("MAC Address=[%pM]", (u8 *)(& state->mac_address)); } else { } return (0); } } static int dst_fw_ver(struct dst_state *state ) { u8 get_ver[8U] ; int tmp ; size_t __len ; void *__ret ; { get_ver[0] = 0U; get_ver[1] = 16U; get_ver[2] = 0U; get_ver[3] = 0U; get_ver[4] = 0U; get_ver[5] = 0U; get_ver[6] = 0U; get_ver[7] = 0U; get_ver[7] = dst_check_sum((u8 *)(& get_ver), 7U); tmp = dst_command(state, (u8 *)(& get_ver), 8); if (tmp < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_fw_ver"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_fw_ver"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_fw_ver"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_fw_ver"); } else if (verbose > 2U) { printk("Unsupported Command"); } else { } return (-1); } else { } __len = 8UL; if (__len > 63UL) { __ret = memmove((void *)(& state->fw_version), (void const *)(& state->rxbuffer), __len); } else { __ret = memmove((void *)(& state->fw_version), (void const *)(& state->rxbuffer), __len); } if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Firmware Ver = %x.%x Build = %02x, on %x:%x, %x-%x-20%02x\n", (state->bt)->nr, "dst_fw_ver", (int )state->fw_version[0] >> 4, (int )state->fw_version[0] & 15, (int )state->fw_version[1], (int )state->fw_version[5], (int )state->fw_version[6], (int )state->fw_version[4], (int )state->fw_version[3], (int )state->fw_version[2]); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Firmware Ver = %x.%x Build = %02x, on %x:%x, %x-%x-20%02x\n", (state->bt)->nr, "dst_fw_ver", (int )state->fw_version[0] >> 4, (int )state->fw_version[0] & 15, (int )state->fw_version[1], (int )state->fw_version[5], (int )state->fw_version[6], (int )state->fw_version[4], (int )state->fw_version[3], (int )state->fw_version[2]); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Firmware Ver = %x.%x Build = %02x, on %x:%x, %x-%x-20%02x\n", (state->bt)->nr, "dst_fw_ver", (int )state->fw_version[0] >> 4, (int )state->fw_version[0] & 15, (int )state->fw_version[1], (int )state->fw_version[5], (int )state->fw_version[6], (int )state->fw_version[4], (int )state->fw_version[3], (int )state->fw_version[2]); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Firmware Ver = %x.%x Build = %02x, on %x:%x, %x-%x-20%02x\n", (state->bt)->nr, "dst_fw_ver", (int )state->fw_version[0] >> 4, (int )state->fw_version[0] & 15, (int )state->fw_version[1], (int )state->fw_version[5], (int )state->fw_version[6], (int )state->fw_version[4], (int )state->fw_version[3], (int )state->fw_version[2]); } else if (verbose != 0U) { printk("Firmware Ver = %x.%x Build = %02x, on %x:%x, %x-%x-20%02x", (int )state->fw_version[0] >> 4, (int )state->fw_version[0] & 15, (int )state->fw_version[1], (int )state->fw_version[5], (int )state->fw_version[6], (int )state->fw_version[4], (int )state->fw_version[3], (int )state->fw_version[2]); } else { } return (0); } } static int dst_card_type(struct dst_state *state ) { int j ; struct tuner_types *p_tuner_list ; u8 get_type[8U] ; int tmp ; size_t __len ; void *__ret ; int tmp___0 ; { p_tuner_list = 0; get_type[0] = 0U; get_type[1] = 17U; get_type[2] = 0U; get_type[3] = 0U; get_type[4] = 0U; get_type[5] = 0U; get_type[6] = 0U; get_type[7] = 0U; get_type[7] = dst_check_sum((u8 *)(& get_type), 7U); tmp = dst_command(state, (u8 *)(& get_type), 8); if (tmp < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_card_type"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_card_type"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_card_type"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_card_type"); } else if (verbose > 2U) { printk("Unsupported Command"); } else { } return (-1); } else { } memset((void *)(& state->card_info), 0, 8UL); __len = 7UL; if (__len > 63UL) { __ret = memmove((void *)(& state->card_info), (void const *)(& state->rxbuffer), __len); } else { __ret = memmove((void *)(& state->card_info), (void const *)(& state->rxbuffer), __len); } if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Device Model=[%s]\n", (state->bt)->nr, "dst_card_type", (u8 *)(& state->card_info)); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Device Model=[%s]\n", (state->bt)->nr, "dst_card_type", (u8 *)(& state->card_info)); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Device Model=[%s]\n", (state->bt)->nr, "dst_card_type", (u8 *)(& state->card_info)); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Device Model=[%s]\n", (state->bt)->nr, "dst_card_type", (u8 *)(& state->card_info)); } else if (verbose != 0U) { printk("Device Model=[%s]", (u8 *)(& state->card_info)); } else { } j = 0; p_tuner_list = (struct tuner_types *)(& tuner_list); goto ldv_32837; ldv_32836: tmp___0 = strcmp((char const *)(& state->card_info), (char const *)p_tuner_list->board_name); if (tmp___0 == 0) { state->tuner_type = p_tuner_list->tuner_type; if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: DST has [%s] tuner, tuner type=[%d]\n", (state->bt)->nr, "dst_card_type", p_tuner_list->tuner_name, p_tuner_list->tuner_type); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: DST has [%s] tuner, tuner type=[%d]\n", (state->bt)->nr, "dst_card_type", p_tuner_list->tuner_name, p_tuner_list->tuner_type); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: DST has [%s] tuner, tuner type=[%d]\n", (state->bt)->nr, "dst_card_type", p_tuner_list->tuner_name, p_tuner_list->tuner_type); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: DST has [%s] tuner, tuner type=[%d]\n", (state->bt)->nr, "dst_card_type", p_tuner_list->tuner_name, p_tuner_list->tuner_type); } else if (verbose != 0U) { printk("DST has [%s] tuner, tuner type=[%d]", p_tuner_list->tuner_name, p_tuner_list->tuner_type); } else { } } else { } j = j + 1; p_tuner_list = p_tuner_list + 1; ldv_32837: ; if ((unsigned int )j <= 16U) { goto ldv_32836; } else { } return (0); } } static int dst_get_vendor(struct dst_state *state ) { u8 get_vendor[8U] ; int tmp ; size_t __len ; void *__ret ; { get_vendor[0] = 0U; get_vendor[1] = 18U; get_vendor[2] = 0U; get_vendor[3] = 0U; get_vendor[4] = 0U; get_vendor[5] = 0U; get_vendor[6] = 0U; get_vendor[7] = 0U; get_vendor[7] = dst_check_sum((u8 *)(& get_vendor), 7U); tmp = dst_command(state, (u8 *)(& get_vendor), 8); if (tmp < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_vendor"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_vendor"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_vendor"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Unsupported Command\n", (state->bt)->nr, "dst_get_vendor"); } else if (verbose > 2U) { printk("Unsupported Command"); } else { } return (-1); } else { } memset((void *)(& state->vendor), 0, 8UL); __len = 7UL; if (__len > 63UL) { __ret = memmove((void *)(& state->vendor), (void const *)(& state->rxbuffer), __len); } else { __ret = memmove((void *)(& state->vendor), (void const *)(& state->rxbuffer), __len); } if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Vendor=[%s]\n", (state->bt)->nr, "dst_get_vendor", (u8 *)(& state->vendor)); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Vendor=[%s]\n", (state->bt)->nr, "dst_get_vendor", (u8 *)(& state->vendor)); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Vendor=[%s]\n", (state->bt)->nr, "dst_get_vendor", (u8 *)(& state->vendor)); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Vendor=[%s]\n", (state->bt)->nr, "dst_get_vendor", (u8 *)(& state->vendor)); } else if (verbose != 0U) { printk("Vendor=[%s]", (u8 *)(& state->vendor)); } else { } return (0); } } static void debug_dst_buffer(struct dst_state *state ) { int i ; { if (verbose > 2U) { printk("%s: [", "debug_dst_buffer"); i = 0; goto ldv_32853; ldv_32852: printk(" %02x", (int )state->rxbuffer[i]); i = i + 1; ldv_32853: ; if (i <= 7) { goto ldv_32852; } else { } printk("]\n"); } else { } return; } } static int dst_check_stv0299(struct dst_state *state ) { u8 check_stv0299[8U] ; int tmp ; int tmp___0 ; { check_stv0299[0] = 0U; check_stv0299[1] = 4U; check_stv0299[2] = 0U; check_stv0299[3] = 0U; check_stv0299[4] = 0U; check_stv0299[5] = 0U; check_stv0299[6] = 0U; check_stv0299[7] = 0U; check_stv0299[7] = dst_check_sum((u8 *)(& check_stv0299), 7U); tmp = dst_command(state, (u8 *)(& check_stv0299), 8); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Cmd=[0x04] failed\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Cmd=[0x04] failed\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Cmd=[0x04] failed\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Cmd=[0x04] failed\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose != 0U) { printk("Cmd=[0x04] failed"); } else { } return (-1); } else { } debug_dst_buffer(state); tmp___0 = memcmp((void const *)(& check_stv0299), (void const *)(& state->rxbuffer), 8UL); if (tmp___0 != 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Found a STV0299 NIM\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Found a STV0299 NIM\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Found a STV0299 NIM\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Found a STV0299 NIM\n", (state->bt)->nr, "dst_check_stv0299"); } else if (verbose != 0U) { printk("Found a STV0299 NIM"); } else { } state->tuner_type = 8U; return (0); } else { } return (-1); } } static int dst_check_mb86a15(struct dst_state *state ) { u8 check_mb86a15[8U] ; int tmp ; int tmp___0 ; { check_mb86a15[0] = 0U; check_mb86a15[1] = 16U; check_mb86a15[2] = 0U; check_mb86a15[3] = 0U; check_mb86a15[4] = 0U; check_mb86a15[5] = 0U; check_mb86a15[6] = 0U; check_mb86a15[7] = 0U; check_mb86a15[7] = dst_check_sum((u8 *)(& check_mb86a15), 7U); tmp = dst_command(state, (u8 *)(& check_mb86a15), 8); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Cmd=[0x10], failed\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Cmd=[0x10], failed\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Cmd=[0x10], failed\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Cmd=[0x10], failed\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose != 0U) { printk("Cmd=[0x10], failed"); } else { } return (-1); } else { } debug_dst_buffer(state); tmp___0 = memcmp((void const *)(& check_mb86a15), (void const *)(& state->rxbuffer), 8UL); if (tmp___0 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Found a MB86A15 NIM\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Found a MB86A15 NIM\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Found a MB86A15 NIM\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Found a MB86A15 NIM\n", (state->bt)->nr, "dst_check_mb86a15"); } else if (verbose != 0U) { printk("Found a MB86A15 NIM"); } else { } state->tuner_type = 16U; return (0); } else { } return (-1); } } static int dst_get_tuner_info(struct dst_state *state ) { u8 get_tuner_1[8U] ; u8 get_tuner_2[8U] ; int tmp ; int tmp___0 ; size_t __len ; void *__ret ; int tmp___1 ; { get_tuner_1[0] = 0U; get_tuner_1[1] = 19U; get_tuner_1[2] = 0U; get_tuner_1[3] = 0U; get_tuner_1[4] = 0U; get_tuner_1[5] = 0U; get_tuner_1[6] = 0U; get_tuner_1[7] = 0U; get_tuner_2[0] = 0U; get_tuner_2[1] = 11U; get_tuner_2[2] = 0U; get_tuner_2[3] = 0U; get_tuner_2[4] = 0U; get_tuner_2[5] = 0U; get_tuner_2[6] = 0U; get_tuner_2[7] = 0U; get_tuner_1[7] = dst_check_sum((u8 *)(& get_tuner_1), 7U); get_tuner_2[7] = dst_check_sum((u8 *)(& get_tuner_2), 7U); if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: DST TYpe = MULTI FE\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: DST TYpe = MULTI FE\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: DST TYpe = MULTI FE\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: DST TYpe = MULTI FE\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose != 0U) { printk("DST TYpe = MULTI FE"); } else { } if ((state->type_flags & 512U) != 0U) { tmp___0 = dst_command(state, (u8 *)(& get_tuner_1), 8); if (tmp___0 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Cmd=[0x13], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Cmd=[0x13], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Cmd=[0x13], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Cmd=[0x13], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 2U) { printk("Cmd=[0x13], Unsupported"); } else { } goto force; } else { tmp = dst_command(state, (u8 *)(& get_tuner_2), 8); if (tmp < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Cmd=[0xb], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Cmd=[0xb], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Cmd=[0xb], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Cmd=[0xb], Unsupported\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 2U) { printk("Cmd=[0xb], Unsupported"); } else { } goto force; } else { } } } else { } __len = 8UL; if (__len > 63UL) { __ret = memmove((void *)(& state->board_info), (void const *)(& state->rxbuffer), __len); } else { __ret = memmove((void *)(& state->board_info), (void const *)(& state->rxbuffer), __len); } if ((state->type_flags & 512U) != 0U) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: DST type has TS=188\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: DST type has TS=188\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: DST type has TS=188\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: DST type has TS=188\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose != 0U) { printk("DST type has TS=188"); } else { } } else { } if ((unsigned int )state->board_info[0] == 188U) { if ((unsigned int )state->dst_type != 3U) { state->type_flags = state->type_flags | 1U; } else { state->type_flags = state->type_flags | 1024U; } if ((unsigned int )state->board_info[1] == 1U) { state->dst_hw_cap = state->dst_hw_cap | 2048U; if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: DST has Daughterboard\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: DST has Daughterboard\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: DST has Daughterboard\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: DST has Daughterboard\n", (state->bt)->nr, "dst_get_tuner_info"); } else if (verbose != 0U) { printk("DST has Daughterboard"); } else { } } else { } } else { } return (0); force: tmp___1 = strncmp((char const *)(& state->fw_name), "DCT-CI", 6UL); if (tmp___1 == 0) { state->type_flags = state->type_flags | 2U; if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Forcing [%s] to TS188\n", (state->bt)->nr, "dst_get_tuner_info", (u8 *)(& state->fw_name)); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Forcing [%s] to TS188\n", (state->bt)->nr, "dst_get_tuner_info", (u8 *)(& state->fw_name)); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Forcing [%s] to TS188\n", (state->bt)->nr, "dst_get_tuner_info", (u8 *)(& state->fw_name)); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Forcing [%s] to TS188\n", (state->bt)->nr, "dst_get_tuner_info", (u8 *)(& state->fw_name)); } else if (verbose != 0U) { printk("Forcing [%s] to TS188", (u8 *)(& state->fw_name)); } else { } } else { } return (-1); } } static int dst_get_device_id(struct dst_state *state ) { u8 reply ; int i ; int j ; struct dst_types *p_dst_type ; struct tuner_types *p_tuner_list ; u8 use_dst_type ; u32 use_type_flags ; u8 device_type[8U] ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; u8 tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; size_t tmp___8 ; int tmp___9 ; { p_dst_type = 0; p_tuner_list = 0; use_dst_type = 0U; use_type_flags = 0U; device_type[0] = 0U; device_type[1] = 6U; device_type[2] = 0U; device_type[3] = 0U; device_type[4] = 0U; device_type[5] = 0U; device_type[6] = 0U; device_type[7] = 255U; state->tuner_type = 0U; device_type[7] = dst_check_sum((u8 *)(& device_type), 7U); tmp = write_dst(state, (u8 *)(& device_type), 8); if (tmp != 0) { return (-1); } else { } tmp___0 = dst_pio_disable(state); if (tmp___0 < 0) { return (-1); } else { } tmp___1 = read_dst(state, & reply, 1); if (tmp___1 != 0) { return (-1); } else { } if ((unsigned int )reply != 255U) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Write not Acknowledged! [Reply=0x%02x]\n", (state->bt)->nr, "dst_get_device_id", (int )reply); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Write not Acknowledged! [Reply=0x%02x]\n", (state->bt)->nr, "dst_get_device_id", (int )reply); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Write not Acknowledged! [Reply=0x%02x]\n", (state->bt)->nr, "dst_get_device_id", (int )reply); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Write not Acknowledged! [Reply=0x%02x]\n", (state->bt)->nr, "dst_get_device_id", (int )reply); } else if (verbose > 2U) { printk("Write not Acknowledged! [Reply=0x%02x]", (int )reply); } else { } return (-1); } else { } tmp___2 = dst_wait_dst_ready(state, 2); if (tmp___2 == 0) { return (-1); } else { } tmp___3 = read_dst(state, (u8 *)(& state->rxbuffer), 8); if (tmp___3 != 0) { return (-1); } else { } dst_pio_disable(state); tmp___4 = dst_check_sum((u8 *)(& state->rxbuffer), 7U); if ((int )state->rxbuffer[7] != (int )tmp___4) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Checksum failure!\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Checksum failure!\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Checksum failure!\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Checksum failure!\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 2U) { printk("Checksum failure!"); } else { } return (-1); } else { } state->rxbuffer[7] = 0U; i = 0; p_dst_type = (struct dst_types *)(& dst_tlist); goto ldv_32899; ldv_32898: tmp___8 = strlen((char const *)p_dst_type->device_id); tmp___9 = strncmp((char const *)(& state->rxbuffer) + (unsigned long )p_dst_type->offset, (char const *)p_dst_type->device_id, tmp___8); if (tmp___9 == 0) { use_type_flags = p_dst_type->type_flags; use_dst_type = p_dst_type->dst_type; state->dst_hw_cap = p_dst_type->dst_feature; if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Recognise [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Recognise [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Recognise [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Recognise [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id); } else if (verbose != 0U) { printk("Recognise [%s]", p_dst_type->device_id); } else { } strncpy((char *)(& state->fw_name), (char const *)p_dst_type->device_id, 6UL); if ((int )p_dst_type->tuner_type & 1) { switch ((int )use_dst_type) { case 0: tmp___5 = dst_check_stv0299(state); if (tmp___5 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose != 0U) { printk("Unsupported"); } else { } state->tuner_type = 16U; } else { } goto ldv_32890; default: ; goto ldv_32890; } ldv_32890: tmp___6 = dst_check_mb86a15(state); if (tmp___6 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Unsupported\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose != 0U) { printk("Unsupported"); } else { } } else { } } else { state->tuner_type = p_dst_type->tuner_type; } j = 0; p_tuner_list = (struct tuner_types *)(& tuner_list); goto ldv_32895; ldv_32894: tmp___7 = strncmp((char const *)p_dst_type->device_id, (char const *)p_tuner_list->fw_name, 7UL); if (tmp___7 == 0 && p_tuner_list->tuner_type == state->tuner_type) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: [%s] has a [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id, p_tuner_list->tuner_name); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: [%s] has a [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id, p_tuner_list->tuner_name); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: [%s] has a [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id, p_tuner_list->tuner_name); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: [%s] has a [%s]\n", (state->bt)->nr, "dst_get_device_id", p_dst_type->device_id, p_tuner_list->tuner_name); } else if (verbose != 0U) { printk("[%s] has a [%s]", p_dst_type->device_id, p_tuner_list->tuner_name); } else { } } else { } j = j + 1; p_tuner_list = p_tuner_list + 1; ldv_32895: ; if ((unsigned int )j <= 16U) { goto ldv_32894; } else { } goto ldv_32897; } else { } i = i + 1; p_dst_type = p_dst_type + 1; ldv_32899: ; if ((unsigned int )i <= 15U) { goto ldv_32898; } else { } ldv_32897: ; if ((unsigned int )i > 15U) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Unable to recognize %s or %s\n", (state->bt)->nr, "dst_get_device_id", (u8 *)(& state->rxbuffer), (u8 *)(& state->rxbuffer) + 1UL); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Unable to recognize %s or %s\n", (state->bt)->nr, "dst_get_device_id", (u8 *)(& state->rxbuffer), (u8 *)(& state->rxbuffer) + 1UL); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Unable to recognize %s or %s\n", (state->bt)->nr, "dst_get_device_id", (u8 *)(& state->rxbuffer), (u8 *)(& state->rxbuffer) + 1UL); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Unable to recognize %s or %s\n", (state->bt)->nr, "dst_get_device_id", (u8 *)(& state->rxbuffer), (u8 *)(& state->rxbuffer) + 1UL); } else if (verbose != 0U) { printk("Unable to recognize %s or %s", (u8 *)(& state->rxbuffer), (u8 *)(& state->rxbuffer) + 1UL); } else { } if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: please email linux-dvb@linuxtv.org with this type in\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: please email linux-dvb@linuxtv.org with this type in\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: please email linux-dvb@linuxtv.org with this type in\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: please email linux-dvb@linuxtv.org with this type in\n", (state->bt)->nr, "dst_get_device_id"); } else if (verbose != 0U) { printk("please email linux-dvb@linuxtv.org with this type in"); } else { } use_dst_type = 0U; use_type_flags = 4U; } else { } dst_type_print(state, (int )use_dst_type); state->type_flags = use_type_flags; state->dst_type = use_dst_type; dst_type_flags_print(state); return (0); } } static int dst_probe(struct dst_state *state ) { struct lock_class_key __key ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { __mutex_init(& state->dst_mutex, "&state->dst_mutex", & __key); if ((dst_addons & 32U) != 0U) { tmp = rdc_8820_reset(state); if (tmp < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: RDC 8820 RESET Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: RDC 8820 RESET Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: RDC 8820 RESET Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: RDC 8820 RESET Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose != 0U) { printk("RDC 8820 RESET Failed."); } else { } return (-1); } else { } msleep(4000U); } else { msleep(100U); } tmp___0 = dst_comm_init(state); if (tmp___0 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: DST Initialization Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: DST Initialization Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: DST Initialization Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: DST Initialization Failed.\n", (state->bt)->nr, "dst_probe"); } else if (verbose != 0U) { printk("DST Initialization Failed."); } else { } return (-1); } else { } msleep(100U); tmp___1 = dst_get_device_id(state); if (tmp___1 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: unknown device.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: unknown device.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: unknown device.\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: unknown device.\n", (state->bt)->nr, "dst_probe"); } else if (verbose != 0U) { printk("unknown device."); } else { } return (-1); } else { } tmp___2 = dst_get_mac(state); if (tmp___2 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: MAC: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: MAC: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: MAC: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: MAC: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U) { printk("MAC: Unsupported command"); } else { } } else { } if ((state->type_flags & 512U) != 0U || (state->type_flags & 64U) != 0U) { tmp___3 = dst_get_tuner_info(state); if (tmp___3 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Tuner: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Tuner: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Tuner: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Tuner: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U) { printk("Tuner: Unsupported command"); } else { } } else { } } else { } if ((state->type_flags & 2U) != 0U) { dst_packsize(state, 204); } else { } if ((state->type_flags & 64U) != 0U) { tmp___4 = dst_fw_ver(state); if (tmp___4 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: FW: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: FW: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: FW: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: FW: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U) { printk("FW: Unsupported command"); } else { } return (0); } else { } tmp___5 = dst_card_type(state); if (tmp___5 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Card: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Card: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Card: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Card: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U) { printk("Card: Unsupported command"); } else { } return (0); } else { } tmp___6 = dst_get_vendor(state); if (tmp___6 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Vendor: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Vendor: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Vendor: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Vendor: Unsupported command\n", (state->bt)->nr, "dst_probe"); } else if (verbose > 2U) { printk("Vendor: Unsupported command"); } else { } return (0); } else { } } else { } return (0); } } static int dst_command(struct dst_state *state , u8 *data , u8 len ) { u8 reply ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned long __ms ; unsigned long tmp___3 ; int tmp___4 ; int tmp___5 ; unsigned long __ms___0 ; unsigned long tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; u8 tmp___10 ; { ldv_mutex_lock_8(& state->dst_mutex); tmp = dst_comm_init(state); if (tmp < 0) { if (verbose != 0U && verbose > 1U) { printk("\vdst(%d) %s: DST Communication Initialization Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose > 1U) { printk("\rdst(%d) %s: DST Communication Initialization Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose > 1U) { printk("\016dst(%d) %s: DST Communication Initialization Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose > 1U) { printk("\017dst(%d) %s: DST Communication Initialization Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U) { printk("DST Communication Initialization Failed."); } else { } goto error; } else { } tmp___1 = write_dst(state, data, (int )len); if (tmp___1 != 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U) { printk("Trying to recover.. "); } else { } tmp___0 = dst_error_recovery(state); if (tmp___0 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose != 0U) { printk("Recovery Failed."); } else { } goto error; } else { } goto error; } else { } tmp___2 = dst_pio_disable(state); if (tmp___2 < 0) { if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: PIO Disable Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: PIO Disable Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: PIO Disable Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: PIO Disable Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose != 0U) { printk("PIO Disable Failed."); } else { } goto error; } else { } if ((state->type_flags & 8U) != 0U) { if (1) { __const_udelay(12885000UL); } else { __ms = 3UL; goto ldv_32917; ldv_32916: __const_udelay(4295000UL); ldv_32917: tmp___3 = __ms; __ms = __ms - 1UL; if (tmp___3 != 0UL) { goto ldv_32916; } else { } } } else { } tmp___5 = read_dst(state, & reply, 1); if (tmp___5 != 0) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U) { printk("Trying to recover.. "); } else { } tmp___4 = dst_error_recovery(state); if (tmp___4 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Recovery Failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U) { printk("Recovery Failed."); } else { } goto error; } else { } goto error; } else { } if ((unsigned int )reply != 255U) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_command", (int )reply); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_command", (int )reply); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_command", (int )reply); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_command", (int )reply); } else if (verbose > 2U) { printk("write not acknowledged 0x%02x ", (int )reply); } else { } goto error; } else { } if (((unsigned int )len > 1U && (unsigned int )*data == 0U) && ((unsigned int )*(data + 1UL) == 1U || (unsigned int )*(data + 1UL) == 3U)) { goto error; } else { } if ((state->type_flags & 8U) != 0U) { if (1) { __const_udelay(12885000UL); } else { __ms___0 = 3UL; goto ldv_32921; ldv_32920: __const_udelay(4295000UL); ldv_32921: tmp___6 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___6 != 0UL) { goto ldv_32920; } else { } } } else { __const_udelay(8590000UL); } tmp___7 = dst_wait_dst_ready(state, 0); if (tmp___7 == 0) { goto error; } else { } tmp___9 = read_dst(state, (u8 *)(& state->rxbuffer), 8); if (tmp___9 != 0) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: Trying to recover.. \n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U) { printk("Trying to recover.. "); } else { } tmp___8 = dst_error_recovery(state); if (tmp___8 < 0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: Recovery failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: Recovery failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: Recovery failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: Recovery failed.\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U) { printk("Recovery failed."); } else { } goto error; } else { } goto error; } else { } tmp___10 = dst_check_sum((u8 *)(& state->rxbuffer), 7U); if ((int )state->rxbuffer[7] != (int )tmp___10) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: checksum failure\n", (state->bt)->nr, "dst_command"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: checksum failure\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: checksum failure\n", (state->bt)->nr, "dst_command"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: checksum failure\n", (state->bt)->nr, "dst_command"); } else if (verbose > 2U) { printk("checksum failure"); } else { } goto error; } else { } ldv_mutex_unlock_9(& state->dst_mutex); return (0); error: ldv_mutex_unlock_10(& state->dst_mutex); return (-5); } } static int dst_get_signal(struct dst_state *state ) { int retval ; u8 get_signal[8U] ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; { get_signal[0] = 0U; get_signal[1] = 5U; get_signal[2] = 0U; get_signal[3] = 0U; get_signal[4] = 0U; get_signal[5] = 0U; get_signal[6] = 0U; get_signal[7] = 251U; if (((int )state->diseq_flags & 2) == 0) { tmp___0 = 0U; state->decode_snr = tmp___0; tmp = tmp___0; state->decode_strength = tmp; state->decode_lock = (u8 )tmp; return (0); } else { } if (((int )state->diseq_flags & 1) == 0) { tmp___2 = 0U; state->decode_snr = tmp___2; tmp___1 = tmp___2; state->decode_strength = tmp___1; state->decode_lock = (u8 )tmp___1; return (0); } else { } if ((long )jiffies - (long )(state->cur_jiff + 50UL) >= 0L) { retval = dst_command(state, (u8 *)(& get_signal), 8); if (retval < 0) { return (retval); } else { } if ((unsigned int )state->dst_type == 0U) { state->decode_lock = ((int )state->rxbuffer[6] & 16) == 0; state->decode_strength = (int )((u16 )state->rxbuffer[5]) << 8U; state->decode_snr = (u16 )((int )((short )((int )state->rxbuffer[2] << 8)) | (int )((short )state->rxbuffer[3])); } else if ((unsigned int )state->dst_type == 1U || (unsigned int )state->dst_type == 2U) { state->decode_lock = (unsigned int )state->rxbuffer[1] != 0U; state->decode_strength = (int )((u16 )state->rxbuffer[4]) << 8U; state->decode_snr = (int )((u16 )state->rxbuffer[3]) << 8U; } else if ((unsigned int )state->dst_type == 3U) { state->decode_lock = (unsigned int )state->rxbuffer[6] == 0U; state->decode_strength = (int )((u16 )state->rxbuffer[4]) << 8U; state->decode_snr = (u16 )((int )((short )((int )state->rxbuffer[2] << 8)) | (int )((short )state->rxbuffer[3])); } else { } state->cur_jiff = jiffies; } else { } return (0); } } static int dst_tone_power_cmd(struct dst_state *state ) { u8 paket[8U] ; int tmp ; { paket[0] = 0U; paket[1] = 9U; paket[2] = 255U; paket[3] = 255U; paket[4] = 1U; paket[5] = 0U; paket[6] = 0U; paket[7] = 0U; if ((unsigned int )state->dst_type != 0U) { return (-95); } else { } paket[4] = state->tx_tuna[4]; paket[2] = state->tx_tuna[2]; paket[3] = state->tx_tuna[3]; paket[7] = dst_check_sum((u8 *)(& paket), 7U); tmp = dst_command(state, (u8 *)(& paket), 8); return (tmp); } } static int dst_get_tuna(struct dst_state *state ) { int retval ; int tmp ; u8 tmp___0 ; u8 tmp___1 ; { if (((int )state->diseq_flags & 2) == 0) { return (0); } else { } state->diseq_flags = (unsigned int )state->diseq_flags & 254U; tmp = dst_wait_dst_ready(state, 0); if (tmp == 0) { return (-5); } else { } if ((state->type_flags & 4096U) != 0U && (unsigned int )state->dst_type != 3U) { retval = read_dst(state, (u8 *)(& state->rx_tuna), 10); } else { retval = read_dst(state, (u8 *)(& state->rx_tuna) + 2UL, 8); } if (retval < 0) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: read not successful\n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: read not successful\n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: read not successful\n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: read not successful\n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 3U) { printk("read not successful"); } else { } return (retval); } else { } if ((state->type_flags & 4096U) != 0U && (unsigned int )state->dst_type != 3U) { tmp___1 = dst_check_sum((u8 *)(& state->rx_tuna), 9U); if ((int )state->rx_tuna[9] != (int )tmp___1) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: checksum failure ? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: checksum failure ? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: checksum failure ? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: checksum failure ? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 2U) { printk("checksum failure ? "); } else { } return (-5); } else { tmp___0 = dst_check_sum((u8 *)(& state->rx_tuna) + 2UL, 7U); if ((int )state->rx_tuna[9] != (int )tmp___0) { if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: checksum failure? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: checksum failure? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: checksum failure? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: checksum failure? \n", (state->bt)->nr, "dst_get_tuna"); } else if (verbose > 2U) { printk("checksum failure? "); } else { } return (-5); } else { } } } else { } if ((unsigned int )state->rx_tuna[2] == 0U && (unsigned int )state->rx_tuna[3] == 0U) { return (0); } else { } if ((unsigned int )state->dst_type == 0U) { state->decode_freq = (u32 )((((int )state->rx_tuna[2] & 127) << 8) + (int )state->rx_tuna[3]); } else { state->decode_freq = (u32 )(((((int )state->rx_tuna[2] & 127) << 16) + ((int )state->rx_tuna[3] << 8)) + (int )state->rx_tuna[4]); } state->decode_freq = state->decode_freq * 1000U; state->decode_lock = 1U; state->diseq_flags = (u8 )((unsigned int )state->diseq_flags | 1U); return (1); } } static int dst_set_voltage(struct dvb_frontend *fe , fe_sec_voltage_t voltage ) ; static int dst_write_tuna(struct dvb_frontend *fe ) { struct dst_state *state ; int retval ; u8 reply ; u16 tmp ; u16 tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { state = (struct dst_state *)fe->demodulator_priv; if (verbose != 0U && verbose > 2U) { printk("\vdst(%d) %s: type_flags 0x%x \n", (state->bt)->nr, "dst_write_tuna", state->type_flags); } else if (verbose > 1U && verbose > 2U) { printk("\rdst(%d) %s: type_flags 0x%x \n", (state->bt)->nr, "dst_write_tuna", state->type_flags); } else if (verbose > 2U && verbose > 2U) { printk("\016dst(%d) %s: type_flags 0x%x \n", (state->bt)->nr, "dst_write_tuna", state->type_flags); } else if (verbose > 3U && verbose > 2U) { printk("\017dst(%d) %s: type_flags 0x%x \n", (state->bt)->nr, "dst_write_tuna", state->type_flags); } else if (verbose > 2U) { printk("type_flags 0x%x ", state->type_flags); } else { } state->decode_freq = 0U; tmp___0 = 0U; state->decode_snr = tmp___0; tmp = tmp___0; state->decode_strength = tmp; state->decode_lock = (u8 )tmp; if ((unsigned int )state->dst_type == 0U) { if (((int )state->diseq_flags & 4) == 0) { dst_set_voltage(fe, 0); } else { } } else { } state->diseq_flags = (unsigned int )state->diseq_flags & 252U; ldv_mutex_lock_11(& state->dst_mutex); tmp___1 = dst_comm_init(state); if (tmp___1 < 0) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: DST Communication initialization failed.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: DST Communication initialization failed.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: DST Communication initialization failed.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: DST Communication initialization failed.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U) { printk("DST Communication initialization failed."); } else { } goto error; } else { } if ((state->type_flags & 4096U) != 0U && (unsigned int )state->dst_type != 3U) { state->tx_tuna[9] = dst_check_sum((u8 *)(& state->tx_tuna), 9U); retval = write_dst(state, (u8 *)(& state->tx_tuna), 10); } else { state->tx_tuna[9] = dst_check_sum((u8 *)(& state->tx_tuna) + 2UL, 7U); retval = write_dst(state, (u8 *)(& state->tx_tuna) + 2UL, 8); } if (retval < 0) { dst_pio_disable(state); if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: write not successful\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: write not successful\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: write not successful\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: write not successful\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U) { printk("write not successful"); } else { } goto werr; } else { } tmp___2 = dst_pio_disable(state); if (tmp___2 < 0) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: DST PIO disable failed !\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: DST PIO disable failed !\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: DST PIO disable failed !\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: DST PIO disable failed !\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U) { printk("DST PIO disable failed !"); } else { } goto error; } else { } tmp___3 = read_dst(state, & reply, 1); if (tmp___3 < 0) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: read verify not successful.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: read verify not successful.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: read verify not successful.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: read verify not successful.\n", (state->bt)->nr, "dst_write_tuna"); } else if (verbose > 3U) { printk("read verify not successful."); } else { } goto error; } else { } if ((unsigned int )reply != 255U) { if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_write_tuna", (int )reply); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_write_tuna", (int )reply); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_write_tuna", (int )reply); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: write not acknowledged 0x%02x \n", (state->bt)->nr, "dst_write_tuna", (int )reply); } else if (verbose > 3U) { printk("write not acknowledged 0x%02x ", (int )reply); } else { } goto error; } else { } state->diseq_flags = (u8 )((unsigned int )state->diseq_flags | 2U); retval = dst_get_tuna(state); werr: ldv_mutex_unlock_12(& state->dst_mutex); return (retval); error: ldv_mutex_unlock_13(& state->dst_mutex); return (-5); } } static int dst_set_diseqc(struct dvb_frontend *fe , struct dvb_diseqc_master_cmd *cmd ) { struct dst_state *state ; u8 paket[8U] ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; int tmp ; { state = (struct dst_state *)fe->demodulator_priv; paket[0] = 0U; paket[1] = 8U; paket[2] = 4U; paket[3] = 224U; paket[4] = 16U; paket[5] = 56U; paket[6] = 240U; paket[7] = 236U; if ((unsigned int )state->dst_type != 0U) { return (-95); } else { } if ((unsigned int )cmd->msg_len != 0U && (unsigned int )cmd->msg_len <= 4U) { __len = (size_t )cmd->msg_len; __ret = memmove((void *)(& paket) + 3U, (void const *)(& cmd->msg), __len); } else if ((unsigned int )cmd->msg_len == 5U && (state->dst_hw_cap & 8U) != 0U) { __len___0 = (size_t )cmd->msg_len; __ret___0 = memmove((void *)(& paket) + 2U, (void const *)(& cmd->msg), __len___0); } else { return (-22); } paket[7] = dst_check_sum((u8 *)(& paket), 7U); tmp = dst_command(state, (u8 *)(& paket), 8); return (tmp); } } static int dst_set_voltage(struct dvb_frontend *fe , fe_sec_voltage_t voltage ) { int need_cmd ; int retval ; struct dst_state *state ; { retval = 0; state = (struct dst_state *)fe->demodulator_priv; state->voltage = voltage; if ((unsigned int )state->dst_type != 0U) { return (-95); } else { } need_cmd = 0; switch ((unsigned int )voltage) { case 0U: ; case 1U: ; if (((int )state->diseq_flags & 4) == 0) { need_cmd = 1; } else { } state->diseq_flags = (u8 )((unsigned int )state->diseq_flags | 4U); state->tx_tuna[4] = 1U; goto ldv_32976; case 2U: need_cmd = 1; state->diseq_flags = (unsigned int )state->diseq_flags & 248U; state->tx_tuna[4] = 0U; goto ldv_32976; default: ; return (-22); } ldv_32976: ; if (need_cmd != 0) { retval = dst_tone_power_cmd(state); } else { } return (retval); } } static int dst_set_tone(struct dvb_frontend *fe , fe_sec_tone_mode_t tone ) { struct dst_state *state ; int tmp ; { state = (struct dst_state *)fe->demodulator_priv; state->tone = tone; if ((unsigned int )state->dst_type != 0U) { return (-95); } else { } switch ((unsigned int )tone) { case 1U: ; if ((state->type_flags & 128U) != 0U) { state->tx_tuna[2] = 0U; } else { state->tx_tuna[2] = 255U; } goto ldv_32985; case 0U: state->tx_tuna[2] = 2U; goto ldv_32985; default: ; return (-22); } ldv_32985: tmp = dst_tone_power_cmd(state); return (tmp); } } static int dst_send_burst(struct dvb_frontend *fe , fe_sec_mini_cmd_t minicmd ) { struct dst_state *state ; int tmp ; { state = (struct dst_state *)fe->demodulator_priv; if ((unsigned int )state->dst_type != 0U) { return (-95); } else { } state->minicmd = minicmd; switch ((unsigned int )minicmd) { case 0U: state->tx_tuna[3] = 2U; goto ldv_32994; case 1U: state->tx_tuna[3] = 255U; goto ldv_32994; } ldv_32994: tmp = dst_tone_power_cmd(state); return (tmp); } } static int dst_init(struct dvb_frontend *fe ) { struct dst_state *state ; u8 sat_tuna_188[10U] ; u8 sat_tuna_204[10U] ; u8 ter_tuna_188[10U] ; u8 ter_tuna_204[10U] ; u8 cab_tuna_188[10U] ; u8 cab_tuna_204[10U] ; u8 atsc_tuner[10U] ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; { state = (struct dst_state *)fe->demodulator_priv; sat_tuna_188[0] = 9U; sat_tuna_188[1] = 0U; sat_tuna_188[2] = 3U; sat_tuna_188[3] = 182U; sat_tuna_188[4] = 1U; sat_tuna_188[5] = 0U; sat_tuna_188[6] = 115U; sat_tuna_188[7] = 33U; sat_tuna_188[8] = 0U; sat_tuna_188[9] = 0U; sat_tuna_204[0] = 0U; sat_tuna_204[1] = 0U; sat_tuna_204[2] = 3U; sat_tuna_204[3] = 182U; sat_tuna_204[4] = 1U; sat_tuna_204[5] = 85U; sat_tuna_204[6] = 189U; sat_tuna_204[7] = 80U; sat_tuna_204[8] = 0U; sat_tuna_204[9] = 0U; ter_tuna_188[0] = 9U; ter_tuna_188[1] = 0U; ter_tuna_188[2] = 3U; ter_tuna_188[3] = 182U; ter_tuna_188[4] = 1U; ter_tuna_188[5] = 7U; ter_tuna_188[6] = 0U; ter_tuna_188[7] = 0U; ter_tuna_188[8] = 0U; ter_tuna_188[9] = 0U; ter_tuna_204[0] = 0U; ter_tuna_204[1] = 0U; ter_tuna_204[2] = 3U; ter_tuna_204[3] = 182U; ter_tuna_204[4] = 1U; ter_tuna_204[5] = 7U; ter_tuna_204[6] = 0U; ter_tuna_204[7] = 0U; ter_tuna_204[8] = 0U; ter_tuna_204[9] = 0U; cab_tuna_188[0] = 9U; cab_tuna_188[1] = 0U; cab_tuna_188[2] = 3U; cab_tuna_188[3] = 182U; cab_tuna_188[4] = 1U; cab_tuna_188[5] = 7U; cab_tuna_188[6] = 0U; cab_tuna_188[7] = 0U; cab_tuna_188[8] = 0U; cab_tuna_188[9] = 0U; cab_tuna_204[0] = 0U; cab_tuna_204[1] = 0U; cab_tuna_204[2] = 3U; cab_tuna_204[3] = 182U; cab_tuna_204[4] = 1U; cab_tuna_204[5] = 7U; cab_tuna_204[6] = 0U; cab_tuna_204[7] = 0U; cab_tuna_204[8] = 0U; cab_tuna_204[9] = 0U; atsc_tuner[0] = 0U; atsc_tuner[1] = 0U; atsc_tuner[2] = 3U; atsc_tuner[3] = 182U; atsc_tuner[4] = 1U; atsc_tuner[5] = 7U; atsc_tuner[6] = 0U; atsc_tuner[7] = 0U; atsc_tuner[8] = 0U; atsc_tuner[9] = 0U; state->inversion = 0; state->voltage = 0; state->tone = 1; state->diseq_flags = 0U; state->k22 = 2U; state->bandwidth = 7000000U; state->cur_jiff = jiffies; if ((unsigned int )state->dst_type == 0U) { __len = 10UL; if (__len > 63UL) { __ret = memmove((void *)(& state->tx_tuna), (void const *)((state->type_flags & 4096U) != 0U ? & sat_tuna_188 : & sat_tuna_204), __len); } else { __ret = memmove((void *)(& state->tx_tuna), (void const *)((state->type_flags & 4096U) != 0U ? & sat_tuna_188 : & sat_tuna_204), __len); } } else if ((unsigned int )state->dst_type == 1U) { __len___0 = 10UL; if (__len___0 > 63UL) { __ret___0 = memmove((void *)(& state->tx_tuna), (void const *)((state->type_flags & 4096U) != 0U ? & ter_tuna_188 : & ter_tuna_204), __len___0); } else { __ret___0 = memmove((void *)(& state->tx_tuna), (void const *)((state->type_flags & 4096U) != 0U ? & ter_tuna_188 : & ter_tuna_204), __len___0); } } else if ((unsigned int )state->dst_type == 2U) { __len___1 = 10UL; if (__len___1 > 63UL) { __ret___1 = memmove((void *)(& state->tx_tuna), (void const *)((state->type_flags & 4096U) != 0U ? & cab_tuna_188 : & cab_tuna_204), __len___1); } else { __ret___1 = memmove((void *)(& state->tx_tuna), (void const *)((state->type_flags & 4096U) != 0U ? & cab_tuna_188 : & cab_tuna_204), __len___1); } } else if ((unsigned int )state->dst_type == 3U) { __len___2 = 10UL; if (__len___2 > 63UL) { __ret___2 = memmove((void *)(& state->tx_tuna), (void const *)(& atsc_tuner), __len___2); } else { __ret___2 = memmove((void *)(& state->tx_tuna), (void const *)(& atsc_tuner), __len___2); } } else { } return (0); } } static int dst_read_status(struct dvb_frontend *fe , fe_status_t *status ) { struct dst_state *state ; { state = (struct dst_state *)fe->demodulator_priv; *status = 0; if ((int )state->diseq_flags & 1) { if ((unsigned int )state->decode_lock != 0U) { *status = (fe_status_t )((unsigned int )*status | 31U); } else { } } else { } return (0); } } static int dst_read_signal_strength(struct dvb_frontend *fe , u16 *strength ) { struct dst_state *state ; int retval ; int tmp ; { state = (struct dst_state *)fe->demodulator_priv; tmp = dst_get_signal(state); retval = tmp; *strength = state->decode_strength; return (retval); } } static int dst_read_snr(struct dvb_frontend *fe , u16 *snr ) { struct dst_state *state ; int retval ; int tmp ; { state = (struct dst_state *)fe->demodulator_priv; tmp = dst_get_signal(state); retval = tmp; *snr = state->decode_snr; return (retval); } } static int dst_set_frontend(struct dvb_frontend *fe ) { struct dtv_frontend_properties *p ; int retval ; struct dst_state *state ; { p = & fe->dtv_property_cache; retval = -22; state = (struct dst_state *)fe->demodulator_priv; if ((unsigned long )p != (unsigned long )((struct dtv_frontend_properties *)0)) { retval = dst_set_freq(state, p->frequency); if (retval != 0) { return (retval); } else { } if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->frequency); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->frequency); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->frequency); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->frequency); } else if (verbose > 3U) { printk("Set Frequency=[%d]", p->frequency); } else { } if ((unsigned int )state->dst_type == 0U) { if ((state->type_flags & 128U) != 0U) { dst_set_inversion(state, p->inversion); } else { } dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_polarization(state); if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->symbol_rate); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->symbol_rate); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->symbol_rate); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_set_frontend", p->symbol_rate); } else if (verbose > 3U) { printk("Set Symbolrate=[%d]", p->symbol_rate); } else { } } else if ((unsigned int )state->dst_type == 1U) { dst_set_bandwidth(state, p->bandwidth_hz); } else if ((unsigned int )state->dst_type == 2U) { dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_modulation(state, p->modulation); } else { } retval = dst_write_tuna(fe); } else { } return (retval); } } static int dst_tune_frontend(struct dvb_frontend *fe , bool re_tune , unsigned int mode_flags , unsigned int *delay , fe_status_t *status ) { struct dst_state *state ; struct dtv_frontend_properties *p ; { state = (struct dst_state *)fe->demodulator_priv; p = & fe->dtv_property_cache; if ((int )re_tune) { dst_set_freq(state, p->frequency); if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->frequency); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->frequency); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->frequency); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: Set Frequency=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->frequency); } else if (verbose > 3U) { printk("Set Frequency=[%d]", p->frequency); } else { } if ((unsigned int )state->dst_type == 0U) { if ((state->type_flags & 128U) != 0U) { dst_set_inversion(state, p->inversion); } else { } dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_polarization(state); if (verbose != 0U && verbose > 3U) { printk("\vdst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->symbol_rate); } else if (verbose > 1U && verbose > 3U) { printk("\rdst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->symbol_rate); } else if (verbose > 2U && verbose > 3U) { printk("\016dst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->symbol_rate); } else if (verbose > 3U && verbose > 3U) { printk("\017dst(%d) %s: Set Symbolrate=[%d]\n", (state->bt)->nr, "dst_tune_frontend", p->symbol_rate); } else if (verbose > 3U) { printk("Set Symbolrate=[%d]", p->symbol_rate); } else { } } else if ((unsigned int )state->dst_type == 1U) { dst_set_bandwidth(state, p->bandwidth_hz); } else if ((unsigned int )state->dst_type == 2U) { dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_modulation(state, p->modulation); } else { } dst_write_tuna(fe); } else { } if ((mode_flags & 1U) == 0U) { dst_read_status(fe, status); } else { } *delay = 25U; return (0); } } static int dst_get_tuning_algo(struct dvb_frontend *fe ) { { return (dst_algo != 0U ? 1 : 2); } } static int dst_get_frontend(struct dvb_frontend *fe ) { struct dtv_frontend_properties *p ; struct dst_state *state ; { p = & fe->dtv_property_cache; state = (struct dst_state *)fe->demodulator_priv; p->frequency = state->decode_freq; if ((unsigned int )state->dst_type == 0U) { if ((state->type_flags & 128U) != 0U) { p->inversion = state->inversion; } else { } p->symbol_rate = state->symbol_rate; p->fec_inner = dst_get_fec(state); } else if ((unsigned int )state->dst_type == 1U) { p->bandwidth_hz = state->bandwidth; } else if ((unsigned int )state->dst_type == 2U) { p->symbol_rate = state->symbol_rate; p->fec_inner = dst_get_fec(state); p->modulation = dst_get_modulation(state); } else { } return (0); } } static void dst_release(struct dvb_frontend *fe ) { struct dst_state *state ; { state = (struct dst_state *)fe->demodulator_priv; if ((unsigned long )state->dst_ca != (unsigned long )((struct dvb_device *)0)) { dvb_unregister_device(state->dst_ca); __symbol_put("dst_ca_attach"); } else { } kfree((void const *)state); return; } } static struct dvb_frontend_ops dst_dvbt_ops ; static struct dvb_frontend_ops dst_dvbs_ops ; static struct dvb_frontend_ops dst_dvbc_ops ; static struct dvb_frontend_ops dst_atsc_ops ; struct dst_state *dst_attach(struct dst_state *state , struct dvb_adapter *dvb_adapter ) { int tmp ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; { tmp = dst_probe(state); if (tmp < 0) { kfree((void const *)state); return (0); } else { } switch ((int )state->dst_type) { case 1: __len = 768UL; if (__len > 63UL) { __ret = memmove((void *)(& state->frontend.ops), (void const *)(& dst_dvbt_ops), __len); } else { __ret = memmove((void *)(& state->frontend.ops), (void const *)(& dst_dvbt_ops), __len); } goto ldv_33077; case 2: __len___0 = 768UL; if (__len___0 > 63UL) { __ret___0 = memmove((void *)(& state->frontend.ops), (void const *)(& dst_dvbc_ops), __len___0); } else { __ret___0 = memmove((void *)(& state->frontend.ops), (void const *)(& dst_dvbc_ops), __len___0); } goto ldv_33077; case 0: __len___1 = 768UL; if (__len___1 > 63UL) { __ret___1 = memmove((void *)(& state->frontend.ops), (void const *)(& dst_dvbs_ops), __len___1); } else { __ret___1 = memmove((void *)(& state->frontend.ops), (void const *)(& dst_dvbs_ops), __len___1); } goto ldv_33077; case 3: __len___2 = 768UL; if (__len___2 > 63UL) { __ret___2 = memmove((void *)(& state->frontend.ops), (void const *)(& dst_atsc_ops), __len___2); } else { __ret___2 = memmove((void *)(& state->frontend.ops), (void const *)(& dst_atsc_ops), __len___2); } goto ldv_33077; default: ; if (verbose != 0U && verbose != 0U) { printk("\vdst(%d) %s: unknown DST type. please report to the LinuxTV.org DVB mailinglist.\n", (state->bt)->nr, "dst_attach"); } else if (verbose > 1U && verbose != 0U) { printk("\rdst(%d) %s: unknown DST type. please report to the LinuxTV.org DVB mailinglist.\n", (state->bt)->nr, "dst_attach"); } else if (verbose > 2U && verbose != 0U) { printk("\016dst(%d) %s: unknown DST type. please report to the LinuxTV.org DVB mailinglist.\n", (state->bt)->nr, "dst_attach"); } else if (verbose > 3U && verbose != 0U) { printk("\017dst(%d) %s: unknown DST type. please report to the LinuxTV.org DVB mailinglist.\n", (state->bt)->nr, "dst_attach"); } else if (verbose != 0U) { printk("unknown DST type. please report to the LinuxTV.org DVB mailinglist."); } else { } kfree((void const *)state); return (0); } ldv_33077: state->frontend.demodulator_priv = (void *)state; return (state); } } static struct dvb_frontend_ops dst_dvbt_ops = {{{'D', 'S', 'T', ' ', 'D', 'V', 'B', '-', 'T', '\000'}, 0, 137000000U, 858000000U, 166667U, 0U, 0U, 0U, 0U, 0U, 784896}, {3U}, & dst_release, 0, & dst_init, 0, 0, & dst_tune_frontend, (enum dvbfe_algo (*)(struct dvb_frontend * ))(& dst_get_tuning_algo), & dst_set_frontend, 0, & dst_get_frontend, & dst_read_status, 0, & dst_read_signal_strength, & dst_read_snr, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {{{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, 0U, 0U, 0U, 0U}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{0}, 0, 0, 0, 0, 0, 0, 0, 0}, 0, 0}; static struct dvb_frontend_ops dst_dvbs_ops = {{{'D', 'S', 'T', ' ', 'D', 'V', 'B', '-', 'S', '\000'}, 0, 950000U, 2150000U, 1000U, 29500U, 1000000U, 45000000U, 0U, 0U, 1536}, {5U}, & dst_release, 0, & dst_init, 0, 0, & dst_tune_frontend, (enum dvbfe_algo (*)(struct dvb_frontend * ))(& dst_get_tuning_algo), & dst_set_frontend, 0, & dst_get_frontend, & dst_read_status, 0, & dst_read_signal_strength, & dst_read_snr, 0, 0, & dst_set_diseqc, 0, & dst_send_burst, & dst_set_tone, & dst_set_voltage, 0, 0, 0, 0, 0, 0, {{{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, 0U, 0U, 0U, 0U}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{0}, 0, 0, 0, 0, 0, 0, 0, 0}, 0, 0}; static struct dvb_frontend_ops dst_dvbc_ops = {{{'D', 'S', 'T', ' ', 'D', 'V', 'B', '-', 'C', '\000'}, 0, 51000000U, 858000000U, 62500U, 0U, 1000000U, 45000000U, 0U, 0U, 129536}, {1U}, & dst_release, 0, & dst_init, 0, 0, & dst_tune_frontend, (enum dvbfe_algo (*)(struct dvb_frontend * ))(& dst_get_tuning_algo), & dst_set_frontend, 0, & dst_get_frontend, & dst_read_status, 0, & dst_read_signal_strength, & dst_read_snr, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {{{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, 0U, 0U, 0U, 0U}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{0}, 0, 0, 0, 0, 0, 0, 0, 0}, 0, 0}; static struct dvb_frontend_ops dst_atsc_ops = {{{'D', 'S', 'T', ' ', 'A', 'T', 'S', 'C', '\000'}, 0, 510000000U, 858000000U, 62500U, 0U, 1000000U, 45000000U, 0U, 0U, 2204160}, {11U}, & dst_release, 0, & dst_init, 0, 0, & dst_tune_frontend, (enum dvbfe_algo (*)(struct dvb_frontend * ))(& dst_get_tuning_algo), & dst_set_frontend, 0, & dst_get_frontend, & dst_read_status, 0, & dst_read_signal_strength, & dst_read_snr, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {{{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, 0U, 0U, 0U, 0U}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{0}, 0, 0, 0, 0, 0, 0, 0, 0}, 0, 0}; void ldv_check_final_state(void) ; void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int __VERIFIER_nondet_int(void) ; int LDV_IN_INTERRUPT ; int main(void) { struct dvb_frontend *var_group1 ; struct dvb_frontend *var_group2 ; bool var_dst_tune_frontend_49_p1 ; unsigned int var_dst_tune_frontend_49_p2 ; unsigned int *var_dst_tune_frontend_49_p3 ; fe_status_t *var_dst_tune_frontend_49_p4 ; fe_status_t *var_dst_read_status_45_p1 ; u16 *var_dst_read_signal_strength_46_p1 ; u16 *var_dst_read_snr_47_p1 ; fe_sec_mini_cmd_t var_dst_send_burst_43_p1 ; struct dvb_diseqc_master_cmd *var_group3 ; fe_sec_voltage_t var_dst_set_voltage_41_p1 ; fe_sec_tone_mode_t var_dst_set_tone_42_p1 ; int ldv_s_dst_dvbt_ops_dvb_frontend_ops ; int ldv_s_dst_dvbs_ops_dvb_frontend_ops ; int ldv_s_dst_dvbc_ops_dvb_frontend_ops ; int ldv_s_dst_atsc_ops_dvb_frontend_ops ; int tmp ; int tmp___0 ; { ldv_s_dst_dvbt_ops_dvb_frontend_ops = 0; ldv_s_dst_dvbs_ops_dvb_frontend_ops = 0; ldv_s_dst_dvbc_ops_dvb_frontend_ops = 0; ldv_s_dst_atsc_ops_dvb_frontend_ops = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_33182; ldv_33181: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_s_dst_dvbt_ops_dvb_frontend_ops == 0) { ldv_handler_precall(); dst_release(var_group1); ldv_s_dst_dvbt_ops_dvb_frontend_ops = 0; } else { } goto ldv_33140; case 1: ldv_handler_precall(); dst_init(var_group1); goto ldv_33140; case 2: ldv_handler_precall(); dst_tune_frontend(var_group2, (int )var_dst_tune_frontend_49_p1, var_dst_tune_frontend_49_p2, var_dst_tune_frontend_49_p3, var_dst_tune_frontend_49_p4); goto ldv_33140; case 3: ldv_handler_precall(); dst_set_frontend(var_group1); goto ldv_33140; case 4: ldv_handler_precall(); dst_get_frontend(var_group1); goto ldv_33140; case 5: ldv_handler_precall(); dst_get_tuning_algo(var_group1); goto ldv_33140; case 6: ldv_handler_precall(); dst_read_status(var_group1, var_dst_read_status_45_p1); goto ldv_33140; case 7: ldv_handler_precall(); dst_read_signal_strength(var_group1, var_dst_read_signal_strength_46_p1); goto ldv_33140; case 8: ldv_handler_precall(); dst_read_snr(var_group1, var_dst_read_snr_47_p1); goto ldv_33140; case 9: ; if (ldv_s_dst_dvbs_ops_dvb_frontend_ops == 0) { ldv_handler_precall(); dst_release(var_group1); ldv_s_dst_dvbs_ops_dvb_frontend_ops = 0; } else { } goto ldv_33140; case 10: ldv_handler_precall(); dst_init(var_group1); goto ldv_33140; case 11: ldv_handler_precall(); dst_tune_frontend(var_group2, (int )var_dst_tune_frontend_49_p1, var_dst_tune_frontend_49_p2, var_dst_tune_frontend_49_p3, var_dst_tune_frontend_49_p4); goto ldv_33140; case 12: ldv_handler_precall(); dst_set_frontend(var_group1); goto ldv_33140; case 13: ldv_handler_precall(); dst_get_frontend(var_group1); goto ldv_33140; case 14: ldv_handler_precall(); dst_get_tuning_algo(var_group1); goto ldv_33140; case 15: ldv_handler_precall(); dst_read_status(var_group1, var_dst_read_status_45_p1); goto ldv_33140; case 16: ldv_handler_precall(); dst_read_signal_strength(var_group1, var_dst_read_signal_strength_46_p1); goto ldv_33140; case 17: ldv_handler_precall(); dst_read_snr(var_group1, var_dst_read_snr_47_p1); goto ldv_33140; case 18: ldv_handler_precall(); dst_send_burst(var_group1, var_dst_send_burst_43_p1); goto ldv_33140; case 19: ldv_handler_precall(); dst_set_diseqc(var_group1, var_group3); goto ldv_33140; case 20: ldv_handler_precall(); dst_set_voltage(var_group1, var_dst_set_voltage_41_p1); goto ldv_33140; case 21: ldv_handler_precall(); dst_set_tone(var_group1, var_dst_set_tone_42_p1); goto ldv_33140; case 22: ; if (ldv_s_dst_dvbc_ops_dvb_frontend_ops == 0) { ldv_handler_precall(); dst_release(var_group1); ldv_s_dst_dvbc_ops_dvb_frontend_ops = 0; } else { } goto ldv_33140; case 23: ldv_handler_precall(); dst_init(var_group1); goto ldv_33140; case 24: ldv_handler_precall(); dst_tune_frontend(var_group2, (int )var_dst_tune_frontend_49_p1, var_dst_tune_frontend_49_p2, var_dst_tune_frontend_49_p3, var_dst_tune_frontend_49_p4); goto ldv_33140; case 25: ldv_handler_precall(); dst_set_frontend(var_group1); goto ldv_33140; case 26: ldv_handler_precall(); dst_get_frontend(var_group1); goto ldv_33140; case 27: ldv_handler_precall(); dst_get_tuning_algo(var_group1); goto ldv_33140; case 28: ldv_handler_precall(); dst_read_status(var_group1, var_dst_read_status_45_p1); goto ldv_33140; case 29: ldv_handler_precall(); dst_read_signal_strength(var_group1, var_dst_read_signal_strength_46_p1); goto ldv_33140; case 30: ldv_handler_precall(); dst_read_snr(var_group1, var_dst_read_snr_47_p1); goto ldv_33140; case 31: ; if (ldv_s_dst_atsc_ops_dvb_frontend_ops == 0) { ldv_handler_precall(); dst_release(var_group1); ldv_s_dst_atsc_ops_dvb_frontend_ops = 0; } else { } goto ldv_33140; case 32: ldv_handler_precall(); dst_init(var_group1); goto ldv_33140; case 33: ldv_handler_precall(); dst_tune_frontend(var_group2, (int )var_dst_tune_frontend_49_p1, var_dst_tune_frontend_49_p2, var_dst_tune_frontend_49_p3, var_dst_tune_frontend_49_p4); goto ldv_33140; case 34: ldv_handler_precall(); dst_set_frontend(var_group1); goto ldv_33140; case 35: ldv_handler_precall(); dst_get_frontend(var_group1); goto ldv_33140; case 36: ldv_handler_precall(); dst_get_tuning_algo(var_group1); goto ldv_33140; case 37: ldv_handler_precall(); dst_read_status(var_group1, var_dst_read_status_45_p1); goto ldv_33140; case 38: ldv_handler_precall(); dst_read_signal_strength(var_group1, var_dst_read_signal_strength_46_p1); goto ldv_33140; case 39: ldv_handler_precall(); dst_read_snr(var_group1, var_dst_read_snr_47_p1); goto ldv_33140; default: ; goto ldv_33140; } ldv_33140: ; ldv_33182: tmp___0 = __VERIFIER_nondet_int(); if ((((tmp___0 != 0 || ldv_s_dst_dvbt_ops_dvb_frontend_ops != 0) || ldv_s_dst_dvbs_ops_dvb_frontend_ops != 0) || ldv_s_dst_dvbc_ops_dvb_frontend_ops != 0) || ldv_s_dst_atsc_ops_dvb_frontend_ops != 0) { goto ldv_33181; } else { } ldv_check_final_state(); return 0; } } void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_4(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_6(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_dst_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_dst_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_dst_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_dst_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_dst_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_dst_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } long ldv__builtin_expect(long exp , long c ) ; __inline static void ldv_error(void) __attribute__((__no_instrument_function__)) ; __inline static void ldv_error(void) { { ERROR: {reach_error();abort();} } } extern int __VERIFIER_nondet_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } static int ldv_mutex_cred_guard_mutex ; int ldv_mutex_lock_interruptible_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_cred_guard_mutex(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex = 2; return; } } int ldv_mutex_trylock_cred_guard_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_cred_guard_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_cred_guard_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_cred_guard_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_cred_guard_mutex(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex == 2) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex = 1; return; } } static int ldv_mutex_dst_mutex ; int ldv_mutex_lock_interruptible_dst_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_dst_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_dst_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_dst_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_dst_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_dst_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_dst_mutex(struct mutex *lock ) { { if (ldv_mutex_dst_mutex == 1) { } else { ldv_error(); } ldv_mutex_dst_mutex = 2; return; } } int ldv_mutex_trylock_dst_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_dst_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_dst_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_dst_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_dst_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_dst_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_dst_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_dst_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_dst_mutex(struct mutex *lock ) { { if (ldv_mutex_dst_mutex == 2) { } else { ldv_error(); } ldv_mutex_dst_mutex = 1; return; } } static int ldv_mutex_lock ; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 1) { } else { ldv_error(); } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 2) { } else { ldv_error(); } ldv_mutex_lock = 1; return; } } static int ldv_mutex_mutex ; int ldv_mutex_lock_interruptible_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex(struct mutex *lock ) { { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } ldv_mutex_mutex = 2; return; } } int ldv_mutex_trylock_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex(struct mutex *lock ) { { if (ldv_mutex_mutex == 2) { } else { ldv_error(); } ldv_mutex_mutex = 1; return; } } void ldv_initialize(void) { { ldv_mutex_cred_guard_mutex = 1; ldv_mutex_dst_mutex = 1; ldv_mutex_lock = 1; ldv_mutex_mutex = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } if (ldv_mutex_dst_mutex == 1) { } else { ldv_error(); } if (ldv_mutex_lock == 1) { } else { ldv_error(); } if (ldv_mutex_mutex == 1) { } else { ldv_error(); } return; } } #include "model/32_7a_cilled_true-unreach-call_linux-3.8-rc1-32_7a-drivers--media--pci--bt8xx--dst.ko-ldv_main0_sequence_infinite_withcheck_stateful.env.c" #include "model/common.env.c"