extern void abort(void); #include void reach_error() { assert(0); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u32 __le32; typedef __u64 __le64; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct module; typedef void (*ctor_fn_t)(void); struct file_operations; struct device; struct completion; struct pt_regs; struct pid; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_2024_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_2024_8 ldv_2024 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_ldv_2031_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct_ldv_2031_10 ldv_2031 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_2096_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2111_13 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2112_11 { struct __anonstruct_ldv_2096_12 ldv_2096 ; struct __anonstruct_ldv_2111_13 ldv_2111 ; }; struct desc_struct { union __anonunion_ldv_2112_11 ldv_2112 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct cpumask; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2767_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2767_18 ldv_2767 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5125_23 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5131_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5132_22 { struct __anonstruct_ldv_5125_23 ldv_5125 ; struct __anonstruct_ldv_5131_24 ldv_5131 ; }; union __anonunion_ldv_5141_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5132_22 ldv_5132 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5141_25 ldv_5141 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5960_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5961_28 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5960_29 ldv_5960 ; }; struct spinlock { union __anonunion_ldv_5961_28 ldv_5961 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[16U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct vm_area_struct; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; void const *(*namespace)(struct kobject * , struct attribute const * ) ; }; struct sysfs_dirent; struct timespec; struct kref { atomic_t refcount ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; int cpu ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool ignore_children ; bool early_init ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; void const *(*namespace)(struct class * , struct class_attribute const * ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_dev_node { void *handle ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct __anonstruct_nodemask_t_38 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_38 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct uprobe; struct uprobe_task { enum uprobe_task_state state ; struct arch_uprobe_task autask ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; unsigned long vaddr ; }; struct xol_area { wait_queue_head_t wq ; atomic_t slot_count ; unsigned long *bitmap ; struct page *page ; unsigned long vaddr ; }; struct uprobes_state { struct xol_area *xol_area ; }; struct __anonstruct_mm_context_t_39 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_39 mm_context_t; struct address_space; union __anonunion_ldv_10279_41 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_10289_45 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_10291_44 { atomic_t _mapcount ; struct __anonstruct_ldv_10289_45 ldv_10289 ; int units ; }; struct __anonstruct_ldv_10293_43 { union __anonunion_ldv_10291_44 ldv_10291 ; atomic_t _count ; }; union __anonunion_ldv_10294_42 { unsigned long counters ; struct __anonstruct_ldv_10293_43 ldv_10293 ; }; struct __anonstruct_ldv_10295_40 { union __anonunion_ldv_10279_41 ldv_10279 ; union __anonunion_ldv_10294_42 ldv_10294 ; }; struct __anonstruct_ldv_10302_47 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_10306_46 { struct list_head lru ; struct __anonstruct_ldv_10302_47 ldv_10302 ; struct list_head list ; struct slab *slab_page ; }; union __anonunion_ldv_10311_48 { unsigned long private ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; struct address_space *mapping ; struct __anonstruct_ldv_10295_40 ldv_10295 ; union __anonunion_ldv_10306_46 ldv_10306 ; union __anonunion_ldv_10311_48 ldv_10311 ; unsigned long debug_flags ; int _last_nid ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_50 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_49 { struct __anonstruct_linear_50 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_49 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_next_reset ; unsigned long numa_scan_offset ; int numa_scan_seq ; int first_nid ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; typedef uid_t kuid_t; typedef gid_t kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_141 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_141 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_143 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_144 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_145 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_146 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_147 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_148 { long _band ; int _fd ; }; struct __anonstruct__sigsys_149 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_142 { int _pad[28U] ; struct __anonstruct__kill_143 _kill ; struct __anonstruct__timer_144 _timer ; struct __anonstruct__rt_145 _rt ; struct __anonstruct__sigchld_146 _sigchld ; struct __anonstruct__sigfault_147 _sigfault ; struct __anonstruct__sigpoll_148 _sigpoll ; struct __anonstruct__sigsys_149 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_142 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct plist_head wait_list ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_list; union __anonunion_ldv_15952_154 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_15961_155 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_156 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_157 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_15952_154 ldv_15952 ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_15961_155 ldv_15961 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_156 type_data ; union __anonunion_payload_157 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct thread_group_cred; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kioctx; union __anonunion_ki_obj_158 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_158 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct list_head ki_batch ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct callback_head callback_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*migrate_task_rq)(struct task_struct * , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; int numa_migrate_seq ; unsigned int numa_scan_period ; u64 node_stamp ; struct callback_head numa_work ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; atomic_t ptrace_bp_refcnt ; struct uprobe_task *utask ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct proc_dir_entry; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; enum v4l2_tuner_type { V4L2_TUNER_RADIO = 1, V4L2_TUNER_ANALOG_TV = 2, V4L2_TUNER_DIGITAL_TV = 3 } ; typedef __u64 v4l2_std_id; struct __anonstruct_ldv_19401_181 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion_ldv_19402_180 { struct kmem_cache *memcg_caches[0U] ; struct __anonstruct_ldv_19401_181 ldv_19401 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_19402_180 ldv_19402 ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct tuner_i2c_props { u8 addr ; struct i2c_adapter *adap ; int count ; char *name ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_20107_186 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_20107_186 ldv_20107 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct static_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum fe_type { FE_QPSK = 0, FE_QAM = 1, FE_OFDM = 2, FE_ATSC = 3 } ; typedef enum fe_type fe_type_t; enum fe_caps { FE_IS_STUPID = 0, FE_CAN_INVERSION_AUTO = 1, FE_CAN_FEC_1_2 = 2, FE_CAN_FEC_2_3 = 4, FE_CAN_FEC_3_4 = 8, FE_CAN_FEC_4_5 = 16, FE_CAN_FEC_5_6 = 32, FE_CAN_FEC_6_7 = 64, FE_CAN_FEC_7_8 = 128, FE_CAN_FEC_8_9 = 256, FE_CAN_FEC_AUTO = 512, FE_CAN_QPSK = 1024, FE_CAN_QAM_16 = 2048, FE_CAN_QAM_32 = 4096, FE_CAN_QAM_64 = 8192, FE_CAN_QAM_128 = 16384, FE_CAN_QAM_256 = 32768, FE_CAN_QAM_AUTO = 65536, FE_CAN_TRANSMISSION_MODE_AUTO = 131072, FE_CAN_BANDWIDTH_AUTO = 262144, FE_CAN_GUARD_INTERVAL_AUTO = 524288, FE_CAN_HIERARCHY_AUTO = 1048576, FE_CAN_8VSB = 2097152, FE_CAN_16VSB = 4194304, FE_HAS_EXTENDED_CAPS = 8388608, FE_CAN_MULTISTREAM = 67108864, FE_CAN_TURBO_FEC = 134217728, FE_CAN_2G_MODULATION = 268435456, FE_NEEDS_BENDING = 536870912, FE_CAN_RECOVER = 1073741824, FE_CAN_MUTE_TS = 2147483648U } ; typedef enum fe_caps fe_caps_t; struct dvb_frontend_info { char name[128U] ; fe_type_t type ; __u32 frequency_min ; __u32 frequency_max ; __u32 frequency_stepsize ; __u32 frequency_tolerance ; __u32 symbol_rate_min ; __u32 symbol_rate_max ; __u32 symbol_rate_tolerance ; __u32 notifier_delay ; fe_caps_t caps ; }; struct dvb_diseqc_master_cmd { __u8 msg[6U] ; __u8 msg_len ; }; struct dvb_diseqc_slave_reply { __u8 msg[4U] ; __u8 msg_len ; int timeout ; }; enum fe_sec_voltage { SEC_VOLTAGE_13 = 0, SEC_VOLTAGE_18 = 1, SEC_VOLTAGE_OFF = 2 } ; typedef enum fe_sec_voltage fe_sec_voltage_t; enum fe_sec_tone_mode { SEC_TONE_ON = 0, SEC_TONE_OFF = 1 } ; typedef enum fe_sec_tone_mode fe_sec_tone_mode_t; enum fe_sec_mini_cmd { SEC_MINI_A = 0, SEC_MINI_B = 1 } ; typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t; enum fe_status { FE_HAS_SIGNAL = 1, FE_HAS_CARRIER = 2, FE_HAS_VITERBI = 4, FE_HAS_SYNC = 8, FE_HAS_LOCK = 16, FE_TIMEDOUT = 32, FE_REINIT = 64 } ; typedef enum fe_status fe_status_t; enum fe_spectral_inversion { INVERSION_OFF = 0, INVERSION_ON = 1, INVERSION_AUTO = 2 } ; typedef enum fe_spectral_inversion fe_spectral_inversion_t; enum fe_code_rate { FEC_NONE = 0, FEC_1_2 = 1, FEC_2_3 = 2, FEC_3_4 = 3, FEC_4_5 = 4, FEC_5_6 = 5, FEC_6_7 = 6, FEC_7_8 = 7, FEC_8_9 = 8, FEC_AUTO = 9, FEC_3_5 = 10, FEC_9_10 = 11, FEC_2_5 = 12 } ; typedef enum fe_code_rate fe_code_rate_t; enum fe_modulation { QPSK = 0, QAM_16 = 1, QAM_32 = 2, QAM_64 = 3, QAM_128 = 4, QAM_256 = 5, QAM_AUTO = 6, VSB_8 = 7, VSB_16 = 8, PSK_8 = 9, APSK_16 = 10, APSK_32 = 11, DQPSK = 12, QAM_4_NR = 13 } ; typedef enum fe_modulation fe_modulation_t; enum fe_transmit_mode { TRANSMISSION_MODE_2K = 0, TRANSMISSION_MODE_8K = 1, TRANSMISSION_MODE_AUTO = 2, TRANSMISSION_MODE_4K = 3, TRANSMISSION_MODE_1K = 4, TRANSMISSION_MODE_16K = 5, TRANSMISSION_MODE_32K = 6, TRANSMISSION_MODE_C1 = 7, TRANSMISSION_MODE_C3780 = 8 } ; typedef enum fe_transmit_mode fe_transmit_mode_t; enum fe_guard_interval { GUARD_INTERVAL_1_32 = 0, GUARD_INTERVAL_1_16 = 1, GUARD_INTERVAL_1_8 = 2, GUARD_INTERVAL_1_4 = 3, GUARD_INTERVAL_AUTO = 4, GUARD_INTERVAL_1_128 = 5, GUARD_INTERVAL_19_128 = 6, GUARD_INTERVAL_19_256 = 7, GUARD_INTERVAL_PN420 = 8, GUARD_INTERVAL_PN595 = 9, GUARD_INTERVAL_PN945 = 10 } ; typedef enum fe_guard_interval fe_guard_interval_t; enum fe_hierarchy { HIERARCHY_NONE = 0, HIERARCHY_1 = 1, HIERARCHY_2 = 2, HIERARCHY_4 = 3, HIERARCHY_AUTO = 4 } ; typedef enum fe_hierarchy fe_hierarchy_t; enum fe_interleaving { INTERLEAVING_NONE = 0, INTERLEAVING_AUTO = 1, INTERLEAVING_240 = 2, INTERLEAVING_720 = 3 } ; enum fe_pilot { PILOT_ON = 0, PILOT_OFF = 1, PILOT_AUTO = 2 } ; typedef enum fe_pilot fe_pilot_t; enum fe_rolloff { ROLLOFF_35 = 0, ROLLOFF_20 = 1, ROLLOFF_25 = 2, ROLLOFF_AUTO = 3 } ; typedef enum fe_rolloff fe_rolloff_t; enum fe_delivery_system { SYS_UNDEFINED = 0, SYS_DVBC_ANNEX_A = 1, SYS_DVBC_ANNEX_B = 2, SYS_DVBT = 3, SYS_DSS = 4, SYS_DVBS = 5, SYS_DVBS2 = 6, SYS_DVBH = 7, SYS_ISDBT = 8, SYS_ISDBS = 9, SYS_ISDBC = 10, SYS_ATSC = 11, SYS_ATSCMH = 12, SYS_DTMB = 13, SYS_CMMB = 14, SYS_DAB = 15, SYS_DVBT2 = 16, SYS_TURBO = 17, SYS_DVBC_ANNEX_C = 18 } ; typedef enum fe_delivery_system fe_delivery_system_t; struct __anonstruct_buffer_188 { __u8 data[32U] ; __u32 len ; __u32 reserved1[3U] ; void *reserved2 ; }; union __anonunion_u_187 { __u32 data ; struct __anonstruct_buffer_188 buffer ; }; struct dtv_property { __u32 cmd ; __u32 reserved[3U] ; union __anonunion_u_187 u ; int result ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct_ldv_20959_190 { u32 hash ; u32 len ; }; union __anonunion_ldv_20961_189 { struct __anonstruct_ldv_20959_190 ldv_20959 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_20961_189 ldv_20961 ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_191 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_191 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; }; struct shrinker { int (*shrink)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; struct list_head list ; atomic_long_t nr_in_batch ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t projid_t; typedef projid_t kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_21710_192 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_21710_192 ldv_21710 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; union __anonunion_arg_194 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_193 { size_t written ; size_t count ; union __anonunion_arg_194 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_193 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_22144_195 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_22164_196 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_22180_197 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_22144_195 ldv_22144 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_22164_196 ldv_22164 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_22180_197 ldv_22180 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_198 { struct list_head fu_list ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_198 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_200 { struct list_head link ; int state ; }; union __anonunion_fl_u_199 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_200 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_199 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_mounts ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; spinlock_t s_inode_lru_lock ; struct list_head s_inode_lru ; int s_nr_inodes_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; int (*nr_cached_objects)(struct super_block * ) ; void (*free_cached_objects)(struct super_block * , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct dvb_frontend; struct dvb_device; struct dvb_adapter { int num ; struct list_head list_head ; struct list_head device_list ; char const *name ; u8 proposed_mac[6U] ; void *priv ; struct device *device ; struct module *module ; int mfe_shared ; struct dvb_device *mfe_dvbdev ; struct mutex mfe_lock ; }; struct dvb_device { struct list_head list_head ; struct file_operations const *fops ; struct dvb_adapter *adapter ; int type ; int minor ; u32 id ; int readers ; int writers ; int users ; wait_queue_head_t wait_queue ; int (*kernel_ioctl)(struct file * , unsigned int , void * ) ; void *priv ; }; struct dvb_frontend_tune_settings { int min_delay_ms ; int step_size ; int max_drift ; }; struct dvb_tuner_info { char name[128U] ; u32 frequency_min ; u32 frequency_max ; u32 frequency_step ; u32 bandwidth_min ; u32 bandwidth_max ; u32 bandwidth_step ; }; struct analog_parameters { unsigned int frequency ; unsigned int mode ; unsigned int audmode ; u64 std ; }; enum tuner_param { DVBFE_TUNER_FREQUENCY = 1, DVBFE_TUNER_TUNERSTEP = 2, DVBFE_TUNER_IFFREQ = 4, DVBFE_TUNER_BANDWIDTH = 8, DVBFE_TUNER_REFCLOCK = 16, DVBFE_TUNER_IQSENSE = 32, DVBFE_TUNER_DUMMY = (-0x7FFFFFFF-1) } ; enum dvbfe_algo { DVBFE_ALGO_HW = 1, DVBFE_ALGO_SW = 2, DVBFE_ALGO_CUSTOM = 4, DVBFE_ALGO_RECOVERY = (-0x7FFFFFFF-1) } ; struct tuner_state { u32 frequency ; u32 tunerstep ; u32 ifreq ; u32 bandwidth ; u32 iqsense ; u32 refclock ; }; enum dvbfe_search { DVBFE_ALGO_SEARCH_SUCCESS = 1, DVBFE_ALGO_SEARCH_ASLEEP = 2, DVBFE_ALGO_SEARCH_FAILED = 4, DVBFE_ALGO_SEARCH_INVALID = 8, DVBFE_ALGO_SEARCH_AGAIN = 16, DVBFE_ALGO_SEARCH_ERROR = (-0x7FFFFFFF-1) } ; struct dvb_tuner_ops { struct dvb_tuner_info info ; int (*release)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*set_params)(struct dvb_frontend * ) ; int (*set_analog_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*calc_regs)(struct dvb_frontend * , u8 * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; int (*get_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*get_if_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_status)(struct dvb_frontend * , u32 * ) ; int (*get_rf_strength)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; int (*set_frequency)(struct dvb_frontend * , u32 ) ; int (*set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*set_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; int (*get_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; }; struct analog_demod_info { char *name ; }; struct analog_demod_ops { struct analog_demod_info info ; void (*set_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*has_signal)(struct dvb_frontend * ) ; int (*get_afc)(struct dvb_frontend * ) ; void (*tuner_status)(struct dvb_frontend * ) ; void (*standby)(struct dvb_frontend * ) ; void (*release)(struct dvb_frontend * ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; }; struct dtv_frontend_properties; struct dvb_frontend_ops { struct dvb_frontend_info info ; u8 delsys[8U] ; void (*release)(struct dvb_frontend * ) ; void (*release_sec)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*write)(struct dvb_frontend * , u8 const * , int ) ; int (*tune)(struct dvb_frontend * , bool , unsigned int , unsigned int * , fe_status_t * ) ; enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend * ) ; int (*set_frontend)(struct dvb_frontend * ) ; int (*get_tune_settings)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ) ; int (*get_frontend)(struct dvb_frontend * ) ; int (*read_status)(struct dvb_frontend * , fe_status_t * ) ; int (*read_ber)(struct dvb_frontend * , u32 * ) ; int (*read_signal_strength)(struct dvb_frontend * , u16 * ) ; int (*read_snr)(struct dvb_frontend * , u16 * ) ; int (*read_ucblocks)(struct dvb_frontend * , u32 * ) ; int (*diseqc_reset_overload)(struct dvb_frontend * ) ; int (*diseqc_send_master_cmd)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ) ; int (*diseqc_recv_slave_reply)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ) ; int (*diseqc_send_burst)(struct dvb_frontend * , fe_sec_mini_cmd_t ) ; int (*set_tone)(struct dvb_frontend * , fe_sec_tone_mode_t ) ; int (*set_voltage)(struct dvb_frontend * , fe_sec_voltage_t ) ; int (*enable_high_lnb_voltage)(struct dvb_frontend * , long ) ; int (*dishnetwork_send_legacy_command)(struct dvb_frontend * , unsigned long ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*ts_bus_ctrl)(struct dvb_frontend * , int ) ; int (*set_lna)(struct dvb_frontend * ) ; enum dvbfe_search (*search)(struct dvb_frontend * ) ; struct dvb_tuner_ops tuner_ops ; struct analog_demod_ops analog_ops ; int (*set_property)(struct dvb_frontend * , struct dtv_property * ) ; int (*get_property)(struct dvb_frontend * , struct dtv_property * ) ; }; struct __anonstruct_layer_202 { u8 segment_count ; fe_code_rate_t fec ; fe_modulation_t modulation ; u8 interleaving ; }; struct dtv_frontend_properties { u32 state ; u32 frequency ; fe_modulation_t modulation ; fe_sec_voltage_t voltage ; fe_sec_tone_mode_t sectone ; fe_spectral_inversion_t inversion ; fe_code_rate_t fec_inner ; fe_transmit_mode_t transmission_mode ; u32 bandwidth_hz ; fe_guard_interval_t guard_interval ; fe_hierarchy_t hierarchy ; u32 symbol_rate ; fe_code_rate_t code_rate_HP ; fe_code_rate_t code_rate_LP ; fe_pilot_t pilot ; fe_rolloff_t rolloff ; fe_delivery_system_t delivery_system ; enum fe_interleaving interleaving ; u8 isdbt_partial_reception ; u8 isdbt_sb_mode ; u8 isdbt_sb_subchannel ; u32 isdbt_sb_segment_idx ; u32 isdbt_sb_segment_count ; u8 isdbt_layer_enabled ; struct __anonstruct_layer_202 layer[3U] ; u32 stream_id ; u8 atscmh_fic_ver ; u8 atscmh_parade_id ; u8 atscmh_nog ; u8 atscmh_tnog ; u8 atscmh_sgn ; u8 atscmh_prc ; u8 atscmh_rs_frame_mode ; u8 atscmh_rs_frame_ensemble ; u8 atscmh_rs_code_mode_pri ; u8 atscmh_rs_code_mode_sec ; u8 atscmh_sccc_block_mode ; u8 atscmh_sccc_code_mode_a ; u8 atscmh_sccc_code_mode_b ; u8 atscmh_sccc_code_mode_c ; u8 atscmh_sccc_code_mode_d ; u32 lna ; }; struct dvb_frontend { struct dvb_frontend_ops ops ; struct dvb_adapter *dvb ; void *demodulator_priv ; void *tuner_priv ; void *frontend_priv ; void *sec_priv ; void *analog_demod_priv ; struct dtv_frontend_properties dtv_property_cache ; int (*callback)(void * , int , int , int ) ; int id ; }; struct xc2028_ctrl { char *fname ; int max_len ; int msleep ; unsigned int scode_table ; unsigned char mts : 1 ; unsigned char input1 : 1 ; unsigned char vhfbw7 : 1 ; unsigned char uhfbw8 : 1 ; unsigned char disable_power_mgmt : 1 ; unsigned char read_not_reliable : 1 ; unsigned int demod ; unsigned char type : 2 ; }; struct xc2028_config { struct i2c_adapter *i2c_adap ; u8 i2c_addr ; struct xc2028_ctrl *ctrl ; }; struct firmware_description { unsigned int type ; v4l2_std_id id ; __u16 int_freq ; unsigned char *ptr ; unsigned int size ; }; struct firmware_properties { unsigned int type ; v4l2_std_id id ; v4l2_std_id std_req ; __u16 int_freq ; unsigned int scode_table ; int scode_nr ; }; enum xc2028_state { XC2028_NO_FIRMWARE = 0, XC2028_WAITING_FIRMWARE = 1, XC2028_ACTIVE = 2, XC2028_SLEEP = 3, XC2028_NODEV = 4 } ; struct xc2028_data { struct list_head hybrid_tuner_instance_list ; struct tuner_i2c_props i2c_props ; __u32 frequency ; enum xc2028_state state ; char const *fname ; struct firmware_description *firm ; int firm_size ; __u16 firm_version ; __u16 hwmodel ; __u16 hwvers ; struct xc2028_ctrl ctrl ; struct firmware_properties cur_fw ; struct mutex lock ; }; typedef int ldv_func_ret_type___2; __inline static unsigned long __arch_hweight64(__u64 w ) { unsigned long res ; { res = 0UL; __asm__ ("661:\n\tcall __sw_hweight64\n662:\n.pushsection .altinstructions,\"a\"\n .long 661b - .\n .long 6631f - .\n .word (4*32+23)\n .byte 662b-661b\n .byte 6641f-6631f\n.popsection\n.pushsection .discard,\"aw\",@progbits\n .byte 0xff + (6641f-6631f) - (662b-661b)\n.popsection\n.pushsection .altinstr_replacement, \"ax\"\n6631:\n\t.byte 0xf3,0x48,0x0f,0xb8,0xc7\n6641:\n\t.popsection": "=a" (res): "D" (w)); return (res); } } __inline static __u64 __le64_to_cpup(__le64 const *p ) { { return ((__u64 )*p); } } __inline static __u32 __le32_to_cpup(__le32 const *p ) { { return ((__u32 )*p); } } __inline static __u16 __le16_to_cpup(__le16 const *p ) { { return ((__u16 )*p); } } extern int printk(char const * , ...) ; extern void dump_stack(void) ; extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int strcmp(char const * , char const * ) ; extern int strcasecmp(char const * , char const * ) ; extern char *kstrdup(char const * , gfp_t ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_6(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_cred_guard_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_cred_guard_mutex(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex(struct mutex *lock ) ; int ldv_mutex_trylock_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_mutex(struct mutex *lock ) ; void ldv_mutex_lock_xc2028_list_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_xc2028_list_mutex(struct mutex *lock ) ; extern int i2c_transfer(struct i2c_adapter * , struct i2c_msg * , int ) ; __inline static int i2c_adapter_id(struct i2c_adapter *adap ) { { return (adap->nr); } } extern int request_firmware_nowait(struct module * , bool , char const * , struct device * , gfp_t , void * , void (*)(struct firmware const * , void * ) ) ; extern void release_firmware(struct firmware const * ) ; extern void msleep(unsigned int ) ; extern void kfree(void const * ) ; extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } extern void *malloc(size_t size); long ldv_is_err(const void *ptr) { return ((unsigned long)ptr > ((unsigned long)-4095)); } void *ldv_malloc(size_t size) { if (__VERIFIER_nondet_int()) { void *res = malloc(size); assume_abort_if_not(!ldv_is_err(res)); return res; } else { return ((void *)0); } } void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && 0xffffffffffffffffUL / size < n) { return (0); } else { } tmp = __kmalloc(n * size, flags); return (tmp); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc_array(n, size, flags | 32768U); return (tmp); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } __inline static u16 get_unaligned_le16(void const *p ) { __u16 tmp ; { tmp = __le16_to_cpup((__le16 const *)p); return (tmp); } } __inline static u32 get_unaligned_le32(void const *p ) { __u32 tmp ; { tmp = __le32_to_cpup((__le32 const *)p); return (tmp); } } __inline static u64 get_unaligned_le64(void const *p ) { __u64 tmp ; { tmp = __le64_to_cpup((__le64 const *)p); return (tmp); } } __inline static int tuner_i2c_xfer_send(struct tuner_i2c_props *props , char *buf , int len ) { struct i2c_msg msg ; int ret ; int tmp ; { msg.addr = (unsigned short )props->addr; msg.flags = 0U; msg.len = (unsigned short )len; msg.buf = (__u8 *)buf; tmp = i2c_transfer(props->adap, & msg, 1); ret = tmp; return (ret == 1 ? len : ret); } } __inline static int tuner_i2c_xfer_send_recv(struct tuner_i2c_props *props , char *obuf , int olen , char *ibuf , int ilen ) { struct i2c_msg msg[2U] ; int ret ; int tmp ; { msg[0].addr = (unsigned short )props->addr; msg[0].flags = 0U; msg[0].len = (unsigned short )olen; msg[0].buf = (__u8 *)obuf; msg[1].addr = (unsigned short )props->addr; msg[1].flags = 1U; msg[1].len = (unsigned short )ilen; msg[1].buf = (__u8 *)ibuf; tmp = i2c_transfer(props->adap, (struct i2c_msg *)(& msg), 2); ret = tmp; return (ret == 2 ? ilen : ret); } } extern struct module __this_module ; struct dvb_frontend *xc2028_attach(struct dvb_frontend *fe , struct xc2028_config *cfg ) ; static int debug ; static int no_poweroff ; static char audio_std[8U] ; static char firmware_name[30U] ; static struct list_head hybrid_tuner_instance_list = {& hybrid_tuner_instance_list, & hybrid_tuner_instance_list}; static struct mutex xc2028_list_mutex = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, 0xffffffffffffffffUL, {0, {0, 0}, "xc2028_list_mutex.wait_lock", 0, 0UL}}}}, {& xc2028_list_mutex.wait_list, & xc2028_list_mutex.wait_list}, 0, 0, (void *)(& xc2028_list_mutex), {0, {0, 0}, "xc2028_list_mutex", 0, 0UL}}; static int xc2028_get_reg(struct xc2028_data *priv , u16 reg , u16 *val ) { unsigned char buf[2U] ; unsigned char ibuf[2U] ; int tmp ; int tmp___0 ; int _rc ; int tmp___1 ; int tmp___2 ; { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s %04x called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "xc2028_get_reg", (int )reg); } else { } buf[0] = (unsigned char )((int )reg >> 8); buf[1] = (unsigned char )reg; _rc = tuner_i2c_xfer_send_recv(& priv->i2c_props, (char *)(& buf), 2, (char *)(& ibuf), 2); if (_rc != 2) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\v%s %d-%04x: i2c input error: rc = %d (should be %d)\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr, _rc, 2); } else { } if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } if (_rc != 2) { return (-5); } else { } *val = (u16 )((int )((short )ibuf[1]) | (int )((short )((int )ibuf[0] << 8))); return (0); } } static void dump_firm_type_and_int_freq(unsigned int type , u16 int_freq ) { { if ((int )type & 1) { printk("BASE "); } else { } if ((type & 16384U) != 0U) { printk("INIT1 "); } else { } if ((type & 2U) != 0U) { printk("F8MHZ "); } else { } if ((type & 4U) != 0U) { printk("MTS "); } else { } if ((type & 8U) != 0U) { printk("D2620 "); } else { } if ((type & 16U) != 0U) { printk("D2633 "); } else { } if ((type & 32U) != 0U) { printk("DTV6 "); } else { } if ((type & 64U) != 0U) { printk("QAM "); } else { } if ((type & 128U) != 0U) { printk("DTV7 "); } else { } if ((type & 256U) != 0U) { printk("DTV78 "); } else { } if ((type & 512U) != 0U) { printk("DTV8 "); } else { } if ((type & 1024U) != 0U) { printk("FM "); } else { } if ((type & 2048U) != 0U) { printk("INPUT1 "); } else { } if ((type & 4096U) != 0U) { printk("LCD "); } else { } if ((type & 8192U) != 0U) { printk("NOGD "); } else { } if ((type & 32768U) != 0U) { printk("MONO "); } else { } if ((type & 65536U) != 0U) { printk("ATSC "); } else { } if ((type & 131072U) != 0U) { printk("IF "); } else { } if ((type & 262144U) != 0U) { printk("LG60 "); } else { } if ((type & 524288U) != 0U) { printk("ATI638 "); } else { } if ((type & 1048576U) != 0U) { printk("OREN538 "); } else { } if ((type & 2097152U) != 0U) { printk("OREN36 "); } else { } if ((type & 4194304U) != 0U) { printk("TOYOTA388 "); } else { } if ((type & 8388608U) != 0U) { printk("TOYOTA794 "); } else { } if ((type & 16777216U) != 0U) { printk("DIBCOM52 "); } else { } if ((type & 33554432U) != 0U) { printk("ZARLINK456 "); } else { } if ((type & 67108864U) != 0U) { printk("CHINA "); } else { } if ((type & 134217728U) != 0U) { printk("F6MHZ "); } else { } if ((type & 268435456U) != 0U) { printk("INPUT2 "); } else { } if ((type & 536870912U) != 0U) { printk("SCODE "); } else { } if ((type & 1073741824U) != 0U) { printk("HAS_IF_%d ", (int )int_freq); } else { } return; } } static v4l2_std_id parse_audio_std_option(void) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { tmp = strcasecmp((char const *)(& audio_std), "A2"); if (tmp == 0) { return (12884901888ULL); } else { } tmp___0 = strcasecmp((char const *)(& audio_std), "A2/A"); if (tmp___0 == 0) { return (4294967296ULL); } else { } tmp___1 = strcasecmp((char const *)(& audio_std), "A2/B"); if (tmp___1 == 0) { return (8589934592ULL); } else { } tmp___2 = strcasecmp((char const *)(& audio_std), "NICAM"); if (tmp___2 == 0) { return (51539607552ULL); } else { } tmp___3 = strcasecmp((char const *)(& audio_std), "NICAM/A"); if (tmp___3 == 0) { return (17179869184ULL); } else { } tmp___4 = strcasecmp((char const *)(& audio_std), "NICAM/B"); if (tmp___4 == 0) { return (34359738368ULL); } else { } return (0ULL); } } static int check_device_status(struct xc2028_data *priv ) { { switch ((unsigned int )priv->state) { case 0U: ; case 1U: ; return (-11); case 2U: ; case 3U: ; return (0); case 4U: ; return (-19); } return (0); } } static void free_firmware(struct xc2028_data *priv ) { int i ; int tmp ; int tmp___0 ; { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "free_firmware"); } else { } if ((unsigned long )priv->firm == (unsigned long )((struct firmware_description *)0)) { return; } else { } i = 0; goto ldv_24935; ldv_24934: kfree((void const *)(priv->firm + (unsigned long )i)->ptr); i = i + 1; ldv_24935: ; if (priv->firm_size > i) { goto ldv_24934; } else { } kfree((void const *)priv->firm); priv->firm = 0; priv->firm_size = 0; priv->state = 0; memset((void *)(& priv->cur_fw), 0, 40UL); return; } } static int load_all_firmwares(struct dvb_frontend *fe , struct firmware const *fw ) { struct xc2028_data *priv ; unsigned char const *p ; unsigned char const *endp ; int rc ; int n ; int n_array ; char name[33U] ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; size_t __len ; void *__ret ; u16 tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; int tmp___7 ; int tmp___8 ; __u32 type ; __u32 size ; v4l2_std_id id ; __u16 int_freq ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; void *tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; size_t __len___0 ; void *__ret___0 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; { priv = (struct xc2028_data *)fe->tuner_priv; rc = 0; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "load_all_firmwares"); } else { } p = (unsigned char const *)fw->data; endp = p + fw->size; if ((unsigned long )fw->size <= 35UL) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\v%s %d-%04x: Error: firmware file %s has invalid size!\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr, priv->fname); goto corrupt; } else { } __len = 32UL; if (__len > 63UL) { __ret = memcpy((void *)(& name), (void const *)p, __len); } else { __ret = memcpy((void *)(& name), (void const *)p, __len); } name[32UL] = 0; p = p + 32UL; priv->firm_version = get_unaligned_le16((void const *)p); p = p + 2UL; tmp___3 = get_unaligned_le16((void const *)p); n_array = (int )tmp___3; p = p + 2UL; if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___4 = i2c_adapter_id(priv->i2c_props.adap); tmp___5 = tmp___4; } else { tmp___5 = -1; } printk("\016%s %d-%04x: Loading %d firmware images from %s, type: %s, ver %d.%d\n", priv->i2c_props.name, tmp___5, (int )priv->i2c_props.addr, n_array, priv->fname, (char *)(& name), (int )priv->firm_version >> 8, (int )priv->firm_version & 255); tmp___6 = kcalloc((size_t )n_array, 40UL, 208U); priv->firm = (struct firmware_description *)tmp___6; if ((unsigned long )priv->firm == (unsigned long )((struct firmware_description *)0)) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___7 = i2c_adapter_id(priv->i2c_props.adap); tmp___8 = tmp___7; } else { tmp___8 = -1; } printk("\v%s %d-%04x: Not enough memory to load firmware file.\n", priv->i2c_props.name, tmp___8, (int )priv->i2c_props.addr); rc = -12; goto err; } else { } priv->firm_size = n_array; n = -1; goto ldv_24963; ldv_24962: int_freq = 0U; n = n + 1; if (n >= n_array) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___9 = i2c_adapter_id(priv->i2c_props.adap); tmp___10 = tmp___9; } else { tmp___10 = -1; } printk("\v%s %d-%04x: More firmware images in file than were expected!\n", priv->i2c_props.name, tmp___10, (int )priv->i2c_props.addr); goto corrupt; } else { } if ((unsigned long )((long )endp - (long )p) <= 15UL) { goto header; } else { } type = get_unaligned_le32((void const *)p); p = p + 4UL; id = get_unaligned_le64((void const *)p); p = p + 8UL; if ((type & 1073741824U) != 0U) { int_freq = get_unaligned_le16((void const *)p); p = p + 2UL; if ((unsigned long )((long )endp - (long )p) <= 3UL) { goto header; } else { } } else { } size = get_unaligned_le32((void const *)p); p = p + 4UL; if (size == 0U || (long )size > (long )endp - (long )p) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___11 = i2c_adapter_id(priv->i2c_props.adap); tmp___12 = tmp___11; } else { tmp___12 = -1; } printk("\v%s %d-%04x: Firmware type ", priv->i2c_props.name, tmp___12, (int )priv->i2c_props.addr); dump_firm_type_and_int_freq(type, 0); printk("(%x), id %llx is corrupted (size=%d, expected %d)\n", type, id, (unsigned int )((long )endp) - (unsigned int )((long )p), size); goto corrupt; } else { } tmp___13 = kzalloc((size_t )size, 208U); (priv->firm + (unsigned long )n)->ptr = (unsigned char *)tmp___13; if ((unsigned long )(priv->firm + (unsigned long )n)->ptr == (unsigned long )((unsigned char *)0)) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___14 = i2c_adapter_id(priv->i2c_props.adap); tmp___15 = tmp___14; } else { tmp___15 = -1; } printk("\v%s %d-%04x: Not enough memory to load firmware file.\n", priv->i2c_props.name, tmp___15, (int )priv->i2c_props.addr); rc = -12; goto err; } else { } if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___16 = i2c_adapter_id(priv->i2c_props.adap); tmp___17 = tmp___16; } else { tmp___17 = -1; } printk("\017%s %d-%04x: Reading firmware type ", priv->i2c_props.name, tmp___17, (int )priv->i2c_props.addr); } else { } if (debug != 0) { dump_firm_type_and_int_freq(type, (int )int_freq); printk("(%x), id %llx, size=%d.\n", type, id, size); } else { } __len___0 = (size_t )size; __ret___0 = memcpy((void *)(priv->firm + (unsigned long )n)->ptr, (void const *)p, __len___0); (priv->firm + (unsigned long )n)->type = type; (priv->firm + (unsigned long )n)->id = id; (priv->firm + (unsigned long )n)->size = size; (priv->firm + (unsigned long )n)->int_freq = int_freq; p = p + (unsigned long )size; ldv_24963: ; if ((unsigned long )p < (unsigned long )endp) { goto ldv_24962; } else { } if (n + 1 != priv->firm_size) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___18 = i2c_adapter_id(priv->i2c_props.adap); tmp___19 = tmp___18; } else { tmp___19 = -1; } printk("\v%s %d-%04x: Firmware file is incomplete!\n", priv->i2c_props.name, tmp___19, (int )priv->i2c_props.addr); goto corrupt; } else { } goto done; header: ; if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___20 = i2c_adapter_id(priv->i2c_props.adap); tmp___21 = tmp___20; } else { tmp___21 = -1; } printk("\v%s %d-%04x: Firmware header is incomplete!\n", priv->i2c_props.name, tmp___21, (int )priv->i2c_props.addr); corrupt: rc = -22; if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___22 = i2c_adapter_id(priv->i2c_props.adap); tmp___23 = tmp___22; } else { tmp___23 = -1; } printk("\v%s %d-%04x: Error: firmware file is corrupted!\n", priv->i2c_props.name, tmp___23, (int )priv->i2c_props.addr); err: ; if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___24 = i2c_adapter_id(priv->i2c_props.adap); tmp___25 = tmp___24; } else { tmp___25 = -1; } printk("\016%s %d-%04x: Releasing partially loaded firmware file.\n", priv->i2c_props.name, tmp___25, (int )priv->i2c_props.addr); free_firmware(priv); done: ; if (rc == 0) { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___26 = i2c_adapter_id(priv->i2c_props.adap); tmp___27 = tmp___26; } else { tmp___27 = -1; } printk("\017%s %d-%04x: Firmware files loaded.\n", priv->i2c_props.name, tmp___27, (int )priv->i2c_props.addr); } else { priv->state = 4; } } else { } return (rc); } } static int seek_firmware(struct dvb_frontend *fe , unsigned int type , v4l2_std_id *id ) { struct xc2028_data *priv ; int i ; int best_i ; int best_nr_matches ; unsigned int type_mask ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; v4l2_std_id match_mask ; int nr_matches ; unsigned long tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { priv = (struct xc2028_data *)fe->tuner_priv; best_i = -1; best_nr_matches = 0; type_mask = 0U; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called, want type=", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "seek_firmware"); } else { } if (debug != 0) { dump_firm_type_and_int_freq(type, 0); printk("(%x), id %016llx.\n", type, *id); } else { } if ((unsigned long )priv->firm == (unsigned long )((struct firmware_description *)0)) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\v%s %d-%04x: Error! firmware not loaded\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr); return (-22); } else { } if ((type & 3758096383U) == 0U && *id == 0ULL) { *id = 255ULL; } else { } if ((int )type & 1) { type_mask = 268454919U; } else if ((type & 536870912U) != 0U) { type = type & 536870916U; type_mask = 536870916U; } else if ((type & 66552U) != 0U) { type_mask = 66552U; } else if ((type & 13316U) != 0U) { type_mask = 13316U; } else { } type = type & type_mask; if ((type & 536870912U) == 0U) { type_mask = 4294967295U; } else { } i = 0; goto ldv_24979; ldv_24978: ; if (((priv->firm + (unsigned long )i)->type & type_mask) == type && *id == (priv->firm + (unsigned long )i)->id) { goto found; } else { } i = i + 1; ldv_24979: ; if (priv->firm_size > i) { goto ldv_24978; } else { } i = 0; goto ldv_24985; ldv_24984: ; if (((priv->firm + (unsigned long )i)->type & type_mask) != type) { goto ldv_24983; } else { } match_mask = *id & (priv->firm + (unsigned long )i)->id; if (match_mask == 0ULL) { goto ldv_24983; } else { } if ((*id & match_mask) == *id) { goto found; } else { } tmp___3 = __arch_hweight64(match_mask); nr_matches = (int )tmp___3; if (nr_matches > best_nr_matches) { best_nr_matches = nr_matches; best_i = i; } else { } ldv_24983: i = i + 1; ldv_24985: ; if (priv->firm_size > i) { goto ldv_24984; } else { } if (best_nr_matches > 0) { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___4 = i2c_adapter_id(priv->i2c_props.adap); tmp___5 = tmp___4; } else { tmp___5 = -1; } printk("\017%s %d-%04x: Selecting best matching firmware (%d bits) for type=", priv->i2c_props.name, tmp___5, (int )priv->i2c_props.addr, best_nr_matches); } else { } dump_firm_type_and_int_freq(type, 0); printk("(%x), id %016llx:\n", type, *id); i = best_i; goto found; } else { } i = -2; goto ret; found: *id = (priv->firm + (unsigned long )i)->id; ret: ; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___6 = i2c_adapter_id(priv->i2c_props.adap); tmp___7 = tmp___6; } else { tmp___7 = -1; } printk("\017%s %d-%04x: %s firmware for type=", priv->i2c_props.name, tmp___7, (int )priv->i2c_props.addr, i < 0 ? (char *)"Can\'t find" : (char *)"Found"); } else { } if (debug != 0) { dump_firm_type_and_int_freq(type, 0); printk("(%x), id %016llx.\n", type, *id); } else { } return (i); } } __inline static int do_tuner_callback(struct dvb_frontend *fe , int cmd , int arg ) { struct xc2028_data *priv ; int tmp ; int tmp___0 ; { priv = (struct xc2028_data *)fe->tuner_priv; if ((unsigned long )fe->callback != (unsigned long )((int (*)(void * , int , int , int ))0)) { tmp = (*(fe->callback))((unsigned long )fe->dvb != (unsigned long )((struct dvb_adapter *)0) && (unsigned long )(fe->dvb)->priv != (unsigned long )((void *)0) ? (fe->dvb)->priv : (priv->i2c_props.adap)->algo_data, 0, cmd, arg); tmp___0 = tmp; } else { tmp___0 = -22; } return (tmp___0); } } static int load_firmware(struct dvb_frontend *fe , unsigned int type , v4l2_std_id *id ) { struct xc2028_data *priv ; int pos ; int rc ; unsigned char *p ; unsigned char *endp ; unsigned char *buf ; unsigned long __lengthofbuf ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; __u16 size ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int len ; size_t __len ; void *__ret ; int _rc ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; { priv = (struct xc2028_data *)fe->tuner_priv; __lengthofbuf = (unsigned long )((long )priv->ctrl.max_len); tmp = __builtin_alloca(sizeof(*buf) * __lengthofbuf); buf = (unsigned char *)tmp; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___0 = i2c_adapter_id(priv->i2c_props.adap); tmp___1 = tmp___0; } else { tmp___1 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___1, (int )priv->i2c_props.addr, "load_firmware"); } else { } pos = seek_firmware(fe, type, id); if (pos < 0) { return (pos); } else { } if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___2 = i2c_adapter_id(priv->i2c_props.adap); tmp___3 = tmp___2; } else { tmp___3 = -1; } printk("\016%s %d-%04x: Loading firmware for type=", priv->i2c_props.name, tmp___3, (int )priv->i2c_props.addr); dump_firm_type_and_int_freq((priv->firm + (unsigned long )pos)->type, 0); printk("(%x), id %016llx.\n", (priv->firm + (unsigned long )pos)->type, *id); p = (priv->firm + (unsigned long )pos)->ptr; endp = p + (unsigned long )(priv->firm + (unsigned long )pos)->size; goto ldv_25007; ldv_25020: ; if ((unsigned long )(p + 2UL) > (unsigned long )endp) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___4 = i2c_adapter_id(priv->i2c_props.adap); tmp___5 = tmp___4; } else { tmp___5 = -1; } printk("\v%s %d-%04x: Firmware chunk size is wrong\n", priv->i2c_props.name, tmp___5, (int )priv->i2c_props.addr); return (-22); } else { } size = *((__u16 *)p); p = p + 2UL; if ((unsigned int )size == 65535U) { return (0); } else { } if ((unsigned int )size == 0U) { rc = do_tuner_callback(fe, 0, 0); if (rc < 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___6 = i2c_adapter_id(priv->i2c_props.adap); tmp___7 = tmp___6; } else { tmp___7 = -1; } printk("\v%s %d-%04x: Error at RESET code %d\n", priv->i2c_props.name, tmp___7, (int )priv->i2c_props.addr, (int )*p & 127); return (-22); } else { } goto ldv_25007; } else { } if ((unsigned int )size > 65279U) { switch ((int )size) { case 65280: rc = do_tuner_callback(fe, 1, 0); if (rc < 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___8 = i2c_adapter_id(priv->i2c_props.adap); tmp___9 = tmp___8; } else { tmp___9 = -1; } printk("\v%s %d-%04x: Error at RESET code %d\n", priv->i2c_props.name, tmp___9, (int )priv->i2c_props.addr, (int )*p & 127); return (-22); } else { } goto ldv_25009; default: ; if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___10 = i2c_adapter_id(priv->i2c_props.adap); tmp___11 = tmp___10; } else { tmp___11 = -1; } printk("\016%s %d-%04x: Invalid RESET code %d\n", priv->i2c_props.name, tmp___11, (int )priv->i2c_props.addr, (int )size & 127); return (-22); } ldv_25009: ; goto ldv_25007; } else { } if ((int )((short )size) < 0) { msleep((unsigned int )size & 32767U); goto ldv_25007; } else { } if ((unsigned long )(p + (unsigned long )size) > (unsigned long )endp) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___12 = i2c_adapter_id(priv->i2c_props.adap); tmp___13 = tmp___12; } else { tmp___13 = -1; } printk("\v%s %d-%04x: missing bytes: need %d, have %d\n", priv->i2c_props.name, tmp___13, (int )priv->i2c_props.addr, (int )size, (int )((unsigned int )((long )endp) - (unsigned int )((long )p))); return (-22); } else { } *(buf + 0) = *p; p = p + 1; size = (__u16 )((int )size - 1); goto ldv_25018; ldv_25017: len = (int )size < priv->ctrl.max_len + -1 ? (int )size : priv->ctrl.max_len + -1; __len = (size_t )len; __ret = memcpy((void *)(& buf) + 1U, (void const *)p, __len); _rc = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& buf), len + 1); if (len + 1 != _rc) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___14 = i2c_adapter_id(priv->i2c_props.adap); tmp___15 = tmp___14; } else { tmp___15 = -1; } printk("\016%s %d-%04x: i2c output error: rc = %d (should be %d)\n", priv->i2c_props.name, tmp___15, (int )priv->i2c_props.addr, _rc, len + 1); } else { } if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc; if (rc < 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___16 = i2c_adapter_id(priv->i2c_props.adap); tmp___17 = tmp___16; } else { tmp___17 = -1; } printk("\v%s %d-%04x: %d returned from send\n", priv->i2c_props.name, tmp___17, (int )priv->i2c_props.addr, rc); return (-22); } else { } p = p + (unsigned long )len; size = (int )size - (int )((__u16 )len); ldv_25018: ; if ((unsigned int )size != 0U) { goto ldv_25017; } else { } rc = do_tuner_callback(fe, 2, 0); if (rc < 0 && rc != -22) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___18 = i2c_adapter_id(priv->i2c_props.adap); tmp___19 = tmp___18; } else { tmp___19 = -1; } printk("\v%s %d-%04x: error executing flush: %d\n", priv->i2c_props.name, tmp___19, (int )priv->i2c_props.addr, rc); return (rc); } else { } ldv_25007: ; if ((unsigned long )p < (unsigned long )endp) { goto ldv_25020; } else { } return (0); } } static int load_scode(struct dvb_frontend *fe , unsigned int type , v4l2_std_id *id , __u16 int_freq , int scode ) { struct xc2028_data *priv ; int pos ; int rc ; unsigned char *p ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; u8 _val[4U] ; int _rc ; int tmp___3 ; int tmp___4 ; u8 _val___0[4U] ; int _rc___0 ; int tmp___5 ; int tmp___6 ; int _rc___1 ; int tmp___7 ; int tmp___8 ; u8 _val___1[2U] ; int _rc___2 ; int tmp___9 ; int tmp___10 ; { priv = (struct xc2028_data *)fe->tuner_priv; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "load_scode"); } else { } if ((unsigned int )int_freq == 0U) { pos = seek_firmware(fe, type, id); if (pos < 0) { return (pos); } else { } } else { pos = 0; goto ldv_25036; ldv_25035: ; if ((int )(priv->firm + (unsigned long )pos)->int_freq == (int )int_freq && ((priv->firm + (unsigned long )pos)->type & 1073741824U) != 0U) { goto ldv_25034; } else { } pos = pos + 1; ldv_25036: ; if (priv->firm_size > pos) { goto ldv_25035; } else { } ldv_25034: ; if (priv->firm_size == pos) { return (-2); } else { } } p = (priv->firm + (unsigned long )pos)->ptr; if (((priv->firm + (unsigned long )pos)->type & 1073741824U) != 0U) { if ((priv->firm + (unsigned long )pos)->size != 192U || scode > 15) { return (-22); } else { } p = p + (unsigned long )(scode * 12); } else { if (((priv->firm + (unsigned long )pos)->size != 224U || scode > 15) || (unsigned int )*((__u16 *)p + (unsigned long )(scode * 14)) != 12U) { return (-22); } else { } p = p + ((unsigned long )(scode * 14) + 2UL); } if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\016%s %d-%04x: Loading SCODE for type=", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr); dump_firm_type_and_int_freq((priv->firm + (unsigned long )pos)->type, (int )(priv->firm + (unsigned long )pos)->int_freq); printk("(%x), id %016llx.\n", (priv->firm + (unsigned long )pos)->type, *id); if ((unsigned int )priv->firm_version <= 513U) { _val[0] = 32U; _val[1] = 0U; _val[2] = 0U; _val[3] = 0U; _rc = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val), 4); if (_rc != 4) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___3 = i2c_adapter_id(priv->i2c_props.adap); tmp___4 = tmp___3; } else { tmp___4 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___4, (int )priv->i2c_props.addr, 738, _rc); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc; } else { _val___0[0] = 160U; _val___0[1] = 0U; _val___0[2] = 0U; _val___0[3] = 0U; _rc___0 = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val___0), 4); if (_rc___0 != 4) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___5 = i2c_adapter_id(priv->i2c_props.adap); tmp___6 = tmp___5; } else { tmp___6 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___6, (int )priv->i2c_props.addr, 740, _rc___0); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc___0; } if (rc < 0) { return (-5); } else { } _rc___1 = tuner_i2c_xfer_send(& priv->i2c_props, (char *)p, 12); if (_rc___1 != 12) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___7 = i2c_adapter_id(priv->i2c_props.adap); tmp___8 = tmp___7; } else { tmp___8 = -1; } printk("\016%s %d-%04x: i2c output error: rc = %d (should be %d)\n", priv->i2c_props.name, tmp___8, (int )priv->i2c_props.addr, _rc___1, 12); } else { } if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc___1; if (rc < 0) { return (-5); } else { } _val___1[0] = 0U; _val___1[1] = 140U; _rc___2 = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val___1), 2); if (_rc___2 != 2) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___9 = i2c_adapter_id(priv->i2c_props.adap); tmp___10 = tmp___9; } else { tmp___10 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___10, (int )priv->i2c_props.addr, 748, _rc___2); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc___2; if (rc < 0) { return (-5); } else { } return (0); } } static int check_firmware(struct dvb_frontend *fe , unsigned int type , v4l2_std_id std , __u16 int_freq ) { struct xc2028_data *priv ; struct firmware_properties new_fw ; int rc ; int retry_count ; u16 version ; u16 hwmodel ; v4l2_std_id std0 ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; size_t __len ; void *__ret ; int tmp___29 ; int tmp___30 ; { priv = (struct xc2028_data *)fe->tuner_priv; retry_count = 0; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "check_firmware"); } else { } rc = check_device_status(priv); if (rc < 0) { return (rc); } else { } if ((unsigned int )*((unsigned char *)priv + 108UL) != 0U && (type & 1024U) == 0U) { type = type | 4U; } else { } retry: new_fw.type = type; new_fw.id = std; new_fw.std_req = std; new_fw.scode_table = priv->ctrl.scode_table | 536870912U; new_fw.scode_nr = 0; new_fw.int_freq = int_freq; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\017%s %d-%04x: checking firmware, user requested type=", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr); } else { } if (debug != 0) { dump_firm_type_and_int_freq(new_fw.type, 0); printk("(%x), id %016llx, ", new_fw.type, new_fw.std_req); if ((unsigned int )int_freq == 0U) { printk("scode_tbl "); dump_firm_type_and_int_freq(priv->ctrl.scode_table, 0); printk("(%x), ", priv->ctrl.scode_table); } else { printk("int_freq %d, ", (int )new_fw.int_freq); } printk("scode_nr %d\n", new_fw.scode_nr); } else { } if ((unsigned int )priv->state == 2U && ((new_fw.type & 268454918U) | 1U) == (priv->cur_fw.type & 268454919U)) { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___3 = i2c_adapter_id(priv->i2c_props.adap); tmp___4 = tmp___3; } else { tmp___4 = -1; } printk("\017%s %d-%04x: BASE firmware not changed.\n", priv->i2c_props.name, tmp___4, (int )priv->i2c_props.addr); } else { } goto skip_base; } else { } memset((void *)(& priv->cur_fw), 0, 40UL); rc = do_tuner_callback(fe, 0, 0); if (rc < 0) { goto fail; } else { } std0 = 0ULL; rc = load_firmware(fe, new_fw.type | 1U, & std0); if (rc < 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___5 = i2c_adapter_id(priv->i2c_props.adap); tmp___6 = tmp___5; } else { tmp___6 = -1; } printk("\v%s %d-%04x: Error %d while loading base firmware\n", priv->i2c_props.name, tmp___6, (int )priv->i2c_props.addr, rc); goto fail; } else { } if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___7 = i2c_adapter_id(priv->i2c_props.adap); tmp___8 = tmp___7; } else { tmp___8 = -1; } printk("\017%s %d-%04x: Load init1 firmware, if exists\n", priv->i2c_props.name, tmp___8, (int )priv->i2c_props.addr); } else { } rc = load_firmware(fe, new_fw.type | 16385U, & std0); if (rc == -2) { rc = load_firmware(fe, (new_fw.type & 4294950908U) | 16385U, & std0); } else { } if (rc < 0 && rc != -2) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___9 = i2c_adapter_id(priv->i2c_props.adap); tmp___10 = tmp___9; } else { tmp___10 = -1; } printk("\v%s %d-%04x: Error %d while loading init1 firmware\n", priv->i2c_props.name, tmp___10, (int )priv->i2c_props.addr, rc); goto fail; } else { } skip_base: ; if (priv->cur_fw.type == (new_fw.type | 1U) && priv->cur_fw.std_req == std) { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___11 = i2c_adapter_id(priv->i2c_props.adap); tmp___12 = tmp___11; } else { tmp___12 = -1; } printk("\017%s %d-%04x: Std-specific firmware already loaded.\n", priv->i2c_props.name, tmp___12, (int )priv->i2c_props.addr); } else { } goto skip_std_specific; } else { } priv->cur_fw.scode_table = 0U; rc = load_firmware(fe, new_fw.type, & new_fw.id); if (rc == -2) { rc = load_firmware(fe, new_fw.type & 4294967293U, & new_fw.id); } else { } if (rc < 0) { goto fail; } else { } skip_std_specific: ; if (priv->cur_fw.scode_table == new_fw.scode_table && priv->cur_fw.scode_nr == new_fw.scode_nr) { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___13 = i2c_adapter_id(priv->i2c_props.adap); tmp___14 = tmp___13; } else { tmp___14 = -1; } printk("\017%s %d-%04x: SCODE firmware already loaded.\n", priv->i2c_props.name, tmp___14, (int )priv->i2c_props.addr); } else { } goto check_device; } else { } if ((new_fw.type & 1024U) != 0U) { goto check_device; } else { } if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___15 = i2c_adapter_id(priv->i2c_props.adap); tmp___16 = tmp___15; } else { tmp___16 = -1; } printk("\017%s %d-%04x: Trying to load scode %d\n", priv->i2c_props.name, tmp___16, (int )priv->i2c_props.addr, new_fw.scode_nr); } else { } rc = load_scode(fe, new_fw.type | new_fw.scode_table, & new_fw.id, (int )new_fw.int_freq, new_fw.scode_nr); check_device: tmp___19 = xc2028_get_reg(priv, 4, & version); if (tmp___19 < 0) { goto _L; } else { tmp___20 = xc2028_get_reg(priv, 8, & hwmodel); if (tmp___20 < 0) { _L: /* CIL Label */ if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___17 = i2c_adapter_id(priv->i2c_props.adap); tmp___18 = tmp___17; } else { tmp___18 = -1; } printk("\v%s %d-%04x: Unable to read tuner registers.\n", priv->i2c_props.name, tmp___18, (int )priv->i2c_props.addr); goto fail; } else { } } if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___21 = i2c_adapter_id(priv->i2c_props.adap); tmp___22 = tmp___21; } else { tmp___22 = -1; } printk("\017%s %d-%04x: Device is Xceive %d version %d.%d, firmware version %d.%d\n", priv->i2c_props.name, tmp___22, (int )priv->i2c_props.addr, (int )hwmodel, (int )version >> 12, ((int )version & 3840) >> 8, ((int )version & 240) >> 4, (int )version & 15); } else { } if ((unsigned int )*((unsigned char *)priv + 108UL) != 0U) { goto read_not_reliable; } else { } if ((int )priv->firm_version != ((((int )version & 240) << 4) | ((int )version & 15))) { if ((unsigned int )*((unsigned char *)priv + 108UL) == 0U) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___23 = i2c_adapter_id(priv->i2c_props.adap); tmp___24 = tmp___23; } else { tmp___24 = -1; } printk("\v%s %d-%04x: Incorrect readback of firmware version.\n", priv->i2c_props.name, tmp___24, (int )priv->i2c_props.addr); goto fail; } else { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___25 = i2c_adapter_id(priv->i2c_props.adap); tmp___26 = tmp___25; } else { tmp___26 = -1; } printk("\v%s %d-%04x: Returned an incorrect version. However, read is not reliable enough. Ignoring it.\n", priv->i2c_props.name, tmp___26, (int )priv->i2c_props.addr); hwmodel = 3028U; } } else { } if ((unsigned int )priv->hwmodel == 0U && ((unsigned int )hwmodel == 2028U || (unsigned int )hwmodel == 3028U)) { priv->hwmodel = hwmodel; priv->hwvers = (unsigned int )version & 65280U; } else if (((unsigned int )priv->hwmodel == 0U || (int )priv->hwmodel != (int )hwmodel) || (int )priv->hwvers != ((int )version & 65280)) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___27 = i2c_adapter_id(priv->i2c_props.adap); tmp___28 = tmp___27; } else { tmp___28 = -1; } printk("\v%s %d-%04x: Read invalid device hardware information - tuner hung?\n", priv->i2c_props.name, tmp___28, (int )priv->i2c_props.addr); goto fail; } else { } read_not_reliable: __len = 40UL; if (__len > 63UL) { __ret = memcpy((void *)(& priv->cur_fw), (void const *)(& new_fw), __len); } else { __ret = memcpy((void *)(& priv->cur_fw), (void const *)(& new_fw), __len); } priv->cur_fw.type = priv->cur_fw.type | 1U; priv->state = 2; return (0); fail: priv->state = 3; memset((void *)(& priv->cur_fw), 0, 40UL); if (retry_count <= 7) { msleep(50U); retry_count = retry_count + 1; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___29 = i2c_adapter_id(priv->i2c_props.adap); tmp___30 = tmp___29; } else { tmp___30 = -1; } printk("\017%s %d-%04x: Retrying firmware load\n", priv->i2c_props.name, tmp___30, (int )priv->i2c_props.addr); } else { } goto retry; } else { } if (rc == -2) { rc = -22; } else { } return (rc); } } static int xc2028_signal(struct dvb_frontend *fe , u16 *strength ) { struct xc2028_data *priv ; u16 frq_lock ; u16 signal ; int rc ; int i ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { priv = (struct xc2028_data *)fe->tuner_priv; signal = 0U; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "xc2028_signal"); } else { } rc = check_device_status(priv); if (rc < 0) { return (rc); } else { } ldv_mutex_lock_8(& priv->lock); i = 0; goto ldv_25084; ldv_25083: rc = xc2028_get_reg(priv, 2, & frq_lock); if (rc < 0) { goto ret; } else { } if ((unsigned int )frq_lock != 0U) { goto ldv_25082; } else { } msleep(6U); i = i + 1; ldv_25084: ; if (i <= 2) { goto ldv_25083; } else { } ldv_25082: ; if ((unsigned int )frq_lock == 2U) { goto ret; } else { } rc = xc2028_get_reg(priv, 64, & signal); if (rc < 0) { goto ret; } else { } signal = (u16 )((int )((short )(((int )signal & 7) << 12)) | 4095); ret: ldv_mutex_unlock_9(& priv->lock); *strength = signal; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\017%s %d-%04x: signal strength is %d\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr, (int )signal); } else { } return (rc); } } static int xc2028_get_afc(struct dvb_frontend *fe , s32 *afc ) { struct xc2028_data *priv ; int i ; int rc ; u16 frq_lock ; s16 afc_reg ; int tmp ; int tmp___0 ; { priv = (struct xc2028_data *)fe->tuner_priv; frq_lock = 0U; afc_reg = 0; rc = check_device_status(priv); if (rc < 0) { return (rc); } else { } ldv_mutex_lock_10(& priv->lock); i = 0; goto ldv_25097; ldv_25096: rc = xc2028_get_reg(priv, 2, & frq_lock); if (rc < 0) { goto ret; } else { } if ((unsigned int )frq_lock != 0U) { goto ldv_25095; } else { } msleep(6U); i = i + 1; ldv_25097: ; if (i <= 2) { goto ldv_25096; } else { } ldv_25095: ; if ((unsigned int )frq_lock == 2U) { goto ret; } else { } rc = xc2028_get_reg(priv, 1, (u16 *)(& afc_reg)); if (rc < 0) { goto ret; } else { } *afc = (int )afc_reg * 15625; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: AFC is %d Hz\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, *afc); } else { } ret: ldv_mutex_unlock_11(& priv->lock); return (rc); } } static int generic_set_freq(struct dvb_frontend *fe , u32 freq , enum v4l2_tuner_type new_type , unsigned int type , v4l2_std_id std , u16 int_freq ) { struct xc2028_data *priv ; int rc ; unsigned char buf[4U] ; u32 div ; u32 offset ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; u8 _val[2U] ; int _rc ; int tmp___4 ; int tmp___5 ; u8 _val___0[4U] ; int _rc___0 ; int tmp___6 ; int tmp___7 ; u8 _val___1[4U] ; int _rc___1 ; int tmp___8 ; int tmp___9 ; int _rc___2 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; { priv = (struct xc2028_data *)fe->tuner_priv; rc = -22; offset = 0U; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "generic_set_freq"); } else { } ldv_mutex_lock_12(& priv->lock); if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\017%s %d-%04x: should set frequency %d kHz\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr, freq / 1000U); } else { } tmp___3 = check_firmware(fe, type, std, (int )int_freq); if (tmp___3 < 0) { goto ret; } else { } switch ((unsigned int )new_type) { case 2U: _val[0] = 0U; _val[1] = 0U; _rc = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val), 2); if (_rc != 2) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___4 = i2c_adapter_id(priv->i2c_props.adap); tmp___5 = tmp___4; } else { tmp___5 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___5, (int )priv->i2c_props.addr, 1064, _rc); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc; goto ldv_25117; case 1U: ; goto ldv_25117; case 3U: ; if ((priv->cur_fw.type & 32U) != 0U) { offset = 1750000U; } else { offset = 2750000U; } } ldv_25117: div = ((freq - offset) + 7812U) / 15625U; if ((unsigned int )priv->firm_version <= 513U) { _val___0[0] = 0U; _val___0[1] = 2U; _val___0[2] = 0U; _val___0[3] = 0U; _rc___0 = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val___0), 4); if (_rc___0 != 4) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___6 = i2c_adapter_id(priv->i2c_props.adap); tmp___7 = tmp___6; } else { tmp___7 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___7, (int )priv->i2c_props.addr, 1141, _rc___0); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc___0; } else { _val___1[0] = 128U; _val___1[1] = 2U; _val___1[2] = 0U; _val___1[3] = 0U; _rc___1 = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val___1), 4); if (_rc___1 != 4) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___8 = i2c_adapter_id(priv->i2c_props.adap); tmp___9 = tmp___8; } else { tmp___9 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___9, (int )priv->i2c_props.addr, 1143, _rc___1); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc___1; } if (rc < 0) { goto ret; } else { } if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } do_tuner_callback(fe, 1, 1); msleep(10U); buf[0] = (unsigned char )(div >> 24); buf[1] = (unsigned char )(div >> 16); buf[2] = (unsigned char )(div >> 8); buf[3] = (unsigned char )div; _rc___2 = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& buf), 4); if (_rc___2 != 4) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___10 = i2c_adapter_id(priv->i2c_props.adap); tmp___11 = tmp___10; } else { tmp___11 = -1; } printk("\016%s %d-%04x: i2c output error: rc = %d (should be %d)\n", priv->i2c_props.name, tmp___11, (int )priv->i2c_props.addr, _rc___2, 4); } else { } if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc___2; if (rc < 0) { goto ret; } else { } msleep(100U); priv->frequency = freq; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___12 = i2c_adapter_id(priv->i2c_props.adap); tmp___13 = tmp___12; } else { tmp___13 = -1; } printk("\017%s %d-%04x: divisor= %*ph (freq=%d.%03d)\n", priv->i2c_props.name, tmp___13, (int )priv->i2c_props.addr, 4, (unsigned char *)(& buf), freq / 1000000U, (freq % 1000000U) / 1000U); } else { } rc = 0; ret: ldv_mutex_unlock_13(& priv->lock); return (rc); } } static int xc2028_set_analog_freq(struct dvb_frontend *fe , struct analog_parameters *p ) { struct xc2028_data *priv ; unsigned int type ; int tmp ; int tmp___0 ; int tmp___1 ; v4l2_std_id tmp___2 ; int tmp___3 ; { priv = (struct xc2028_data *)fe->tuner_priv; type = 0U; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "xc2028_set_analog_freq"); } else { } if (p->mode == 1U) { type = type | 1024U; if ((unsigned int )*((unsigned char *)priv + 108UL) != 0U) { type = type | 2048U; } else { } tmp___1 = generic_set_freq(fe, (u32 )(((long )p->frequency * 625L) / 10L), 1, type, 0ULL, 0); return (tmp___1); } else { } if (p->std == 0ULL) { p->std = 46848ULL; } else { } if ((p->std & 46848ULL) == 0ULL) { type = type | 2U; } else { } tmp___2 = parse_audio_std_option(); p->std = p->std | tmp___2; tmp___3 = generic_set_freq(fe, p->frequency * 62500U, 2, type, p->std, 0); return (tmp___3); } } static int xc2028_set_params(struct dvb_frontend *fe ) { struct dtv_frontend_properties *c ; u32 delsys ; u32 bw ; struct xc2028_data *priv ; int rc ; unsigned int type ; u16 demod ; int tmp ; int tmp___0 ; int tmp___1 ; { c = & fe->dtv_property_cache; delsys = c->delivery_system; bw = c->bandwidth_hz; priv = (struct xc2028_data *)fe->tuner_priv; type = 0U; demod = 0U; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "xc2028_set_params"); } else { } rc = check_device_status(priv); if (rc < 0) { return (rc); } else { } switch (delsys) { case 3U: ; case 16U: ; if (bw <= 6000000U) { type = type | 64U; } else { } switch ((int )priv->ctrl.type) { case 1: type = type | 16U; goto ldv_25149; case 2: type = type | 8U; goto ldv_25149; case 0: ; default: ; if (priv->ctrl.demod == 4560U) { type = type | 16U; } else { type = type | 8U; } } ldv_25149: ; goto ldv_25153; case 11U: type = type | 65552U; goto ldv_25153; default: ; return (-22); } ldv_25153: ; if (bw <= 6000000U) { type = type | 32U; priv->ctrl.vhfbw7 = 0U; priv->ctrl.uhfbw8 = 0U; } else if (bw <= 7000000U) { if (c->frequency <= 469999999U) { priv->ctrl.vhfbw7 = 1U; } else { priv->ctrl.uhfbw8 = 0U; } type = ((unsigned int )*((unsigned char *)priv + 108UL) != 0U && (unsigned int )*((unsigned char *)priv + 108UL) != 0U ? 256U : 128U) | type; type = type | 2U; } else { if (c->frequency <= 469999999U) { priv->ctrl.vhfbw7 = 0U; } else { priv->ctrl.uhfbw8 = 1U; } type = ((unsigned int )*((unsigned char *)priv + 108UL) != 0U && (unsigned int )*((unsigned char *)priv + 108UL) != 0U ? 256U : 512U) | type; type = type | 2U; } if (priv->ctrl.demod != 0U) { demod = (u16 )priv->ctrl.demod; if (type == 65536U || (unsigned int )priv->firm_version <= 769U) { demod = (unsigned int )demod + 200U; } else { } } else { } tmp___1 = generic_set_freq(fe, c->frequency, 3, type, 0ULL, (int )demod); return (tmp___1); } } static int xc2028_sleep(struct dvb_frontend *fe ) { struct xc2028_data *priv ; int rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; u8 _val[4U] ; int _rc ; int tmp___3 ; int tmp___4 ; u8 _val___0[4U] ; int _rc___0 ; int tmp___5 ; int tmp___6 ; { priv = (struct xc2028_data *)fe->tuner_priv; rc = check_device_status(priv); if (rc < 0) { return (rc); } else { } if (no_poweroff != 0 || (unsigned int )*((unsigned char *)priv + 108UL) != 0U) { return (0); } else { } if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: Putting xc2028/3028 into poweroff mode.\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr); } else { } if (debug > 1) { if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\017%s %d-%04x: Printing sleep stack trace:\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr); } else { } dump_stack(); } else { } ldv_mutex_lock_14(& priv->lock); if ((unsigned int )priv->firm_version <= 513U) { _val[0] = 0U; _val[1] = 8U; _val[2] = 0U; _val[3] = 0U; _rc = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val), 4); if (_rc != 4) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___3 = i2c_adapter_id(priv->i2c_props.adap); tmp___4 = tmp___3; } else { tmp___4 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___4, (int )priv->i2c_props.addr, 1331, _rc); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc; } else { _val___0[0] = 128U; _val___0[1] = 8U; _val___0[2] = 0U; _val___0[3] = 0U; _rc___0 = tuner_i2c_xfer_send(& priv->i2c_props, (char *)(& _val___0), 4); if (_rc___0 != 4) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___5 = i2c_adapter_id(priv->i2c_props.adap); tmp___6 = tmp___5; } else { tmp___6 = -1; } printk("\v%s %d-%04x: Error on line %d: %d\n", priv->i2c_props.name, tmp___6, (int )priv->i2c_props.addr, 1333, _rc___0); } else if (priv->ctrl.msleep != 0) { msleep((unsigned int )priv->ctrl.msleep); } else { } rc = _rc___0; } priv->state = 3; ldv_mutex_unlock_15(& priv->lock); return (rc); } } static int xc2028_dvb_release(struct dvb_frontend *fe ) { struct xc2028_data *priv ; int tmp ; int tmp___0 ; int __ret ; int __ret___0 ; int tmp___1 ; int tmp___2 ; { priv = (struct xc2028_data *)fe->tuner_priv; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "xc2028_dvb_release"); } else { } ldv_mutex_lock_16(& xc2028_list_mutex); __ret = 0; if ((unsigned long )priv != (unsigned long )((struct xc2028_data *)0)) { __ret = priv->i2c_props.count; } else { } if (__ret == 1) { free_firmware(priv); kfree((void const *)priv->ctrl.fname); priv->ctrl.fname = 0; } else { } if ((unsigned long )priv != (unsigned long )((struct xc2028_data *)0)) { priv->i2c_props.count = priv->i2c_props.count - 1; __ret___0 = priv->i2c_props.count; if (priv->i2c_props.count == 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\016%s %d-%04x: destroying instance\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr); list_del(& priv->hybrid_tuner_instance_list); kfree((void const *)priv); } else { } } else { } ldv_mutex_unlock_17(& xc2028_list_mutex); fe->tuner_priv = 0; return (0); } } static int xc2028_get_frequency(struct dvb_frontend *fe , u32 *frequency ) { struct xc2028_data *priv ; int rc ; int tmp ; int tmp___0 ; { priv = (struct xc2028_data *)fe->tuner_priv; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "xc2028_get_frequency"); } else { } rc = check_device_status(priv); if (rc < 0) { return (rc); } else { } *frequency = priv->frequency; return (0); } } static void load_firmware_cb(struct firmware const *fw , void *context ) { struct dvb_frontend *fe ; struct xc2028_data *priv ; int rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { fe = (struct dvb_frontend *)context; priv = (struct xc2028_data *)fe->tuner_priv; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: request_firmware_nowait(): %s\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, (unsigned long )fw != (unsigned long )((struct firmware const *)0) ? (char *)"OK" : (char *)"error"); } else { } if ((unsigned long )fw == (unsigned long )((struct firmware const *)0)) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = tmp___1; } else { tmp___2 = -1; } printk("\v%s %d-%04x: Could not load firmware %s.\n", priv->i2c_props.name, tmp___2, (int )priv->i2c_props.addr, priv->fname); priv->state = 4; return; } else { } rc = load_all_firmwares(fe, fw); release_firmware(fw); if (rc < 0) { return; } else { } priv->state = 3; return; } } static int xc2028_set_config(struct dvb_frontend *fe , void *priv_cfg ) { struct xc2028_data *priv ; struct xc2028_ctrl *p ; int rc ; int tmp ; int tmp___0 ; size_t __len ; void *__ret ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { priv = (struct xc2028_data *)fe->tuner_priv; p = (struct xc2028_ctrl *)priv_cfg; rc = 0; if (debug != 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\017%s %d-%04x: %s called\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr, "xc2028_set_config"); } else { } ldv_mutex_lock_18(& priv->lock); if ((unsigned long )priv->ctrl.fname != (unsigned long )((char *)0)) { kfree((void const *)priv->ctrl.fname); } else { } __len = 32UL; if (__len > 63UL) { __ret = memcpy((void *)(& priv->ctrl), (void const *)p, __len); } else { __ret = memcpy((void *)(& priv->ctrl), (void const *)p, __len); } if ((unsigned long )p->fname != (unsigned long )((char *)0)) { priv->ctrl.fname = kstrdup((char const *)p->fname, 208U); if ((unsigned long )priv->ctrl.fname == (unsigned long )((char *)0)) { rc = -12; } else { } } else { } if (((int )((signed char )firmware_name[0]) == 0 && (unsigned long )p->fname != (unsigned long )((char *)0)) && (unsigned long )priv->fname != (unsigned long )((char const *)0)) { tmp___1 = strcmp((char const *)p->fname, priv->fname); if (tmp___1 != 0) { free_firmware(priv); } else { } } else { } if (priv->ctrl.max_len <= 8) { priv->ctrl.max_len = 13; } else { } if ((unsigned int )priv->state == 0U) { if ((int )((signed char )firmware_name[0]) == 0) { priv->fname = (char const *)priv->ctrl.fname; } else { priv->fname = (char const *)(& firmware_name); } rc = request_firmware_nowait(& __this_module, 1, priv->fname, (priv->i2c_props.adap)->dev.parent, 208U, (void *)fe, & load_firmware_cb); if (rc < 0) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___2 = i2c_adapter_id(priv->i2c_props.adap); tmp___3 = tmp___2; } else { tmp___3 = -1; } printk("\v%s %d-%04x: Failed to request firmware %s\n", priv->i2c_props.name, tmp___3, (int )priv->i2c_props.addr, priv->fname); priv->state = 4; } else { priv->state = 1; } } else { } ldv_mutex_unlock_19(& priv->lock); return (rc); } } static struct dvb_tuner_ops const xc2028_dvb_tuner_ops = {{{'X', 'c', 'e', 'i', 'v', 'e', ' ', 'X', 'C', '3', '0', '2', '8', '\000'}, 42000000U, 864000000U, 50000U, 0U, 0U, 0U}, & xc2028_dvb_release, 0, & xc2028_sleep, & xc2028_set_params, & xc2028_set_analog_freq, 0, & xc2028_set_config, & xc2028_get_frequency, 0, 0, 0, & xc2028_signal, & xc2028_get_afc, 0, 0, 0, 0}; struct dvb_frontend *xc2028_attach(struct dvb_frontend *fe , struct xc2028_config *cfg ) { struct xc2028_data *priv ; int instance ; int __ret ; struct list_head const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct list_head const *__mptr___0 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; struct lock_class_key __key ; size_t __len ; void *__ret___0 ; int tmp___6 ; int tmp___7 ; { if (debug != 0) { printk("\017xc2028: Xcv2028/3028 init called!\n"); } else { } if ((unsigned long )cfg == (unsigned long )((struct xc2028_config *)0)) { return (0); } else { } if ((unsigned long )fe == (unsigned long )((struct dvb_frontend *)0)) { printk("\vxc2028: No frontend!\n"); return (0); } else { } ldv_mutex_lock_20(& xc2028_list_mutex); __ret = 0; __mptr = (struct list_head const *)hybrid_tuner_instance_list.next; priv = (struct xc2028_data *)__mptr; goto ldv_25215; ldv_25214: ; if ((unsigned long )cfg->i2c_adap != (unsigned long )((struct i2c_adapter *)0) && (unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___1 = i2c_adapter_id(priv->i2c_props.adap); tmp___2 = i2c_adapter_id(cfg->i2c_adap); if (tmp___1 == tmp___2 && (int )cfg->i2c_addr == (int )priv->i2c_props.addr) { if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp = i2c_adapter_id(priv->i2c_props.adap); tmp___0 = tmp; } else { tmp___0 = -1; } printk("\016%s %d-%04x: attaching existing instance\n", priv->i2c_props.name, tmp___0, (int )priv->i2c_props.addr); priv->i2c_props.count = priv->i2c_props.count + 1; __ret = priv->i2c_props.count; goto ldv_25213; } else { } } else { } __mptr___0 = (struct list_head const *)priv->hybrid_tuner_instance_list.next; priv = (struct xc2028_data *)__mptr___0; ldv_25215: ; if ((unsigned long )(& priv->hybrid_tuner_instance_list) != (unsigned long )(& hybrid_tuner_instance_list)) { goto ldv_25214; } else { } ldv_25213: ; if (__ret == 0) { tmp___3 = kzalloc(328UL, 208U); priv = (struct xc2028_data *)tmp___3; if ((unsigned long )priv == (unsigned long )((struct xc2028_data *)0)) { goto __fail; } else { } priv->i2c_props.addr = cfg->i2c_addr; priv->i2c_props.adap = cfg->i2c_adap; priv->i2c_props.name = (char *)"xc2028"; if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___4 = i2c_adapter_id(priv->i2c_props.adap); tmp___5 = tmp___4; } else { tmp___5 = -1; } printk("\016%s %d-%04x: creating new instance\n", priv->i2c_props.name, tmp___5, (int )priv->i2c_props.addr); list_add_tail(& priv->hybrid_tuner_instance_list, & hybrid_tuner_instance_list); priv->i2c_props.count = priv->i2c_props.count + 1; __ret = priv->i2c_props.count; } else { } __fail: instance = __ret; switch (instance) { case 0: ; goto fail; case 1: priv->ctrl.max_len = 13; __mutex_init(& priv->lock, "&priv->lock", & __key); fe->tuner_priv = (void *)priv; goto ldv_25222; case 2: fe->tuner_priv = (void *)priv; goto ldv_25222; } ldv_25222: __len = 288UL; if (__len > 63UL) { __ret___0 = memcpy((void *)(& fe->ops.tuner_ops), (void const *)(& xc2028_dvb_tuner_ops), __len); } else { __ret___0 = memcpy((void *)(& fe->ops.tuner_ops), (void const *)(& xc2028_dvb_tuner_ops), __len); } if ((unsigned long )priv->i2c_props.adap != (unsigned long )((struct i2c_adapter *)0)) { tmp___6 = i2c_adapter_id(priv->i2c_props.adap); tmp___7 = tmp___6; } else { tmp___7 = -1; } printk("\016%s %d-%04x: type set to %s\n", priv->i2c_props.name, tmp___7, (int )priv->i2c_props.addr, (char *)"XCeive xc2028/xc3028 tuner"); if ((unsigned long )cfg->ctrl != (unsigned long )((struct xc2028_ctrl *)0)) { xc2028_set_config(fe, (void *)cfg->ctrl); } else { } ldv_mutex_unlock_21(& xc2028_list_mutex); return (fe); fail: ldv_mutex_unlock_22(& xc2028_list_mutex); xc2028_dvb_release(fe); return (0); } } void ldv_check_final_state(void) ; void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int __VERIFIER_nondet_int(void) ; int LDV_IN_INTERRUPT ; int main(void) { struct dvb_frontend *var_group1 ; void *var_xc2028_set_config_20_p1 ; struct analog_parameters *var_group2 ; u32 *var_xc2028_get_frequency_18_p1 ; u16 *var_xc2028_signal_11_p1 ; s32 *var_xc2028_get_afc_12_p1 ; int ldv_s_xc2028_dvb_tuner_ops_dvb_tuner_ops ; int tmp ; int tmp___0 ; { ldv_s_xc2028_dvb_tuner_ops_dvb_tuner_ops = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_25274; ldv_25273: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_s_xc2028_dvb_tuner_ops_dvb_tuner_ops == 0) { ldv_handler_precall(); xc2028_dvb_release(var_group1); ldv_s_xc2028_dvb_tuner_ops_dvb_tuner_ops = 0; } else { } goto ldv_25264; case 1: ldv_handler_precall(); xc2028_set_config(var_group1, var_xc2028_set_config_20_p1); goto ldv_25264; case 2: ldv_handler_precall(); xc2028_set_analog_freq(var_group1, var_group2); goto ldv_25264; case 3: ldv_handler_precall(); xc2028_get_frequency(var_group1, var_xc2028_get_frequency_18_p1); goto ldv_25264; case 4: ldv_handler_precall(); xc2028_signal(var_group1, var_xc2028_signal_11_p1); goto ldv_25264; case 5: ldv_handler_precall(); xc2028_get_afc(var_group1, var_xc2028_get_afc_12_p1); goto ldv_25264; case 6: ldv_handler_precall(); xc2028_set_params(var_group1); goto ldv_25264; case 7: ldv_handler_precall(); xc2028_sleep(var_group1); goto ldv_25264; default: ; goto ldv_25264; } ldv_25264: ; ldv_25274: tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0 || ldv_s_xc2028_dvb_tuner_ops_dvb_tuner_ops != 0) { goto ldv_25273; } else { } ldv_check_final_state(); return 0; } } void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_6(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_xc2028_list_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_xc2028_list_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_xc2028_list_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_xc2028_list_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_xc2028_list_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } long ldv__builtin_expect(long exp , long c ) ; __inline static void ldv_error(void) __attribute__((__no_instrument_function__)) ; __inline static void ldv_error(void) { { ERROR: {reach_error();abort();} } } extern int __VERIFIER_nondet_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } static int ldv_mutex_cred_guard_mutex ; int ldv_mutex_lock_interruptible_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_cred_guard_mutex(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex = 2; return; } } int ldv_mutex_trylock_cred_guard_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_cred_guard_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_cred_guard_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_cred_guard_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_cred_guard_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_cred_guard_mutex(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex == 2) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex = 1; return; } } static int ldv_mutex_lock ; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 1) { } else { ldv_error(); } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 2) { } else { ldv_error(); } ldv_mutex_lock = 1; return; } } static int ldv_mutex_mutex ; int ldv_mutex_lock_interruptible_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex(struct mutex *lock ) { { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } ldv_mutex_mutex = 2; return; } } int ldv_mutex_trylock_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex(struct mutex *lock ) { { if (ldv_mutex_mutex == 2) { } else { ldv_error(); } ldv_mutex_mutex = 1; return; } } static int ldv_mutex_xc2028_list_mutex ; int ldv_mutex_lock_interruptible_xc2028_list_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_xc2028_list_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_xc2028_list_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_xc2028_list_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_xc2028_list_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_xc2028_list_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_xc2028_list_mutex(struct mutex *lock ) { { if (ldv_mutex_xc2028_list_mutex == 1) { } else { ldv_error(); } ldv_mutex_xc2028_list_mutex = 2; return; } } int ldv_mutex_trylock_xc2028_list_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_xc2028_list_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_xc2028_list_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_xc2028_list_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_xc2028_list_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_xc2028_list_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_xc2028_list_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_xc2028_list_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_xc2028_list_mutex(struct mutex *lock ) { { if (ldv_mutex_xc2028_list_mutex == 2) { } else { ldv_error(); } ldv_mutex_xc2028_list_mutex = 1; return; } } void ldv_initialize(void) { { ldv_mutex_cred_guard_mutex = 1; ldv_mutex_lock = 1; ldv_mutex_mutex = 1; ldv_mutex_xc2028_list_mutex = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex_cred_guard_mutex == 1) { } else { ldv_error(); } if (ldv_mutex_lock == 1) { } else { ldv_error(); } if (ldv_mutex_mutex == 1) { } else { ldv_error(); } if (ldv_mutex_xc2028_list_mutex == 1) { } else { ldv_error(); } return; } } #include "model/32_7a_cilled_true-unreach-call_linux-3.8-rc1-32_7a-drivers--media--tuners--tuner-xc2028.ko-ldv_main0_sequence_infinite_withcheck_stateful.env.c" #include "model/common.env.c"