extern void abort(void); #include void reach_error() { assert(0); } extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct module; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct file_operations; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct net_device; struct completion; struct pt_regs; struct pid; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_2043_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_2043_8 ldv_2043 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_ldv_2050_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct_ldv_2050_10 ldv_2050 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_2103_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2118_13 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2119_11 { struct __anonstruct_ldv_2103_12 ldv_2103 ; struct __anonstruct_ldv_2118_13 ldv_2118 ; }; struct desc_struct { union __anonunion_ldv_2119_11 ldv_2119 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct cpumask; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2775_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2775_18 ldv_2775 ; }; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5181_23 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5187_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5188_22 { struct __anonstruct_ldv_5181_23 ldv_5181 ; struct __anonstruct_ldv_5187_24 ldv_5187 ; }; union __anonunion_ldv_5197_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5188_22 ldv_5188 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5197_25 ldv_5197 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_6013_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_6014_28 { struct raw_spinlock rlock ; struct __anonstruct_ldv_6013_29 ldv_6013 ; }; struct spinlock { union __anonunion_ldv_6014_28 ldv_6014 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct pci_dev; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct vm_area_struct; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; void const *(*namespace)(struct kobject * , struct attribute const * ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool ignore_children ; bool early_init ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct user_namespace; typedef uid_t kuid_t; typedef gid_t kgid_t; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; void const *(*namespace)(struct class * , struct class_attribute const * ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_dev_node { void *handle ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_58 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_58 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct __anonstruct_nodemask_t_123 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_123 nodemask_t; struct pci_bus; struct __anonstruct_mm_context_t_124 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_124 mm_context_t; typedef u64 cycle_t; struct cyclecounter { cycle_t (*read)(struct cyclecounter const * ) ; cycle_t mask ; u32 mult ; u32 shift ; }; struct timecounter { struct cyclecounter const *cc ; cycle_t cycle_last ; u64 nsec ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct ctl_table; struct inode; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct return_instance; struct uprobe; struct uprobe_task { enum uprobe_task_state state ; struct arch_uprobe_task autask ; struct return_instance *return_instances ; unsigned int depth ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; unsigned long vaddr ; }; struct xol_area { wait_queue_head_t wq ; atomic_t slot_count ; unsigned long *bitmap ; struct page *page ; unsigned long vaddr ; }; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion_ldv_14166_130 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_14176_134 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_14178_133 { atomic_t _mapcount ; struct __anonstruct_ldv_14176_134 ldv_14176 ; int units ; }; struct __anonstruct_ldv_14180_132 { union __anonunion_ldv_14178_133 ldv_14178 ; atomic_t _count ; }; union __anonunion_ldv_14181_131 { unsigned long counters ; struct __anonstruct_ldv_14180_132 ldv_14180 ; }; struct __anonstruct_ldv_14182_129 { union __anonunion_ldv_14166_130 ldv_14166 ; union __anonunion_ldv_14181_131 ldv_14181 ; }; struct __anonstruct_ldv_14189_136 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_14193_135 { struct list_head lru ; struct __anonstruct_ldv_14189_136 ldv_14189 ; struct list_head list ; struct slab *slab_page ; }; union __anonunion_ldv_14198_137 { unsigned long private ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; struct address_space *mapping ; struct __anonstruct_ldv_14182_129 ldv_14182 ; union __anonunion_ldv_14193_135 ldv_14193 ; union __anonunion_ldv_14198_137 ldv_14198 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_139 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_138 { struct __anonstruct_linear_139 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_138 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_next_reset ; unsigned long numa_scan_offset ; int numa_scan_seq ; int first_nid ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; }; struct shrinker { int (*shrink)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; struct list_head list ; atomic_long_t nr_in_batch ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_141 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_141 sync_serial_settings; struct __anonstruct_te1_settings_142 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_142 te1_settings; struct __anonstruct_raw_hdlc_proto_143 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_143 raw_hdlc_proto; struct __anonstruct_fr_proto_144 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_144 fr_proto; struct __anonstruct_fr_proto_pvc_145 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_145 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_146 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_146 fr_proto_pvc_info; struct __anonstruct_cisco_proto_147 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_147 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_148 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_148 ifs_ifsu ; }; union __anonunion_ifr_ifrn_149 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_150 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_149 ifr_ifrn ; union __anonunion_ifr_ifru_150 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct_ldv_18074_153 { u32 hash ; u32 len ; }; union __anonunion_ldv_18076_152 { struct __anonstruct_ldv_18074_153 ldv_18074 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_18076_152 ldv_18076 ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_154 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_154 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t projid_t; typedef projid_t kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_19085_156 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_19085_156 ldv_19085 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_158 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_157 { size_t written ; size_t count ; union __anonunion_arg_158 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_157 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_19519_159 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_19539_160 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_19555_161 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_19519_159 ldv_19519 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_19539_160 ldv_19539 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_19555_161 ldv_19555 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_162 { struct list_head fu_list ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_162 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_164 { struct list_head link ; int state ; }; union __anonunion_fl_u_163 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_164 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_163 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_mounts ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; spinlock_t s_inode_lru_lock ; struct list_head s_inode_lru ; int s_nr_inodes_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; int (*nr_cached_objects)(struct super_block * ) ; void (*free_cached_objects)(struct super_block * , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_165 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_165 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_168 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_169 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_171 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_172 { long _band ; int _fd ; }; struct __anonstruct__sigsys_173 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_166 { int _pad[28U] ; struct __anonstruct__kill_167 _kill ; struct __anonstruct__timer_168 _timer ; struct __anonstruct__rt_169 _rt ; struct __anonstruct__sigchld_170 _sigchld ; struct __anonstruct__sigfault_171 _sigfault ; struct __anonstruct__sigpoll_172 _sigpoll ; struct __anonstruct__sigsys_173 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_166 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct_ldv_23144_177 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion_ldv_23146_176 { struct __anonstruct_ldv_23144_177 ldv_23144 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion_ldv_23146_176 ldv_23146 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_list; union __anonunion_ldv_23224_178 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_23233_179 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_180 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_181 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_23224_178 ldv_23224 ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_23233_179 ldv_23233 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_180 type_data ; union __anonunion_payload_181 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; int numa_migrate_seq ; unsigned int numa_scan_period ; u64 node_stamp ; struct callback_head numa_work ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; atomic_t ptrace_bp_refcnt ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct_ldv_26505_198 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion_ldv_26506_197 { struct kmem_cache *memcg_caches[0U] ; struct __anonstruct_ldv_26505_198 ldv_26505 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_26506_197 ldv_26506 ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct_ldv_27711_202 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion_ldv_27712_201 { __wsum csum ; struct __anonstruct_ldv_27711_202 ldv_27711 ; }; union __anonunion_ldv_27752_203 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion_ldv_27712_201 ldv_27712 ; __u32 priority ; unsigned char local_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct sk_buff *nfct_reasm ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; unsigned char ndisc_nodetype : 2 ; unsigned char pfmemalloc : 1 ; unsigned char ooo_okay : 1 ; unsigned char l4_rxhash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char head_frag : 1 ; unsigned char encapsulation : 1 ; dma_cookie_t dma_cookie ; __u32 secmark ; union __anonunion_ldv_27752_203 ldv_27752 ; sk_buff_data_t inner_transport_header ; sk_buff_data_t inner_network_header ; sk_buff_data_t inner_mac_header ; sk_buff_data_t transport_header ; sk_buff_data_t network_header ; sk_buff_data_t mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[32U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[95U] ; }; struct linux_xfrm_mib { unsigned long mibs[28U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; int sysctl_tcp_ecn ; kgid_t sysctl_ping_group_range[2U] ; long sysctl_tcp_mem[3U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int icmpv6_time ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; int sysctl_events ; unsigned int sysctl_events_retry_timeout ; int sysctl_acct ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int sysctl_log_invalid ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; wait_queue_head_t km_waitq ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t rt_genid ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct cgroupfs_root; struct cgroup; struct css_id; struct cgroup_subsys_state { struct cgroup *cgroup ; atomic_t refcnt ; unsigned long flags ; struct css_id *id ; struct work_struct dput_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; atomic_t count ; int id ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head css_sets ; struct list_head allcg_node ; struct list_head cft_q_node ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct callback_head callback_head ; struct work_struct free_work ; struct list_head event_list ; spinlock_t event_list_lock ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; unsigned long actual_subsys_mask ; struct list_head subsys_list ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; struct list_head allcg_list ; unsigned long flags ; struct ida cgroup_ida ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cg_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; }; struct iw_handler_def; struct iw_public_data; struct vlan_info; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_tstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion_ldv_36223_217 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_tstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; unsigned int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head upper_dev_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned char neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion_ldv_36223_217 ldv_36223 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion_ldv_37813_221 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char is_pcie : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct kset *msi_kset ; struct pci_vpd *vpd ; union __anonunion_ldv_37813_221 ldv_37813 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct hwtstamp_config { int flags ; int tx_type ; int rx_filter ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct ptp_clock_time { __s64 sec ; __u32 nsec ; __u32 reserved ; }; struct ptp_extts_request { unsigned int index ; unsigned int flags ; unsigned int rsv[2U] ; }; struct ptp_perout_request { struct ptp_clock_time start ; struct ptp_clock_time period ; unsigned int index ; unsigned int flags ; unsigned int rsv[4U] ; }; enum ldv_28457 { PTP_CLK_REQ_EXTTS = 0, PTP_CLK_REQ_PEROUT = 1, PTP_CLK_REQ_PPS = 2 } ; union __anonunion_ldv_39987_226 { struct ptp_extts_request extts ; struct ptp_perout_request perout ; }; struct ptp_clock_request { enum ldv_28457 type ; union __anonunion_ldv_39987_226 ldv_39987 ; }; struct ptp_clock_info { struct module *owner ; char name[16U] ; s32 max_adj ; int n_alarm ; int n_ext_ts ; int n_per_out ; int pps ; int (*adjfreq)(struct ptp_clock_info * , s32 ) ; int (*adjtime)(struct ptp_clock_info * , s64 ) ; int (*gettime)(struct ptp_clock_info * , struct timespec * ) ; int (*settime)(struct ptp_clock_info * , struct timespec const * ) ; int (*enable)(struct ptp_clock_info * , struct ptp_clock_request * , int ) ; }; struct ptp_clock; struct e1000_hw; enum e1000_mac_type { e1000_82571 = 0, e1000_82572 = 1, e1000_82573 = 2, e1000_82574 = 3, e1000_82583 = 4, e1000_80003es2lan = 5, e1000_ich8lan = 6, e1000_ich9lan = 7, e1000_ich10lan = 8, e1000_pchlan = 9, e1000_pch2lan = 10, e1000_pch_lpt = 11 } ; enum e1000_media_type { e1000_media_type_unknown = 0, e1000_media_type_copper = 1, e1000_media_type_fiber = 2, e1000_media_type_internal_serdes = 3, e1000_num_media_types = 4 } ; enum e1000_nvm_type { e1000_nvm_unknown = 0, e1000_nvm_none = 1, e1000_nvm_eeprom_spi = 2, e1000_nvm_flash_hw = 3, e1000_nvm_flash_sw = 4 } ; enum e1000_nvm_override { e1000_nvm_override_none = 0, e1000_nvm_override_spi_small = 1, e1000_nvm_override_spi_large = 2 } ; enum e1000_phy_type { e1000_phy_unknown = 0, e1000_phy_none = 1, e1000_phy_m88 = 2, e1000_phy_igp = 3, e1000_phy_igp_2 = 4, e1000_phy_gg82563 = 5, e1000_phy_igp_3 = 6, e1000_phy_ife = 7, e1000_phy_bm = 8, e1000_phy_82578 = 9, e1000_phy_82577 = 10, e1000_phy_82579 = 11, e1000_phy_i217 = 12 } ; enum e1000_bus_width { e1000_bus_width_unknown = 0, e1000_bus_width_pcie_x1 = 1, e1000_bus_width_pcie_x2 = 2, e1000_bus_width_pcie_x4 = 4, e1000_bus_width_32 = 5, e1000_bus_width_64 = 6, e1000_bus_width_reserved = 7 } ; enum e1000_1000t_rx_status { e1000_1000t_rx_status_not_ok = 0, e1000_1000t_rx_status_ok = 1, e1000_1000t_rx_status_undefined = 255 } ; enum e1000_rev_polarity { e1000_rev_polarity_normal = 0, e1000_rev_polarity_reversed = 1, e1000_rev_polarity_undefined = 255 } ; enum e1000_fc_mode { e1000_fc_none = 0, e1000_fc_rx_pause = 1, e1000_fc_tx_pause = 2, e1000_fc_full = 3, e1000_fc_default = 255 } ; enum e1000_ms_type { e1000_ms_hw_default = 0, e1000_ms_force_master = 1, e1000_ms_force_slave = 2, e1000_ms_auto = 3 } ; enum e1000_smart_speed { e1000_smart_speed_default = 0, e1000_smart_speed_on = 1, e1000_smart_speed_off = 2 } ; enum e1000_serdes_link_state { e1000_serdes_link_down = 0, e1000_serdes_link_autoneg_progress = 1, e1000_serdes_link_autoneg_complete = 2, e1000_serdes_link_forced_up = 3 } ; struct e1000_hw_stats { u64 crcerrs ; u64 algnerrc ; u64 symerrs ; u64 rxerrc ; u64 mpc ; u64 scc ; u64 ecol ; u64 mcc ; u64 latecol ; u64 colc ; u64 dc ; u64 tncrs ; u64 sec ; u64 cexterr ; u64 rlec ; u64 xonrxc ; u64 xontxc ; u64 xoffrxc ; u64 xofftxc ; u64 fcruc ; u64 prc64 ; u64 prc127 ; u64 prc255 ; u64 prc511 ; u64 prc1023 ; u64 prc1522 ; u64 gprc ; u64 bprc ; u64 mprc ; u64 gptc ; u64 gorc ; u64 gotc ; u64 rnbc ; u64 ruc ; u64 rfc ; u64 roc ; u64 rjc ; u64 mgprc ; u64 mgpdc ; u64 mgptc ; u64 tor ; u64 tot ; u64 tpr ; u64 tpt ; u64 ptc64 ; u64 ptc127 ; u64 ptc255 ; u64 ptc511 ; u64 ptc1023 ; u64 ptc1522 ; u64 mptc ; u64 bptc ; u64 tsctc ; u64 tsctfc ; u64 iac ; u64 icrxptc ; u64 icrxatc ; u64 ictxptc ; u64 ictxatc ; u64 ictxqec ; u64 ictxqmtc ; u64 icrxdmtc ; u64 icrxoc ; }; struct e1000_phy_stats { u32 idle_errors ; u32 receive_errors ; }; struct e1000_host_mng_dhcp_cookie { u32 signature ; u8 status ; u8 reserved0 ; u16 vlan_id ; u32 reserved1 ; u16 reserved2 ; u8 reserved3 ; u8 checksum ; }; struct e1000_mac_operations { s32 (*id_led_init)(struct e1000_hw * ) ; s32 (*blink_led)(struct e1000_hw * ) ; bool (*check_mng_mode)(struct e1000_hw * ) ; s32 (*check_for_link)(struct e1000_hw * ) ; s32 (*cleanup_led)(struct e1000_hw * ) ; void (*clear_hw_cntrs)(struct e1000_hw * ) ; void (*clear_vfta)(struct e1000_hw * ) ; s32 (*get_bus_info)(struct e1000_hw * ) ; void (*set_lan_id)(struct e1000_hw * ) ; s32 (*get_link_up_info)(struct e1000_hw * , u16 * , u16 * ) ; s32 (*led_on)(struct e1000_hw * ) ; s32 (*led_off)(struct e1000_hw * ) ; void (*update_mc_addr_list)(struct e1000_hw * , u8 * , u32 ) ; s32 (*reset_hw)(struct e1000_hw * ) ; s32 (*init_hw)(struct e1000_hw * ) ; s32 (*setup_link)(struct e1000_hw * ) ; s32 (*setup_physical_interface)(struct e1000_hw * ) ; s32 (*setup_led)(struct e1000_hw * ) ; void (*write_vfta)(struct e1000_hw * , u32 , u32 ) ; void (*config_collision_dist)(struct e1000_hw * ) ; void (*rar_set)(struct e1000_hw * , u8 * , u32 ) ; s32 (*read_mac_addr)(struct e1000_hw * ) ; }; struct e1000_phy_operations { s32 (*acquire)(struct e1000_hw * ) ; s32 (*cfg_on_link_up)(struct e1000_hw * ) ; s32 (*check_polarity)(struct e1000_hw * ) ; s32 (*check_reset_block)(struct e1000_hw * ) ; s32 (*commit)(struct e1000_hw * ) ; s32 (*force_speed_duplex)(struct e1000_hw * ) ; s32 (*get_cfg_done)(struct e1000_hw * ) ; s32 (*get_cable_length)(struct e1000_hw * ) ; s32 (*get_info)(struct e1000_hw * ) ; s32 (*set_page)(struct e1000_hw * , u16 ) ; s32 (*read_reg)(struct e1000_hw * , u32 , u16 * ) ; s32 (*read_reg_locked)(struct e1000_hw * , u32 , u16 * ) ; s32 (*read_reg_page)(struct e1000_hw * , u32 , u16 * ) ; void (*release)(struct e1000_hw * ) ; s32 (*reset)(struct e1000_hw * ) ; s32 (*set_d0_lplu_state)(struct e1000_hw * , bool ) ; s32 (*set_d3_lplu_state)(struct e1000_hw * , bool ) ; s32 (*write_reg)(struct e1000_hw * , u32 , u16 ) ; s32 (*write_reg_locked)(struct e1000_hw * , u32 , u16 ) ; s32 (*write_reg_page)(struct e1000_hw * , u32 , u16 ) ; void (*power_up)(struct e1000_hw * ) ; void (*power_down)(struct e1000_hw * ) ; }; struct e1000_nvm_operations { s32 (*acquire)(struct e1000_hw * ) ; s32 (*read)(struct e1000_hw * , u16 , u16 , u16 * ) ; void (*release)(struct e1000_hw * ) ; void (*reload)(struct e1000_hw * ) ; s32 (*update)(struct e1000_hw * ) ; s32 (*valid_led_default)(struct e1000_hw * , u16 * ) ; s32 (*validate)(struct e1000_hw * ) ; s32 (*write)(struct e1000_hw * , u16 , u16 , u16 * ) ; }; struct e1000_mac_info { struct e1000_mac_operations ops ; u8 addr[6U] ; u8 perm_addr[6U] ; enum e1000_mac_type type ; u32 collision_delta ; u32 ledctl_default ; u32 ledctl_mode1 ; u32 ledctl_mode2 ; u32 mc_filter_type ; u32 tx_packet_delta ; u32 txcw ; u16 current_ifs_val ; u16 ifs_max_val ; u16 ifs_min_val ; u16 ifs_ratio ; u16 ifs_step_size ; u16 mta_reg_count ; u32 mta_shadow[128U] ; u16 rar_entry_count ; u8 forced_speed_duplex ; bool adaptive_ifs ; bool has_fwsm ; bool arc_subsystem_valid ; bool autoneg ; bool autoneg_failed ; bool get_link_status ; bool in_ifs_mode ; bool serdes_has_link ; bool tx_pkt_filtering ; enum e1000_serdes_link_state serdes_link_state ; }; struct e1000_phy_info { struct e1000_phy_operations ops ; enum e1000_phy_type type ; enum e1000_1000t_rx_status local_rx ; enum e1000_1000t_rx_status remote_rx ; enum e1000_ms_type ms_type ; enum e1000_ms_type original_ms_type ; enum e1000_rev_polarity cable_polarity ; enum e1000_smart_speed smart_speed ; u32 addr ; u32 id ; u32 reset_delay_us ; u32 revision ; enum e1000_media_type media_type ; u16 autoneg_advertised ; u16 autoneg_mask ; u16 cable_length ; u16 max_cable_length ; u16 min_cable_length ; u8 mdix ; bool disable_polarity_correction ; bool is_mdix ; bool polarity_correction ; bool speed_downgraded ; bool autoneg_wait_to_complete ; }; struct e1000_nvm_info { struct e1000_nvm_operations ops ; enum e1000_nvm_type type ; enum e1000_nvm_override override ; u32 flash_bank_size ; u32 flash_base_addr ; u16 word_size ; u16 delay_usec ; u16 address_bits ; u16 opcode_bits ; u16 page_size ; }; struct e1000_bus_info { enum e1000_bus_width width ; u16 func ; }; struct e1000_fc_info { u32 high_water ; u32 low_water ; u16 pause_time ; u16 refresh_time ; bool send_xon ; bool strict_ieee ; enum e1000_fc_mode current_mode ; enum e1000_fc_mode requested_mode ; }; struct e1000_dev_spec_82571 { bool laa_is_present ; u32 smb_counter ; }; struct e1000_dev_spec_80003es2lan { bool mdic_wa_enable ; }; struct e1000_shadow_ram { u16 value ; bool modified ; }; struct e1000_dev_spec_ich8lan { bool kmrn_lock_loss_workaround_enabled ; struct e1000_shadow_ram shadow_ram[2048U] ; bool nvm_k1_enabled ; bool eee_disable ; u16 eee_lp_ability ; }; struct e1000_adapter; union __anonunion_dev_spec_255 { struct e1000_dev_spec_82571 e82571 ; struct e1000_dev_spec_80003es2lan e80003es2lan ; struct e1000_dev_spec_ich8lan ich8lan ; }; struct e1000_hw { struct e1000_adapter *adapter ; void *hw_addr ; void *flash_address ; struct e1000_mac_info mac ; struct e1000_fc_info fc ; struct e1000_phy_info phy ; struct e1000_nvm_info nvm ; struct e1000_bus_info bus ; struct e1000_host_mng_dhcp_cookie mng_cookie ; union __anonunion_dev_spec_255 dev_spec ; }; struct e1000_info; struct e1000_ps_page { struct page *page ; u64 dma ; }; struct __anonstruct_ldv_41268_257 { unsigned long time_stamp ; u16 length ; u16 next_to_watch ; unsigned int segs ; unsigned int bytecount ; u16 mapped_as_page ; }; struct __anonstruct_ldv_41272_258 { struct e1000_ps_page *ps_pages ; struct page *page ; }; union __anonunion_ldv_41273_256 { struct __anonstruct_ldv_41268_257 ldv_41268 ; struct __anonstruct_ldv_41272_258 ldv_41272 ; }; struct e1000_buffer { dma_addr_t dma ; struct sk_buff *skb ; union __anonunion_ldv_41273_256 ldv_41273 ; }; struct e1000_ring { struct e1000_adapter *adapter ; void *desc ; dma_addr_t dma ; unsigned int size ; unsigned int count ; u16 next_to_use ; u16 next_to_clean ; void *head ; void *tail ; struct e1000_buffer *buffer_info ; char name[21U] ; u32 ims_val ; u32 itr_val ; void *itr_register ; int set_itr ; struct sk_buff *rx_skb_top ; }; struct e1000_phy_regs { u16 bmcr ; u16 bmsr ; u16 advertise ; u16 lpa ; u16 expansion ; u16 ctrl1000 ; u16 stat1000 ; u16 estatus ; }; struct e1000_adapter { struct timer_list watchdog_timer ; struct timer_list phy_info_timer ; struct timer_list blink_timer ; struct work_struct reset_task ; struct work_struct watchdog_task ; struct e1000_info const *ei ; unsigned long active_vlans[64U] ; u32 bd_number ; u32 rx_buffer_len ; u16 mng_vlan_id ; u16 link_speed ; u16 link_duplex ; u16 eeprom_vers ; unsigned long state ; u32 itr ; u32 itr_setting ; u16 tx_itr ; u16 rx_itr ; struct e1000_ring *tx_ring ; u32 tx_fifo_limit ; struct napi_struct napi ; unsigned int uncorr_errors ; unsigned int corr_errors ; unsigned int restart_queue ; u32 txd_cmd ; bool detect_tx_hung ; bool tx_hang_recheck ; u8 tx_timeout_factor ; u32 tx_int_delay ; u32 tx_abs_int_delay ; unsigned int total_tx_bytes ; unsigned int total_tx_packets ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; u64 tpt_old ; u64 colc_old ; u32 gotc ; u64 gotc_old ; u32 tx_timeout_count ; u32 tx_fifo_head ; u32 tx_head_addr ; u32 tx_fifo_size ; u32 tx_dma_failed ; bool (*clean_rx)(struct e1000_ring * , int * , int ) ; void (*alloc_rx_buf)(struct e1000_ring * , int , gfp_t ) ; struct e1000_ring *rx_ring ; u32 rx_int_delay ; u32 rx_abs_int_delay ; u64 hw_csum_err ; u64 hw_csum_good ; u64 rx_hdr_split ; u32 gorc ; u64 gorc_old ; u32 alloc_rx_buff_failed ; u32 rx_dma_failed ; u32 rx_hwtstamp_cleared ; unsigned int rx_ps_pages ; u16 rx_ps_bsize0 ; u32 max_frame_size ; u32 min_frame_size ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_hw hw ; spinlock_t stats64_lock ; struct e1000_hw_stats stats ; struct e1000_phy_info phy_info ; struct e1000_phy_stats phy_stats ; struct e1000_phy_regs phy_regs ; struct e1000_ring test_tx_ring ; struct e1000_ring test_rx_ring ; u32 test_icr ; u32 msg_enable ; unsigned int num_vectors ; struct msix_entry *msix_entries ; int int_mode ; u32 eiac_mask ; u32 eeprom_wol ; u32 wol ; u32 pba ; u32 max_hw_frame_size ; bool fc_autoneg ; unsigned int flags ; unsigned int flags2 ; struct work_struct downshift_task ; struct work_struct update_phy_task ; struct work_struct print_hang_task ; bool idle_check ; int phy_hang_count ; u16 tx_ring_count ; u16 rx_ring_count ; struct hwtstamp_config hwtstamp_config ; struct delayed_work systim_overflow_work ; struct sk_buff *tx_hwtstamp_skb ; struct work_struct tx_hwtstamp_work ; spinlock_t systim_lock ; struct cyclecounter cc ; struct timecounter tc ; struct ptp_clock *ptp_clock ; struct ptp_clock_info ptp_clock_info ; u16 eee_advert ; }; struct e1000_info { enum e1000_mac_type mac ; unsigned int flags ; unsigned int flags2 ; u32 pba ; u32 max_hw_frame_size ; s32 (*get_variants)(struct e1000_adapter * ) ; struct e1000_mac_operations const *mac_ops ; struct e1000_phy_operations const *phy_ops ; struct e1000_nvm_operations const *nvm_ops ; }; typedef int ldv_func_ret_type___2; enum hrtimer_restart; struct ich8_hsfsts { unsigned char flcdone : 1 ; unsigned char flcerr : 1 ; unsigned char dael : 1 ; unsigned char berasesz : 2 ; unsigned char flcinprog : 1 ; unsigned char reserved1 : 2 ; unsigned char reserved2 : 6 ; unsigned char fldesvalid : 1 ; unsigned char flockdn : 1 ; }; union ich8_hws_flash_status { struct ich8_hsfsts hsf_status ; u16 regval ; }; struct ich8_hsflctl { unsigned char flcgo : 1 ; unsigned char flcycle : 2 ; unsigned char reserved : 5 ; unsigned char fldbcount : 2 ; unsigned char flockdn : 6 ; }; union ich8_hws_flash_ctrl { struct ich8_hsflctl hsf_ctrl ; u16 regval ; }; struct ich8_pr { unsigned short base : 13 ; unsigned char reserved1 : 2 ; unsigned char rpe : 1 ; unsigned short limit : 13 ; unsigned char reserved2 : 2 ; unsigned char wpe : 1 ; }; union ich8_flash_protected_range { struct ich8_pr range ; u32 regval ; }; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct e1000_host_mng_command_header { u8 command_id ; u8 checksum ; u16 reserved1 ; u16 reserved2 ; u16 command_length ; }; enum hrtimer_restart; enum hrtimer_restart; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef short s16; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct static_key; enum hrtimer_restart; struct exception_table_entry { int insn ; int fixup ; }; struct static_key { atomic_t enabled ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_37734_222 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_37734_222 ldv_37734 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum ldv_29847 { enable_option = 0, range_option = 1, list_option = 2 } ; struct e1000_opt_list { int i ; char *str ; }; struct __anonstruct_r_265 { int min ; int max ; }; struct __anonstruct_l_266 { int nr ; struct e1000_opt_list *p ; }; union __anonunion_arg_264 { struct __anonstruct_r_265 r ; struct __anonstruct_l_266 l ; }; struct e1000_option { enum ldv_29847 type ; char const *name ; char const *err ; int def ; union __anonunion_arg_264 arg ; }; typedef __u16 __le16; typedef __u32 __le32; typedef __u64 __le64; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; enum hrtimer_restart; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct __anonstruct_read_228 { __le64 buffer_addr ; __le64 reserved ; }; struct __anonstruct_csum_ip_232 { __le16 ip_id ; __le16 csum ; }; union __anonunion_hi_dword_231 { __le32 rss ; struct __anonstruct_csum_ip_232 csum_ip ; }; struct __anonstruct_lower_230 { __le32 mrq ; union __anonunion_hi_dword_231 hi_dword ; }; struct __anonstruct_upper_233 { __le32 status_error ; __le16 length ; __le16 vlan ; }; struct __anonstruct_wb_229 { struct __anonstruct_lower_230 lower ; struct __anonstruct_upper_233 upper ; }; union e1000_rx_desc_extended { struct __anonstruct_read_228 read ; struct __anonstruct_wb_229 wb ; }; struct __anonstruct_flags_242 { __le16 length ; u8 cso ; u8 cmd ; }; union __anonunion_lower_241 { __le32 data ; struct __anonstruct_flags_242 flags ; }; struct __anonstruct_fields_244 { u8 status ; u8 css ; __le16 special ; }; union __anonunion_upper_243 { __le32 data ; struct __anonstruct_fields_244 fields ; }; struct e1000_tx_desc { __le64 buffer_addr ; union __anonunion_lower_241 lower ; union __anonunion_upper_243 upper ; }; struct e1000_stats { char stat_string[32U] ; int type ; int sizeof_stat ; int stat_offset ; }; typedef __u16 __sum16; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct __anonstruct_mm_segment_t_27 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_27 mm_segment_t; struct compat_timespec; struct __anonstruct_futex_32 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_33 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_34 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion_ldv_6220_31 { struct __anonstruct_futex_32 futex ; struct __anonstruct_nanosleep_33 nanosleep ; struct __anonstruct_poll_34 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion_ldv_6220_31 ldv_6220 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; unsigned char sig_on_uaccess_error : 1 ; unsigned char uaccess_err : 1 ; }; enum hrtimer_restart; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; typedef s32 compat_time_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; enum ldv_24034 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_24034 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; void (*set_peek_off)(struct sock * , int ) ; }; struct in6_addr; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_211 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_211 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; struct rtable; union __anonunion_in6_u_217 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_217 in6_u ; }; struct cgroup_subsys; struct eventfd_ctx; struct cgroup_map_cb { int (*fill)(struct cgroup_map_cb * , char const * , u64 ) ; void *state ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; int (*open)(struct inode * , struct file * ) ; ssize_t (*read)(struct cgroup * , struct cftype * , struct file * , char * , size_t , loff_t * ) ; u64 (*read_u64)(struct cgroup * , struct cftype * ) ; s64 (*read_s64)(struct cgroup * , struct cftype * ) ; int (*read_map)(struct cgroup * , struct cftype * , struct cgroup_map_cb * ) ; int (*read_seq_string)(struct cgroup * , struct cftype * , struct seq_file * ) ; ssize_t (*write)(struct cgroup * , struct cftype * , struct file * , char const * , size_t , loff_t * ) ; int (*write_u64)(struct cgroup * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup * , unsigned int ) ; int (*release)(struct inode * , struct file * ) ; int (*register_event)(struct cgroup * , struct cftype * , struct eventfd_ctx * , char const * ) ; void (*unregister_event)(struct cgroup * , struct cftype * , struct eventfd_ctx * ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup * ) ; int (*css_online)(struct cgroup * ) ; void (*css_offline)(struct cgroup * ) ; void (*css_free)(struct cgroup * ) ; int (*can_attach)(struct cgroup * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup * , struct cgroup * , struct task_struct * ) ; void (*bind)(struct cgroup * ) ; int subsys_id ; int disabled ; int early_init ; bool use_id ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head sibling ; struct idr idr ; spinlock_t id_lock ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * , struct io_event * ); union __anonunion_ki_obj_227 { void *user ; struct task_struct *tsk ; }; struct kiocb { atomic_t ki_users ; struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_227 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; struct callback_head rcu ; struct sock_filter insns[0U] ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int base_reachable_time ; int retrans_time ; int gc_staletime ; int reachable_time ; int delay_probe_time ; int queue_len_bytes ; int ucast_probes ; int app_probes ; int mcast_probes ; int anycast_delay ; int proxy_delay ; int proxy_qlen ; int locktime ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion_ldv_42625_232 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion_ldv_42625_232 ldv_42625 ; }; struct __anonstruct_socket_lock_t_233 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_233 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct_ldv_42844_235 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion_ldv_42845_234 { __addrpair skc_addrpair ; struct __anonstruct_ldv_42844_235 ldv_42844 ; }; union __anonunion_ldv_42849_236 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct_ldv_42855_238 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion_ldv_42856_237 { __portpair skc_portpair ; struct __anonstruct_ldv_42855_238 ldv_42855 ; }; union __anonunion_ldv_42865_239 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion_ldv_42872_240 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion_ldv_42845_234 ldv_42845 ; union __anonunion_ldv_42849_236 ldv_42849 ; union __anonunion_ldv_42856_237 ldv_42856 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion_ldv_42865_239 ldv_42865 ; struct proto *skc_prot ; struct net *skc_net ; int skc_dontcopy_begin[0U] ; union __anonunion_ldv_42872_240 ldv_42872 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_241 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_241 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct sk_buff_head sk_async_wait_queue ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check : 2 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_242 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_242 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { void (*enter_memory_pressure)(struct sock * ) ; struct res_counter *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; unsigned char cookie_ts : 1 ; unsigned char num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ipv6hdr { unsigned char priority : 4 ; unsigned char version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; void *sysctl ; }; struct udphdr { __be16 source ; __be16 dest ; __be16 len ; __sum16 check ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct vlan_ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_vlan_proto ; __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct __anonstruct_read_263 { __le64 buffer_addr[4U] ; }; struct __anonstruct_csum_ip_267 { __le16 ip_id ; __le16 csum ; }; union __anonunion_hi_dword_266 { __le32 rss ; struct __anonstruct_csum_ip_267 csum_ip ; }; struct __anonstruct_lower_265 { __le32 mrq ; union __anonunion_hi_dword_266 hi_dword ; }; struct __anonstruct_middle_268 { __le32 status_error ; __le16 length0 ; __le16 vlan ; }; struct __anonstruct_upper_269 { __le16 header_status ; __le16 length[3U] ; }; struct __anonstruct_wb_264 { struct __anonstruct_lower_265 lower ; struct __anonstruct_middle_268 middle ; struct __anonstruct_upper_269 upper ; __le64 reserved ; }; union e1000_rx_desc_packet_split { struct __anonstruct_read_263 read ; struct __anonstruct_wb_264 wb ; }; struct __anonstruct_ip_fields_275 { u8 ipcss ; u8 ipcso ; __le16 ipcse ; }; union __anonunion_lower_setup_274 { __le32 ip_config ; struct __anonstruct_ip_fields_275 ip_fields ; }; struct __anonstruct_tcp_fields_277 { u8 tucss ; u8 tucso ; __le16 tucse ; }; union __anonunion_upper_setup_276 { __le32 tcp_config ; struct __anonstruct_tcp_fields_277 tcp_fields ; }; struct __anonstruct_fields_279 { u8 status ; u8 hdr_len ; __le16 mss ; }; union __anonunion_tcp_seg_setup_278 { __le32 data ; struct __anonstruct_fields_279 fields ; }; struct e1000_context_desc { union __anonunion_lower_setup_274 lower_setup ; union __anonunion_upper_setup_276 upper_setup ; __le32 cmd_and_length ; union __anonunion_tcp_seg_setup_278 tcp_seg_setup ; }; struct e1000_reg_info { u32 ofs ; char *name ; }; struct my_u0 { __le64 a ; __le64 b ; }; struct my_u1 { __le64 a ; __le64 b ; __le64 c ; __le64 d ; }; enum hrtimer_restart; long ldv__builtin_expect(long exp , long c ) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_8(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_6(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_swflag_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_swflag_mutex(struct mutex *lock ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; s32 e1000e_blink_led_generic(struct e1000_hw *hw ) ; s32 e1000e_check_for_copper_link(struct e1000_hw *hw ) ; s32 e1000e_check_for_fiber_link(struct e1000_hw *hw ) ; s32 e1000e_cleanup_led_generic(struct e1000_hw *hw ) ; s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw ) ; s32 e1000e_disable_pcie_master(struct e1000_hw *hw ) ; s32 e1000e_get_auto_rd_done(struct e1000_hw *hw ) ; s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw ) ; void e1000_set_lan_id_single_port(struct e1000_hw *hw ) ; s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw , u16 *speed , u16 *duplex ) ; s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw , u16 *speed , u16 *duplex ) ; s32 e1000e_id_led_init_generic(struct e1000_hw *hw ) ; s32 e1000e_led_on_generic(struct e1000_hw *hw ) ; s32 e1000e_led_off_generic(struct e1000_hw *hw ) ; void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw , u8 *mc_addr_list , u32 mc_addr_count ) ; s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw ) ; s32 e1000e_setup_led_generic(struct e1000_hw *hw ) ; s32 e1000e_setup_link_generic(struct e1000_hw *hw ) ; void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw ) ; void e1000e_init_rx_addrs(struct e1000_hw *hw , u16 rar_count ) ; s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw ) ; void e1000_write_vfta_generic(struct e1000_hw *hw , u32 offset , u32 value ) ; void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw ) ; void e1000e_rar_set_generic(struct e1000_hw *hw , u8 *addr , u32 index ) ; void e1000e_config_collision_dist_generic(struct e1000_hw *hw ) ; s32 e1000_check_polarity_m88(struct e1000_hw *hw ) ; s32 e1000_check_polarity_igp(struct e1000_hw *hw ) ; s32 e1000e_check_reset_block_generic(struct e1000_hw *hw ) ; s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw ) ; s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw ) ; s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw ) ; s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw ) ; s32 e1000e_get_cable_length_m88(struct e1000_hw *hw ) ; s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw ) ; s32 e1000e_get_cfg_done_generic(struct e1000_hw *hw ) ; s32 e1000e_get_phy_id(struct e1000_hw *hw ) ; s32 e1000e_get_phy_info_igp(struct e1000_hw *hw ) ; s32 e1000e_get_phy_info_m88(struct e1000_hw *hw ) ; s32 e1000e_phy_sw_reset(struct e1000_hw *hw ) ; s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw ) ; s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw , bool active ) ; s32 e1000e_setup_copper_link(struct e1000_hw *hw ) ; s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw , u32 offset , u16 data ) ; void e1000_power_up_phy_copper(struct e1000_hw *hw ) ; void e1000_power_down_phy_copper(struct e1000_hw *hw ) ; s32 e1000e_acquire_nvm(struct e1000_hw *hw ) ; s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw , int ee_reg ) ; s32 e1000_read_mac_addr_generic(struct e1000_hw *hw ) ; s32 e1000e_read_nvm_eerd(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw ) ; s32 e1000e_write_nvm_spi(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw ) ; void e1000e_release_nvm(struct e1000_hw *hw ) ; bool e1000e_check_mng_mode_generic(struct e1000_hw *hw ) ; bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw ) ; bool e1000_check_phy_82574(struct e1000_hw *hw ) ; bool e1000e_get_laa_state_82571(struct e1000_hw *hw ) ; void e1000e_set_laa_state_82571(struct e1000_hw *hw , bool state ) ; struct e1000_info const e1000_82571_info ; struct e1000_info const e1000_82572_info ; struct e1000_info const e1000_82573_info ; struct e1000_info const e1000_82574_info ; struct e1000_info const e1000_82583_info ; __inline static s32 e1e_rphy(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = (*(hw->phy.ops.read_reg))(hw, offset, data); return (tmp); } } __inline static s32 e1e_wphy(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = (*(hw->phy.ops.write_reg))(hw, offset, (int )data); return (tmp); } } void e1000e_reload_nvm_generic(struct e1000_hw *hw ) ; __inline static s32 e1000e_update_nvm_checksum(struct e1000_hw *hw ) { s32 tmp ; { tmp = (*(hw->nvm.ops.update))(hw); return (tmp); } } __inline static s32 e1000_read_nvm(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 tmp ; { tmp = (*(hw->nvm.ops.read))(hw, (int )offset, (int )words, data); return (tmp); } } __inline static s32 e1000_write_nvm(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 tmp ; { tmp = (*(hw->nvm.ops.write))(hw, (int )offset, (int )words, data); return (tmp); } } __inline static u32 __er32(struct e1000_hw *hw , unsigned long reg ) { unsigned int tmp ; { tmp = readl((void const volatile *)(hw->hw_addr + reg)); return (tmp); } } __inline static s32 __ew32_prepare(struct e1000_hw *hw ) { s32 i ; u32 tmp ; { i = 2000; goto ldv_41542; ldv_41541: __const_udelay(214750UL); ldv_41542: tmp = __er32(hw, 23380UL); if ((tmp & 16777216U) != 0U) { i = i - 1; if (i != 0) { goto ldv_41541; } else { goto ldv_41543; } } else { } ldv_41543: ; return (i); } } __inline static void __ew32(struct e1000_hw *hw , unsigned long reg , u32 val ) { { if (((hw->adapter)->flags2 & 2048U) != 0U) { __ew32_prepare(hw); } else { } writel(val, (void volatile *)(hw->hw_addr + reg)); return; } } static s32 e1000_get_phy_id_82571(struct e1000_hw *hw ) ; static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw ) ; static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw ) ; static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw ) ; static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) ; static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw ) ; static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw ) ; static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw ) ; static bool e1000_check_mng_mode_82574(struct e1000_hw *hw ) ; static s32 e1000_led_on_82574(struct e1000_hw *hw ) ; static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw ) ; static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw ) ; static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw ) ; static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw ) ; static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw ) ; static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw , bool active ) ; static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw , bool active ) ; static s32 e1000_init_phy_params_82571(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { phy = & hw->phy; if ((unsigned int )hw->phy.media_type != 1U) { phy->type = 1; return (0); } else { } phy->addr = 1U; phy->autoneg_mask = 47U; phy->reset_delay_us = 100U; phy->ops.power_up = & e1000_power_up_phy_copper; phy->ops.power_down = & e1000_power_down_phy_copper_82571; switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: phy->type = 4; goto ldv_41595; case 2U: phy->type = 2; goto ldv_41595; case 3U: ; case 4U: phy->type = 8; phy->ops.acquire = & e1000_get_hw_semaphore_82574; phy->ops.release = & e1000_put_hw_semaphore_82574; phy->ops.set_d0_lplu_state = & e1000_set_d0_lplu_state_82574; phy->ops.set_d3_lplu_state = & e1000_set_d3_lplu_state_82574; goto ldv_41595; default: ; return (-2); } ldv_41595: ret_val = e1000_get_phy_id_82571(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_phy_params_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "Error getting PHY ID\n"; descriptor.lineno = 151U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error getting PHY ID\n"); } else { } return (ret_val); } else { } switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: ; if (phy->id != 44565376U) { ret_val = -2; } else { } goto ldv_41604; case 2U: ; if (phy->id != 21040320U) { ret_val = -2; } else { } goto ldv_41604; case 3U: ; case 4U: ; if (phy->id != 21040305U) { ret_val = -2; } else { } goto ldv_41604; default: ret_val = -2; goto ldv_41604; } ldv_41604: ; if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_init_phy_params_82571"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___0.format = "PHY ID unknown: type = 0x%08x\n"; descriptor___0.lineno = 177U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "PHY ID unknown: type = 0x%08x\n", phy->id); } else { } } else { } return (ret_val); } } static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; u32 eecd ; u32 tmp ; u16 size ; { nvm = & hw->nvm; tmp = __er32(hw, 16UL); eecd = tmp; nvm->opcode_bits = 8U; nvm->delay_usec = 1U; switch ((unsigned int )nvm->override) { case 2U: nvm->page_size = 32U; nvm->address_bits = 16U; goto ldv_41617; case 1U: nvm->page_size = 8U; nvm->address_bits = 8U; goto ldv_41617; default: nvm->page_size = (eecd & 1024U) != 0U ? 32U : 8U; nvm->address_bits = (eecd & 1024U) != 0U ? 16U : 8U; goto ldv_41617; } ldv_41617: ; switch ((unsigned int )hw->mac.type) { case 2U: ; case 3U: ; case 4U: ; if (((eecd >> 15) & 3U) == 3U) { nvm->type = 3; nvm->word_size = 2048U; eecd = eecd & 4293918719U; __ew32(hw, 16UL, eecd); goto ldv_41623; } else { } default: nvm->type = 2; size = (unsigned short )((eecd & 30720U) >> 11); size = (unsigned int )size + 6U; if ((unsigned int )size > 14U) { size = 14U; } else { } nvm->word_size = (u16 )(1 << (int )size); goto ldv_41623; } ldv_41623: ; switch ((unsigned int )hw->mac.type) { case 3U: ; case 4U: nvm->ops.acquire = & e1000_get_hw_semaphore_82574; nvm->ops.release = & e1000_put_hw_semaphore_82574; goto ldv_41627; default: ; goto ldv_41627; } ldv_41627: ; return (0); } } static s32 e1000_init_mac_params_82571(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 swsm ; u32 swsm2 ; bool force_clear_smbi ; u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { mac = & hw->mac; swsm = 0U; swsm2 = 0U; force_clear_smbi = 0; switch ((int )((hw->adapter)->pdev)->device) { case 4191: ; case 4222: ; case 4261: hw->phy.media_type = 2; mac->ops.setup_physical_interface = & e1000_setup_fiber_serdes_link_82571; mac->ops.check_for_link = & e1000e_check_for_fiber_link; mac->ops.get_link_up_info = & e1000e_get_speed_and_duplex_fiber_serdes; goto ldv_41639; case 4192: ; case 4313: ; case 4314: ; case 4223: hw->phy.media_type = 3; mac->ops.setup_physical_interface = & e1000_setup_fiber_serdes_link_82571; mac->ops.check_for_link = & e1000_check_for_serdes_link_82571; mac->ops.get_link_up_info = & e1000e_get_speed_and_duplex_fiber_serdes; goto ldv_41639; default: hw->phy.media_type = 1; mac->ops.setup_physical_interface = & e1000_setup_copper_link_82571; mac->ops.check_for_link = & e1000e_check_for_copper_link; mac->ops.get_link_up_info = & e1000e_get_speed_and_duplex_copper; goto ldv_41639; } ldv_41639: mac->mta_reg_count = 128U; mac->rar_entry_count = 15U; mac->adaptive_ifs = 1; switch ((unsigned int )hw->mac.type) { case 2U: mac->ops.set_lan_id = & e1000_set_lan_id_single_port; mac->ops.check_mng_mode = & e1000e_check_mng_mode_generic; mac->ops.led_on = & e1000e_led_on_generic; mac->ops.blink_led = & e1000e_blink_led_generic; mac->has_fwsm = 1; tmp = __er32(hw, 23380UL); mac->arc_subsystem_valid = (tmp & 14U) != 0U; goto ldv_41646; case 3U: ; case 4U: mac->ops.set_lan_id = & e1000_set_lan_id_single_port; mac->ops.check_mng_mode = & e1000_check_mng_mode_82574; mac->ops.led_on = & e1000_led_on_82574; goto ldv_41646; default: mac->ops.check_mng_mode = & e1000e_check_mng_mode_generic; mac->ops.led_on = & e1000e_led_on_generic; mac->ops.blink_led = & e1000e_blink_led_generic; mac->has_fwsm = 1; goto ldv_41646; } ldv_41646: ; switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: swsm2 = __er32(hw, 23384UL); if ((swsm2 & 2U) == 0U) { __ew32(hw, 23384UL, swsm2 | 2U); force_clear_smbi = 1; } else { force_clear_smbi = 0; } goto ldv_41652; default: force_clear_smbi = 1; goto ldv_41652; } ldv_41652: ; if ((int )force_clear_smbi) { swsm = __er32(hw, 23376UL); if ((int )swsm & 1) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_mac_params_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "Please update your 82571 Bootagent\n"; descriptor.lineno = 368U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Please update your 82571 Bootagent\n"); } else { } } else { } __ew32(hw, 23376UL, swsm & 4294967294U); } else { } hw->dev_spec.e82571.smb_counter = 0U; return (0); } } static s32 e1000_get_variants_82571(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; int global_quad_port_a ; struct pci_dev *pdev ; int is_port_b ; u32 tmp ; s32 rc ; { hw = & adapter->hw; pdev = adapter->pdev; tmp = __er32(hw, 8UL); is_port_b = (int )tmp & 4; rc = e1000_init_mac_params_82571(hw); if (rc != 0) { return (rc); } else { } rc = e1000_init_nvm_params_82571(hw); if (rc != 0) { return (rc); } else { } rc = e1000_init_phy_params_82571(hw); if (rc != 0) { return (rc); } else { } switch ((int )pdev->device) { case 4260: ; case 4261: ; case 4284: ; case 4309: adapter->flags = adapter->flags | 8192U; if (global_quad_port_a == 0) { adapter->flags = adapter->flags | 4096U; } else { } global_quad_port_a = global_quad_port_a + 1; if (global_quad_port_a == 4) { global_quad_port_a = 0; } else { } goto ldv_41668; default: ; goto ldv_41668; } ldv_41668: ; switch ((unsigned int )adapter->hw.mac.type) { case 0U: ; if ((((unsigned int )pdev->device == 4191U || (unsigned int )pdev->device == 4192U) || (unsigned int )pdev->device == 4190U) && is_port_b != 0) { adapter->flags = adapter->flags & 4294967287U; } else { } if ((adapter->flags & 8192U) != 0U && (adapter->flags & 4096U) == 0U) { adapter->flags = adapter->flags & 4294967287U; } else { } if ((unsigned int )pdev->device == 4314U) { adapter->flags = adapter->flags & 4294967287U; } else { } goto ldv_41671; case 2U: ; if ((unsigned int )pdev->device == 4250U) { adapter->flags = adapter->flags | 128U; adapter->max_hw_frame_size = 9234U; } else { } goto ldv_41671; default: ; goto ldv_41671; } ldv_41671: ; return (0); } } static s32 e1000_get_phy_id_82571(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_id ; s32 tmp ; { phy = & hw->phy; phy_id = 0U; switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: phy->id = 44565376U; goto ldv_41682; case 2U: tmp = e1000e_get_phy_id(hw); return (tmp); case 3U: ; case 4U: ret_val = e1e_rphy(hw, 2U, & phy_id); if (ret_val != 0) { return (ret_val); } else { } phy->id = (unsigned int )((int )phy_id << 16); usleep_range(20UL, 40UL); ret_val = e1e_rphy(hw, 3U, & phy_id); if (ret_val != 0) { return (ret_val); } else { } phy->id = phy->id | (u32 )phy_id; phy->revision = (unsigned int )phy_id & 15U; goto ldv_41682; default: ; return (-2); } ldv_41682: ; return (0); } } static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw ) { u32 swsm ; s32 sw_timeout ; s32 fw_timeout ; s32 i ; struct _ddebug descriptor ; long tmp ; u32 tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; { sw_timeout = (int )hw->nvm.word_size + 1; fw_timeout = (int )hw->nvm.word_size + 1; i = 0; if (hw->dev_spec.e82571.smb_counter > 2U) { sw_timeout = 1; } else { } goto ldv_41696; ldv_41695: swsm = __er32(hw, 23376UL); if ((swsm & 1U) == 0U) { goto ldv_41694; } else { } usleep_range(50UL, 100UL); i = i + 1; ldv_41696: ; if (i < sw_timeout) { goto ldv_41695; } else { } ldv_41694: ; if (i == sw_timeout) { descriptor.modname = "e1000e"; descriptor.function = "e1000_get_hw_semaphore_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "Driver can\'t access device - SMBI bit is set.\n"; descriptor.lineno = 530U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Driver can\'t access device - SMBI bit is set.\n"); } else { } hw->dev_spec.e82571.smb_counter = hw->dev_spec.e82571.smb_counter + 1U; } else { } i = 0; goto ldv_41701; ldv_41700: swsm = __er32(hw, 23376UL); __ew32(hw, 23376UL, swsm | 2U); tmp___0 = __er32(hw, 23376UL); if ((tmp___0 & 2U) != 0U) { goto ldv_41699; } else { } usleep_range(50UL, 100UL); i = i + 1; ldv_41701: ; if (i < fw_timeout) { goto ldv_41700; } else { } ldv_41699: ; if (i == fw_timeout) { e1000_put_hw_semaphore_82571(hw); descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_get_hw_semaphore_82571"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___0.format = "Driver can\'t access the NVM\n"; descriptor___0.lineno = 548U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Driver can\'t access the NVM\n"); } else { } return (-1); } else { } return (0); } } static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw ) { u32 swsm ; { swsm = __er32(hw, 23376UL); swsm = swsm & 4294967292U; __ew32(hw, 23376UL, swsm); return; } } static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw ) { u32 extcnf_ctrl ; s32 i ; struct _ddebug descriptor ; long tmp ; { i = 0; extcnf_ctrl = __er32(hw, 3840UL); ldv_41713: extcnf_ctrl = extcnf_ctrl | 32U; __ew32(hw, 3840UL, extcnf_ctrl); extcnf_ctrl = __er32(hw, 3840UL); if ((extcnf_ctrl & 32U) != 0U) { goto ldv_41712; } else { } usleep_range(2000UL, 4000UL); i = i + 1; if (i <= 9) { goto ldv_41713; } else { } ldv_41712: ; if (i == 10) { e1000_put_hw_semaphore_82573(hw); descriptor.modname = "e1000e"; descriptor.function = "e1000_get_hw_semaphore_82573"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "Driver can\'t access the PHY\n"; descriptor.lineno = 598U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Driver can\'t access the PHY\n"); } else { } return (-2); } else { } return (0); } } static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw ) { u32 extcnf_ctrl ; { extcnf_ctrl = __er32(hw, 3840UL); extcnf_ctrl = extcnf_ctrl & 4294967263U; __ew32(hw, 3840UL, extcnf_ctrl); return; } } static struct mutex swflag_mutex = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, 0xffffffffffffffffUL, {0, {0, 0}, "swflag_mutex.wait_lock", 0, 0UL}}}}, {& swflag_mutex.wait_list, & swflag_mutex.wait_list}, 0, 0, (void *)(& swflag_mutex), {0, {0, 0}, "swflag_mutex", 0, 0UL}}; static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw ) { s32 ret_val ; { ldv_mutex_lock_6(& swflag_mutex); ret_val = e1000_get_hw_semaphore_82573(hw); if (ret_val != 0) { ldv_mutex_unlock_7(& swflag_mutex); } else { } return (ret_val); } } static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw ) { { e1000_put_hw_semaphore_82573(hw); ldv_mutex_unlock_8(& swflag_mutex); return; } } static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw , bool active ) { u32 data ; u32 tmp ; { tmp = __er32(hw, 3856UL); data = tmp; if ((int )active) { data = data | 2U; } else { data = data & 4294967293U; } __ew32(hw, 3856UL, data); return (0); } } static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw , bool active ) { u32 data ; u32 tmp ; { tmp = __er32(hw, 3856UL); data = tmp; if (! active) { data = data & 4294967291U; } else if (((unsigned int )hw->phy.autoneg_advertised == 47U || (unsigned int )hw->phy.autoneg_advertised == 15U) || (unsigned int )hw->phy.autoneg_advertised == 3U) { data = data | 4U; } else { } __ew32(hw, 3856UL, data); return (0); } } static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw ) { s32 ret_val ; { ret_val = e1000_get_hw_semaphore_82571(hw); if (ret_val != 0) { return (ret_val); } else { } switch ((unsigned int )hw->mac.type) { case 2U: ; goto ldv_41744; default: ret_val = e1000e_acquire_nvm(hw); goto ldv_41744; } ldv_41744: ; if (ret_val != 0) { e1000_put_hw_semaphore_82571(hw); } else { } return (ret_val); } } static void e1000_release_nvm_82571(struct e1000_hw *hw ) { { e1000e_release_nvm(hw); e1000_put_hw_semaphore_82571(hw); return; } } static s32 e1000_write_nvm_82571(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 ret_val ; { switch ((unsigned int )hw->mac.type) { case 2U: ; case 3U: ; case 4U: ret_val = e1000_write_nvm_eewr_82571(hw, (int )offset, (int )words, data); goto ldv_41759; case 0U: ; case 1U: ret_val = e1000e_write_nvm_spi(hw, (int )offset, (int )words, data); goto ldv_41759; default: ret_val = -1; goto ldv_41759; } ldv_41759: ; return (ret_val); } } static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw ) { u32 eecd ; s32 ret_val ; u16 i ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; { ret_val = e1000e_update_nvm_checksum_generic(hw); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->nvm.type != 3U) { return (0); } else { } i = 0U; goto ldv_41771; ldv_41770: usleep_range(1000UL, 2000UL); tmp = __er32(hw, 16UL); if ((tmp & 524288U) == 0U) { goto ldv_41769; } else { } i = (u16 )((int )i + 1); ldv_41771: ; if ((unsigned int )i <= 1999U) { goto ldv_41770; } else { } ldv_41769: ; if ((unsigned int )i == 2000U) { return (-1); } else { } tmp___0 = __er32(hw, 4156UL); if ((tmp___0 & 65280U) == 56064U) { __ew32(hw, 36608UL, 64U); __er32(hw, 8UL); __ew32(hw, 36608UL, 128U); } else { } tmp___1 = __er32(hw, 16UL); eecd = tmp___1 | 524288U; __ew32(hw, 16UL, eecd); i = 0U; goto ldv_41774; ldv_41773: usleep_range(1000UL, 2000UL); tmp___2 = __er32(hw, 16UL); if ((tmp___2 & 524288U) == 0U) { goto ldv_41772; } else { } i = (u16 )((int )i + 1); ldv_41774: ; if ((unsigned int )i <= 1999U) { goto ldv_41773; } else { } ldv_41772: ; if ((unsigned int )i == 2000U) { return (-1); } else { } return (0); } } static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw ) { s32 tmp ; { if ((unsigned int )hw->nvm.type == 3U) { e1000_fix_nvm_checksum_82571(hw); } else { } tmp = e1000e_validate_nvm_checksum_generic(hw); return (tmp); } } static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_nvm_info *nvm ; u32 i ; u32 eewr ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; { nvm = & hw->nvm; eewr = 0U; ret_val = 0; if (((int )nvm->word_size <= (int )offset || (int )words > (int )nvm->word_size - (int )offset) || (unsigned int )words == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_write_nvm_eewr_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "nvm parameter(s) out of bounds\n"; descriptor.lineno = 885U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "nvm parameter(s) out of bounds\n"); } else { } return (-1); } else { } i = 0U; goto ldv_41792; ldv_41791: eewr = ((u32 )((int )*(data + (unsigned long )i) << 16) | (((u32 )offset + i) << 2)) | 1U; ret_val = e1000e_poll_eerd_eewr_done(hw, 1); if (ret_val != 0) { goto ldv_41790; } else { } __ew32(hw, 4140UL, eewr); ret_val = e1000e_poll_eerd_eewr_done(hw, 1); if (ret_val != 0) { goto ldv_41790; } else { } i = i + 1U; ldv_41792: ; if ((u32 )words > i) { goto ldv_41791; } else { } ldv_41790: ; return (ret_val); } } static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw ) { s32 timeout ; u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { timeout = 100; goto ldv_41799; ldv_41798: tmp = __er32(hw, 4112UL); if ((tmp & 262144U) != 0U) { goto ldv_41797; } else { } usleep_range(1000UL, 2000UL); timeout = timeout - 1; ldv_41799: ; if (timeout != 0) { goto ldv_41798; } else { } ldv_41797: ; if (timeout == 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_get_cfg_done_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "MNG configuration cycle has not completed.\n"; descriptor.lineno = 925U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "MNG configuration cycle has not completed.\n"); } else { } return (-9); } else { } return (0); } } static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw , bool active ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 25U, & data); if (ret_val != 0) { return (ret_val); } else { } if ((int )active) { data = (u16 )((unsigned int )data | 2U); ret_val = e1e_wphy(hw, 25U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { data = (unsigned int )data & 65533U; ret_val = e1e_wphy(hw, 25U, (int )data); if ((unsigned int )phy->smart_speed == 1U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 128U); ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )phy->smart_speed == 2U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { } } return (0); } } static s32 e1000_reset_hw_82571(struct e1000_hw *hw ) { u32 ctrl ; u32 ctrl_ext ; u32 eecd ; u32 tctl ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { ret_val = e1000e_disable_pcie_master(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_reset_hw_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "PCI-E Master disable polling has failed.\n"; descriptor.lineno = 1019U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "PCI-E Master disable polling has failed.\n"); } else { } } else { } descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_reset_hw_82571"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___0.format = "Masking off all interrupts\n"; descriptor___0.lineno = 1021U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Masking off all interrupts\n"); } else { } __ew32(hw, 216UL, 4294967295U); __ew32(hw, 256UL, 0U); tctl = __er32(hw, 1024UL); tctl = tctl & 4294967293U; __ew32(hw, 1024UL, tctl); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); switch ((unsigned int )hw->mac.type) { case 2U: ret_val = e1000_get_hw_semaphore_82573(hw); goto ldv_41821; case 3U: ; case 4U: ret_val = e1000_get_hw_semaphore_82574(hw); goto ldv_41821; default: ; goto ldv_41821; } ldv_41821: ; if (ret_val != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_reset_hw_82571"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___1.format = "Cannot acquire MDIO ownership\n"; descriptor___1.lineno = 1047U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Cannot acquire MDIO ownership\n"); } else { } } else { } ctrl = __er32(hw, 0UL); descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000_reset_hw_82571"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___2.format = "Issuing a global reset to MAC\n"; descriptor___2.lineno = 1051U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "Issuing a global reset to MAC\n"); } else { } __ew32(hw, 0UL, ctrl | 67108864U); switch ((unsigned int )hw->mac.type) { case 3U: ; case 4U: e1000_put_hw_semaphore_82574(hw); goto ldv_41829; default: ; goto ldv_41829; } ldv_41829: ; if ((unsigned int )hw->nvm.type == 3U) { usleep_range(10UL, 20UL); ctrl_ext = __er32(hw, 24UL); ctrl_ext = ctrl_ext | 8192U; __ew32(hw, 24UL, ctrl_ext); __er32(hw, 8UL); } else { } ret_val = e1000e_get_auto_rd_done(hw); if (ret_val != 0) { return (ret_val); } else { } switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: eecd = __er32(hw, 16UL); eecd = eecd & 4294967103U; __ew32(hw, 16UL, eecd); goto ldv_41833; case 2U: ; case 3U: ; case 4U: msleep(25U); goto ldv_41833; default: ; goto ldv_41833; } ldv_41833: __ew32(hw, 216UL, 4294967295U); __er32(hw, 192UL); if ((unsigned int )hw->mac.type == 0U) { ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val != 0) { return (ret_val); } else { } e1000e_set_laa_state_82571(hw, 1); } else { } if ((unsigned int )hw->phy.media_type == 3U) { hw->mac.serdes_link_state = 0; } else { } return (0); } } static s32 e1000_init_hw_82571(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 reg_data ; s32 ret_val ; u16 i ; u16 rar_count ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; bool tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; { mac = & hw->mac; rar_count = mac->rar_entry_count; e1000_initialize_hw_bits_82571(hw); ret_val = (*(mac->ops.id_led_init))(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_hw_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "Error initializing identification LED\n"; descriptor.lineno = 1140U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error initializing identification LED\n"); } else { } } else { } descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_init_hw_82571"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___0.format = "Initializing the IEEE VLAN\n"; descriptor___0.lineno = 1143U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Initializing the IEEE VLAN\n"); } else { } (*(mac->ops.clear_vfta))(hw); tmp___1 = e1000e_get_laa_state_82571(hw); if ((int )tmp___1) { rar_count = (u16 )((int )rar_count - 1); } else { } e1000e_init_rx_addrs(hw, (int )rar_count); descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_init_hw_82571"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___1.format = "Zeroing the MTA\n"; descriptor___1.lineno = 1156U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Zeroing the MTA\n"); } else { } i = 0U; goto ldv_41851; ldv_41850: __ew32(hw, (unsigned long )(((int )i << 2) + 20992), 0U); i = (u16 )((int )i + 1); ldv_41851: ; if ((int )mac->mta_reg_count > (int )i) { goto ldv_41850; } else { } ret_val = (*(mac->ops.setup_link))(hw); reg_data = __er32(hw, 14376UL); reg_data = (reg_data & 4269867007U) | 21037056U; __ew32(hw, 14376UL, reg_data); switch ((unsigned int )mac->type) { case 2U: e1000e_enable_tx_pkt_filtering(hw); case 3U: ; case 4U: reg_data = __er32(hw, 23296UL); reg_data = reg_data | 134217728U; __ew32(hw, 23296UL, reg_data); goto ldv_41856; default: reg_data = __er32(hw, 14632UL); reg_data = (reg_data & 4269867007U) | 21037056U; __ew32(hw, 14632UL, reg_data); goto ldv_41856; } ldv_41856: e1000_clear_hw_cntrs_82571(hw); return (ret_val); } } static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw ) { u32 reg ; u32 tmp ; { reg = __er32(hw, 14376UL); reg = reg | 4194304U; __ew32(hw, 14376UL, reg); reg = __er32(hw, 14632UL); reg = reg | 4194304U; __ew32(hw, 14632UL, reg); reg = __er32(hw, 14400UL); reg = reg & 2281701375U; switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: reg = reg | 125829120U; goto ldv_41864; case 3U: ; case 4U: reg = reg | 67108864U; goto ldv_41864; default: ; goto ldv_41864; } ldv_41864: __ew32(hw, 14400UL, reg); reg = __er32(hw, 14656UL); switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: reg = reg & 2684354559U; reg = reg | 121634816U; tmp = __er32(hw, 1024UL); if ((tmp & 268435456U) != 0U) { reg = reg & 4026531839U; } else { reg = reg | 268435456U; } __ew32(hw, 14656UL, reg); goto ldv_41870; default: ; goto ldv_41870; } ldv_41870: ; switch ((unsigned int )hw->mac.type) { case 2U: ; case 3U: ; case 4U: reg = __er32(hw, 0UL); reg = reg & 3758096383U; __ew32(hw, 0UL, reg); goto ldv_41875; default: ; goto ldv_41875; } ldv_41875: ; switch ((unsigned int )hw->mac.type) { case 2U: ; case 3U: ; case 4U: reg = __er32(hw, 24UL); reg = reg & 4286578687U; reg = reg | 4194304U; __ew32(hw, 24UL, reg); goto ldv_41880; default: ; goto ldv_41880; } ldv_41880: ; if ((unsigned int )hw->mac.type == 0U) { reg = __er32(hw, 4352UL); reg = reg | 1U; __ew32(hw, 4352UL, reg); } else { } if ((unsigned int )hw->mac.type == 0U || (unsigned int )hw->mac.type == 1U) { reg = __er32(hw, 24UL); reg = reg & 4294443007U; __ew32(hw, 24UL, reg); } else { } if ((unsigned int )hw->mac.type <= 2U) { reg = __er32(hw, 20488UL); reg = reg | 196608U; __ew32(hw, 20488UL, reg); } else { } switch ((unsigned int )hw->mac.type) { case 3U: ; case 4U: reg = __er32(hw, 23296UL); reg = reg | 4194304U; __ew32(hw, 23296UL, reg); reg = __er32(hw, 23396UL); reg = reg | 1U; __ew32(hw, 23396UL, reg); goto ldv_41884; default: ; goto ldv_41884; } ldv_41884: ; return; } } static void e1000_clear_vfta_82571(struct e1000_hw *hw ) { u32 offset ; u32 vfta_value ; u32 vfta_offset ; u32 vfta_bit_in_reg ; { vfta_value = 0U; vfta_offset = 0U; vfta_bit_in_reg = 0U; switch ((unsigned int )hw->mac.type) { case 2U: ; case 3U: ; case 4U: ; if ((unsigned int )hw->mng_cookie.vlan_id != 0U) { vfta_offset = (u32 )((int )hw->mng_cookie.vlan_id >> 5) & 127U; vfta_bit_in_reg = (u32 )(1 << ((int )hw->mng_cookie.vlan_id & 31)); } else { } goto ldv_41896; default: ; goto ldv_41896; } ldv_41896: offset = 0U; goto ldv_41899; ldv_41898: vfta_value = offset == vfta_offset ? vfta_bit_in_reg : 0U; __ew32(hw, (unsigned long )((offset << 2) + 22016U), vfta_value); __er32(hw, 8UL); offset = offset + 1U; ldv_41899: ; if (offset <= 127U) { goto ldv_41898; } else { } return; } } static bool e1000_check_mng_mode_82574(struct e1000_hw *hw ) { u16 data ; { e1000_read_nvm(hw, 15, 1, & data); return (((int )data & 24576) != 0); } } static s32 e1000_led_on_82574(struct e1000_hw *hw ) { u32 ctrl ; u32 i ; u32 tmp ; { ctrl = hw->mac.ledctl_mode2; tmp = __er32(hw, 8UL); if ((tmp & 2U) == 0U) { i = 0U; goto ldv_41911; ldv_41910: ; if (((hw->mac.ledctl_mode2 >> (int )(i * 8U)) & 255U) == 14U) { ctrl = (u32 )(64 << (int )(i * 8U)) | ctrl; } else { } i = i + 1U; ldv_41911: ; if (i <= 3U) { goto ldv_41910; } else { } } else { } __ew32(hw, 3584UL, ctrl); return (0); } } bool e1000_check_phy_82574(struct e1000_hw *hw ) { u16 status_1kbt ; u16 receive_errors ; s32 ret_val ; { status_1kbt = 0U; receive_errors = 0U; ret_val = e1e_rphy(hw, 21U, & receive_errors); if (ret_val != 0) { return (0); } else { } if ((unsigned int )receive_errors == 65535U) { ret_val = e1e_rphy(hw, 10U, & status_1kbt); if (ret_val != 0) { return (0); } else { } if (((int )status_1kbt & 255) == 255) { return (1); } else { } } else { } return (0); } } static s32 e1000_setup_link_82571(struct e1000_hw *hw ) { s32 tmp ; { switch ((unsigned int )hw->mac.type) { case 2U: ; case 3U: ; case 4U: ; if ((unsigned int )hw->fc.requested_mode == 255U) { hw->fc.requested_mode = 3; } else { } goto ldv_41925; default: ; goto ldv_41925; } ldv_41925: tmp = e1000e_setup_link_generic(hw); return (tmp); } } static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; s32 tmp ; { ctrl = __er32(hw, 0UL); ctrl = ctrl | 64U; ctrl = ctrl & 4294961151U; __ew32(hw, 0UL, ctrl); switch ((unsigned int )hw->phy.type) { case 2U: ; case 8U: ret_val = e1000e_copper_link_setup_m88(hw); goto ldv_41934; case 4U: ret_val = e1000e_copper_link_setup_igp(hw); goto ldv_41934; default: ; return (-2); } ldv_41934: ; if (ret_val != 0) { return (ret_val); } else { } tmp = e1000e_setup_copper_link(hw); return (tmp); } } static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw ) { s32 tmp ; { switch ((unsigned int )hw->mac.type) { case 0U: ; case 1U: __ew32(hw, 36UL, 1024U); goto ldv_41942; default: ; goto ldv_41942; } ldv_41942: tmp = e1000e_setup_fiber_serdes_link(hw); return (tmp); } } static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 rxcw ; u32 ctrl ; u32 status ; u32 txcw ; u32 i ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; struct _ddebug descriptor___8 ; long tmp___8 ; { mac = & hw->mac; ret_val = 0; ctrl = __er32(hw, 0UL); status = __er32(hw, 8UL); __er32(hw, 384UL); usleep_range(10UL, 20UL); rxcw = __er32(hw, 384UL); if ((rxcw & 1073741824U) != 0U && (rxcw & 134217728U) == 0U) { switch ((unsigned int )mac->serdes_link_state) { case 2U: ; if ((status & 2U) == 0U) { mac->serdes_link_state = 1; mac->serdes_has_link = 0; descriptor.modname = "e1000e"; descriptor.function = "e1000_check_for_serdes_link_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "AN_UP -> AN_PROG\n"; descriptor.lineno = 1586U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "AN_UP -> AN_PROG\n"); } else { } } else { mac->serdes_has_link = 1; } goto ldv_41957; case 3U: ; if ((rxcw & 536870912U) != 0U) { __ew32(hw, 376UL, mac->txcw); __ew32(hw, 0UL, ctrl & 4294967231U); mac->serdes_link_state = 1; mac->serdes_has_link = 0; descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_check_for_serdes_link_82571"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___0.format = "FORCED_UP -> AN_PROG\n"; descriptor___0.lineno = 1605U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "FORCED_UP -> AN_PROG\n"); } else { } } else { mac->serdes_has_link = 1; } goto ldv_41957; case 1U: ; if ((rxcw & 536870912U) != 0U) { if ((status & 2U) != 0U) { mac->serdes_link_state = 2; descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_check_for_serdes_link_82571"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___1.format = "AN_PROG -> AN_UP\n"; descriptor___1.lineno = 1620U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "AN_PROG -> AN_UP\n"); } else { } mac->serdes_has_link = 1; } else { mac->serdes_link_state = 0; descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000_check_for_serdes_link_82571"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___2.format = "AN_PROG -> DOWN\n"; descriptor___2.lineno = 1626U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "AN_PROG -> DOWN\n"); } else { } } } else { __ew32(hw, 376UL, mac->txcw & 2147483647U); ctrl = ctrl | 65U; __ew32(hw, 0UL, ctrl); ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor___3.modname = "e1000e"; descriptor___3.function = "e1000_check_for_serdes_link_82571"; descriptor___3.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___3.format = "Error config flow control\n"; descriptor___3.lineno = 1640U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)(hw->adapter)->netdev, "Error config flow control\n"); } else { } goto ldv_41957; } else { } mac->serdes_link_state = 3; mac->serdes_has_link = 1; descriptor___4.modname = "e1000e"; descriptor___4.function = "e1000_check_for_serdes_link_82571"; descriptor___4.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___4.format = "AN_PROG -> FORCED_UP\n"; descriptor___4.lineno = 1646U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)(hw->adapter)->netdev, "AN_PROG -> FORCED_UP\n"); } else { } } goto ldv_41957; case 0U: ; default: __ew32(hw, 376UL, mac->txcw); __ew32(hw, 0UL, ctrl & 4294967231U); mac->serdes_link_state = 1; mac->serdes_has_link = 0; descriptor___5.modname = "e1000e"; descriptor___5.function = "e1000_check_for_serdes_link_82571"; descriptor___5.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___5.format = "DOWN -> AN_PROG\n"; descriptor___5.lineno = 1661U; descriptor___5.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)(hw->adapter)->netdev, "DOWN -> AN_PROG\n"); } else { } goto ldv_41957; } ldv_41957: ; } else if ((rxcw & 1073741824U) == 0U) { mac->serdes_has_link = 0; mac->serdes_link_state = 0; descriptor___6.modname = "e1000e"; descriptor___6.function = "e1000_check_for_serdes_link_82571"; descriptor___6.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___6.format = "ANYSTATE -> DOWN\n"; descriptor___6.lineno = 1668U; descriptor___6.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)(hw->adapter)->netdev, "ANYSTATE -> DOWN\n"); } else { } } else { i = 0U; goto ldv_41973; ldv_41972: usleep_range(10UL, 20UL); rxcw = __er32(hw, 384UL); if ((rxcw & 1073741824U) != 0U && (rxcw & 536870912U) != 0U) { goto ldv_41969; } else { } if ((rxcw & 134217728U) != 0U) { mac->serdes_has_link = 0; mac->serdes_link_state = 0; descriptor___7.modname = "e1000e"; descriptor___7.function = "e1000_check_for_serdes_link_82571"; descriptor___7.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___7.format = "ANYSTATE -> DOWN\n"; descriptor___7.lineno = 1685U; descriptor___7.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)(hw->adapter)->netdev, "ANYSTATE -> DOWN\n"); } else { } goto ldv_41971; } else { } ldv_41969: i = i + 1U; ldv_41973: ; if (i <= 4U) { goto ldv_41972; } else { } ldv_41971: ; if (i == 5U) { txcw = __er32(hw, 376UL); txcw = txcw | 2147483648U; __ew32(hw, 376UL, txcw); mac->serdes_link_state = 1; mac->serdes_has_link = 0; descriptor___8.modname = "e1000e"; descriptor___8.function = "e1000_check_for_serdes_link_82571"; descriptor___8.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor___8.format = "ANYSTATE -> AN_PROG\n"; descriptor___8.lineno = 1697U; descriptor___8.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); if (tmp___8 != 0L) { __dynamic_netdev_dbg(& descriptor___8, (struct net_device const *)(hw->adapter)->netdev, "ANYSTATE -> AN_PROG\n"); } else { } } else { } } return (ret_val); } } static s32 e1000_valid_led_default_82571(struct e1000_hw *hw , u16 *data ) { s32 ret_val ; struct _ddebug descriptor ; long tmp ; { ret_val = e1000_read_nvm(hw, 4, 1, data); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_valid_led_default_82571"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/82571.c.prepared"; descriptor.format = "NVM Read Error\n"; descriptor.lineno = 1719U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } switch ((unsigned int )hw->mac.type) { case 2U: ; case 3U: ; case 4U: ; if ((unsigned int )*data == 63302U) { *data = 6161U; } else { } goto ldv_41985; default: ; if ((unsigned int )*data == 0U || (unsigned int )*data == 65535U) { *data = 35089U; } else { } goto ldv_41985; } ldv_41985: ; return (0); } } bool e1000e_get_laa_state_82571(struct e1000_hw *hw ) { { if ((unsigned int )hw->mac.type != 0U) { return (0); } else { } return (hw->dev_spec.e82571.laa_is_present); } } void e1000e_set_laa_state_82571(struct e1000_hw *hw , bool state ) { { if ((unsigned int )hw->mac.type != 0U) { return; } else { } hw->dev_spec.e82571.laa_is_present = state; if ((int )state) { (*(hw->mac.ops.rar_set))(hw, (u8 *)(& hw->mac.addr), (u32 )((int )hw->mac.rar_entry_count + -1)); } else { } return; } } static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; s32 ret_val ; u16 data ; { nvm = & hw->nvm; if ((unsigned int )nvm->type != 3U) { return (0); } else { } ret_val = e1000_read_nvm(hw, 16, 1, & data); if (ret_val != 0) { return (ret_val); } else { } if (((int )data & 16) == 0) { ret_val = e1000_read_nvm(hw, 35, 1, & data); if (ret_val != 0) { return (ret_val); } else { } if ((int )((short )data) >= 0) { data = (u16 )((unsigned int )data | 32768U); ret_val = e1000_write_nvm(hw, 35, 1, & data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_update_nvm_checksum(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } } else { } return (0); } } static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw ) { s32 ret_val ; s32 tmp ; { if ((unsigned int )hw->mac.type == 0U) { ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } tmp = e1000_read_mac_addr_generic(hw); return (tmp); } } static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; struct e1000_mac_info *mac ; bool tmp ; int tmp___0 ; s32 tmp___1 ; { phy = & hw->phy; mac = & hw->mac; if ((unsigned long )phy->ops.check_reset_block == (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { return; } else { } tmp = (*(mac->ops.check_mng_mode))(hw); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = (*(phy->ops.check_reset_block))(hw); if (tmp___1 == 0) { e1000_power_down_phy_copper(hw); } else { } } else { } return; } } static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw ) { { e1000e_clear_hw_cntrs_base(hw); __er32(hw, 16476UL); __er32(hw, 16480UL); __er32(hw, 16484UL); __er32(hw, 16488UL); __er32(hw, 16492UL); __er32(hw, 16496UL); __er32(hw, 16600UL); __er32(hw, 16604UL); __er32(hw, 16608UL); __er32(hw, 16612UL); __er32(hw, 16616UL); __er32(hw, 16620UL); __er32(hw, 16388UL); __er32(hw, 16396UL); __er32(hw, 16436UL); __er32(hw, 16444UL); __er32(hw, 16632UL); __er32(hw, 16636UL); __er32(hw, 16564UL); __er32(hw, 16568UL); __er32(hw, 16572UL); __er32(hw, 16640UL); __er32(hw, 16676UL); __er32(hw, 16644UL); __er32(hw, 16648UL); __er32(hw, 16652UL); __er32(hw, 16656UL); __er32(hw, 16664UL); __er32(hw, 16668UL); __er32(hw, 16672UL); return; } } static struct e1000_mac_operations const e82571_mac_ops = {& e1000e_id_led_init_generic, 0, 0, 0, & e1000e_cleanup_led_generic, & e1000_clear_hw_cntrs_82571, & e1000_clear_vfta_82571, & e1000e_get_bus_info_pcie, & e1000_set_lan_id_multi_port_pcie, 0, 0, & e1000e_led_off_generic, & e1000e_update_mc_addr_list_generic, & e1000_reset_hw_82571, & e1000_init_hw_82571, & e1000_setup_link_82571, 0, & e1000e_setup_led_generic, & e1000_write_vfta_generic, & e1000e_config_collision_dist_generic, & e1000e_rar_set_generic, & e1000_read_mac_addr_82571}; static struct e1000_phy_operations const e82_phy_ops_igp = {& e1000_get_hw_semaphore_82571, 0, & e1000_check_polarity_igp, & e1000e_check_reset_block_generic, 0, & e1000e_phy_force_speed_duplex_igp, & e1000_get_cfg_done_82571, & e1000e_get_cable_length_igp_2, & e1000e_get_phy_info_igp, 0, & e1000e_read_phy_reg_igp, 0, 0, & e1000_put_hw_semaphore_82571, & e1000e_phy_hw_reset_generic, & e1000_set_d0_lplu_state_82571, & e1000e_set_d3_lplu_state, & e1000e_write_phy_reg_igp, 0, 0, 0, 0}; static struct e1000_phy_operations const e82_phy_ops_m88 = {& e1000_get_hw_semaphore_82571, 0, & e1000_check_polarity_m88, & e1000e_check_reset_block_generic, & e1000e_phy_sw_reset, & e1000e_phy_force_speed_duplex_m88, & e1000e_get_cfg_done_generic, & e1000e_get_cable_length_m88, & e1000e_get_phy_info_m88, 0, & e1000e_read_phy_reg_m88, 0, 0, & e1000_put_hw_semaphore_82571, & e1000e_phy_hw_reset_generic, & e1000_set_d0_lplu_state_82571, & e1000e_set_d3_lplu_state, & e1000e_write_phy_reg_m88, 0, 0, 0, 0}; static struct e1000_phy_operations const e82_phy_ops_bm = {& e1000_get_hw_semaphore_82571, 0, & e1000_check_polarity_m88, & e1000e_check_reset_block_generic, & e1000e_phy_sw_reset, & e1000e_phy_force_speed_duplex_m88, & e1000e_get_cfg_done_generic, & e1000e_get_cable_length_m88, & e1000e_get_phy_info_m88, 0, & e1000e_read_phy_reg_bm2, 0, 0, & e1000_put_hw_semaphore_82571, & e1000e_phy_hw_reset_generic, & e1000_set_d0_lplu_state_82571, & e1000e_set_d3_lplu_state, & e1000e_write_phy_reg_bm2, 0, 0, 0, 0}; static struct e1000_nvm_operations const e82571_nvm_ops = {& e1000_acquire_nvm_82571, & e1000e_read_nvm_eerd, & e1000_release_nvm_82571, & e1000e_reload_nvm_generic, & e1000_update_nvm_checksum_82571, & e1000_valid_led_default_82571, & e1000_validate_nvm_checksum_82571, & e1000_write_nvm_82571}; struct e1000_info const e1000_82571_info = {0, 6490284U, 72U, 38U, 9234U, & e1000_get_variants_82571, & e82571_mac_ops, & e82_phy_ops_igp, & e82571_nvm_ops}; struct e1000_info const e1000_82572_info = {1, 4260012U, 72U, 38U, 9234U, & e1000_get_variants_82571, & e82571_mac_ops, & e82_phy_ops_igp, & e82571_nvm_ops}; struct e1000_info const e1000_82573_info = {2, 67661U, 136U, 20U, 1518U, & e1000_get_variants_82571, & e82571_mac_ops, & e82_phy_ops_m88, & e82571_nvm_ops}; struct e1000_info const e1000_82574_info = {3, 85165U, 1736U, 32U, 9234U, & e1000_get_variants_82571, & e82571_mac_ops, & e82_phy_ops_bm, & e82571_nvm_ops}; struct e1000_info const e1000_82583_info = {4, 84141U, 1152U, 32U, 9234U, & e1000_get_variants_82571, & e82571_mac_ops, & e82_phy_ops_bm, & e82571_nvm_ops}; void ldv_check_final_state(void) ; void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned short int __VERIFIER_nondet_ushort(); extern _Bool __VERIFIER_nondet_bool(); extern unsigned long int __VERIFIER_nondet_ulong(); extern unsigned int __VERIFIER_nondet_uint(); extern void *malloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ; void *ldv_successful_malloc(size_t __size) { void *p = malloc(__size); assume_abort_if_not(p != (void *)0); return p; } extern void free (void *__ptr) __attribute__ ((__nothrow__ , __leaf__)); s32 id_led_init_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 blink_led_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } bool check_mng_mode_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_bool(); } s32 check_for_link_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 cleanup_led_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } void clear_hw_cntrs_dummy(struct e1000_hw *p1) {} void clear_vfta_dummy(struct e1000_hw *p1) {} s32 get_bus_info_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } void set_lan_id_dummy(struct e1000_hw *p1) {} s32 get_link_up_info_dummy(struct e1000_hw *p1, u16 *p2, u16 *p3) { return __VERIFIER_nondet_int(); } s32 led_on_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 led_off_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } void update_mc_addr_list_dummy(struct e1000_hw *p1, u8 *p2, u32 p3) {} s32 reset_hw_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 init_hw_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 setup_link_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 setup_physical_interface_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 setup_led_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } void write_vfta_dummy(struct e1000_hw *p1, u32 p2, u32 p3) {} void config_collision_dist_dummy(struct e1000_hw *p1) {} void rar_set_dummy(struct e1000_hw *p1, u8 *p2, u32 p3) {} s32 read_mac_addr_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 acquire_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 cfg_on_link_up_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 check_polarity_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 check_reset_block_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 commit_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 force_speed_duplex_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 get_cfg_done_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 get_cable_length_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 get_info_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 set_page_dummy(struct e1000_hw *p1, u16 p2) { return __VERIFIER_nondet_int(); } s32 read_reg_dummy(struct e1000_hw *p1, u32 p2, u16 *p3) { return __VERIFIER_nondet_int(); } s32 read_reg_locked_dummy(struct e1000_hw *p1, u32 p2, u16 *p3) { return __VERIFIER_nondet_int(); } s32 read_reg_page_dummy(struct e1000_hw *p1, u32 p2, u16 *p3) { return __VERIFIER_nondet_int(); } void release_dummy(struct e1000_hw *p1) {} s32 reset_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 set_d0_lplu_state_dummy(struct e1000_hw *p1, bool p2) { return __VERIFIER_nondet_int(); } s32 set_d3_lplu_state_dummy(struct e1000_hw *p1, bool p2) { return __VERIFIER_nondet_int(); } s32 write_reg_dummy(struct e1000_hw *p1, u32 p2, u16 p3) { return __VERIFIER_nondet_int(); } s32 write_reg_locked_dummy(struct e1000_hw *p1, u32 p2, u16 p3) { return __VERIFIER_nondet_int(); } s32 write_reg_page_dummy(struct e1000_hw *p1, u32 p2, u16 p3) { return __VERIFIER_nondet_int(); } void power_up_dummy(struct e1000_hw *p1) {} void power_down_dummy(struct e1000_hw *p1) {} s32 acquire_dummy2(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 read_dummy(struct e1000_hw *p1, u16 p2, u16 p3, u16 *p4) { return __VERIFIER_nondet_int(); } void release_dummy2(struct e1000_hw *p1) {} void reload_dummy(struct e1000_hw *p1) {} s32 update_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 valid_led_default_dummy(struct e1000_hw *p1, u16 *p2) { return __VERIFIER_nondet_int(); } s32 validate_dummy(struct e1000_hw *p1) { return __VERIFIER_nondet_int(); } s32 write_dummy(struct e1000_hw *p1, u16 p2, u16 p3, u16 *p4) { return __VERIFIER_nondet_int(); } int LDV_IN_INTERRUPT ; void ldv_main0_sequence_infinite_withcheck_stateful(void) { struct e1000_hw *var_group1 ; bool var_e1000_set_d0_lplu_state_82571_20_p1 ; u16 *var_e1000_valid_led_default_82571_32_p1 ; u16 var_e1000_write_nvm_82571_15_p1 ; u16 var_e1000_write_nvm_82571_15_p2 ; u16 *var_e1000_write_nvm_82571_15_p3 ; struct e1000_adapter *var_group2 ; int ldv_s_e82_phy_ops_igp_e1000_phy_operations ; int ldv_s_e82_phy_ops_m88_e1000_phy_operations ; int ldv_s_e82_phy_ops_bm_e1000_phy_operations ; int ldv_s_e82571_nvm_ops_e1000_nvm_operations ; int tmp ; int tmp___0 ; { ldv_s_e82_phy_ops_igp_e1000_phy_operations = 0; ldv_s_e82_phy_ops_m88_e1000_phy_operations = 0; ldv_s_e82_phy_ops_bm_e1000_phy_operations = 0; ldv_s_e82571_nvm_ops_e1000_nvm_operations = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_42079; ldv_42078: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); e1000_clear_hw_cntrs_82571(var_group1); goto ldv_42050; case 1: ldv_handler_precall(); e1000_clear_vfta_82571(var_group1); goto ldv_42050; case 2: ldv_handler_precall(); e1000_reset_hw_82571(var_group1); goto ldv_42050; case 3: ldv_handler_precall(); e1000_init_hw_82571(var_group1); goto ldv_42050; case 4: ldv_handler_precall(); e1000_setup_link_82571(var_group1); goto ldv_42050; case 5: ldv_handler_precall(); e1000_read_mac_addr_82571(var_group1); goto ldv_42050; case 6: ; if (ldv_s_e82_phy_ops_igp_e1000_phy_operations == 0) { ldv_handler_precall(); e1000_get_hw_semaphore_82571(var_group1); ldv_s_e82_phy_ops_igp_e1000_phy_operations = ldv_s_e82_phy_ops_igp_e1000_phy_operations + 1; } else { } goto ldv_42050; case 7: ; if (ldv_s_e82_phy_ops_igp_e1000_phy_operations == 1) { ldv_handler_precall(); e1000_put_hw_semaphore_82571(var_group1); ldv_s_e82_phy_ops_igp_e1000_phy_operations = 0; } else { } goto ldv_42050; case 8: ldv_handler_precall(); e1000_get_cfg_done_82571(var_group1); goto ldv_42050; case 9: ldv_handler_precall(); e1000_set_d0_lplu_state_82571(var_group1, (int )var_e1000_set_d0_lplu_state_82571_20_p1); goto ldv_42050; case 10: ; if (ldv_s_e82_phy_ops_m88_e1000_phy_operations == 0) { ldv_handler_precall(); e1000_get_hw_semaphore_82571(var_group1); ldv_s_e82_phy_ops_m88_e1000_phy_operations = ldv_s_e82_phy_ops_m88_e1000_phy_operations + 1; } else { } goto ldv_42050; case 11: ; if (ldv_s_e82_phy_ops_m88_e1000_phy_operations == 1) { ldv_handler_precall(); e1000_put_hw_semaphore_82571(var_group1); ldv_s_e82_phy_ops_m88_e1000_phy_operations = 0; } else { } goto ldv_42050; case 12: ldv_handler_precall(); e1000_set_d0_lplu_state_82571(var_group1, (int )var_e1000_set_d0_lplu_state_82571_20_p1); goto ldv_42050; case 13: ; if (ldv_s_e82_phy_ops_bm_e1000_phy_operations == 0) { ldv_handler_precall(); e1000_get_hw_semaphore_82571(var_group1); ldv_s_e82_phy_ops_bm_e1000_phy_operations = ldv_s_e82_phy_ops_bm_e1000_phy_operations + 1; } else { } goto ldv_42050; case 14: ; if (ldv_s_e82_phy_ops_bm_e1000_phy_operations == 1) { ldv_handler_precall(); e1000_put_hw_semaphore_82571(var_group1); ldv_s_e82_phy_ops_bm_e1000_phy_operations = 0; } else { } goto ldv_42050; case 15: ldv_handler_precall(); e1000_set_d0_lplu_state_82571(var_group1, (int )var_e1000_set_d0_lplu_state_82571_20_p1); goto ldv_42050; case 16: ; if (ldv_s_e82571_nvm_ops_e1000_nvm_operations == 0) { ldv_handler_precall(); e1000_acquire_nvm_82571(var_group1); ldv_s_e82571_nvm_ops_e1000_nvm_operations = ldv_s_e82571_nvm_ops_e1000_nvm_operations + 1; } else { } goto ldv_42050; case 17: ; if (ldv_s_e82571_nvm_ops_e1000_nvm_operations == 1) { ldv_handler_precall(); e1000_release_nvm_82571(var_group1); ldv_s_e82571_nvm_ops_e1000_nvm_operations = 0; } else { } goto ldv_42050; case 18: ldv_handler_precall(); e1000_update_nvm_checksum_82571(var_group1); goto ldv_42050; case 19: ldv_handler_precall(); e1000_valid_led_default_82571(var_group1, var_e1000_valid_led_default_82571_32_p1); goto ldv_42050; case 20: ldv_handler_precall(); e1000_validate_nvm_checksum_82571(var_group1); goto ldv_42050; case 21: ldv_handler_precall(); e1000_write_nvm_82571(var_group1, (int )var_e1000_write_nvm_82571_15_p1, (int )var_e1000_write_nvm_82571_15_p2, var_e1000_write_nvm_82571_15_p3); goto ldv_42050; case 22: ldv_handler_precall(); e1000_get_variants_82571(var_group2); goto ldv_42050; case 23: ldv_handler_precall(); e1000_get_variants_82571(var_group2); goto ldv_42050; case 24: ldv_handler_precall(); e1000_get_variants_82571(var_group2); goto ldv_42050; case 25: ldv_handler_precall(); e1000_get_variants_82571(var_group2); goto ldv_42050; case 26: ldv_handler_precall(); e1000_get_variants_82571(var_group2); goto ldv_42050; default: ; goto ldv_42050; } ldv_42050: ; ldv_42079: tmp___0 = __VERIFIER_nondet_int(); if ((((tmp___0 != 0 || ldv_s_e82_phy_ops_igp_e1000_phy_operations != 0) || ldv_s_e82_phy_ops_m88_e1000_phy_operations != 0) || ldv_s_e82_phy_ops_bm_e1000_phy_operations != 0) || ldv_s_e82571_nvm_ops_e1000_nvm_operations != 0) { goto ldv_42078; } else { } ldv_check_final_state(); return; } } void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_6(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_swflag_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_swflag_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_unlock_8(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_swflag_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static void clear_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } int ldv_mutex_trylock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_nvm_mutex(struct mutex *lock ) ; void ldv_mutex_unlock_nvm_mutex(struct mutex *lock ) ; __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); return (tmp); } } extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; s32 e1000e_set_fc_watermarks(struct e1000_hw *hw ) ; void e1000e_set_pcie_no_snoop(struct e1000_hw *hw , u32 no_snoop ) ; s32 e1000e_check_downshift(struct e1000_hw *hw ) ; s32 e1000_check_polarity_ife(struct e1000_hw *hw ) ; s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw ) ; s32 e1000_get_phy_info_ife(struct e1000_hw *hw ) ; s32 e1000e_read_kmrn_reg(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000_set_page_igp(struct e1000_hw *hw , u16 page ) ; s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000e_write_kmrn_reg(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000e_phy_has_link_generic(struct e1000_hw *hw , u32 iterations , u32 usec_interval , bool *success ) ; s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw ) ; enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id ) ; s32 e1000e_determine_phy_address(struct e1000_hw *hw ) ; s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw , u16 *phy_reg ) ; s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw , u16 *phy_reg ) ; s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000_read_phy_reg_hv(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000_write_phy_reg_hv(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw , u32 offset , u16 data ) ; s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw ) ; s32 e1000_copper_link_setup_82577(struct e1000_hw *hw ) ; s32 e1000_check_polarity_82577(struct e1000_hw *hw ) ; s32 e1000_get_phy_info_82577(struct e1000_hw *hw ) ; s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw ) ; s32 e1000_get_cable_length_82577(struct e1000_hw *hw ) ; void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw ) ; void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw , bool state ) ; void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw ) ; void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw ) ; void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw ) ; void e1000_resume_workarounds_pchlan(struct e1000_hw *hw ) ; s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw , bool k1_enable ) ; void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw ) ; s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw , bool enable ) ; s32 e1000_read_emi_reg_locked(struct e1000_hw *hw , u16 addr , u16 *data ) ; s32 e1000_write_emi_reg_locked(struct e1000_hw *hw , u16 addr , u16 data ) ; struct e1000_info const e1000_ich8_info ; struct e1000_info const e1000_ich9_info ; struct e1000_info const e1000_ich10_info ; struct e1000_info const e1000_pch_info ; struct e1000_info const e1000_pch2_info ; struct e1000_info const e1000_pch_lpt_info ; __inline static s32 e1000_phy_hw_reset(struct e1000_hw *hw ) { s32 tmp ; { tmp = (*(hw->phy.ops.reset))(hw); return (tmp); } } __inline static s32 e1e_rphy_locked(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = (*(hw->phy.ops.read_reg_locked))(hw, offset, data); return (tmp); } } __inline static s32 e1e_wphy_locked(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = (*(hw->phy.ops.write_reg_locked))(hw, offset, (int )data); return (tmp); } } __inline static s32 __ew32_prepare___0(struct e1000_hw *hw ) { s32 i ; u32 tmp ; { i = 2000; goto ldv_41538; ldv_41537: __const_udelay(214750UL); ldv_41538: tmp = __er32(hw, 23380UL); if ((tmp & 16777216U) != 0U) { i = i - 1; if (i != 0) { goto ldv_41537; } else { goto ldv_41539; } } else { } ldv_41539: ; return (i); } } __inline static void __ew32___0(struct e1000_hw *hw , unsigned long reg , u32 val ) { { if (((hw->adapter)->flags2 & 2048U) != 0U) { __ew32_prepare___0(hw); } else { } writel(val, (void volatile *)(hw->hw_addr + reg)); return; } } static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw ) ; static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw ) ; static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw , u32 bank ) ; static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw , u32 offset , u8 byte ) ; static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw , u32 offset , u8 *data ) ; static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw , u32 offset , u16 *data ) ; static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw , u32 offset , u8 size , u16 *data ) ; static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw ) ; static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw ) ; static s32 e1000_led_on_ich8lan(struct e1000_hw *hw ) ; static s32 e1000_led_off_ich8lan(struct e1000_hw *hw ) ; static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw ) ; static s32 e1000_setup_led_pchlan(struct e1000_hw *hw ) ; static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw ) ; static s32 e1000_led_on_pchlan(struct e1000_hw *hw ) ; static s32 e1000_led_off_pchlan(struct e1000_hw *hw ) ; static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw , bool active ) ; static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw ) ; static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw ) ; static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw , bool link ) ; static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw ) ; static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw ) ; static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw ) ; static void e1000_rar_set_pch2lan(struct e1000_hw *hw , u8 *addr , u32 index ) ; static void e1000_rar_set_pch_lpt(struct e1000_hw *hw , u8 *addr , u32 index ) ; static s32 e1000_k1_workaround_lv(struct e1000_hw *hw ) ; static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw , bool gate ) ; static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw ) ; __inline static u16 __er16flash(struct e1000_hw *hw , unsigned long reg ) { unsigned short tmp ; { tmp = readw((void const volatile *)(hw->flash_address + reg)); return (tmp); } } __inline static u32 __er32flash(struct e1000_hw *hw , unsigned long reg ) { unsigned int tmp ; { tmp = readl((void const volatile *)(hw->flash_address + reg)); return (tmp); } } __inline static void __ew16flash(struct e1000_hw *hw , unsigned long reg , u16 val ) { { writew((int )val, (void volatile *)(hw->flash_address + reg)); return; } } __inline static void __ew32flash(struct e1000_hw *hw , unsigned long reg , u32 val ) { { writel(val, (void volatile *)(hw->flash_address + reg)); return; } } static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw ) { u16 phy_reg ; u32 phy_id ; s32 ret_val ; u16 retry_count ; { phy_reg = 0U; phy_id = 0U; retry_count = 0U; goto ldv_41686; ldv_41685: ret_val = e1e_rphy_locked(hw, 2U, & phy_reg); if (ret_val != 0 || (unsigned int )phy_reg == 65535U) { goto ldv_41683; } else { } phy_id = (unsigned int )((int )phy_reg << 16); ret_val = e1e_rphy_locked(hw, 3U, & phy_reg); if (ret_val != 0 || (unsigned int )phy_reg == 65535U) { phy_id = 0U; goto ldv_41683; } else { } phy_id = ((u32 )phy_reg & 4294967280U) | phy_id; goto ldv_41684; ldv_41683: retry_count = (u16 )((int )retry_count + 1); ldv_41686: ; if ((unsigned int )retry_count <= 1U) { goto ldv_41685; } else { } ldv_41684: ; if (hw->phy.id != 0U) { if (hw->phy.id == phy_id) { return (1); } else { } } else if (phy_id != 0U) { hw->phy.id = phy_id; hw->phy.revision = (unsigned int )phy_reg & 15U; return (1); } else { } (*(hw->phy.ops.release))(hw); ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val == 0) { ret_val = e1000e_get_phy_id(hw); } else { } (*(hw->phy.ops.acquire))(hw); return (ret_val == 0); } } static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw ) { u32 mac_reg ; u32 fwsm ; u32 tmp ; s32 ret_val ; u16 phy_reg ; struct _ddebug descriptor ; long tmp___0 ; bool tmp___1 ; bool tmp___2 ; struct _ddebug descriptor___0 ; long tmp___3 ; s32 tmp___4 ; struct _ddebug descriptor___1 ; long tmp___5 ; u16 count ; u32 tmp___6 ; u16 tmp___7 ; { tmp = __er32(hw, 23380UL); fwsm = tmp; e1000_gate_hw_phy_config_ich8lan(hw, 1); ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_phy_workarounds_pchlan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Failed to initialize PHY flow\n"; descriptor.lineno = 285U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Failed to initialize PHY flow\n"); } else { } goto out; } else { } switch ((unsigned int )hw->mac.type) { case 11U: tmp___1 = e1000_phy_is_accessible_pchlan(hw); if ((int )tmp___1) { goto ldv_41698; } else { } mac_reg = __er32(hw, 24UL); mac_reg = mac_reg | 2048U; __ew32___0(hw, 24UL, mac_reg); case 10U: tmp___2 = e1000_phy_is_accessible_pchlan(hw); if ((int )tmp___2) { if ((unsigned int )hw->mac.type == 11U) { e1e_rphy_locked(hw, 24631U, & phy_reg); phy_reg = (unsigned int )phy_reg & 65534U; e1e_wphy_locked(hw, 24631U, (int )phy_reg); mac_reg = __er32(hw, 24UL); mac_reg = mac_reg & 4294965247U; __ew32___0(hw, 24UL, mac_reg); } else { } goto ldv_41698; } else { } case 9U: ; if ((unsigned int )hw->mac.type == 9U && (fwsm & 32768U) != 0U) { goto ldv_41698; } else { } tmp___4 = (*(hw->phy.ops.check_reset_block))(hw); if (tmp___4 != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_init_phy_workarounds_pchlan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Required LANPHYPC toggle blocked by ME\n"; descriptor___0.lineno = 329U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Required LANPHYPC toggle blocked by ME\n"); } else { } goto ldv_41698; } else { } descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_init_phy_workarounds_pchlan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "Toggling LANPHYPC\n"; descriptor___1.lineno = 333U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Toggling LANPHYPC\n"); } else { } mac_reg = __er32(hw, 60UL); mac_reg = mac_reg & 4093640703U; mac_reg = mac_reg | 134217728U; __ew32___0(hw, 60UL, mac_reg); if ((unsigned int )hw->mac.type == 11U) { mac_reg = __er32(hw, 24UL); mac_reg = mac_reg & 4294965247U; __ew32___0(hw, 24UL, mac_reg); } else { } mac_reg = __er32(hw, 0UL); mac_reg = mac_reg | 65536U; mac_reg = mac_reg & 4294836223U; __ew32___0(hw, 0UL, mac_reg); __er32(hw, 8UL); usleep_range(10UL, 20UL); mac_reg = mac_reg & 4294901759U; __ew32___0(hw, 0UL, mac_reg); __er32(hw, 8UL); if ((unsigned int )hw->mac.type <= 10U) { msleep(50U); } else { count = 20U; ldv_41704: usleep_range(5000UL, 10000UL); tmp___6 = __er32(hw, 24UL); if ((tmp___6 & 4U) == 0U) { tmp___7 = count; count = (u16 )((int )count - 1); if ((unsigned int )tmp___7 != 0U) { goto ldv_41704; } else { goto ldv_41705; } } else { } ldv_41705: ; } goto ldv_41698; default: ; goto ldv_41698; } ldv_41698: (*(hw->phy.ops.release))(hw); ret_val = e1000e_phy_hw_reset_generic(hw); out: ; if ((unsigned int )hw->mac.type == 10U && (fwsm & 32768U) == 0U) { usleep_range(10000UL, 20000UL); e1000_gate_hw_phy_config_ich8lan(hw, 0); } else { } return (ret_val); } } static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; { phy = & hw->phy; phy->addr = 1U; phy->reset_delay_us = 100U; phy->ops.set_page = & e1000_set_page_igp; phy->ops.read_reg = & e1000_read_phy_reg_hv; phy->ops.read_reg_locked = & e1000_read_phy_reg_hv_locked; phy->ops.read_reg_page = & e1000_read_phy_reg_page_hv; phy->ops.set_d0_lplu_state = & e1000_set_lplu_state_pchlan; phy->ops.set_d3_lplu_state = & e1000_set_lplu_state_pchlan; phy->ops.write_reg = & e1000_write_phy_reg_hv; phy->ops.write_reg_locked = & e1000_write_phy_reg_hv_locked; phy->ops.write_reg_page = & e1000_write_phy_reg_page_hv; phy->ops.power_up = & e1000_power_up_phy_copper; phy->ops.power_down = & e1000_power_down_phy_copper_ich8lan; phy->autoneg_mask = 47U; phy->id = 0U; ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val != 0) { return (ret_val); } else { } if (phy->id == 0U) { switch ((unsigned int )hw->mac.type) { default: ret_val = e1000e_get_phy_id(hw); if (ret_val != 0) { return (ret_val); } else { } if (phy->id != 0U && phy->id != 4294967280U) { goto ldv_41713; } else { } case 10U: ; case 11U: ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_get_phy_id(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_41713; } ldv_41713: ; } else { } phy->type = e1000e_get_phy_type_from_id(phy->id); switch ((unsigned int )phy->type) { case 10U: ; case 11U: ; case 12U: phy->ops.check_polarity = & e1000_check_polarity_82577; phy->ops.force_speed_duplex = & e1000_phy_force_speed_duplex_82577; phy->ops.get_cable_length = & e1000_get_cable_length_82577; phy->ops.get_info = & e1000_get_phy_info_82577; phy->ops.commit = & e1000e_phy_sw_reset; goto ldv_41719; case 9U: phy->ops.check_polarity = & e1000_check_polarity_m88; phy->ops.force_speed_duplex = & e1000e_phy_force_speed_duplex_m88; phy->ops.get_cable_length = & e1000e_get_cable_length_m88; phy->ops.get_info = & e1000e_get_phy_info_m88; goto ldv_41719; default: ret_val = -2; goto ldv_41719; } ldv_41719: ; return (ret_val); } } static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 i ; struct _ddebug descriptor ; long tmp ; enum e1000_phy_type tmp___0 ; u16 tmp___1 ; { phy = & hw->phy; i = 0U; phy->addr = 1U; phy->reset_delay_us = 100U; phy->ops.power_up = & e1000_power_up_phy_copper; phy->ops.power_down = & e1000_power_down_phy_copper_ich8lan; ret_val = e1000e_determine_phy_address(hw); if (ret_val != 0) { phy->ops.write_reg = & e1000e_write_phy_reg_bm; phy->ops.read_reg = & e1000e_read_phy_reg_bm; ret_val = e1000e_determine_phy_address(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_phy_params_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Cannot determine PHY addr. Erroring out\n"; descriptor.lineno = 503U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Cannot determine PHY addr. Erroring out\n"); } else { } return (ret_val); } else { } } else { } phy->id = 0U; goto ldv_41731; ldv_41730: usleep_range(1000UL, 2000UL); ret_val = e1000e_get_phy_id(hw); if (ret_val != 0) { return (ret_val); } else { } ldv_41731: tmp___0 = e1000e_get_phy_type_from_id(phy->id); if ((unsigned int )tmp___0 == 0U) { tmp___1 = i; i = (u16 )((int )i + 1); if ((unsigned int )tmp___1 <= 99U) { goto ldv_41730; } else { goto ldv_41732; } } else { } ldv_41732: ; switch (phy->id) { case 44565392U: phy->type = 6; phy->autoneg_mask = 47U; phy->ops.read_reg_locked = & e1000e_read_phy_reg_igp_locked; phy->ops.write_reg_locked = & e1000e_write_phy_reg_igp_locked; phy->ops.get_info = & e1000e_get_phy_info_igp; phy->ops.check_polarity = & e1000_check_polarity_igp; phy->ops.force_speed_duplex = & e1000e_phy_force_speed_duplex_igp; goto ldv_41734; case 44565296U: ; case 44565280U: ; case 44565264U: phy->type = 7; phy->autoneg_mask = 15U; phy->ops.get_info = & e1000_get_phy_info_ife; phy->ops.check_polarity = & e1000_check_polarity_ife; phy->ops.force_speed_duplex = & e1000_phy_force_speed_duplex_ife; goto ldv_41734; case 21040304U: phy->type = 8; phy->autoneg_mask = 47U; phy->ops.read_reg = & e1000e_read_phy_reg_bm; phy->ops.write_reg = & e1000e_write_phy_reg_bm; phy->ops.commit = & e1000e_phy_sw_reset; phy->ops.get_info = & e1000e_get_phy_info_m88; phy->ops.check_polarity = & e1000_check_polarity_m88; phy->ops.force_speed_duplex = & e1000e_phy_force_speed_duplex_m88; goto ldv_41734; default: ; return (-2); } ldv_41734: ; return (0); } } static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; struct e1000_dev_spec_ich8lan *dev_spec ; u32 gfpreg ; u32 sector_base_addr ; u32 sector_end_addr ; u16 i ; struct _ddebug descriptor ; long tmp ; { nvm = & hw->nvm; dev_spec = & hw->dev_spec.ich8lan; if ((unsigned long )hw->flash_address == (unsigned long )((void *)0)) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_nvm_params_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "ERROR: Flash registers not mapped\n"; descriptor.lineno = 571U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "ERROR: Flash registers not mapped\n"); } else { } return (-3); } else { } nvm->type = 4; gfpreg = __er32flash(hw, 0UL); sector_base_addr = gfpreg & 8191U; sector_end_addr = ((gfpreg >> 16) & 8191U) + 1U; nvm->flash_base_addr = sector_base_addr << 12; nvm->flash_bank_size = (sector_end_addr - sector_base_addr) << 12; nvm->flash_bank_size = nvm->flash_bank_size / 2U; nvm->flash_bank_size = nvm->flash_bank_size / 2U; nvm->word_size = 2048U; i = 0U; goto ldv_41752; ldv_41751: dev_spec->shadow_ram[(int )i].modified = 0; dev_spec->shadow_ram[(int )i].value = 65535U; i = (u16 )((int )i + 1); ldv_41752: ; if ((int )nvm->word_size > (int )i) { goto ldv_41751; } else { } return (0); } } static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; { mac = & hw->mac; hw->phy.media_type = 1; mac->mta_reg_count = 32U; mac->rar_entry_count = 7U; if ((unsigned int )mac->type == 6U) { mac->rar_entry_count = (u16 )((int )mac->rar_entry_count - 1); } else { } mac->has_fwsm = 1; mac->arc_subsystem_valid = 0; mac->adaptive_ifs = 1; switch ((unsigned int )mac->type) { case 6U: ; case 7U: ; case 8U: mac->ops.check_mng_mode = & e1000_check_mng_mode_ich8lan; mac->ops.id_led_init = & e1000e_id_led_init_generic; mac->ops.blink_led = & e1000e_blink_led_generic; mac->ops.setup_led = & e1000e_setup_led_generic; mac->ops.cleanup_led = & e1000_cleanup_led_ich8lan; mac->ops.led_on = & e1000_led_on_ich8lan; mac->ops.led_off = & e1000_led_off_ich8lan; goto ldv_41761; case 10U: mac->rar_entry_count = 5U; mac->ops.rar_set = & e1000_rar_set_pch2lan; case 11U: ; case 9U: mac->ops.check_mng_mode = & e1000_check_mng_mode_pchlan; mac->ops.id_led_init = & e1000_id_led_init_pchlan; mac->ops.setup_led = & e1000_setup_led_pchlan; mac->ops.cleanup_led = & e1000_cleanup_led_pchlan; mac->ops.led_on = & e1000_led_on_pchlan; mac->ops.led_off = & e1000_led_off_pchlan; goto ldv_41761; default: ; goto ldv_41761; } ldv_41761: ; if ((unsigned int )mac->type == 11U) { mac->rar_entry_count = 12U; mac->ops.rar_set = & e1000_rar_set_pch_lpt; mac->ops.setup_physical_interface = & e1000_setup_copper_link_pch_lpt; } else { } if ((unsigned int )mac->type == 6U) { e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1); } else { } return (0); } } static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw , u16 address , u16 *data , bool read ) { s32 ret_val ; { ret_val = e1e_wphy_locked(hw, 16U, (int )address); if (ret_val != 0) { return (ret_val); } else { } if ((int )read) { ret_val = e1e_rphy_locked(hw, 17U, data); } else { ret_val = e1e_wphy_locked(hw, 17U, (int )*data); } return (ret_val); } } s32 e1000_read_emi_reg_locked(struct e1000_hw *hw , u16 addr , u16 *data ) { s32 tmp ; { tmp = __e1000_access_emi_reg_locked(hw, (int )addr, data, 1); return (tmp); } } s32 e1000_write_emi_reg_locked(struct e1000_hw *hw , u16 addr , u16 data ) { s32 tmp ; { tmp = __e1000_access_emi_reg_locked(hw, (int )addr, & data, 0); return (tmp); } } static s32 e1000_set_eee_pchlan(struct e1000_hw *hw ) { struct e1000_dev_spec_ich8lan *dev_spec ; s32 ret_val ; u16 lpa ; u16 pcs_status ; u16 adv ; u16 adv_addr ; u16 lpi_ctrl ; u16 data ; { dev_spec = & hw->dev_spec.ich8lan; switch ((unsigned int )hw->phy.type) { case 11U: lpa = 1039U; pcs_status = 6190U; adv_addr = 1038U; goto ldv_41795; case 12U: lpa = 32770U; pcs_status = 37889U; adv_addr = 32769U; goto ldv_41795; default: ; return (0); } ldv_41795: ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy_locked(hw, 24724U, & lpi_ctrl); if (ret_val != 0) { goto release; } else { } lpi_ctrl = (unsigned int )lpi_ctrl & 40959U; if (! dev_spec->eee_disable) { ret_val = e1000_read_emi_reg_locked(hw, (int )lpa, & dev_spec->eee_lp_ability); if (ret_val != 0) { goto release; } else { } ret_val = e1000_read_emi_reg_locked(hw, (int )adv_addr, & adv); if (ret_val != 0) { goto release; } else { } if ((((int )dev_spec->eee_lp_ability & (int )adv) & 4) != 0) { lpi_ctrl = (u16 )((unsigned int )lpi_ctrl | 16384U); } else { } if ((((int )dev_spec->eee_lp_ability & (int )adv) & 2) != 0) { e1e_rphy_locked(hw, 5U, & data); if (((int )data & 256) != 0) { lpi_ctrl = (u16 )((unsigned int )lpi_ctrl | 8192U); } else { dev_spec->eee_lp_ability = (unsigned int )dev_spec->eee_lp_ability & 65533U; } } else { } } else { } ret_val = e1000_read_emi_reg_locked(hw, (int )pcs_status, & data); if (ret_val != 0) { goto release; } else { } ret_val = e1e_wphy_locked(hw, 24724U, (int )lpi_ctrl); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw , bool link ) { u32 fextnvm6 ; u32 tmp ; s32 ret_val ; u16 kmrn_reg ; u32 tmp___0 ; { tmp = __er32(hw, 16UL); fextnvm6 = tmp; ret_val = 0; if ((int )link) { tmp___0 = __er32(hw, 8UL); if ((tmp___0 & 128U) != 0U) { ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_read_kmrn_reg_locked(hw, 7U, & kmrn_reg); if (ret_val != 0) { goto release; } else { } ret_val = e1000e_write_kmrn_reg_locked(hw, 7U, (int )kmrn_reg & 65533); if (ret_val != 0) { goto release; } else { } usleep_range(10UL, 20UL); __ew32___0(hw, 16UL, fextnvm6 | 256U); ret_val = e1000e_write_kmrn_reg_locked(hw, 7U, (int )kmrn_reg); release: (*(hw->phy.ops.release))(hw); } else { __ew32___0(hw, 16UL, fextnvm6 & 4294967039U); } } else { __ew32___0(hw, 16UL, fextnvm6 & 4294967039U); } return (ret_val); } } static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw , bool link ) { u32 reg ; u16 lat_enc ; u16 speed ; u16 duplex ; u16 scale ; u16 max_snoop ; u16 max_nosnoop ; u16 max_ltr_enc ; s64 lat_ns ; s64 value ; u32 rxa ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; u32 tmp___1 ; uint32_t __base ; uint32_t __rem ; struct _ddebug descriptor___1 ; long tmp___2 ; u16 __max1 ; u16 __max2 ; { reg = (u32 )((((int )link << 31) | ((int )link << 15)) | 1073741824); lat_enc = 0U; if ((int )link) { scale = 0U; if ((hw->adapter)->max_frame_size == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_platform_pm_pch_lpt"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "max_frame_size not set.\n"; descriptor.lineno = 912U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "max_frame_size not set.\n"); } else { } return (-3); } else { } (*(hw->mac.ops.get_link_up_info))(hw, & speed, & duplex); if ((unsigned int )speed == 0U) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_platform_pm_pch_lpt"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Speed not set.\n"; descriptor___0.lineno = 918U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Speed not set.\n"); } else { } return (-3); } else { } tmp___1 = __er32(hw, 4096UL); rxa = tmp___1 & 65535U; lat_ns = ((long long )rxa * 512LL - (long long )(hw->adapter)->max_frame_size) * 16000LL; if (lat_ns < 0LL) { lat_ns = 0LL; } else { __base = (uint32_t )speed; __rem = (uint32_t )((unsigned long long )lat_ns % (unsigned long long )__base); lat_ns = (s64 )((unsigned long long )lat_ns / (unsigned long long )__base); } value = lat_ns; goto ldv_41829; ldv_41828: scale = (u16 )((int )scale + 1); value = (value + 31LL) / 32LL; ldv_41829: ; if (value > 1023LL) { goto ldv_41828; } else { } if ((unsigned int )scale > 5U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_platform_pm_pch_lpt"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "Invalid LTR latency scale %d\n"; descriptor___1.lineno = 946U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Invalid LTR latency scale %d\n", (int )scale); } else { } return (-3); } else { } lat_enc = (unsigned short )((int )((short )((int )scale << 10)) | (int )((short )value)); pci_read_config_word((struct pci_dev const *)(hw->adapter)->pdev, 168, & max_snoop); pci_read_config_word((struct pci_dev const *)(hw->adapter)->pdev, 170, & max_nosnoop); __max1 = max_snoop; __max2 = max_nosnoop; max_ltr_enc = (u16 )((int )__max1 > (int )__max2 ? __max1 : __max2); if ((int )lat_enc > (int )max_ltr_enc) { lat_enc = max_ltr_enc; } else { } } else { } reg = (u32 )((int )lat_enc | ((int )lat_enc << 16)) | reg; __ew32___0(hw, 248UL, reg); return (0); } } static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; s32 ret_val ; bool link ; u16 phy_reg ; u32 reg ; u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { mac = & hw->mac; if (! mac->get_link_status) { return (0); } else { } ret_val = e1000e_phy_has_link_generic(hw, 1U, 0U, & link); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->mac.type == 9U) { ret_val = e1000_k1_gig_workaround_hv(hw, (int )link); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )hw->mac.type == 10U && (int )link) { reg = __er32(hw, 8UL); if ((reg & 193U) == 0U) { reg = __er32(hw, 1040UL); reg = reg & 4294966272U; reg = reg | 255U; __ew32___0(hw, 1040UL, reg); ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_emi_reg_locked(hw, 13330, 0); (*(hw->phy.ops.release))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } } else { } if ((unsigned int )((hw->adapter)->pdev)->device == 5466U || (unsigned int )((hw->adapter)->pdev)->device == 5465U) { ret_val = e1000_k1_workaround_lpt_lp(hw, (int )link); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )hw->mac.type == 11U) { ret_val = e1000_platform_pm_pch_lpt(hw, (int )link); if (ret_val != 0) { return (ret_val); } else { } } else { } hw->dev_spec.ich8lan.eee_lp_ability = 0U; if (! link) { return (0); } else { } mac->get_link_status = 0; switch ((unsigned int )hw->mac.type) { case 10U: ret_val = e1000_k1_workaround_lv(hw); if (ret_val != 0) { return (ret_val); } else { } case 9U: ; if ((unsigned int )hw->phy.type == 9U) { ret_val = e1000_link_stall_workaround_hv(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } e1e_rphy(hw, 24656U, & phy_reg); phy_reg = (unsigned int )phy_reg & 36863U; tmp = __er32(hw, 8UL); if ((tmp & 1U) == 0U) { phy_reg = (u16 )((unsigned int )phy_reg | 4096U); } else { } e1e_wphy(hw, 24656U, (int )phy_reg); goto ldv_41845; default: ; goto ldv_41845; } ldv_41845: e1000e_check_downshift(hw); ret_val = e1000_set_eee_pchlan(hw); if (ret_val != 0) { return (ret_val); } else { } if (! mac->autoneg) { return (-3); } else { } (*(mac->ops.config_collision_dist))(hw); ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_check_for_copper_link_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Error configuring flow control\n"; descriptor.lineno = 1118U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error configuring flow control\n"); } else { } } else { } return (ret_val); } } static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; s32 rc ; u32 tmp ; u32 tmp___0 ; { hw = & adapter->hw; rc = e1000_init_mac_params_ich8lan(hw); if (rc != 0) { return (rc); } else { } rc = e1000_init_nvm_params_ich8lan(hw); if (rc != 0) { return (rc); } else { } switch ((unsigned int )hw->mac.type) { case 6U: ; case 7U: ; case 8U: rc = e1000_init_phy_params_ich8lan(hw); goto ldv_41857; case 9U: ; case 10U: ; case 11U: rc = e1000_init_phy_params_pchlan(hw); goto ldv_41857; default: ; goto ldv_41857; } ldv_41857: ; if (rc != 0) { return (rc); } else { } if ((unsigned int )adapter->hw.phy.type == 7U) { adapter->flags = adapter->flags & 4294967167U; adapter->max_hw_frame_size = 1518U; hw->mac.ops.blink_led = 0; } else if ((unsigned int )adapter->hw.mac.type > 9U) { tmp = __er32(hw, 24UL); if ((tmp & 4096U) == 0U) { adapter->flags = adapter->flags & 4294967167U; adapter->max_hw_frame_size = 1518U; hw->mac.ops.blink_led = 0; } else { } } else { } if ((unsigned int )adapter->hw.mac.type == 6U && (unsigned int )adapter->hw.phy.type != 7U) { adapter->flags = adapter->flags | 33554432U; } else { } if ((unsigned int )adapter->hw.mac.type == 10U) { tmp___0 = __er32(hw, 23380UL); if ((tmp___0 & 32768U) != 0U) { adapter->flags2 = adapter->flags2 | 2048U; } else { } } else { } return (0); } } static struct mutex nvm_mutex = {{1}, {{{{{0U}}, 3735899821U, 4294967295U, 0xffffffffffffffffUL, {0, {0, 0}, "nvm_mutex.wait_lock", 0, 0UL}}}}, {& nvm_mutex.wait_list, & nvm_mutex.wait_list}, 0, 0, (void *)(& nvm_mutex), {0, {0, 0}, "nvm_mutex", 0, 0UL}}; static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw ) { { ldv_mutex_lock_22(& nvm_mutex); return (0); } } static void e1000_release_nvm_ich8lan(struct e1000_hw *hw ) { { ldv_mutex_unlock_23(& nvm_mutex); return; } } static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw ) { u32 extcnf_ctrl ; u32 timeout ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; unsigned long __ms___0 ; unsigned long tmp___3 ; struct _ddebug descriptor___1 ; u32 tmp___4 ; long tmp___5 ; { timeout = 100U; ret_val = 0; tmp___0 = test_and_set_bit(2, (unsigned long volatile *)(& (hw->adapter)->state)); if (tmp___0 != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_acquire_swflag_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "contention for Phy access\n"; descriptor.lineno = 1217U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "contention for Phy access\n"); } else { } return (-2); } else { } goto ldv_41884; ldv_41883: extcnf_ctrl = __er32(hw, 3840UL); if ((extcnf_ctrl & 32U) == 0U) { goto ldv_41878; } else { } if (1) { __const_udelay(4295000UL); } else { __ms = 1UL; goto ldv_41881; ldv_41880: __const_udelay(4295000UL); ldv_41881: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_41880; } else { } } timeout = timeout - 1U; ldv_41884: ; if (timeout != 0U) { goto ldv_41883; } else { } ldv_41878: ; if (timeout == 0U) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_acquire_swflag_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "SW has already locked the resource.\n"; descriptor___0.lineno = 1231U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "SW has already locked the resource.\n"); } else { } ret_val = -3; goto out; } else { } timeout = 1000U; extcnf_ctrl = extcnf_ctrl | 32U; __ew32___0(hw, 3840UL, extcnf_ctrl); goto ldv_41893; ldv_41892: extcnf_ctrl = __er32(hw, 3840UL); if ((extcnf_ctrl & 32U) != 0U) { goto ldv_41887; } else { } if (1) { __const_udelay(4295000UL); } else { __ms___0 = 1UL; goto ldv_41890; ldv_41889: __const_udelay(4295000UL); ldv_41890: tmp___3 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___3 != 0UL) { goto ldv_41889; } else { } } timeout = timeout - 1U; ldv_41893: ; if (timeout != 0U) { goto ldv_41892; } else { } ldv_41887: ; if (timeout == 0U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_acquire_swflag_ich8lan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n"; descriptor___1.lineno = 1252U; descriptor___1.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___5 != 0L) { tmp___4 = __er32(hw, 23380UL); __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", tmp___4, extcnf_ctrl); } else { } extcnf_ctrl = extcnf_ctrl & 4294967263U; __ew32___0(hw, 3840UL, extcnf_ctrl); ret_val = -3; goto out; } else { } out: ; if (ret_val != 0) { clear_bit(2, (unsigned long volatile *)(& (hw->adapter)->state)); } else { } return (ret_val); } } static void e1000_release_swflag_ich8lan(struct e1000_hw *hw ) { u32 extcnf_ctrl ; struct _ddebug descriptor ; long tmp ; { extcnf_ctrl = __er32(hw, 3840UL); if ((extcnf_ctrl & 32U) != 0U) { extcnf_ctrl = extcnf_ctrl & 4294967263U; __ew32___0(hw, 3840UL, extcnf_ctrl); } else { descriptor.modname = "e1000e"; descriptor.function = "e1000_release_swflag_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Semaphore unexpectedly released by sw/fw/hw\n"; descriptor.lineno = 1283U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Semaphore unexpectedly released by sw/fw/hw\n"); } else { } } clear_bit(2, (unsigned long volatile *)(& (hw->adapter)->state)); return; } } static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw ) { u32 fwsm ; { fwsm = __er32(hw, 23380UL); return ((bool )((fwsm & 32768U) != 0U && (fwsm & 14U) == 4U)); } } static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw ) { u32 fwsm ; { fwsm = __er32(hw, 23380UL); return ((bool )((fwsm & 32768U) != 0U && (fwsm & 4U) != 0U)); } } static void e1000_rar_set_pch2lan(struct e1000_hw *hw , u8 *addr , u32 index ) { u32 rar_low ; u32 rar_high ; s32 ret_val ; u32 tmp ; u32 tmp___0 ; struct _ddebug descriptor ; u32 tmp___1 ; long tmp___2 ; struct _ddebug descriptor___0 ; long tmp___3 ; { rar_low = (((unsigned int )*addr | ((unsigned int )*(addr + 1UL) << 8)) | ((unsigned int )*(addr + 2UL) << 16)) | ((unsigned int )*(addr + 3UL) << 24); rar_high = (unsigned int )*(addr + 4UL) | ((unsigned int )*(addr + 5UL) << 8); if (rar_low != 0U || rar_high != 0U) { rar_high = rar_high | 2147483648U; } else { } if (index == 0U) { __ew32___0(hw, (unsigned long )(index <= 15U ? (index + 2688U) * 8U : (index + 2700U) * 8U), rar_low); __er32(hw, 8UL); __ew32___0(hw, (unsigned long )(index <= 15U ? index * 8U + 21508U : (index + 536870896U) * 8U + 21732U), rar_high); __er32(hw, 8UL); return; } else { } if ((u32 )hw->mac.rar_entry_count > index) { ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val != 0) { goto out; } else { } __ew32___0(hw, (unsigned long )((index + 2694U) * 8U), rar_low); __er32(hw, 8UL); __ew32___0(hw, (unsigned long )((index + 536870911U) * 8U + 21564U), rar_high); __er32(hw, 8UL); e1000_release_swflag_ich8lan(hw); tmp = __er32(hw, (unsigned long )((index + 2694U) * 8U)); if (tmp == rar_low) { tmp___0 = __er32(hw, (unsigned long )((index + 536870911U) * 8U + 21564U)); if (tmp___0 == rar_high) { return; } else { } } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000_rar_set_pch2lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n"; descriptor.lineno = 1380U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___2 != 0L) { tmp___1 = __er32(hw, 23380UL); __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", index - 1U, tmp___1); } else { } } else { } out: descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_rar_set_pch2lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Failed to write receive address at index %d\n"; descriptor___0.lineno = 1384U; descriptor___0.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Failed to write receive address at index %d\n", index); } else { } return; } } static void e1000_rar_set_pch_lpt(struct e1000_hw *hw , u8 *addr , u32 index ) { u32 rar_low ; u32 rar_high ; u32 wlock_mac ; u32 tmp ; s32 ret_val ; u32 tmp___0 ; u32 tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; { rar_low = (((unsigned int )*addr | ((unsigned int )*(addr + 1UL) << 8)) | ((unsigned int )*(addr + 2UL) << 16)) | ((unsigned int )*(addr + 3UL) << 24); rar_high = (unsigned int )*(addr + 4UL) | ((unsigned int )*(addr + 5UL) << 8); if (rar_low != 0U || rar_high != 0U) { rar_high = rar_high | 2147483648U; } else { } if (index == 0U) { __ew32___0(hw, (unsigned long )(index <= 15U ? (index + 2688U) * 8U : (index + 2700U) * 8U), rar_low); __er32(hw, 8UL); __ew32___0(hw, (unsigned long )(index <= 15U ? index * 8U + 21508U : (index + 536870896U) * 8U + 21732U), rar_high); __er32(hw, 8UL); return; } else { } if ((u32 )hw->mac.rar_entry_count > index) { tmp = __er32(hw, 23380UL); wlock_mac = tmp & 896U; wlock_mac = wlock_mac >> 7; if (wlock_mac == 1U) { goto out; } else { } if (wlock_mac == 0U || index <= wlock_mac) { ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val != 0) { goto out; } else { } __ew32___0(hw, (unsigned long )((index + 2688U) * 8U), rar_low); __er32(hw, 8UL); __ew32___0(hw, (unsigned long )((index + 536870911U) * 8U + 21516U), rar_high); __er32(hw, 8UL); e1000_release_swflag_ich8lan(hw); tmp___0 = __er32(hw, (unsigned long )((index + 2688U) * 8U)); if (tmp___0 == rar_low) { tmp___1 = __er32(hw, (unsigned long )((index + 536870911U) * 8U + 21516U)); if (tmp___1 == rar_high) { return; } else { } } else { } } else { } } else { } out: descriptor.modname = "e1000e"; descriptor.function = "e1000_rar_set_pch_lpt"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Failed to write receive address at index %d\n"; descriptor.lineno = 1457U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Failed to write receive address at index %d\n", index); } else { } return; } } static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw ) { u32 fwsm ; { fwsm = __er32(hw, 23380UL); return ((fwsm & 64U) != 0U ? 0 : 12); } } static s32 e1000_write_smbus_addr(struct e1000_hw *hw ) { u16 phy_data ; u32 strap ; u32 tmp ; u32 freq ; s32 ret_val ; struct _ddebug descriptor ; long tmp___0 ; u32 tmp___1 ; s32 tmp___2 ; { tmp = __er32(hw, 12UL); strap = tmp; freq = (strap & 12288U) >> 12; strap = strap & 16646144U; ret_val = e1000_read_phy_reg_hv_locked(hw, 24602U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65408U; phy_data = (int )((u16 )(strap >> 17)) | (int )phy_data; phy_data = (u16 )((unsigned int )phy_data | 640U); if ((unsigned int )hw->phy.type == 12U) { tmp___1 = freq; freq = freq - 1U; if (tmp___1 != 0U) { phy_data = (unsigned int )phy_data & 61183U; phy_data = (((unsigned int )((u16 )freq) & 1U) << 8U) | (unsigned int )phy_data; phy_data = (((unsigned int )((u16 )freq) & 2U) << 11U) | (unsigned int )phy_data; } else { descriptor.modname = "e1000e"; descriptor.function = "e1000_write_smbus_addr"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Unsupported SMB frequency in PHY\n"; descriptor.lineno = 1511U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Unsupported SMB frequency in PHY\n"); } else { } } } else { } tmp___2 = e1000_write_phy_reg_hv_locked(hw, 24602U, (int )phy_data); return (tmp___2); } } static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; u32 i ; u32 data ; u32 cnf_size ; u32 cnf_base_addr ; u32 sw_cfg_mask ; s32 ret_val ; u16 word_addr ; u16 reg_data ; u16 reg_addr ; u16 phy_page ; { phy = & hw->phy; ret_val = 0; phy_page = 0U; switch ((unsigned int )hw->mac.type) { case 6U: ; if ((unsigned int )phy->type != 6U) { return (ret_val); } else { } if ((unsigned int )((hw->adapter)->pdev)->device == 4170U || (unsigned int )((hw->adapter)->pdev)->device == 4171U) { sw_cfg_mask = 1U; goto ldv_41961; } else { } case 9U: ; case 10U: ; case 11U: sw_cfg_mask = 134217728U; goto ldv_41961; default: ; return (ret_val); } ldv_41961: ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } data = __er32(hw, 40UL); if ((data & sw_cfg_mask) == 0U) { goto release; } else { } data = __er32(hw, 3840UL); if ((unsigned int )hw->mac.type <= 9U && (int )data & 1) { goto release; } else { } cnf_size = __er32(hw, 3848UL); cnf_size = cnf_size & 16711680U; cnf_size = cnf_size >> 16; if (cnf_size == 0U) { goto release; } else { } cnf_base_addr = data & 268369920U; cnf_base_addr = cnf_base_addr >> 16; if (((unsigned int )hw->mac.type == 9U && (data & 8U) == 0U) || (unsigned int )hw->mac.type > 9U) { ret_val = e1000_write_smbus_addr(hw); if (ret_val != 0) { goto release; } else { } data = __er32(hw, 3584UL); ret_val = e1000_write_phy_reg_hv_locked(hw, 24606U, (int )((unsigned short )data)); if (ret_val != 0) { goto release; } else { } } else { } word_addr = (int )((unsigned short )cnf_base_addr) << 1U; i = 0U; goto ldv_41969; ldv_41968: ret_val = e1000_read_nvm(hw, (int )((unsigned int )((u16 )i) * 2U + (unsigned int )word_addr), 1, & reg_data); if (ret_val != 0) { goto release; } else { } ret_val = e1000_read_nvm(hw, (int )(((unsigned int )((u16 )i) * 2U + (unsigned int )word_addr) + 1U), 1, & reg_addr); if (ret_val != 0) { goto release; } else { } if ((unsigned int )reg_addr == 31U) { phy_page = reg_data; goto ldv_41967; } else { } reg_addr = (unsigned int )reg_addr & 31U; reg_addr = (u16 )((int )reg_addr | (int )phy_page); ret_val = e1e_wphy_locked(hw, (unsigned int )reg_addr, (int )reg_data); if (ret_val != 0) { goto release; } else { } ldv_41967: i = i + 1U; ldv_41969: ; if (i < cnf_size) { goto ldv_41968; } else { } release: (*(hw->phy.ops.release))(hw); return (ret_val); } } static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw , bool link ) { s32 ret_val ; u16 status_reg ; bool k1_enable ; { ret_val = 0; status_reg = 0U; k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; if ((unsigned int )hw->mac.type != 9U) { return (0); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } if ((int )link) { if ((unsigned int )hw->phy.type == 9U) { ret_val = e1e_rphy_locked(hw, 17U, & status_reg); if (ret_val != 0) { goto release; } else { } status_reg = (unsigned int )status_reg & 52224U; if ((unsigned int )status_reg == 35840U) { k1_enable = 0; } else { } } else { } if ((unsigned int )hw->phy.type == 10U) { ret_val = e1e_rphy_locked(hw, 26U, & status_reg); if (ret_val != 0) { goto release; } else { } status_reg = (unsigned int )status_reg & 4928U; if ((unsigned int )status_reg == 4672U) { k1_enable = 0; } else { } } else { } ret_val = e1e_wphy_locked(hw, 24659U, 256); if (ret_val != 0) { goto release; } else { } } else { ret_val = e1e_wphy_locked(hw, 24659U, 16640); if (ret_val != 0) { goto release; } else { } } ret_val = e1000_configure_k1_ich8lan(hw, (int )k1_enable); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw , bool k1_enable ) { s32 ret_val ; u32 ctrl_reg ; u32 ctrl_ext ; u32 reg ; u16 kmrn_reg ; { ctrl_reg = 0U; ctrl_ext = 0U; reg = 0U; kmrn_reg = 0U; ret_val = e1000e_read_kmrn_reg_locked(hw, 7U, & kmrn_reg); if (ret_val != 0) { return (ret_val); } else { } if ((int )k1_enable) { kmrn_reg = (u16 )((unsigned int )kmrn_reg | 2U); } else { kmrn_reg = (unsigned int )kmrn_reg & 65533U; } ret_val = e1000e_write_kmrn_reg_locked(hw, 7U, (int )kmrn_reg); if (ret_val != 0) { return (ret_val); } else { } usleep_range(20UL, 40UL); ctrl_ext = __er32(hw, 24UL); ctrl_reg = __er32(hw, 0UL); reg = ctrl_reg & 4294966527U; reg = reg | 2048U; __ew32___0(hw, 0UL, reg); __ew32___0(hw, 24UL, ctrl_ext | 32768U); __er32(hw, 8UL); usleep_range(20UL, 40UL); __ew32___0(hw, 0UL, ctrl_reg); __ew32___0(hw, 24UL, ctrl_ext); __er32(hw, 8UL); usleep_range(20UL, 40UL); return (0); } } static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw , bool d0_state ) { s32 ret_val ; u32 mac_reg ; u16 oem_reg ; s32 tmp ; { ret_val = 0; if ((unsigned int )hw->mac.type <= 8U) { return (ret_val); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->mac.type == 9U) { mac_reg = __er32(hw, 3840UL); if ((mac_reg & 8U) != 0U) { goto release; } else { } } else { } mac_reg = __er32(hw, 40UL); if ((mac_reg & 134217728U) == 0U) { goto release; } else { } mac_reg = __er32(hw, 3856UL); ret_val = e1e_rphy_locked(hw, 24601U, & oem_reg); if (ret_val != 0) { goto release; } else { } oem_reg = (unsigned int )oem_reg & 65467U; if ((int )d0_state) { if ((mac_reg & 64U) != 0U) { oem_reg = (u16 )((unsigned int )oem_reg | 64U); } else { } if ((mac_reg & 2U) != 0U) { oem_reg = (u16 )((unsigned int )oem_reg | 4U); } else { } } else { if ((mac_reg & 72U) != 0U) { oem_reg = (u16 )((unsigned int )oem_reg | 64U); } else { } if ((mac_reg & 6U) != 0U) { oem_reg = (u16 )((unsigned int )oem_reg | 4U); } else { } } if ((int )d0_state || (unsigned int )hw->mac.type != 9U) { tmp = (*(hw->phy.ops.check_reset_block))(hw); if (tmp == 0) { oem_reg = (u16 )((unsigned int )oem_reg | 1024U); } else { } } else { } ret_val = e1e_wphy_locked(hw, 24601U, (int )oem_reg); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw ) { s32 ret_val ; u16 data ; { ret_val = e1e_rphy(hw, 24624U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 1024U); ret_val = e1e_wphy(hw, 24624U, (int )data); return (ret_val); } } static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; { ret_val = 0; if ((unsigned int )hw->mac.type != 9U) { return (0); } else { } if ((unsigned int )hw->phy.type == 10U) { ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } if (((unsigned int )hw->phy.type == 10U && (hw->phy.revision == 1U || hw->phy.revision == 2U)) || ((unsigned int )hw->phy.type == 9U && hw->phy.revision == 1U)) { ret_val = e1e_wphy(hw, 24633U, 17457); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_wphy(hw, 24656U, 41476); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )hw->phy.type == 9U) { if (hw->phy.revision <= 1U) { e1000e_phy_sw_reset(hw); ret_val = e1e_wphy(hw, 0U, 12608); } else { } } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } hw->phy.addr = 1U; ret_val = e1000e_write_phy_reg_mdic(hw, 31U, 0); (*(hw->phy.ops.release))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_k1_gig_workaround_hv(hw, 1); if (ret_val != 0) { return (ret_val); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy_locked(hw, 24625U, & phy_data); if (ret_val != 0) { goto release; } else { } ret_val = e1e_wphy_locked(hw, 24625U, (int )phy_data & 255); if (ret_val != 0) { goto release; } else { } ret_val = e1000_write_emi_reg_locked(hw, 2183, 52); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw ) { u32 mac_reg ; u16 i ; u16 phy_reg ; s32 ret_val ; { phy_reg = 0U; ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return; } else { } ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, & phy_reg); if (ret_val != 0) { goto release; } else { } i = 0U; goto ldv_42016; ldv_42015: mac_reg = __er32(hw, (unsigned long )((unsigned int )i <= 15U ? ((int )i + 2688) * 8 : ((int )i + 2700) * 8)); (*(hw->phy.ops.write_reg_page))(hw, (u32 )((((((int )i << 2) + 16) & 31) | 25600) | (((((int )i << 2) + 16) & -32) << 16)), (int )((unsigned short )mac_reg)); (*(hw->phy.ops.write_reg_page))(hw, (u32 )((((((int )i << 2) + 17) & 31) | 25600) | (((((int )i << 2) + 17) & -32) << 16)), (int )((unsigned short )(mac_reg >> 16))); mac_reg = __er32(hw, (unsigned long )((unsigned int )i <= 15U ? (int )i * 8 + 21508 : ((int )i + -16) * 8 + 21732)); (*(hw->phy.ops.write_reg_page))(hw, (u32 )((((((int )i << 2) + 18) & 31) | 25600) | (((((int )i << 2) + 18) & -32) << 16)), (int )((unsigned short )mac_reg)); (*(hw->phy.ops.write_reg_page))(hw, (u32 )((((((int )i << 2) + 19) & 31) | 25600) | (((((int )i << 2) + 19) & -32) << 16)), (int )((unsigned short )((mac_reg & 2147483648U) >> 16))); i = (u16 )((int )i + 1); ldv_42016: ; if ((int )i < (int )hw->mac.rar_entry_count + 4) { goto ldv_42015; } else { } e1000_disable_phy_wakeup_reg_access_bm(hw, & phy_reg); release: (*(hw->phy.ops.release))(hw); return; } } s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw , bool enable ) { s32 ret_val ; u16 phy_reg ; u16 data ; u32 mac_reg ; u16 i ; u8 mac_addr[6U] ; unsigned int tmp ; u32 addr_high ; u32 addr_low ; u32 tmp___0 ; s32 tmp___1 ; { ret_val = 0; if ((unsigned int )hw->mac.type <= 9U) { return (0); } else { } e1e_rphy(hw, 24628U, & phy_reg); ret_val = e1e_wphy(hw, 24628U, (int )((unsigned int )phy_reg | 16384U)); if (ret_val != 0) { return (ret_val); } else { } if ((int )enable) { i = 0U; goto ldv_42032; ldv_42031: mac_addr[0] = 0U; tmp = 1U; while (1) { if (tmp >= 6U) { break; } else { } mac_addr[tmp] = (unsigned char)0; tmp = tmp + 1U; } addr_high = __er32(hw, (unsigned long )((unsigned int )i <= 15U ? (int )i * 8 + 21508 : ((int )i + -16) * 8 + 21732)); if ((int )addr_high >= 0) { goto ldv_42030; } else { } addr_low = __er32(hw, (unsigned long )((unsigned int )i <= 15U ? ((int )i + 2688) * 8 : ((int )i + 2700) * 8)); mac_addr[0] = (u8 )addr_low; mac_addr[1] = (u8 )(addr_low >> 8); mac_addr[2] = (u8 )(addr_low >> 16); mac_addr[3] = (u8 )(addr_low >> 24); mac_addr[4] = (u8 )addr_high; mac_addr[5] = (u8 )(addr_high >> 8); tmp___0 = crc32_le(4294967295U, (unsigned char const *)(& mac_addr), 6UL); __ew32___0(hw, (unsigned long )(((int )i + 6100) * 4), ~ tmp___0); ldv_42030: i = (u16 )((int )i + 1); ldv_42032: ; if ((int )i < (int )hw->mac.rar_entry_count + 4) { goto ldv_42031; } else { } e1000_copy_rx_addrs_to_phy_ich8lan(hw); mac_reg = __er32(hw, 24324UL); mac_reg = mac_reg & 4294950911U; mac_reg = mac_reg | 229376U; __ew32___0(hw, 24324UL, mac_reg); mac_reg = __er32(hw, 256UL); mac_reg = mac_reg | 67108864U; __ew32___0(hw, 256UL, mac_reg); ret_val = e1000e_read_kmrn_reg(hw, 1U, & data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_write_kmrn_reg(hw, 1U, (int )((unsigned int )data | 1U)); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_read_kmrn_reg(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 61695U; data = (u16 )((unsigned int )data | 2816U); ret_val = e1000e_write_kmrn_reg(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24631U, & data); data = (unsigned int )data & 61471U; data = (u16 )((unsigned int )data | 1760U); ret_val = e1e_wphy(hw, 24631U, (int )data); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24624U, & data); data = (unsigned int )data & 57343U; ret_val = e1e_wphy(hw, 24624U, (int )data); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24852U, & data); data = (unsigned int )data & 61443U; data = (u16 )((unsigned int )data | 104U); ret_val = e1e_wphy(hw, 24852U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_wphy(hw, 24855U, 61696); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24657U, & data); ret_val = e1e_wphy(hw, 24657U, (int )((unsigned int )data | 1024U)); if (ret_val != 0) { return (ret_val); } else { } } else { mac_reg = __er32(hw, 24324UL); mac_reg = mac_reg & 4294721535U; __ew32___0(hw, 24324UL, mac_reg); mac_reg = __er32(hw, 256UL); mac_reg = mac_reg & 4227858431U; __ew32___0(hw, 256UL, mac_reg); ret_val = e1000e_read_kmrn_reg(hw, 1U, & data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_write_kmrn_reg(hw, 1U, (int )data & 65534); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_read_kmrn_reg(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 61695U; data = (u16 )((unsigned int )data | 2816U); ret_val = e1000e_write_kmrn_reg(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24631U, & data); data = (unsigned int )data & 61471U; ret_val = e1e_wphy(hw, 24631U, (int )data); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24624U, & data); data = (u16 )((unsigned int )data | 8192U); ret_val = e1e_wphy(hw, 24624U, (int )data); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24852U, & data); data = (unsigned int )data & 61443U; data = (u16 )((unsigned int )data | 32U); ret_val = e1e_wphy(hw, 24852U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_wphy(hw, 24855U, 32256); if (ret_val != 0) { return (ret_val); } else { } e1e_rphy(hw, 24657U, & data); ret_val = e1e_wphy(hw, 24657U, (int )data & 64511); if (ret_val != 0) { return (ret_val); } else { } } tmp___1 = e1e_wphy(hw, 24628U, (int )phy_reg & 49151); return (tmp___1); } } static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; { ret_val = 0; if ((unsigned int )hw->mac.type != 10U) { return (0); } else { } ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_emi_reg_locked(hw, 2127, 52); if (ret_val != 0) { goto release; } else { } ret_val = e1000_write_emi_reg_locked(hw, 9233, 5); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } static s32 e1000_k1_workaround_lv(struct e1000_hw *hw ) { s32 ret_val ; u16 status_reg ; u32 mac_reg ; u16 phy_reg ; u16 pm_phy_reg ; { ret_val = 0; status_reg = 0U; if ((unsigned int )hw->mac.type != 10U) { return (0); } else { } ret_val = e1e_rphy(hw, 26U, & status_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )status_reg & 4160) == 4160) { mac_reg = __er32(hw, 36UL); mac_reg = mac_reg & 4294967288U; ret_val = e1e_rphy(hw, 24724U, & phy_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )status_reg & 512) != 0) { mac_reg = mac_reg | 7U; phy_reg = (unsigned int )phy_reg & 65407U; ret_val = e1e_rphy(hw, 24657U, & pm_phy_reg); if (ret_val != 0) { return (ret_val); } else { } pm_phy_reg = (unsigned int )pm_phy_reg & 65279U; ret_val = e1e_wphy(hw, 24657U, (int )pm_phy_reg); if (ret_val != 0) { return (ret_val); } else { } } else { mac_reg = mac_reg | 3U; phy_reg = (u16 )((unsigned int )phy_reg | 128U); } __ew32___0(hw, 36UL, mac_reg); ret_val = e1e_wphy(hw, 24724U, (int )phy_reg); } else { } return (ret_val); } } static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw , bool gate ) { u32 extcnf_ctrl ; { if ((unsigned int )hw->mac.type <= 9U) { return; } else { } extcnf_ctrl = __er32(hw, 3840UL); if ((int )gate) { extcnf_ctrl = extcnf_ctrl | 128U; } else { extcnf_ctrl = extcnf_ctrl & 4294967167U; } __ew32___0(hw, 3840UL, extcnf_ctrl); return; } } static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw ) { u32 data ; u32 loop ; struct _ddebug descriptor ; long tmp ; { loop = 1500U; ldv_42057: data = __er32(hw, 8UL); data = data & 512U; usleep_range(100UL, 200UL); if (data == 0U) { loop = loop - 1U; if (loop != 0U) { goto ldv_42057; } else { goto ldv_42058; } } else { } ldv_42058: ; if (loop == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_lan_init_done_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "LAN_INIT_DONE not set, increase timeout\n"; descriptor.lineno = 2274U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "LAN_INIT_DONE not set, increase timeout\n"); } else { } } else { } data = __er32(hw, 8UL); data = data & 4294966783U; __ew32___0(hw, 8UL, data); return; } } static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; u16 reg ; s32 tmp ; u32 tmp___0 ; { ret_val = 0; tmp = (*(hw->phy.ops.check_reset_block))(hw); if (tmp != 0) { return (0); } else { } usleep_range(10000UL, 20000UL); switch ((unsigned int )hw->mac.type) { case 9U: ret_val = e1000_hv_phy_workarounds_ich8lan(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_42067; case 10U: ret_val = e1000_lv_phy_workarounds_ich8lan(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_42067; default: ; goto ldv_42067; } ldv_42067: ; if ((unsigned int )hw->mac.type > 8U) { e1e_rphy(hw, 24625U, & reg); reg = (unsigned int )reg & 65519U; e1e_wphy(hw, 24625U, (int )reg); } else { } ret_val = e1000_sw_lcd_config_ich8lan(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_oem_bits_config_ich8lan(hw, 1); if ((unsigned int )hw->mac.type == 10U) { tmp___0 = __er32(hw, 23380UL); if ((tmp___0 & 32768U) == 0U) { usleep_range(10000UL, 20000UL); e1000_gate_hw_phy_config_ich8lan(hw, 0); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_write_emi_reg_locked(hw, 18437, 4999); (*(hw->phy.ops.release))(hw); } else { } return (ret_val); } } static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; u32 tmp ; s32 tmp___0 ; { ret_val = 0; if ((unsigned int )hw->mac.type == 10U) { tmp = __er32(hw, 23380UL); if ((tmp & 32768U) == 0U) { e1000_gate_hw_phy_config_ich8lan(hw, 1); } else { } } else { } ret_val = e1000e_phy_hw_reset_generic(hw); if (ret_val != 0) { return (ret_val); } else { } tmp___0 = e1000_post_phy_reset_ich8lan(hw); return (tmp___0); } } static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw , bool active ) { s32 ret_val ; u16 oem_reg ; s32 tmp ; s32 tmp___0 ; { ret_val = e1e_rphy(hw, 24601U, & oem_reg); if (ret_val != 0) { return (ret_val); } else { } if ((int )active) { oem_reg = (u16 )((unsigned int )oem_reg | 4U); } else { oem_reg = (unsigned int )oem_reg & 65531U; } tmp = (*(hw->phy.ops.check_reset_block))(hw); if (tmp == 0) { oem_reg = (u16 )((unsigned int )oem_reg | 1024U); } else { } tmp___0 = e1e_wphy(hw, 24601U, (int )oem_reg); return (tmp___0); } } static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw , bool active ) { struct e1000_phy_info *phy ; u32 phy_ctrl ; s32 ret_val ; u16 data ; { phy = & hw->phy; ret_val = 0; if ((unsigned int )phy->type == 7U) { return (0); } else { } phy_ctrl = __er32(hw, 3856UL); if ((int )active) { phy_ctrl = phy_ctrl | 2U; __ew32___0(hw, 3856UL, phy_ctrl); if ((unsigned int )phy->type != 6U) { return (0); } else { } if ((unsigned int )hw->mac.type == 6U) { e1000e_gig_downshift_workaround_ich8lan(hw); } else { } ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { phy_ctrl = phy_ctrl & 4294967293U; __ew32___0(hw, 3856UL, phy_ctrl); if ((unsigned int )phy->type != 6U) { return (0); } else { } if ((unsigned int )phy->smart_speed == 1U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 128U); ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )phy->smart_speed == 2U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { } } return (0); } } static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw , bool active ) { struct e1000_phy_info *phy ; u32 phy_ctrl ; s32 ret_val ; u16 data ; { phy = & hw->phy; ret_val = 0; phy_ctrl = __er32(hw, 3856UL); if (! active) { phy_ctrl = phy_ctrl & 4294967291U; __ew32___0(hw, 3856UL, phy_ctrl); if ((unsigned int )phy->type != 6U) { return (0); } else { } if ((unsigned int )phy->smart_speed == 1U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 128U); ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )phy->smart_speed == 2U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { } } else if (((unsigned int )phy->autoneg_advertised == 47U || (unsigned int )phy->autoneg_advertised == 15U) || (unsigned int )phy->autoneg_advertised == 3U) { phy_ctrl = phy_ctrl | 4U; __ew32___0(hw, 3856UL, phy_ctrl); if ((unsigned int )phy->type != 6U) { return (0); } else { } if ((unsigned int )hw->mac.type == 6U) { e1000e_gig_downshift_workaround_ich8lan(hw); } else { } ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); } else { } return (ret_val); } } static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw , u32 *bank ) { u32 eecd ; struct e1000_nvm_info *nvm ; u32 bank1_offset ; u32 act_offset ; u8 sig_byte ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { nvm = & hw->nvm; bank1_offset = nvm->flash_bank_size * 2U; act_offset = 39U; sig_byte = 0U; switch ((unsigned int )hw->mac.type) { case 6U: ; case 7U: eecd = __er32(hw, 16UL); if ((eecd & 768U) == 768U) { if ((eecd & 4194304U) != 0U) { *bank = 1U; } else { *bank = 0U; } return (0); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000_valid_nvm_bank_detect_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Unable to determine valid NVM bank via EEC - reading flash signature\n"; descriptor.lineno = 2603U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Unable to determine valid NVM bank via EEC - reading flash signature\n"); } else { } default: *bank = 0U; ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, & sig_byte); if (ret_val != 0) { return (ret_val); } else { } if (((int )sig_byte & 192) == 128) { *bank = 0U; return (0); } else { } ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + bank1_offset, & sig_byte); if (ret_val != 0) { return (ret_val); } else { } if (((int )sig_byte & 192) == 128) { *bank = 1U; return (0); } else { } descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_valid_nvm_bank_detect_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "ERROR: No valid NVM bank present\n"; descriptor___0.lineno = 2632U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "ERROR: No valid NVM bank present\n"); } else { } return (-1); } } } static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_nvm_info *nvm ; struct e1000_dev_spec_ich8lan *dev_spec ; u32 act_offset ; s32 ret_val ; u32 bank ; u16 i ; u16 word ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { nvm = & hw->nvm; dev_spec = & hw->dev_spec.ich8lan; ret_val = 0; bank = 0U; if (((int )nvm->word_size <= (int )offset || (int )words > (int )nvm->word_size - (int )offset) || (unsigned int )words == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_read_nvm_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "nvm parameter(s) out of bounds\n"; descriptor.lineno = 2658U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "nvm parameter(s) out of bounds\n"); } else { } ret_val = -1; goto out; } else { } (*(nvm->ops.acquire))(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, & bank); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_read_nvm_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Could not detect valid bank, assuming bank 0\n"; descriptor___0.lineno = 2667U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Could not detect valid bank, assuming bank 0\n"); } else { } bank = 0U; } else { } act_offset = bank != 0U ? nvm->flash_bank_size : 0U; act_offset = (u32 )offset + act_offset; ret_val = 0; i = 0U; goto ldv_42131; ldv_42130: ; if ((int )dev_spec->shadow_ram[(int )offset + (int )i].modified) { *(data + (unsigned long )i) = dev_spec->shadow_ram[(int )offset + (int )i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, (u32 )i + act_offset, & word); if (ret_val != 0) { goto ldv_42129; } else { } *(data + (unsigned long )i) = word; } i = (u16 )((int )i + 1); ldv_42131: ; if ((int )i < (int )words) { goto ldv_42130; } else { } ldv_42129: (*(nvm->ops.release))(hw); out: ; if (ret_val != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_read_nvm_ich8lan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "NVM read error: %d\n"; descriptor___1.lineno = 2692U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "NVM read error: %d\n", ret_val); } else { } } else { } return (ret_val); } } static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw ) { union ich8_hws_flash_status hsfsts ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; s32 i ; struct _ddebug descriptor___0 ; long tmp___0 ; { ret_val = -1; hsfsts.regval = __er16flash(hw, 4UL); if ((unsigned int )*((unsigned char *)(& hsfsts) + 1UL) == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_flash_cycle_init_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Flash descriptor invalid. SW Sequencing must be used.\n"; descriptor.lineno = 2713U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Flash descriptor invalid. SW Sequencing must be used.\n"); } else { } return (-1); } else { } hsfsts.hsf_status.flcerr = 1U; hsfsts.hsf_status.dael = 1U; __ew16flash(hw, 4UL, (int )hsfsts.regval); if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) == 0U) { hsfsts.hsf_status.flcdone = 1U; __ew16flash(hw, 4UL, (int )hsfsts.regval); ret_val = 0; } else { i = 0; goto ldv_42143; ldv_42142: hsfsts.regval = __er16flash(hw, 4UL); if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) == 0U) { ret_val = 0; goto ldv_42141; } else { } __const_udelay(4295UL); i = i + 1; ldv_42143: ; if (i <= 9999999) { goto ldv_42142; } else { } ldv_42141: ; if (ret_val == 0) { hsfsts.hsf_status.flcdone = 1U; __ew16flash(hw, 4UL, (int )hsfsts.regval); } else { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_flash_cycle_init_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Flash controller busy, cannot get access\n"; descriptor___0.lineno = 2760U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Flash controller busy, cannot get access\n"); } else { } } } return (ret_val); } } static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw , u32 timeout ) { union ich8_hws_flash_ctrl hsflctl ; union ich8_hws_flash_status hsfsts ; u32 i ; u32 tmp ; { i = 0U; hsflctl.regval = __er16flash(hw, 6UL); hsflctl.hsf_ctrl.flcgo = 1U; __ew16flash(hw, 6UL, (int )hsflctl.regval); ldv_42153: hsfsts.regval = __er16flash(hw, 4UL); if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) != 0U) { goto ldv_42152; } else { } __const_udelay(4295UL); tmp = i; i = i + 1U; if (tmp < timeout) { goto ldv_42153; } else { } ldv_42152: ; if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) != 0U && (unsigned int )*((unsigned char *)(& hsfsts) + 0UL) == 0U) { return (0); } else { } return (-1); } } static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { offset = offset << 1; tmp = e1000_read_flash_data_ich8lan(hw, offset, 2, data); return (tmp); } } static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw , u32 offset , u8 *data ) { s32 ret_val ; u16 word ; { word = 0U; ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, & word); if (ret_val != 0) { return (ret_val); } else { } *data = (unsigned char )word; return (0); } } static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw , u32 offset , u8 size , u16 *data ) { union ich8_hws_flash_status hsfsts ; union ich8_hws_flash_ctrl hsflctl ; u32 flash_linear_addr ; u32 flash_data ; s32 ret_val ; u8 count ; struct _ddebug descriptor ; long tmp ; u8 tmp___0 ; { flash_data = 0U; ret_val = -1; count = 0U; if (((unsigned int )size == 0U || (unsigned int )size > 2U) || offset > 16777215U) { return (-1); } else { } flash_linear_addr = (offset & 16777215U) + hw->nvm.flash_base_addr; ldv_42182: __const_udelay(4295UL); ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != 0) { goto ldv_42178; } else { } hsflctl.regval = __er16flash(hw, 6UL); hsflctl.hsf_ctrl.fldbcount = (unsigned char )((unsigned int )size + 255U); hsflctl.hsf_ctrl.flcycle = 0U; __ew16flash(hw, 6UL, (int )hsflctl.regval); __ew32flash(hw, 8UL, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, 10000000U); if (ret_val == 0) { flash_data = __er32flash(hw, 16UL); if ((unsigned int )size == 1U) { *data = (u16 )((unsigned char )flash_data); } else if ((unsigned int )size == 2U) { *data = (unsigned short )flash_data; } else { } goto ldv_42178; } else { hsfsts.regval = __er16flash(hw, 4UL); if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) != 0U) { goto ldv_42179; } else if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_read_flash_data_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Timeout error - flash cycle did not complete.\n"; descriptor.lineno = 2907U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Timeout error - flash cycle did not complete.\n"); } else { } goto ldv_42178; } else { } } ldv_42179: tmp___0 = count; count = (u8 )((int )count + 1); if ((unsigned int )tmp___0 <= 9U) { goto ldv_42182; } else { } ldv_42178: ; return (ret_val); } } static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_nvm_info *nvm ; struct e1000_dev_spec_ich8lan *dev_spec ; u16 i ; struct _ddebug descriptor ; long tmp ; { nvm = & hw->nvm; dev_spec = & hw->dev_spec.ich8lan; if (((int )nvm->word_size <= (int )offset || (int )words > (int )nvm->word_size - (int )offset) || (unsigned int )words == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_write_nvm_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "nvm parameter(s) out of bounds\n"; descriptor.lineno = 2934U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "nvm parameter(s) out of bounds\n"); } else { } return (-1); } else { } (*(nvm->ops.acquire))(hw); i = 0U; goto ldv_42195; ldv_42194: dev_spec->shadow_ram[(int )offset + (int )i].modified = 1; dev_spec->shadow_ram[(int )offset + (int )i].value = *(data + (unsigned long )i); i = (u16 )((int )i + 1); ldv_42195: ; if ((int )i < (int )words) { goto ldv_42194; } else { } (*(nvm->ops.release))(hw); return (0); } } static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; struct e1000_dev_spec_ich8lan *dev_spec ; u32 i ; u32 act_offset ; u32 new_bank_offset ; u32 old_bank_offset ; u32 bank ; s32 ret_val ; u16 data ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { nvm = & hw->nvm; dev_spec = & hw->dev_spec.ich8lan; ret_val = e1000e_update_nvm_checksum_generic(hw); if (ret_val != 0) { goto out; } else { } if ((unsigned int )nvm->type != 4U) { goto out; } else { } (*(nvm->ops.acquire))(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, & bank); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_update_nvm_checksum_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Could not detect valid bank, assuming bank 0\n"; descriptor.lineno = 2984U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Could not detect valid bank, assuming bank 0\n"); } else { } bank = 0U; } else { } if (bank == 0U) { new_bank_offset = nvm->flash_bank_size; old_bank_offset = 0U; ret_val = e1000_erase_flash_bank_ich8lan(hw, 1U); if (ret_val != 0) { goto release; } else { } } else { old_bank_offset = nvm->flash_bank_size; new_bank_offset = 0U; ret_val = e1000_erase_flash_bank_ich8lan(hw, 0U); if (ret_val != 0) { goto release; } else { } } i = 0U; goto ldv_42215; ldv_42214: ; if ((int )dev_spec->shadow_ram[i].modified) { data = dev_spec->shadow_ram[i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, i + old_bank_offset, & data); if (ret_val != 0) { goto ldv_42213; } else { } } if (i == 19U) { data = (u16 )((unsigned int )data | 49152U); } else { } act_offset = (i + new_bank_offset) << 1; usleep_range(100UL, 200UL); ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, (int )((unsigned char )data)); if (ret_val != 0) { goto ldv_42213; } else { } usleep_range(100UL, 200UL); ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset + 1U, (int )((unsigned char )((int )data >> 8))); if (ret_val != 0) { goto ldv_42213; } else { } i = i + 1U; ldv_42215: ; if (i <= 2047U) { goto ldv_42214; } else { } ldv_42213: ; if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_update_nvm_checksum_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Flash commit failed.\n"; descriptor___0.lineno = 3051U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Flash commit failed.\n"); } else { } goto release; } else { } act_offset = new_bank_offset + 19U; ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, & data); if (ret_val != 0) { goto release; } else { } data = (unsigned int )data & 49151U; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2U + 1U, (int )((unsigned char )((int )data >> 8))); if (ret_val != 0) { goto release; } else { } act_offset = (old_bank_offset + 19U) * 2U + 1U; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); if (ret_val != 0) { goto release; } else { } i = 0U; goto ldv_42218; ldv_42217: dev_spec->shadow_ram[i].modified = 0; dev_spec->shadow_ram[i].value = 65535U; i = i + 1U; ldv_42218: ; if (i <= 2047U) { goto ldv_42217; } else { } release: (*(nvm->ops.release))(hw); if (ret_val == 0) { (*(nvm->ops.reload))(hw); usleep_range(10000UL, 20000UL); } else { } out: ; if (ret_val != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_update_nvm_checksum_ich8lan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "NVM update error: %d\n"; descriptor___1.lineno = 3101U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "NVM update error: %d\n", ret_val); } else { } } else { } return (ret_val); } } static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; u16 data ; u16 word ; u16 valid_csum_mask ; s32 tmp ; { switch ((unsigned int )hw->mac.type) { case 11U: word = 3U; valid_csum_mask = 1U; goto ldv_42229; default: word = 25U; valid_csum_mask = 64U; goto ldv_42229; } ldv_42229: ret_val = e1000_read_nvm(hw, (int )word, 1, & data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )((int )data & (int )valid_csum_mask) == 0U) { data = (u16 )((int )data | (int )valid_csum_mask); ret_val = e1000_write_nvm(hw, (int )word, 1, & data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_update_nvm_checksum(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } tmp = e1000e_validate_nvm_checksum_generic(hw); return (tmp); } } void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; union ich8_flash_protected_range pr0 ; union ich8_hws_flash_status hsfsts ; u32 gfpreg ; { nvm = & hw->nvm; (*(nvm->ops.acquire))(hw); gfpreg = __er32flash(hw, 0UL); pr0.regval = __er32flash(hw, 116UL); pr0.range.base = (unsigned int )((unsigned short )gfpreg) & 8191U; pr0.range.limit = (unsigned int )((unsigned short )(gfpreg >> 16)) & 8191U; pr0.range.wpe = 1U; __ew32flash(hw, 116UL, pr0.regval); hsfsts.regval = __er16flash(hw, 4UL); hsfsts.hsf_status.flockdn = 1U; __ew32flash(hw, 4UL, (u32 )hsfsts.regval); (*(nvm->ops.release))(hw); return; } } static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw , u32 offset , u8 size , u16 data ) { union ich8_hws_flash_status hsfsts ; union ich8_hws_flash_ctrl hsflctl ; u32 flash_linear_addr ; u32 flash_data ; s32 ret_val ; u8 count ; struct _ddebug descriptor ; long tmp ; u8 tmp___0 ; { flash_data = 0U; count = 0U; if ((((unsigned int )size == 0U || (unsigned int )size > 2U) || (int )data > (int )size * 255) || offset > 16777215U) { return (-1); } else { } flash_linear_addr = (offset & 16777215U) + hw->nvm.flash_base_addr; ldv_42254: __const_udelay(4295UL); ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != 0) { goto ldv_42250; } else { } hsflctl.regval = __er16flash(hw, 6UL); hsflctl.hsf_ctrl.fldbcount = (unsigned char )((unsigned int )size + 255U); hsflctl.hsf_ctrl.flcycle = 2U; __ew16flash(hw, 6UL, (int )hsflctl.regval); __ew32flash(hw, 8UL, flash_linear_addr); if ((unsigned int )size == 1U) { flash_data = (unsigned int )data & 255U; } else { flash_data = (unsigned int )data; } __ew32flash(hw, 16UL, flash_data); ret_val = e1000_flash_cycle_ich8lan(hw, 10000000U); if (ret_val == 0) { goto ldv_42250; } else { } hsfsts.regval = __er16flash(hw, 4UL); if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) != 0U) { goto ldv_42251; } else { } if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_write_flash_data_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Timeout error - flash cycle did not complete.\n"; descriptor.lineno = 3261U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Timeout error - flash cycle did not complete.\n"); } else { } goto ldv_42250; } else { } ldv_42251: tmp___0 = count; count = (u8 )((int )count + 1); if ((unsigned int )tmp___0 <= 9U) { goto ldv_42254; } else { } ldv_42250: ; return (ret_val); } } static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw , u32 offset , u8 data ) { u16 word ; s32 tmp ; { word = (unsigned short )data; tmp = e1000_write_flash_data_ich8lan(hw, offset, 1, (int )word); return (tmp); } } static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw , u32 offset , u8 byte ) { s32 ret_val ; u16 program_retries ; struct _ddebug descriptor ; long tmp ; { ret_val = e1000_write_flash_byte_ich8lan(hw, offset, (int )byte); if (ret_val == 0) { return (ret_val); } else { } program_retries = 0U; goto ldv_42272; ldv_42271: descriptor.modname = "e1000e"; descriptor.function = "e1000_retry_write_flash_byte_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Retrying Byte %2.2X at offset %u\n"; descriptor.lineno = 3305U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Retrying Byte %2.2X at offset %u\n", (int )byte, offset); } else { } usleep_range(100UL, 200UL); ret_val = e1000_write_flash_byte_ich8lan(hw, offset, (int )byte); if (ret_val == 0) { goto ldv_42270; } else { } program_retries = (u16 )((int )program_retries + 1); ldv_42272: ; if ((unsigned int )program_retries <= 99U) { goto ldv_42271; } else { } ldv_42270: ; if ((unsigned int )program_retries == 100U) { return (-1); } else { } return (0); } } static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw , u32 bank ) { struct e1000_nvm_info *nvm ; union ich8_hws_flash_status hsfsts ; union ich8_hws_flash_ctrl hsflctl ; u32 flash_linear_addr ; u32 flash_bank_size ; s32 ret_val ; s32 count ; s32 j ; s32 iteration ; s32 sector_size ; u32 timeout ; { nvm = & hw->nvm; flash_bank_size = nvm->flash_bank_size * 2U; count = 0; hsfsts.regval = __er16flash(hw, 4UL); switch ((int )hsfsts.hsf_status.berasesz) { case 0: sector_size = 256; iteration = (s32 )(flash_bank_size / 256U); goto ldv_42288; case 1: sector_size = 4096; iteration = 1; goto ldv_42288; case 2: sector_size = 8192; iteration = 1; goto ldv_42288; case 3: sector_size = 65536; iteration = 1; goto ldv_42288; default: ; return (-1); } ldv_42288: flash_linear_addr = hw->nvm.flash_base_addr; flash_linear_addr = (bank != 0U ? flash_bank_size : 0U) + flash_linear_addr; j = 0; goto ldv_42298; ldv_42297: ; ldv_42296: timeout = 10000000U; ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != 0) { return (ret_val); } else { } hsflctl.regval = __er16flash(hw, 6UL); hsflctl.hsf_ctrl.flcycle = 3U; __ew16flash(hw, 6UL, (int )hsflctl.regval); flash_linear_addr = (u32 )(j * sector_size) + flash_linear_addr; __ew32flash(hw, 8UL, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, timeout); if (ret_val == 0) { goto ldv_42294; } else { } hsfsts.regval = __er16flash(hw, 4UL); if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) != 0U) { goto ldv_42295; } else if ((unsigned int )*((unsigned char *)(& hsfsts) + 0UL) == 0U) { return (ret_val); } else { } ldv_42295: count = count + 1; if (count <= 9) { goto ldv_42296; } else { } ldv_42294: j = j + 1; ldv_42298: ; if (j < iteration) { goto ldv_42297; } else { } return (0); } } static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw , u16 *data ) { s32 ret_val ; struct _ddebug descriptor ; long tmp ; { ret_val = e1000_read_nvm(hw, 4, 1, data); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_valid_led_default_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "NVM Read Error\n"; descriptor.lineno = 3435U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } if ((unsigned int )*data == 0U || (unsigned int )*data == 65535U) { *data = 6529U; } else { } return (0); } } static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; s32 ret_val ; u32 ledctl_on ; u32 ledctl_off ; u16 data ; u16 i ; u16 temp ; u16 shift ; { mac = & hw->mac; ledctl_on = 2U; ledctl_off = 10U; ret_val = (*(hw->nvm.ops.valid_led_default))(hw, & data); if (ret_val != 0) { return (ret_val); } else { } mac->ledctl_default = __er32(hw, 3584UL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; i = 0U; goto ldv_42335; ldv_42334: temp = (unsigned int )((u16 )((int )data >> ((int )i << 2))) & 15U; shift = (unsigned int )i * 5U; switch ((int )temp) { case 4: ; case 5: ; case 6: mac->ledctl_mode1 = mac->ledctl_mode1 & (u32 )(~ (31 << (int )shift)); mac->ledctl_mode1 = mac->ledctl_mode1 | (ledctl_on << (int )shift); goto ldv_42321; case 7: ; case 8: ; case 9: mac->ledctl_mode1 = mac->ledctl_mode1 & (u32 )(~ (31 << (int )shift)); mac->ledctl_mode1 = mac->ledctl_mode1 | (ledctl_off << (int )shift); goto ldv_42321; default: ; goto ldv_42321; } ldv_42321: ; switch ((int )temp) { case 2: ; case 5: ; case 8: mac->ledctl_mode2 = mac->ledctl_mode2 & (u32 )(~ (31 << (int )shift)); mac->ledctl_mode2 = mac->ledctl_mode2 | (ledctl_on << (int )shift); goto ldv_42329; case 3: ; case 6: ; case 9: mac->ledctl_mode2 = mac->ledctl_mode2 & (u32 )(~ (31 << (int )shift)); mac->ledctl_mode2 = mac->ledctl_mode2 | (ledctl_off << (int )shift); goto ldv_42329; default: ; goto ldv_42329; } ldv_42329: i = (u16 )((int )i + 1); ldv_42335: ; if ((unsigned int )i <= 3U) { goto ldv_42334; } else { } return (0); } } static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw ) { struct e1000_bus_info *bus ; s32 ret_val ; { bus = & hw->bus; ret_val = e1000e_get_bus_info_pcie(hw); if ((unsigned int )bus->width == 0U) { bus->width = 1; } else { } return (ret_val); } } static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw ) { struct e1000_dev_spec_ich8lan *dev_spec ; u16 kum_cfg ; u32 ctrl ; u32 reg ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; u32 tmp___1 ; s32 tmp___2 ; struct _ddebug descriptor___1 ; long tmp___3 ; { dev_spec = & hw->dev_spec.ich8lan; ret_val = e1000e_disable_pcie_master(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_reset_hw_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "PCI-E Master disable polling has failed.\n"; descriptor.lineno = 3561U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "PCI-E Master disable polling has failed.\n"); } else { } } else { } descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_reset_hw_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Masking off all interrupts\n"; descriptor___0.lineno = 3563U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Masking off all interrupts\n"); } else { } __ew32___0(hw, 216UL, 4294967295U); __ew32___0(hw, 256UL, 0U); __ew32___0(hw, 1024UL, 8U); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); if ((unsigned int )hw->mac.type == 6U) { __ew32___0(hw, 4096UL, 8U); __ew32___0(hw, 4104UL, 16U); } else { } if ((unsigned int )hw->mac.type == 9U) { ret_val = e1000_read_nvm(hw, 27, 1, & kum_cfg); if (ret_val != 0) { return (ret_val); } else { } if ((int )kum_cfg & 1) { dev_spec->nvm_k1_enabled = 1; } else { dev_spec->nvm_k1_enabled = 0; } } else { } ctrl = __er32(hw, 0UL); tmp___2 = (*(hw->phy.ops.check_reset_block))(hw); if (tmp___2 == 0) { ctrl = ctrl | 2147483648U; if ((unsigned int )hw->mac.type == 10U) { tmp___1 = __er32(hw, 23380UL); if ((tmp___1 & 32768U) == 0U) { e1000_gate_hw_phy_config_ich8lan(hw, 1); } else { } } else { } } else { } ret_val = e1000_acquire_swflag_ich8lan(hw); descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_reset_hw_ich8lan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "Issuing a global reset to ich8lan\n"; descriptor___1.lineno = 3613U; descriptor___1.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Issuing a global reset to ich8lan\n"); } else { } __ew32___0(hw, 0UL, ctrl | 67108864U); msleep(20U); if ((unsigned int )hw->mac.type == 10U) { reg = __er32(hw, 60UL); reg = reg & 4093640703U; reg = reg | 134217728U; __ew32___0(hw, 60UL, reg); } else { } if (ret_val == 0) { clear_bit(2, (unsigned long volatile *)(& (hw->adapter)->state)); } else { } if ((int )ctrl < 0) { ret_val = (*(hw->phy.ops.get_cfg_done))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_post_phy_reset_ich8lan(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )hw->mac.type == 9U) { __ew32___0(hw, 24400UL, 1701143909U); } else { } __ew32___0(hw, 216UL, 4294967295U); __er32(hw, 192UL); reg = __er32(hw, 12292UL); reg = reg | 327680U; __ew32___0(hw, 12292UL, reg); return (0); } } static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 ctrl_ext ; u32 txdctl ; u32 snoop ; s32 ret_val ; u16 i ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { mac = & hw->mac; e1000_initialize_hw_bits_ich8lan(hw); ret_val = (*(mac->ops.id_led_init))(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_hw_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Error initializing identification LED\n"; descriptor.lineno = 3681U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error initializing identification LED\n"); } else { } } else { } e1000e_init_rx_addrs(hw, (int )mac->rar_entry_count); descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_init_hw_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Zeroing the MTA\n"; descriptor___0.lineno = 3687U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Zeroing the MTA\n"); } else { } i = 0U; goto ldv_42367; ldv_42366: __ew32___0(hw, (unsigned long )(((int )i << 2) + 20992), 0U); i = (u16 )((int )i + 1); ldv_42367: ; if ((int )mac->mta_reg_count > (int )i) { goto ldv_42366; } else { } if ((unsigned int )hw->phy.type == 9U) { e1e_rphy(hw, 24625U, & i); i = (unsigned int )i & 65519U; e1e_wphy(hw, 24625U, (int )i); ret_val = e1000_phy_hw_reset_ich8lan(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } ret_val = (*(mac->ops.setup_link))(hw); txdctl = __er32(hw, 14376UL); txdctl = (txdctl & 4274061311U) | 16842752U; txdctl = (txdctl & 4278190016U) | 16777247U; __ew32___0(hw, 14376UL, txdctl); txdctl = __er32(hw, 14632UL); txdctl = (txdctl & 4274061311U) | 16842752U; txdctl = (txdctl & 4278190016U) | 16777247U; __ew32___0(hw, 14632UL, txdctl); if ((unsigned int )mac->type == 6U) { snoop = 63U; } else { snoop = 4294967232U; } e1000e_set_pcie_no_snoop(hw, snoop); ctrl_ext = __er32(hw, 24UL); ctrl_ext = ctrl_ext | 131072U; __ew32___0(hw, 24UL, ctrl_ext); e1000_clear_hw_cntrs_ich8lan(hw); return (ret_val); } } static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw ) { u32 reg ; u32 tmp ; { reg = __er32(hw, 24UL); reg = reg | 4194304U; if ((unsigned int )hw->mac.type > 8U) { reg = reg | 1048576U; } else { } __ew32___0(hw, 24UL, reg); reg = __er32(hw, 14376UL); reg = reg | 4194304U; __ew32___0(hw, 14376UL, reg); reg = __er32(hw, 14632UL); reg = reg | 4194304U; __ew32___0(hw, 14632UL, reg); reg = __er32(hw, 14400UL); if ((unsigned int )hw->mac.type == 6U) { reg = reg | 805306368U; } else { } reg = reg | 226492416U; __ew32___0(hw, 14400UL, reg); reg = __er32(hw, 14656UL); tmp = __er32(hw, 1024UL); if ((tmp & 268435456U) != 0U) { reg = reg & 4026531839U; } else { reg = reg | 268435456U; } reg = reg | 1157627904U; __ew32___0(hw, 14656UL, reg); if ((unsigned int )hw->mac.type == 6U) { reg = __er32(hw, 8UL); reg = reg & 2147483647U; __ew32___0(hw, 8UL, reg); } else { } reg = __er32(hw, 20488UL); reg = reg | 192U; if ((unsigned int )hw->mac.type == 6U) { reg = reg | 196608U; } else { } __ew32___0(hw, 20488UL, reg); if ((unsigned int )hw->mac.type == 11U) { reg = __er32(hw, 4108UL); reg = reg | 65536U; __ew32___0(hw, 4108UL, reg); reg = __er32(hw, 0UL); reg = reg | 524288U; __ew32___0(hw, 0UL, reg); } else { } return; } } static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; s32 tmp ; struct _ddebug descriptor ; long tmp___0 ; s32 tmp___1 ; { tmp = (*(hw->phy.ops.check_reset_block))(hw); if (tmp != 0) { return (0); } else { } if ((unsigned int )hw->fc.requested_mode == 255U) { if ((unsigned int )hw->mac.type == 9U) { hw->fc.requested_mode = 1; } else { hw->fc.requested_mode = 3; } } else { } hw->fc.current_mode = hw->fc.requested_mode; descriptor.modname = "e1000e"; descriptor.function = "e1000_setup_link_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "After fix-ups FlowControl is now = %x\n"; descriptor.lineno = 3855U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "After fix-ups FlowControl is now = %x\n", (unsigned int )hw->fc.current_mode); } else { } ret_val = (*(hw->mac.ops.setup_physical_interface))(hw); if (ret_val != 0) { return (ret_val); } else { } __ew32___0(hw, 368UL, (u32 )hw->fc.pause_time); if ((((unsigned int )hw->phy.type == 9U || (unsigned int )hw->phy.type == 11U) || (unsigned int )hw->phy.type == 12U) || (unsigned int )hw->phy.type == 10U) { __ew32___0(hw, 24384UL, (u32 )hw->fc.refresh_time); ret_val = e1e_wphy(hw, 24635U, (int )hw->fc.pause_time); if (ret_val != 0) { return (ret_val); } else { } } else { } tmp___1 = e1000e_set_fc_watermarks(hw); return (tmp___1); } } static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 reg_data ; s32 tmp ; { ctrl = __er32(hw, 0UL); ctrl = ctrl | 64U; ctrl = ctrl & 4294961151U; __ew32___0(hw, 0UL, ctrl); ret_val = e1000e_write_kmrn_reg(hw, 4U, 65535); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_read_kmrn_reg(hw, 9U, & reg_data); if (ret_val != 0) { return (ret_val); } else { } reg_data = (u16 )((unsigned int )reg_data | 63U); ret_val = e1000e_write_kmrn_reg(hw, 9U, (int )reg_data); if (ret_val != 0) { return (ret_val); } else { } switch ((unsigned int )hw->phy.type) { case 6U: ret_val = e1000e_copper_link_setup_igp(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_42386; case 8U: ; case 9U: ret_val = e1000e_copper_link_setup_m88(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_42386; case 10U: ; case 11U: ret_val = e1000_copper_link_setup_82577(hw); if (ret_val != 0) { return (ret_val); } else { } goto ldv_42386; case 7U: ret_val = e1e_rphy(hw, 28U, & reg_data); if (ret_val != 0) { return (ret_val); } else { } reg_data = (unsigned int )reg_data & 65407U; switch ((int )hw->phy.mdix) { case 1: reg_data = (unsigned int )reg_data & 65471U; goto ldv_42393; case 2: reg_data = (u16 )((unsigned int )reg_data | 64U); goto ldv_42393; case 0: ; default: reg_data = (u16 )((unsigned int )reg_data | 128U); goto ldv_42393; } ldv_42393: ret_val = e1e_wphy(hw, 28U, (int )reg_data); if (ret_val != 0) { return (ret_val); } else { } goto ldv_42386; default: ; goto ldv_42386; } ldv_42386: tmp = e1000e_setup_copper_link(hw); return (tmp); } } static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; s32 tmp ; { ctrl = __er32(hw, 0UL); ctrl = ctrl | 64U; ctrl = ctrl & 4294961151U; __ew32___0(hw, 0UL, ctrl); ret_val = e1000_copper_link_setup_82577(hw); if (ret_val != 0) { return (ret_val); } else { } tmp = e1000e_setup_copper_link(hw); return (tmp); } } static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw , u16 *speed , u16 *duplex ) { s32 ret_val ; { ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); if (ret_val != 0) { return (ret_val); } else { } if (((unsigned int )hw->mac.type == 6U && (unsigned int )hw->phy.type == 6U) && (unsigned int )*speed == 1000U) { ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); } else { } return (ret_val); } } static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw ) { struct e1000_dev_spec_ich8lan *dev_spec ; u32 phy_ctrl ; s32 ret_val ; u16 i ; u16 data ; bool link ; unsigned long __ms ; unsigned long tmp ; { dev_spec = & hw->dev_spec.ich8lan; if (! dev_spec->kmrn_lock_loss_workaround_enabled) { return (0); } else { } ret_val = e1000e_phy_has_link_generic(hw, 1U, 0U, & link); if (! link) { return (0); } else { } i = 0U; goto ldv_42423; ldv_42422: ret_val = e1e_rphy(hw, 24659U, & data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 24659U, & data); if (ret_val != 0) { return (ret_val); } else { } if (((int )data & 2) == 0) { return (0); } else { } e1000_phy_hw_reset(hw); if (1) { __const_udelay(21475000UL); } else { __ms = 5UL; goto ldv_42420; ldv_42419: __const_udelay(4295000UL); ldv_42420: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_42419; } else { } } i = (u16 )((int )i + 1); ldv_42423: ; if ((unsigned int )i <= 9U) { goto ldv_42422; } else { } phy_ctrl = __er32(hw, 3856UL); phy_ctrl = phy_ctrl | 72U; __ew32___0(hw, 3856UL, phy_ctrl); e1000e_gig_downshift_workaround_ich8lan(hw); return (-2); } } void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw , bool state ) { struct e1000_dev_spec_ich8lan *dev_spec ; struct _ddebug descriptor ; long tmp ; { dev_spec = & hw->dev_spec.ich8lan; if ((unsigned int )hw->mac.type != 6U) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_set_kmrn_lock_loss_workaround_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Workaround applies to ICH8 only.\n"; descriptor.lineno = 4095U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Workaround applies to ICH8 only.\n"); } else { } return; } else { } dev_spec->kmrn_lock_loss_workaround_enabled = state; return; } } void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw ) { u32 reg ; u16 data ; u8 retry ; { retry = 0U; if ((unsigned int )hw->phy.type != 6U) { return; } else { } ldv_42439: reg = __er32(hw, 3856UL); reg = reg | 72U; __ew32___0(hw, 3856UL, reg); if ((unsigned int )hw->mac.type == 6U) { e1000e_gig_downshift_workaround_ich8lan(hw); } else { } e1e_rphy(hw, 24850U, & data); data = (unsigned int )data & 64767U; e1e_wphy(hw, 24850U, (int )((unsigned int )data | 512U)); e1e_rphy(hw, 24850U, & data); data = (unsigned int )data & 768U; if ((unsigned int )data == 512U || (unsigned int )retry != 0U) { goto ldv_42438; } else { } reg = __er32(hw, 0UL); __ew32___0(hw, 0UL, reg | 2147483648U); retry = (u8 )((int )retry + 1); if ((unsigned int )retry != 0U) { goto ldv_42439; } else { } ldv_42438: ; return; } } void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; u16 reg_data ; { if ((unsigned int )hw->mac.type != 6U || (unsigned int )hw->phy.type == 7U) { return; } else { } ret_val = e1000e_read_kmrn_reg(hw, 3U, & reg_data); if (ret_val != 0) { return; } else { } reg_data = (u16 )((unsigned int )reg_data | 4096U); ret_val = e1000e_write_kmrn_reg(hw, 3U, (int )reg_data); if (ret_val != 0) { return; } else { } reg_data = (unsigned int )reg_data & 61439U; e1000e_write_kmrn_reg(hw, 3U, (int )reg_data); return; } } void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw ) { struct e1000_dev_spec_ich8lan *dev_spec ; u32 phy_ctrl ; s32 ret_val ; u16 phy_reg ; u16 device_id ; u32 fextnvm6 ; u32 tmp ; u16 eee_advert ; u32 tmp___0 ; { dev_spec = & hw->dev_spec.ich8lan; phy_ctrl = __er32(hw, 3856UL); phy_ctrl = phy_ctrl | 64U; if ((unsigned int )hw->phy.type == 12U) { device_id = ((hw->adapter)->pdev)->device; if ((unsigned int )device_id == 5466U || (unsigned int )device_id == 5465U) { tmp = __er32(hw, 16UL); fextnvm6 = tmp; __ew32___0(hw, 16UL, fextnvm6 & 4294967039U); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { goto out; } else { } if (! dev_spec->eee_disable) { ret_val = e1000_read_emi_reg_locked(hw, 32769, & eee_advert); if (ret_val != 0) { goto release; } else { } if ((((int )eee_advert & 2) != 0 && ((int )dev_spec->eee_lp_ability & 2) != 0) && ((int )hw->phy.autoneg_advertised & 8) != 0) { phy_ctrl = phy_ctrl & 4294967289U; } else { } } else { } tmp___0 = __er32(hw, 23380UL); if ((tmp___0 & 32768U) == 0U) { e1e_rphy_locked(hw, 4219910U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 128U); e1e_wphy_locked(hw, 4219910U, (int )phy_reg); e1e_rphy_locked(hw, 24636U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 4096U); e1e_wphy_locked(hw, 24636U, (int )phy_reg); e1e_rphy_locked(hw, 24730U, & phy_reg); phy_reg = (unsigned int )phy_reg & 65519U; e1e_wphy_locked(hw, 24730U, (int )phy_reg); } else { } e1e_rphy_locked(hw, 24733U, & phy_reg); phy_reg = (u16 )((unsigned int )phy_reg | 2U); e1e_wphy_locked(hw, 24733U, (int )phy_reg); release: (*(hw->phy.ops.release))(hw); } else { } out: __ew32___0(hw, 3856UL, phy_ctrl); if ((unsigned int )hw->mac.type == 6U) { e1000e_gig_downshift_workaround_ich8lan(hw); } else { } if ((unsigned int )hw->mac.type > 8U) { e1000_oem_bits_config_ich8lan(hw, 0); if ((unsigned int )hw->mac.type == 9U) { e1000e_phy_hw_reset_generic(hw); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return; } else { } e1000_write_smbus_addr(hw); (*(hw->phy.ops.release))(hw); } else { } return; } } void e1000_resume_workarounds_pchlan(struct e1000_hw *hw ) { s32 ret_val ; struct _ddebug descriptor ; long tmp ; u16 phy_reg ; struct _ddebug descriptor___0 ; long tmp___0 ; u32 tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; { if ((unsigned int )hw->mac.type <= 9U) { return; } else { } ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_resume_workarounds_pchlan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Failed to init PHY flow ret_val=%d\n"; descriptor.lineno = 4319U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Failed to init PHY flow ret_val=%d\n", ret_val); } else { } return; } else { } if ((unsigned int )hw->phy.type == 12U) { ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_resume_workarounds_pchlan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "Failed to setup iRST\n"; descriptor___0.lineno = 4333U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Failed to setup iRST\n"); } else { } return; } else { } tmp___1 = __er32(hw, 23380UL); if ((tmp___1 & 32768U) == 0U) { ret_val = e1e_rphy_locked(hw, 24730U, & phy_reg); if (ret_val != 0) { goto release; } else { } phy_reg = (u16 )((unsigned int )phy_reg | 16U); e1e_wphy_locked(hw, 24730U, (int )phy_reg); e1e_wphy_locked(hw, 4219910U, 0); } else { } ret_val = e1e_rphy_locked(hw, 24733U, & phy_reg); if (ret_val != 0) { goto release; } else { } phy_reg = (unsigned int )phy_reg & 65533U; e1e_wphy_locked(hw, 24733U, (int )phy_reg); release: ; if (ret_val != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_resume_workarounds_pchlan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "Error %d in resume workarounds\n"; descriptor___1.lineno = 4358U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Error %d in resume workarounds\n", ret_val); } else { } } else { } (*(hw->phy.ops.release))(hw); } else { } return; } } static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw ) { s32 tmp ; { if ((unsigned int )hw->phy.type == 7U) { tmp = e1e_wphy(hw, 27U, 0); return (tmp); } else { } __ew32___0(hw, 3584UL, hw->mac.ledctl_default); return (0); } } static s32 e1000_led_on_ich8lan(struct e1000_hw *hw ) { s32 tmp ; { if ((unsigned int )hw->phy.type == 7U) { tmp = e1e_wphy(hw, 27U, 39); return (tmp); } else { } __ew32___0(hw, 3584UL, hw->mac.ledctl_mode2); return (0); } } static s32 e1000_led_off_ich8lan(struct e1000_hw *hw ) { s32 tmp ; { if ((unsigned int )hw->phy.type == 7U) { tmp = e1e_wphy(hw, 27U, 38); return (tmp); } else { } __ew32___0(hw, 3584UL, hw->mac.ledctl_mode1); return (0); } } static s32 e1000_setup_led_pchlan(struct e1000_hw *hw ) { s32 tmp ; { tmp = e1e_wphy(hw, 24606U, (int )((unsigned short )hw->mac.ledctl_mode1)); return (tmp); } } static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw ) { s32 tmp ; { tmp = e1e_wphy(hw, 24606U, (int )((unsigned short )hw->mac.ledctl_default)); return (tmp); } } static s32 e1000_led_on_pchlan(struct e1000_hw *hw ) { u16 data ; u32 i ; u32 led ; u32 tmp ; s32 tmp___0 ; { data = (unsigned short )hw->mac.ledctl_mode2; tmp = __er32(hw, 8UL); if ((tmp & 2U) == 0U) { i = 0U; goto ldv_42490; ldv_42489: led = (u32 )((int )data >> (int )(i * 5U)) & 31U; if ((led & 7U) != 2U) { goto ldv_42488; } else { } if ((led & 8U) != 0U) { data = (u16 )(~ ((int )((short )(8 << (int )(i * 5U)))) & (int )((short )data)); } else { data = (u16 )((int )((short )(8 << (int )(i * 5U))) | (int )((short )data)); } ldv_42488: i = i + 1U; ldv_42490: ; if (i <= 2U) { goto ldv_42489; } else { } } else { } tmp___0 = e1e_wphy(hw, 24606U, (int )data); return (tmp___0); } } static s32 e1000_led_off_pchlan(struct e1000_hw *hw ) { u16 data ; u32 i ; u32 led ; u32 tmp ; s32 tmp___0 ; { data = (unsigned short )hw->mac.ledctl_mode1; tmp = __er32(hw, 8UL); if ((tmp & 2U) == 0U) { i = 0U; goto ldv_42500; ldv_42499: led = (u32 )((int )data >> (int )(i * 5U)) & 31U; if ((led & 7U) != 2U) { goto ldv_42498; } else { } if ((led & 8U) != 0U) { data = (u16 )(~ ((int )((short )(8 << (int )(i * 5U)))) & (int )((short )data)); } else { data = (u16 )((int )((short )(8 << (int )(i * 5U))) | (int )((short )data)); } ldv_42498: i = i + 1U; ldv_42500: ; if (i <= 2U) { goto ldv_42499; } else { } } else { } tmp___0 = e1e_wphy(hw, 24606U, (int )data); return (tmp___0); } } static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw ) { s32 ret_val ; u32 bank ; u32 status ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; u32 tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; s32 tmp___3 ; { ret_val = 0; bank = 0U; e1000e_get_cfg_done_generic(hw); if ((unsigned int )hw->mac.type > 7U) { e1000_lan_init_done_ich8lan(hw); } else { ret_val = e1000e_get_auto_rd_done(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_get_cfg_done_ich8lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor.format = "Auto Read Done did not complete\n"; descriptor.lineno = 4523U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Auto Read Done did not complete\n"); } else { } ret_val = 0; } else { } } status = __er32(hw, 8UL); if ((status & 1024U) != 0U) { __ew32___0(hw, 8UL, status & 4294966271U); } else { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_get_cfg_done_ich8lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___0.format = "PHY Reset Asserted not set - needs delay\n"; descriptor___0.lineno = 4533U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "PHY Reset Asserted not set - needs delay\n"); } else { } } if ((unsigned int )hw->mac.type <= 7U) { tmp___1 = __er32(hw, 16UL); if ((tmp___1 & 256U) == 0U && (unsigned int )hw->phy.type == 6U) { e1000e_phy_init_script_igp3(hw); } else { } } else { tmp___3 = e1000_valid_nvm_bank_detect_ich8lan(hw, & bank); if (tmp___3 != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_get_cfg_done_ich8lan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ich8lan.c.prepared"; descriptor___1.format = "EEPROM not present\n"; descriptor___1.lineno = 4544U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "EEPROM not present\n"); } else { } ret_val = -3; } else { } } return (ret_val); } } static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw ) { bool tmp ; int tmp___0 ; s32 tmp___1 ; { tmp = (*(hw->mac.ops.check_mng_mode))(hw); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = (*(hw->phy.ops.check_reset_block))(hw); if (tmp___1 == 0) { e1000_power_down_phy_copper(hw); } else { } } else { } return; } } static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw ) { u16 phy_data ; s32 ret_val ; { e1000e_clear_hw_cntrs_base(hw); __er32(hw, 16388UL); __er32(hw, 16396UL); __er32(hw, 16436UL); __er32(hw, 16444UL); __er32(hw, 16632UL); __er32(hw, 16636UL); __er32(hw, 16564UL); __er32(hw, 16568UL); __er32(hw, 16572UL); __er32(hw, 16640UL); __er32(hw, 16676UL); if ((((unsigned int )hw->phy.type == 9U || (unsigned int )hw->phy.type == 11U) || (unsigned int )hw->phy.type == 12U) || (unsigned int )hw->phy.type == 10U) { ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return; } else { } ret_val = (*(hw->phy.ops.set_page))(hw, 24896); if (ret_val != 0) { goto release; } else { } (*(hw->phy.ops.read_reg_page))(hw, 24912U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24913U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24914U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24915U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24916U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24917U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24919U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24920U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24921U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24922U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24923U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24924U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24925U, & phy_data); (*(hw->phy.ops.read_reg_page))(hw, 24926U, & phy_data); release: (*(hw->phy.ops.release))(hw); } else { } return; } } static struct e1000_mac_operations const ich8_mac_ops = {0, 0, 0, & e1000_check_for_copper_link_ich8lan, 0, & e1000_clear_hw_cntrs_ich8lan, 0, & e1000_get_bus_info_ich8lan, & e1000_set_lan_id_single_port, & e1000_get_link_up_info_ich8lan, 0, 0, & e1000e_update_mc_addr_list_generic, & e1000_reset_hw_ich8lan, & e1000_init_hw_ich8lan, & e1000_setup_link_ich8lan, & e1000_setup_copper_link_ich8lan, 0, 0, & e1000e_config_collision_dist_generic, & e1000e_rar_set_generic, 0}; static struct e1000_phy_operations const ich8_phy_ops = {& e1000_acquire_swflag_ich8lan, 0, 0, & e1000_check_reset_block_ich8lan, 0, 0, & e1000_get_cfg_done_ich8lan, & e1000e_get_cable_length_igp_2, 0, 0, & e1000e_read_phy_reg_igp, 0, 0, & e1000_release_swflag_ich8lan, & e1000_phy_hw_reset_ich8lan, & e1000_set_d0_lplu_state_ich8lan, & e1000_set_d3_lplu_state_ich8lan, & e1000e_write_phy_reg_igp, 0, 0, 0, 0}; static struct e1000_nvm_operations const ich8_nvm_ops = {& e1000_acquire_nvm_ich8lan, & e1000_read_nvm_ich8lan, & e1000_release_nvm_ich8lan, & e1000e_reload_nvm_generic, & e1000_update_nvm_checksum_ich8lan, & e1000_valid_led_default_ich8lan, & e1000_validate_nvm_checksum_ich8lan, & e1000_write_nvm_ich8lan}; struct e1000_info const e1000_ich8_info = {6, 33323U, 0U, 8U, 1518U, & e1000_get_variants_ich8lan, & ich8_mac_ops, & ich8_phy_ops, & ich8_nvm_ops}; struct e1000_info const e1000_ich9_info = {7, 33451U, 0U, 18U, 9234U, & e1000_get_variants_ich8lan, & ich8_mac_ops, & ich8_phy_ops, & ich8_nvm_ops}; struct e1000_info const e1000_ich10_info = {8, 33451U, 0U, 18U, 9234U, & e1000_get_variants_ich8lan, & ich8_mac_ops, & ich8_phy_ops, & ich8_nvm_ops}; struct e1000_info const e1000_pch_info = {9, 295595U, 16U, 26U, 4096U, & e1000_get_variants_ich8lan, & ich8_mac_ops, & ich8_phy_ops, & ich8_nvm_ops}; struct e1000_info const e1000_pch2_info = {10, 49835U, 48U, 26U, 9018U, & e1000_get_variants_ich8lan, & ich8_mac_ops, & ich8_phy_ops, & ich8_nvm_ops}; struct e1000_info const e1000_pch_lpt_info = {11, 49835U, 48U, 26U, 9018U, & e1000_get_variants_ich8lan, & ich8_mac_ops, & ich8_phy_ops, & ich8_nvm_ops}; int main(void) { struct e1000_hw *var_group1 ; u16 *var_e1000_get_link_up_info_ich8lan_69_p1 ; u16 *var_e1000_get_link_up_info_ich8lan_69_p2 ; bool var_e1000_set_d0_lplu_state_ich8lan_43_p1 ; bool var_e1000_set_d3_lplu_state_ich8lan_44_p1 ; struct e1000_hw *var_group2 ; u16 var_e1000_read_nvm_ich8lan_46_p1 ; u16 var_e1000_read_nvm_ich8lan_46_p2 ; u16 *var_e1000_read_nvm_ich8lan_46_p3 ; u16 *var_e1000_valid_led_default_ich8lan_60_p1 ; u16 var_e1000_write_nvm_ich8lan_52_p1 ; u16 var_e1000_write_nvm_ich8lan_52_p2 ; u16 *var_e1000_write_nvm_ich8lan_52_p3 ; struct e1000_adapter *var_group3 ; int ldv_s_ich8_phy_ops_e1000_phy_operations ; int ldv_s_ich8_nvm_ops_e1000_nvm_operations ; int tmp ; int tmp___0 ; struct e1000_hw *e1000_hw_p1 = ldv_successful_malloc(sizeof(struct e1000_hw)); var_group1 = e1000_hw_p1; u16 *u16_p1 = ldv_successful_malloc(sizeof(u16)); *(u16_p1) = __VERIFIER_nondet_ushort(); var_e1000_get_link_up_info_ich8lan_69_p1 = u16_p1; u16 *u16_p2 = ldv_successful_malloc(sizeof(u16)); *(u16_p2) = __VERIFIER_nondet_ushort(); var_e1000_get_link_up_info_ich8lan_69_p2 = u16_p2; var_e1000_set_d0_lplu_state_ich8lan_43_p1 = __VERIFIER_nondet_bool(); var_e1000_set_d3_lplu_state_ich8lan_44_p1 = __VERIFIER_nondet_bool(); var_group2 = e1000_hw_p1; var_e1000_read_nvm_ich8lan_46_p1 = __VERIFIER_nondet_ushort(); var_e1000_read_nvm_ich8lan_46_p2 = __VERIFIER_nondet_ushort(); u16 *u16_p3 = ldv_successful_malloc(sizeof(u16)); *(u16_p3) = __VERIFIER_nondet_ushort(); var_e1000_read_nvm_ich8lan_46_p3 = u16_p3; u16 *u16_p4 = ldv_successful_malloc(sizeof(u16)); *(u16_p4) = __VERIFIER_nondet_ushort(); var_e1000_valid_led_default_ich8lan_60_p1 = u16_p4; var_e1000_write_nvm_ich8lan_52_p1 = __VERIFIER_nondet_ushort(); var_e1000_write_nvm_ich8lan_52_p2 = __VERIFIER_nondet_ushort(); u16 *u16_p5 = ldv_successful_malloc(sizeof(u16)); *(u16_p5) = __VERIFIER_nondet_ushort(); var_e1000_write_nvm_ich8lan_52_p3 = u16_p5; struct e1000_adapter *e1000_adapter_p1 = ldv_successful_malloc(sizeof(struct e1000_adapter)); var_group3 = e1000_adapter_p1; e1000_hw_p1->adapter = e1000_adapter_p1; void *void_p1 = ldv_successful_malloc(sizeof(int)); e1000_hw_p1->hw_addr = void_p1; struct e1000_mac_info *e1000_mac_info_p1 = ldv_successful_malloc(sizeof(struct e1000_mac_info)); e1000_hw_p1->mac = *(e1000_mac_info_p1); struct e1000_fc_info *e1000_fc_info_p1 = ldv_successful_malloc(sizeof(struct e1000_fc_info)); e1000_hw_p1->fc = *(e1000_fc_info_p1); struct e1000_phy_info *e1000_phy_info_p1 = ldv_successful_malloc(sizeof(struct e1000_phy_info)); e1000_hw_p1->phy = *(e1000_phy_info_p1); struct e1000_nvm_info *e1000_nvm_info_p1 = ldv_successful_malloc(sizeof(struct e1000_nvm_info)); e1000_hw_p1->nvm = *(e1000_nvm_info_p1); struct e1000_bus_info *e1000_bus_info_p1 = ldv_successful_malloc(sizeof(struct e1000_bus_info)); e1000_hw_p1->bus = *(e1000_bus_info_p1); struct e1000_host_mng_dhcp_cookie *e1000_host_mng_dhcp_cookie_p1 = ldv_successful_malloc(sizeof(struct e1000_host_mng_dhcp_cookie)); e1000_hw_p1->mng_cookie = *(e1000_host_mng_dhcp_cookie_p1); union __anonunion_dev_spec_255 *__anonunion_dev_spec_255_p1 = ldv_successful_malloc(sizeof(union __anonunion_dev_spec_255)); e1000_hw_p1->dev_spec = *(__anonunion_dev_spec_255_p1); e1000_adapter_p1->state = __VERIFIER_nondet_ulong(); e1000_adapter_p1->hw = *(e1000_hw_p1); e1000_adapter_p1->flags2 = __VERIFIER_nondet_uint(); struct e1000_mac_operations *e1000_mac_operations_p1 = ldv_successful_malloc(sizeof(struct e1000_mac_operations)); e1000_mac_operations_p1->id_led_init = &id_led_init_dummy; e1000_mac_operations_p1->blink_led = &blink_led_dummy; e1000_mac_operations_p1->check_mng_mode = &check_mng_mode_dummy; e1000_mac_operations_p1->check_for_link = &check_for_link_dummy; e1000_mac_operations_p1->cleanup_led = &cleanup_led_dummy; e1000_mac_operations_p1->clear_hw_cntrs = &clear_hw_cntrs_dummy; e1000_mac_operations_p1->clear_vfta = &clear_vfta_dummy; e1000_mac_operations_p1->get_bus_info = &get_bus_info_dummy; e1000_mac_operations_p1->set_lan_id = &set_lan_id_dummy; e1000_mac_operations_p1->get_link_up_info = &get_link_up_info_dummy; e1000_mac_operations_p1->led_on = &led_on_dummy; e1000_mac_operations_p1->led_off = &led_off_dummy; e1000_mac_operations_p1->update_mc_addr_list = &update_mc_addr_list_dummy; e1000_mac_operations_p1->reset_hw = &reset_hw_dummy; e1000_mac_operations_p1->init_hw = &init_hw_dummy; e1000_mac_operations_p1->setup_link = &setup_link_dummy; e1000_mac_operations_p1->setup_physical_interface = &setup_physical_interface_dummy; e1000_mac_operations_p1->setup_led = &setup_led_dummy; e1000_mac_operations_p1->write_vfta = &write_vfta_dummy; e1000_mac_operations_p1->config_collision_dist = &config_collision_dist_dummy; e1000_mac_operations_p1->rar_set = &rar_set_dummy; e1000_mac_operations_p1->read_mac_addr = &read_mac_addr_dummy; e1000_mac_info_p1->ops = *(e1000_mac_operations_p1); enum e1000_mac_type *e1000_mac_type_p1 = ldv_successful_malloc(sizeof(enum e1000_mac_type)); e1000_mac_info_p1->type = *(e1000_mac_type_p1); e1000_mac_info_p1->ledctl_default = __VERIFIER_nondet_uint(); e1000_mac_info_p1->ledctl_mode2 = __VERIFIER_nondet_uint(); e1000_mac_info_p1->mta_reg_count = __VERIFIER_nondet_ushort(); e1000_mac_info_p1->rar_entry_count = __VERIFIER_nondet_ushort(); e1000_mac_info_p1->adaptive_ifs = __VERIFIER_nondet_bool(); e1000_mac_info_p1->has_fwsm = __VERIFIER_nondet_bool(); e1000_mac_info_p1->arc_subsystem_valid = __VERIFIER_nondet_bool(); e1000_mac_info_p1->get_link_status = __VERIFIER_nondet_bool(); struct e1000_phy_operations *e1000_phy_operations_p1 = ldv_successful_malloc(sizeof(struct e1000_phy_operations)); e1000_phy_operations_p1->acquire = &acquire_dummy; e1000_phy_operations_p1->cfg_on_link_up = &cfg_on_link_up_dummy; e1000_phy_operations_p1->check_polarity = &check_polarity_dummy; e1000_phy_operations_p1->check_reset_block = &check_reset_block_dummy; e1000_phy_operations_p1->commit = &commit_dummy; e1000_phy_operations_p1->force_speed_duplex = &force_speed_duplex_dummy; e1000_phy_operations_p1->get_cfg_done = &get_cfg_done_dummy; e1000_phy_operations_p1->get_cable_length = &get_cable_length_dummy; e1000_phy_operations_p1->get_info = &get_info_dummy; e1000_phy_operations_p1->set_page = &set_page_dummy; e1000_phy_operations_p1->read_reg = &read_reg_dummy; e1000_phy_operations_p1->read_reg_locked = &read_reg_locked_dummy; e1000_phy_operations_p1->read_reg_page = &read_reg_page_dummy; e1000_phy_operations_p1->release = &release_dummy; e1000_phy_operations_p1->reset = &reset_dummy; e1000_phy_operations_p1->set_d0_lplu_state = &set_d0_lplu_state_dummy; e1000_phy_operations_p1->set_d3_lplu_state = &set_d3_lplu_state_dummy; e1000_phy_operations_p1->write_reg = &write_reg_dummy; e1000_phy_operations_p1->write_reg_locked = &write_reg_locked_dummy; e1000_phy_operations_p1->write_reg_page = &write_reg_page_dummy; e1000_phy_operations_p1->power_up = &power_up_dummy; e1000_phy_operations_p1->power_down = &power_down_dummy; e1000_phy_info_p1->ops = *(e1000_phy_operations_p1); enum e1000_phy_type *e1000_phy_type_p1 = ldv_successful_malloc(sizeof(enum e1000_phy_type)); e1000_phy_info_p1->type = *(e1000_phy_type_p1); enum e1000_rev_polarity *e1000_rev_polarity_p1 = ldv_successful_malloc(sizeof(enum e1000_rev_polarity)); e1000_phy_info_p1->cable_polarity = *(e1000_rev_polarity_p1); e1000_phy_info_p1->addr = __VERIFIER_nondet_uint(); enum e1000_media_type *e1000_media_type_p1 = ldv_successful_malloc(sizeof(enum e1000_media_type)); e1000_phy_info_p1->media_type = *(e1000_media_type_p1); e1000_phy_info_p1->polarity_correction = __VERIFIER_nondet_bool(); struct e1000_nvm_operations *e1000_nvm_operations_p1 = ldv_successful_malloc(sizeof(struct e1000_nvm_operations)); e1000_nvm_operations_p1->acquire = &acquire_dummy2; e1000_nvm_operations_p1->read = &read_dummy; e1000_nvm_operations_p1->release = &release_dummy2; e1000_nvm_operations_p1->reload = &reload_dummy; e1000_nvm_operations_p1->update = &update_dummy; e1000_nvm_operations_p1->valid_led_default = &valid_led_default_dummy; e1000_nvm_operations_p1->validate = &validate_dummy; e1000_nvm_operations_p1->write = &write_dummy; e1000_nvm_info_p1->ops = *(e1000_nvm_operations_p1); enum e1000_bus_width *e1000_bus_width_p1 = ldv_successful_malloc(sizeof(enum e1000_bus_width)); e1000_bus_info_p1->width = *(e1000_bus_width_p1); e1000_bus_info_p1->func = __VERIFIER_nondet_ushort(); e1000_host_mng_dhcp_cookie_p1->vlan_id = __VERIFIER_nondet_ushort(); struct e1000_dev_spec_ich8lan *e1000_dev_spec_ich8lan_p1 = ldv_successful_malloc(sizeof(struct e1000_dev_spec_ich8lan)); __anonunion_dev_spec_255_p1->ich8lan = *(e1000_dev_spec_ich8lan_p1); { ldv_s_ich8_phy_ops_e1000_phy_operations = 0; ldv_s_ich8_nvm_ops_e1000_nvm_operations = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_42593; ldv_42592: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); e1000_check_for_copper_link_ich8lan(var_group1); goto ldv_42563; case 1: ldv_handler_precall(); e1000_clear_hw_cntrs_ich8lan(var_group1); goto ldv_42563; case 2: ldv_handler_precall(); e1000_get_bus_info_ich8lan(var_group1); goto ldv_42563; case 3: ldv_handler_precall(); e1000_get_link_up_info_ich8lan(var_group1, var_e1000_get_link_up_info_ich8lan_69_p1, var_e1000_get_link_up_info_ich8lan_69_p2); goto ldv_42563; case 4: ldv_handler_precall(); e1000_reset_hw_ich8lan(var_group1); goto ldv_42563; case 5: ldv_handler_precall(); e1000_init_hw_ich8lan(var_group1); goto ldv_42563; case 6: ldv_handler_precall(); e1000_setup_link_ich8lan(var_group1); goto ldv_42563; case 7: ldv_handler_precall(); e1000_setup_copper_link_ich8lan(var_group1); goto ldv_42563; case 8: ; if (ldv_s_ich8_phy_ops_e1000_phy_operations == 0) { ldv_handler_precall(); e1000_acquire_swflag_ich8lan(var_group1); ldv_s_ich8_phy_ops_e1000_phy_operations = ldv_s_ich8_phy_ops_e1000_phy_operations + 1; } else { } goto ldv_42563; case 9: ; if (ldv_s_ich8_phy_ops_e1000_phy_operations == 1) { ldv_handler_precall(); e1000_release_swflag_ich8lan(var_group1); ldv_s_ich8_phy_ops_e1000_phy_operations = 0; } else { } goto ldv_42563; case 10: ldv_handler_precall(); e1000_check_reset_block_ich8lan(var_group1); goto ldv_42563; case 11: ldv_handler_precall(); e1000_get_cfg_done_ich8lan(var_group1); goto ldv_42563; case 12: ldv_handler_precall(); e1000_phy_hw_reset_ich8lan(var_group1); goto ldv_42563; case 13: ldv_handler_precall(); e1000_set_d0_lplu_state_ich8lan(var_group1, (int )var_e1000_set_d0_lplu_state_ich8lan_43_p1); goto ldv_42563; case 14: ldv_handler_precall(); e1000_set_d3_lplu_state_ich8lan(var_group1, (int )var_e1000_set_d3_lplu_state_ich8lan_44_p1); goto ldv_42563; case 15: ; if (ldv_s_ich8_nvm_ops_e1000_nvm_operations == 0) { ldv_handler_precall(); e1000_acquire_nvm_ich8lan(var_group2); ldv_s_ich8_nvm_ops_e1000_nvm_operations = ldv_s_ich8_nvm_ops_e1000_nvm_operations + 1; } else { } goto ldv_42563; case 16: ; if (ldv_s_ich8_nvm_ops_e1000_nvm_operations == 1) { ldv_handler_precall(); e1000_release_nvm_ich8lan(var_group2); ldv_s_ich8_nvm_ops_e1000_nvm_operations = 0; } else { } goto ldv_42563; case 17: ldv_handler_precall(); e1000_read_nvm_ich8lan(var_group1, (int )var_e1000_read_nvm_ich8lan_46_p1, (int )var_e1000_read_nvm_ich8lan_46_p2, var_e1000_read_nvm_ich8lan_46_p3); goto ldv_42563; case 18: ldv_handler_precall(); e1000_update_nvm_checksum_ich8lan(var_group1); goto ldv_42563; case 19: ldv_handler_precall(); e1000_valid_led_default_ich8lan(var_group1, var_e1000_valid_led_default_ich8lan_60_p1); goto ldv_42563; case 20: ldv_handler_precall(); e1000_validate_nvm_checksum_ich8lan(var_group1); goto ldv_42563; case 21: ldv_handler_precall(); e1000_write_nvm_ich8lan(var_group1, (int )var_e1000_write_nvm_ich8lan_52_p1, (int )var_e1000_write_nvm_ich8lan_52_p2, var_e1000_write_nvm_ich8lan_52_p3); goto ldv_42563; case 22: ldv_handler_precall(); e1000_get_variants_ich8lan(var_group3); goto ldv_42563; case 23: ldv_handler_precall(); e1000_get_variants_ich8lan(var_group3); goto ldv_42563; case 24: ldv_handler_precall(); e1000_get_variants_ich8lan(var_group3); goto ldv_42563; case 25: ldv_handler_precall(); e1000_get_variants_ich8lan(var_group3); goto ldv_42563; case 26: ldv_handler_precall(); e1000_get_variants_ich8lan(var_group3); goto ldv_42563; case 27: ldv_handler_precall(); e1000_get_variants_ich8lan(var_group3); goto ldv_42563; default: ; goto ldv_42563; } ldv_42563: ; ldv_42593: tmp___0 = __VERIFIER_nondet_int(); if ((tmp___0 != 0 || ldv_s_ich8_phy_ops_e1000_phy_operations != 0) || ldv_s_ich8_nvm_ops_e1000_nvm_operations != 0) { goto ldv_42592; } else { } ldv_check_final_state(); free(e1000_mac_operations_p1); free(e1000_nvm_info_p1); free(e1000_dev_spec_ich8lan_p1); free(e1000_mac_info_p1); free(e1000_phy_info_p1); free(void_p1); free(__anonunion_dev_spec_255_p1); free(e1000_mac_type_p1); free(e1000_media_type_p1); free(u16_p2); free(e1000_bus_width_p1); free(u16_p1); free(e1000_fc_info_p1); free(e1000_host_mng_dhcp_cookie_p1); free(e1000_phy_type_p1); free(e1000_hw_p1); free(u16_p5); free(u16_p4); free(u16_p3); free(e1000_nvm_operations_p1); free(e1000_adapter_p1); free(e1000_bus_info_p1); free(e1000_phy_operations_p1); free(e1000_rev_polarity_p1); return 0; } } void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_20(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_nvm_mutex(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_nvm_mutex(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_34(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) ; s32 e1000e_check_for_serdes_link(struct e1000_hw *hw ) ; s32 e1000e_get_hw_semaphore(struct e1000_hw *hw ) ; void e1000_clear_vfta_generic(struct e1000_hw *hw ) ; void e1000e_put_hw_semaphore(struct e1000_hw *hw ) ; void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw , u16 *phy_ctrl ) ; s32 e1000e_phy_reset_dsp(struct e1000_hw *hw ) ; s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw , u32 offset , u16 *data ) ; s32 e1000e_valid_led_default(struct e1000_hw *hw , u16 *data ) ; struct e1000_info const e1000_es2_info ; __inline static s32 __ew32_prepare___1(struct e1000_hw *hw ) { s32 i ; u32 tmp ; { i = 2000; goto ldv_41530; ldv_41529: __const_udelay(214750UL); ldv_41530: tmp = __er32(hw, 23380UL); if ((tmp & 16777216U) != 0U) { i = i - 1; if (i != 0) { goto ldv_41529; } else { goto ldv_41531; } } else { } ldv_41531: ; return (i); } } __inline static void __ew32___1(struct e1000_hw *hw , unsigned long reg , u32 val ) { { if (((hw->adapter)->flags2 & 2048U) != 0U) { __ew32_prepare___1(hw); } else { } writel(val, (void volatile *)(hw->hw_addr + reg)); return; } } static u16 const e1000_gg82563_cable_length_table[11U] = { 0U, 60U, 115U, 150U, 150U, 60U, 115U, 150U, 180U, 180U, 255U}; static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw ) ; static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw , u16 mask ) ; static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw , u16 mask ) ; static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw ) ; static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw ) ; static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw ) ; static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw , u16 duplex ) ; static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw , u32 offset , u16 *data ) ; static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw , u32 offset , u16 data ) ; static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw ) ; static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; { phy = & hw->phy; if ((unsigned int )hw->phy.media_type != 1U) { phy->type = 1; return (0); } else { phy->ops.power_up = & e1000_power_up_phy_copper; phy->ops.power_down = & e1000_power_down_phy_copper_80003es2lan; } phy->addr = 1U; phy->autoneg_mask = 47U; phy->reset_delay_us = 100U; phy->type = 5; ret_val = e1000e_get_phy_id(hw); if (phy->id != 21040288U) { return (-2); } else { } return (ret_val); } } static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; u32 eecd ; u32 tmp ; u16 size ; { nvm = & hw->nvm; tmp = __er32(hw, 16UL); eecd = tmp; nvm->opcode_bits = 8U; nvm->delay_usec = 1U; switch ((unsigned int )nvm->override) { case 2U: nvm->page_size = 32U; nvm->address_bits = 16U; goto ldv_41577; case 1U: nvm->page_size = 8U; nvm->address_bits = 8U; goto ldv_41577; default: nvm->page_size = (eecd & 1024U) != 0U ? 32U : 8U; nvm->address_bits = (eecd & 1024U) != 0U ? 16U : 8U; goto ldv_41577; } ldv_41577: nvm->type = 2; size = (unsigned short )((eecd & 30720U) >> 11); size = (unsigned int )size + 6U; if ((unsigned int )size > 14U) { size = 14U; } else { } nvm->word_size = (u16 )(1 << (int )size); return (0); } } static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 tmp ; { mac = & hw->mac; switch ((int )((hw->adapter)->pdev)->device) { case 4248: hw->phy.media_type = 3; mac->ops.check_for_link = & e1000e_check_for_serdes_link; mac->ops.setup_physical_interface = & e1000e_setup_fiber_serdes_link; goto ldv_41585; default: hw->phy.media_type = 1; mac->ops.check_for_link = & e1000e_check_for_copper_link; mac->ops.setup_physical_interface = & e1000_setup_copper_link_80003es2lan; goto ldv_41585; } ldv_41585: mac->mta_reg_count = 128U; mac->rar_entry_count = 15U; mac->has_fwsm = 1; tmp = __er32(hw, 23380UL); mac->arc_subsystem_valid = (tmp & 14U) != 0U; mac->adaptive_ifs = 0; (*(hw->mac.ops.set_lan_id))(hw); return (0); } } static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; s32 rc ; { hw = & adapter->hw; rc = e1000_init_mac_params_80003es2lan(hw); if (rc != 0) { return (rc); } else { } rc = e1000_init_nvm_params_80003es2lan(hw); if (rc != 0) { return (rc); } else { } rc = e1000_init_phy_params_80003es2lan(hw); if (rc != 0) { return (rc); } else { } return (0); } } static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw ) { u16 mask ; s32 tmp ; { mask = (unsigned int )hw->bus.func != 0U ? 4U : 2U; tmp = e1000_acquire_swfw_sync_80003es2lan(hw, (int )mask); return (tmp); } } static void e1000_release_phy_80003es2lan(struct e1000_hw *hw ) { u16 mask ; { mask = (unsigned int )hw->bus.func != 0U ? 4U : 2U; e1000_release_swfw_sync_80003es2lan(hw, (int )mask); return; } } static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw ) { u16 mask ; s32 tmp ; { mask = 8U; tmp = e1000_acquire_swfw_sync_80003es2lan(hw, (int )mask); return (tmp); } } static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw ) { u16 mask ; { mask = 8U; e1000_release_swfw_sync_80003es2lan(hw, (int )mask); return; } } static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw ) { s32 ret_val ; { ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, 1); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_acquire_nvm(hw); if (ret_val != 0) { e1000_release_swfw_sync_80003es2lan(hw, 1); } else { } return (ret_val); } } static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw ) { { e1000e_release_nvm(hw); e1000_release_swfw_sync_80003es2lan(hw, 1); return; } } static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw , u16 mask ) { u32 swfw_sync ; u32 swmask ; u32 fwmask ; s32 i ; s32 timeout ; s32 tmp ; unsigned long __ms ; unsigned long tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; { swmask = (u32 )mask; fwmask = (u32 )((int )mask << 16); i = 0; timeout = 50; goto ldv_41630; ldv_41629: tmp = e1000e_get_hw_semaphore(hw); if (tmp != 0) { return (-13); } else { } swfw_sync = __er32(hw, 23388UL); if (((fwmask | swmask) & swfw_sync) == 0U) { goto ldv_41624; } else { } e1000e_put_hw_semaphore(hw); if (1) { __const_udelay(21475000UL); } else { __ms = 5UL; goto ldv_41627; ldv_41626: __const_udelay(4295000UL); ldv_41627: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_41626; } else { } } i = i + 1; ldv_41630: ; if (i < timeout) { goto ldv_41629; } else { } ldv_41624: ; if (i == timeout) { descriptor.modname = "e1000e"; descriptor.function = "e1000_acquire_swfw_sync_80003es2lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor.format = "Driver can\'t access resource, SW_FW_SYNC timeout.\n"; descriptor.lineno = 363U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Driver can\'t access resource, SW_FW_SYNC timeout.\n"); } else { } return (-13); } else { } swfw_sync = swfw_sync | swmask; __ew32___1(hw, 23388UL, swfw_sync); e1000e_put_hw_semaphore(hw); return (0); } } static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw , u16 mask ) { u32 swfw_sync ; s32 tmp ; { goto ldv_41639; ldv_41638: ; ldv_41639: tmp = e1000e_get_hw_semaphore(hw); if (tmp != 0) { goto ldv_41638; } else { } swfw_sync = __er32(hw, 23388UL); swfw_sync = (u32 )(~ ((int )mask)) & swfw_sync; __ew32___1(hw, 23388UL, swfw_sync); e1000e_put_hw_semaphore(hw); return; } } static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 ret_val ; u32 page_select ; u16 temp ; { ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val != 0) { return (ret_val); } else { } if ((offset & 31U) <= 29U) { page_select = 22U; } else { page_select = 29U; } temp = (int )((unsigned short )offset) >> 5; ret_val = e1000e_write_phy_reg_mdic(hw, page_select, (int )temp); if (ret_val != 0) { e1000_release_phy_80003es2lan(hw); return (ret_val); } else { } if ((int )hw->dev_spec.e80003es2lan.mdic_wa_enable) { usleep_range(200UL, 400UL); ret_val = e1000e_read_phy_reg_mdic(hw, page_select, & temp); if ((int )((unsigned short )offset) >> 5 != (int )temp) { e1000_release_phy_80003es2lan(hw); return (-2); } else { } usleep_range(200UL, 400UL); ret_val = e1000e_read_phy_reg_mdic(hw, offset & 31U, data); usleep_range(200UL, 400UL); } else { ret_val = e1000e_read_phy_reg_mdic(hw, offset & 31U, data); } e1000_release_phy_80003es2lan(hw); return (ret_val); } } static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw , u32 offset , u16 data ) { s32 ret_val ; u32 page_select ; u16 temp ; { ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val != 0) { return (ret_val); } else { } if ((offset & 31U) <= 29U) { page_select = 22U; } else { page_select = 29U; } temp = (int )((unsigned short )offset) >> 5; ret_val = e1000e_write_phy_reg_mdic(hw, page_select, (int )temp); if (ret_val != 0) { e1000_release_phy_80003es2lan(hw); return (ret_val); } else { } if ((int )hw->dev_spec.e80003es2lan.mdic_wa_enable) { usleep_range(200UL, 400UL); ret_val = e1000e_read_phy_reg_mdic(hw, page_select, & temp); if ((int )((unsigned short )offset) >> 5 != (int )temp) { e1000_release_phy_80003es2lan(hw); return (-2); } else { } usleep_range(200UL, 400UL); ret_val = e1000e_write_phy_reg_mdic(hw, offset & 31U, (int )data); usleep_range(200UL, 400UL); } else { ret_val = e1000e_write_phy_reg_mdic(hw, offset & 31U, (int )data); } e1000_release_phy_80003es2lan(hw); return (ret_val); } } static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { s32 tmp ; { tmp = e1000e_write_nvm_spi(hw, (int )offset, (int )words, data); return (tmp); } } static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw ) { s32 timeout ; u32 mask ; u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { timeout = 100; mask = 262144U; if ((unsigned int )hw->bus.func == 1U) { mask = 524288U; } else { } goto ldv_41670; ldv_41669: tmp = __er32(hw, 4112UL); if ((tmp & mask) != 0U) { goto ldv_41668; } else { } usleep_range(1000UL, 2000UL); timeout = timeout - 1; ldv_41670: ; if (timeout != 0) { goto ldv_41669; } else { } ldv_41668: ; if (timeout == 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_get_cfg_done_80003es2lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor.format = "MNG configuration cycle has not completed.\n"; descriptor.lineno = 572U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "MNG configuration cycle has not completed.\n"); } else { } return (-9); } else { } return (0); } } static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; bool link ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { ret_val = e1e_rphy(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65439U; ret_val = e1e_wphy(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000_phy_force_speed_duplex_80003es2lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor.format = "GG82563 PSCR: %X\n"; descriptor.lineno = 604U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "GG82563 PSCR: %X\n", (int )phy_data); } else { } ret_val = e1e_rphy(hw, 0U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } e1000e_phy_force_speed_duplex_setup(hw, & phy_data); phy_data = (u16 )((unsigned int )phy_data | 32768U); ret_val = e1e_wphy(hw, 0U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } __const_udelay(4295UL); if ((int )hw->phy.autoneg_wait_to_complete) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_phy_force_speed_duplex_80003es2lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor___0.format = "Waiting for forced speed/duplex link on GG82563 phy.\n"; descriptor___0.lineno = 622U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Waiting for forced speed/duplex link on GG82563 phy.\n"); } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { ret_val = e1000e_phy_reset_dsp(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } } else { } ret_val = e1e_rphy(hw, 85U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65528U; if (((int )hw->mac.forced_speed_duplex & 3) != 0) { phy_data = (u16 )((unsigned int )phy_data | 4U); } else { phy_data = (u16 )((unsigned int )phy_data | 5U); } phy_data = (u16 )((unsigned int )phy_data | 16U); ret_val = e1e_wphy(hw, 85U, (int )phy_data); return (ret_val); } } static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; u16 index ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 186U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } index = (unsigned int )phy_data & 7U; if ((unsigned int )index > 5U) { return (-2); } else { } phy->min_cable_length = e1000_gg82563_cable_length_table[(int )index]; phy->max_cable_length = e1000_gg82563_cable_length_table[(int )index + 5]; phy->cable_length = (u16 )(((int )phy->min_cable_length + (int )phy->max_cable_length) / 2); return (0); } } static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw , u16 *speed , u16 *duplex ) { s32 ret_val ; { if ((unsigned int )hw->phy.media_type == 1U) { ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); (*(hw->phy.ops.cfg_on_link_up))(hw); } else { ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, speed, duplex); } return (ret_val); } } static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 kum_reg_data ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; s32 tmp___2 ; { ret_val = e1000e_disable_pcie_master(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_reset_hw_80003es2lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor.format = "PCI-E Master disable polling has failed.\n"; descriptor.lineno = 739U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "PCI-E Master disable polling has failed.\n"); } else { } } else { } descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_reset_hw_80003es2lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor___0.format = "Masking off all interrupts\n"; descriptor___0.lineno = 741U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Masking off all interrupts\n"); } else { } __ew32___1(hw, 216UL, 4294967295U); __ew32___1(hw, 256UL, 0U); __ew32___1(hw, 1024UL, 8U); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); ctrl = __er32(hw, 0UL); ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val != 0) { return (ret_val); } else { } descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_reset_hw_80003es2lan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor___1.format = "Issuing a global reset to MAC\n"; descriptor___1.lineno = 756U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Issuing a global reset to MAC\n"); } else { } __ew32___1(hw, 0UL, ctrl | 67108864U); e1000_release_phy_80003es2lan(hw); e1000_read_kmrn_reg_80003es2lan(hw, 9U, & kum_reg_data); kum_reg_data = (u16 )((unsigned int )kum_reg_data | 512U); e1000_write_kmrn_reg_80003es2lan(hw, 9U, (int )kum_reg_data); ret_val = e1000e_get_auto_rd_done(hw); if (ret_val != 0) { return (ret_val); } else { } __ew32___1(hw, 216UL, 4294967295U); __er32(hw, 192UL); tmp___2 = e1000_check_alt_mac_addr_generic(hw); return (tmp___2); } } static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 reg_data ; s32 ret_val ; u16 kum_reg_data ; u16 i ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { mac = & hw->mac; e1000_initialize_hw_bits_80003es2lan(hw); ret_val = (*(mac->ops.id_led_init))(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_init_hw_80003es2lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor.format = "Error initializing identification LED\n"; descriptor.lineno = 799U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error initializing identification LED\n"); } else { } } else { } descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_init_hw_80003es2lan"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor___0.format = "Initializing the IEEE VLAN\n"; descriptor___0.lineno = 802U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Initializing the IEEE VLAN\n"); } else { } (*(mac->ops.clear_vfta))(hw); e1000e_init_rx_addrs(hw, (int )mac->rar_entry_count); descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_init_hw_80003es2lan"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor___1.format = "Zeroing the MTA\n"; descriptor___1.lineno = 809U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Zeroing the MTA\n"); } else { } i = 0U; goto ldv_41720; ldv_41719: __ew32___1(hw, (unsigned long )(((int )i << 2) + 20992), 0U); i = (u16 )((int )i + 1); ldv_41720: ; if ((int )mac->mta_reg_count > (int )i) { goto ldv_41719; } else { } ret_val = (*(mac->ops.setup_link))(hw); if (ret_val != 0) { return (ret_val); } else { } e1000_read_kmrn_reg_80003es2lan(hw, 9U, & kum_reg_data); kum_reg_data = (u16 )((unsigned int )kum_reg_data | 512U); e1000_write_kmrn_reg_80003es2lan(hw, 9U, (int )kum_reg_data); reg_data = __er32(hw, 14376UL); reg_data = (reg_data & 4269867007U) | 21037056U; __ew32___1(hw, 14376UL, reg_data); reg_data = __er32(hw, 14632UL); reg_data = (reg_data & 4269867007U) | 21037056U; __ew32___1(hw, 14632UL, reg_data); reg_data = __er32(hw, 1024UL); reg_data = reg_data | 16777216U; __ew32___1(hw, 1024UL, reg_data); reg_data = __er32(hw, 1028UL); reg_data = reg_data & 4293919743U; reg_data = reg_data | 65536U; __ew32___1(hw, 1028UL, reg_data); reg_data = __er32(hw, 1040UL); reg_data = reg_data & 4294966272U; reg_data = reg_data | 8U; __ew32___1(hw, 1040UL, reg_data); reg_data = readl((void const volatile *)hw->hw_addr + 24324U); reg_data = reg_data & 4293918719U; __ew32___1(hw, 24324UL, reg_data); hw->dev_spec.e80003es2lan.mdic_wa_enable = 1; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, 31U, & i); if (ret_val == 0) { if (((int )i & 12) == 4) { hw->dev_spec.e80003es2lan.mdic_wa_enable = 0; } else { } } else { } e1000_clear_hw_cntrs_80003es2lan(hw); return (ret_val); } } static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw ) { u32 reg ; u32 tmp ; { reg = __er32(hw, 14376UL); reg = reg | 4194304U; __ew32___1(hw, 14376UL, reg); reg = __er32(hw, 14632UL); reg = reg | 4194304U; __ew32___1(hw, 14632UL, reg); reg = __er32(hw, 14400UL); reg = reg & 2281701375U; if ((unsigned int )hw->phy.media_type != 1U) { reg = reg & 4293918719U; } else { } __ew32___1(hw, 14400UL, reg); reg = __er32(hw, 14656UL); tmp = __er32(hw, 1024UL); if ((tmp & 268435456U) != 0U) { reg = reg & 4026531839U; } else { reg = reg | 268435456U; } __ew32___1(hw, 14656UL, reg); reg = __er32(hw, 20488UL); reg = reg | 196608U; __ew32___1(hw, 20488UL, reg); return; } } static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u32 reg ; u16 data ; struct _ddebug descriptor ; long tmp ; bool tmp___0 ; int tmp___1 ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 85U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 16U); data = (u16 )((unsigned int )data | 7U); ret_val = e1e_wphy(hw, 85U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65439U; switch ((int )phy->mdix) { case 1: data = data; goto ldv_41734; case 2: data = (u16 )((unsigned int )data | 32U); goto ldv_41734; case 0: ; default: data = (u16 )((unsigned int )data | 96U); goto ldv_41734; } ldv_41734: data = (unsigned int )data & 65533U; if ((int )phy->disable_polarity_correction) { data = (u16 )((unsigned int )data | 2U); } else { } ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = (*(hw->phy.ops.commit))(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_copper_link_setup_gg82563_80003es2lan"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/80003es2lan.c.prepared"; descriptor.format = "Error Resetting the PHY\n"; descriptor.lineno = 991U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error Resetting the PHY\n"); } else { } return (ret_val); } else { } reg = 0U; data = 2056U; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, (int )data); if (ret_val != 0) { return (ret_val); } else { } reg = 31U; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 8192U); ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 26U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 57343U; ret_val = e1e_wphy(hw, 26U, (int )data); if (ret_val != 0) { return (ret_val); } else { } reg = __er32(hw, 24UL); reg = reg & 4282384383U; __ew32___1(hw, 24UL, reg); ret_val = e1e_rphy(hw, 6196U, & data); if (ret_val != 0) { return (ret_val); } else { } tmp___0 = (*(hw->mac.ops.check_mng_mode))(hw); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { data = (u16 )((unsigned int )data | 1U); ret_val = e1e_wphy(hw, 6196U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 6192U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 63487U; ret_val = e1e_wphy(hw, 6192U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { } ret_val = e1e_rphy(hw, 6226U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 16U); ret_val = e1e_wphy(hw, 6226U, (int )data); if (ret_val != 0) { return (ret_val); } else { } return (0); } } static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; u16 reg_data ; s32 tmp ; { ctrl = __er32(hw, 0UL); ctrl = ctrl | 64U; ctrl = ctrl & 4294961151U; __ew32___1(hw, 0UL, ctrl); ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 1668U, 65535); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_kmrn_reg_80003es2lan(hw, 1673U, & reg_data); if (ret_val != 0) { return (ret_val); } else { } reg_data = (u16 )((unsigned int )reg_data | 63U); ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 1673U, (int )reg_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_read_kmrn_reg_80003es2lan(hw, 2U, & reg_data); if (ret_val != 0) { return (ret_val); } else { } reg_data = (u16 )((unsigned int )reg_data | 16U); ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 2U, (int )reg_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); if (ret_val != 0) { return (ret_val); } else { } tmp = e1000e_setup_copper_link(hw); return (tmp); } } static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw ) { s32 ret_val ; u16 speed ; u16 duplex ; { ret_val = 0; if ((unsigned int )hw->phy.media_type == 1U) { ret_val = e1000e_get_speed_and_duplex_copper(hw, & speed, & duplex); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )speed == 1000U) { ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); } else { ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, (int )duplex); } } else { } return (ret_val); } } static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw , u16 duplex ) { s32 ret_val ; u32 tipg ; u32 i ; u16 reg_data ; u16 reg_data2 ; s32 tmp ; { i = 0U; reg_data = 4U; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 16U, (int )reg_data); if (ret_val != 0) { return (ret_val); } else { } tipg = __er32(hw, 1040UL); tipg = tipg & 4294966272U; tipg = tipg | 9U; __ew32___1(hw, 1040UL, tipg); ldv_41761: ret_val = e1e_rphy(hw, 6192U, & reg_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 6192U, & reg_data2); if (ret_val != 0) { return (ret_val); } else { } i = i + 1U; if ((int )reg_data != (int )reg_data2 && i <= 4U) { goto ldv_41761; } else { } if ((unsigned int )duplex == 1U) { reg_data = (u16 )((unsigned int )reg_data | 2048U); } else { reg_data = (unsigned int )reg_data & 63487U; } tmp = e1e_wphy(hw, 6192U, (int )reg_data); return (tmp); } } static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw ) { s32 ret_val ; u16 reg_data ; u16 reg_data2 ; u32 tipg ; u32 i ; s32 tmp ; { i = 0U; reg_data = 0U; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 16U, (int )reg_data); if (ret_val != 0) { return (ret_val); } else { } tipg = __er32(hw, 1040UL); tipg = tipg & 4294966272U; tipg = tipg | 8U; __ew32___1(hw, 1040UL, tipg); ldv_41771: ret_val = e1e_rphy(hw, 6192U, & reg_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 6192U, & reg_data2); if (ret_val != 0) { return (ret_val); } else { } i = i + 1U; if ((int )reg_data != (int )reg_data2 && i <= 4U) { goto ldv_41771; } else { } reg_data = (unsigned int )reg_data & 63487U; tmp = e1e_wphy(hw, 6192U, (int )reg_data); return (tmp); } } static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw , u32 offset , u16 *data ) { u32 kmrnctrlsta ; s32 ret_val ; { ret_val = e1000_acquire_mac_csr_80003es2lan(hw); if (ret_val != 0) { return (ret_val); } else { } kmrnctrlsta = ((offset << 16) & 2031616U) | 2097152U; __ew32___1(hw, 52UL, kmrnctrlsta); __er32(hw, 8UL); __const_udelay(8590UL); kmrnctrlsta = __er32(hw, 52UL); *data = (unsigned short )kmrnctrlsta; e1000_release_mac_csr_80003es2lan(hw); return (ret_val); } } static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw , u32 offset , u16 data ) { u32 kmrnctrlsta ; s32 ret_val ; { ret_val = e1000_acquire_mac_csr_80003es2lan(hw); if (ret_val != 0) { return (ret_val); } else { } kmrnctrlsta = ((offset << 16) & 2031616U) | (u32 )data; __ew32___1(hw, 52UL, kmrnctrlsta); __er32(hw, 8UL); __const_udelay(8590UL); e1000_release_mac_csr_80003es2lan(hw); return (ret_val); } } static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw ) { s32 ret_val ; s32 tmp ; { ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val != 0) { return (ret_val); } else { } tmp = e1000_read_mac_addr_generic(hw); return (tmp); } } static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw ) { bool tmp ; int tmp___0 ; s32 tmp___1 ; { tmp = (*(hw->mac.ops.check_mng_mode))(hw); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = (*(hw->phy.ops.check_reset_block))(hw); if (tmp___1 == 0) { e1000_power_down_phy_copper(hw); } else { } } else { } return; } } static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw ) { { e1000e_clear_hw_cntrs_base(hw); __er32(hw, 16476UL); __er32(hw, 16480UL); __er32(hw, 16484UL); __er32(hw, 16488UL); __er32(hw, 16492UL); __er32(hw, 16496UL); __er32(hw, 16600UL); __er32(hw, 16604UL); __er32(hw, 16608UL); __er32(hw, 16612UL); __er32(hw, 16616UL); __er32(hw, 16620UL); __er32(hw, 16388UL); __er32(hw, 16396UL); __er32(hw, 16436UL); __er32(hw, 16444UL); __er32(hw, 16632UL); __er32(hw, 16636UL); __er32(hw, 16564UL); __er32(hw, 16568UL); __er32(hw, 16572UL); __er32(hw, 16640UL); __er32(hw, 16676UL); __er32(hw, 16644UL); __er32(hw, 16648UL); __er32(hw, 16652UL); __er32(hw, 16656UL); __er32(hw, 16664UL); __er32(hw, 16668UL); __er32(hw, 16672UL); return; } } static struct e1000_mac_operations const es2_mac_ops = {& e1000e_id_led_init_generic, & e1000e_blink_led_generic, & e1000e_check_mng_mode_generic, 0, & e1000e_cleanup_led_generic, & e1000_clear_hw_cntrs_80003es2lan, & e1000_clear_vfta_generic, & e1000e_get_bus_info_pcie, & e1000_set_lan_id_multi_port_pcie, & e1000_get_link_up_info_80003es2lan, & e1000e_led_on_generic, & e1000e_led_off_generic, & e1000e_update_mc_addr_list_generic, & e1000_reset_hw_80003es2lan, & e1000_init_hw_80003es2lan, & e1000e_setup_link_generic, 0, & e1000e_setup_led_generic, & e1000_write_vfta_generic, & e1000e_config_collision_dist_generic, & e1000e_rar_set_generic, & e1000_read_mac_addr_80003es2lan}; static struct e1000_phy_operations const es2_phy_ops = {& e1000_acquire_phy_80003es2lan, & e1000_cfg_on_link_up_80003es2lan, & e1000_check_polarity_m88, & e1000e_check_reset_block_generic, & e1000e_phy_sw_reset, & e1000_phy_force_speed_duplex_80003es2lan, & e1000_get_cfg_done_80003es2lan, & e1000_get_cable_length_80003es2lan, & e1000e_get_phy_info_m88, 0, & e1000_read_phy_reg_gg82563_80003es2lan, 0, 0, & e1000_release_phy_80003es2lan, & e1000e_phy_hw_reset_generic, 0, & e1000e_set_d3_lplu_state, & e1000_write_phy_reg_gg82563_80003es2lan, 0, 0, 0, 0}; static struct e1000_nvm_operations const es2_nvm_ops = {& e1000_acquire_nvm_80003es2lan, & e1000e_read_nvm_eerd, & e1000_release_nvm_80003es2lan, & e1000e_reload_nvm_generic, & e1000e_update_nvm_checksum_generic, & e1000e_valid_led_default, & e1000e_validate_nvm_checksum_generic, & e1000_write_nvm_80003es2lan}; struct e1000_info const e1000_es2_info = {5, 25624748U, 64U, 38U, 9234U, & e1000_get_variants_80003es2lan, & es2_mac_ops, & es2_phy_ops, & es2_nvm_ops}; void ldv_main2_sequence_infinite_withcheck_stateful(void) { struct e1000_hw *var_group1 ; u16 *var_e1000_get_link_up_info_80003es2lan_18_p1 ; u16 *var_e1000_get_link_up_info_80003es2lan_18_p2 ; u32 var_e1000_read_phy_reg_gg82563_80003es2lan_12_p1 ; u16 *var_e1000_read_phy_reg_gg82563_80003es2lan_12_p2 ; u32 var_e1000_write_phy_reg_gg82563_80003es2lan_13_p1 ; u16 var_e1000_write_phy_reg_gg82563_80003es2lan_13_p2 ; u16 var_e1000_write_nvm_80003es2lan_14_p1 ; u16 var_e1000_write_nvm_80003es2lan_14_p2 ; u16 *var_e1000_write_nvm_80003es2lan_14_p3 ; struct e1000_adapter *var_group2 ; int ldv_s_es2_phy_ops_e1000_phy_operations ; int ldv_s_es2_nvm_ops_e1000_nvm_operations ; int tmp ; int tmp___0 ; { ldv_s_es2_phy_ops_e1000_phy_operations = 0; ldv_s_es2_nvm_ops_e1000_nvm_operations = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_41850; ldv_41849: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); e1000_read_mac_addr_80003es2lan(var_group1); goto ldv_41831; case 1: ldv_handler_precall(); e1000_clear_hw_cntrs_80003es2lan(var_group1); goto ldv_41831; case 2: ldv_handler_precall(); e1000_get_link_up_info_80003es2lan(var_group1, var_e1000_get_link_up_info_80003es2lan_18_p1, var_e1000_get_link_up_info_80003es2lan_18_p2); goto ldv_41831; case 3: ldv_handler_precall(); e1000_reset_hw_80003es2lan(var_group1); goto ldv_41831; case 4: ldv_handler_precall(); e1000_init_hw_80003es2lan(var_group1); goto ldv_41831; case 5: ; if (ldv_s_es2_phy_ops_e1000_phy_operations == 0) { ldv_handler_precall(); e1000_acquire_phy_80003es2lan(var_group1); ldv_s_es2_phy_ops_e1000_phy_operations = ldv_s_es2_phy_ops_e1000_phy_operations + 1; } else { } goto ldv_41831; case 6: ; if (ldv_s_es2_phy_ops_e1000_phy_operations == 1) { ldv_handler_precall(); e1000_release_phy_80003es2lan(var_group1); ldv_s_es2_phy_ops_e1000_phy_operations = 0; } else { } goto ldv_41831; case 7: ldv_handler_precall(); e1000_phy_force_speed_duplex_80003es2lan(var_group1); goto ldv_41831; case 8: ldv_handler_precall(); e1000_get_cfg_done_80003es2lan(var_group1); goto ldv_41831; case 9: ldv_handler_precall(); e1000_get_cable_length_80003es2lan(var_group1); goto ldv_41831; case 10: ldv_handler_precall(); e1000_read_phy_reg_gg82563_80003es2lan(var_group1, var_e1000_read_phy_reg_gg82563_80003es2lan_12_p1, var_e1000_read_phy_reg_gg82563_80003es2lan_12_p2); goto ldv_41831; case 11: ldv_handler_precall(); e1000_write_phy_reg_gg82563_80003es2lan(var_group1, var_e1000_write_phy_reg_gg82563_80003es2lan_13_p1, (int )var_e1000_write_phy_reg_gg82563_80003es2lan_13_p2); goto ldv_41831; case 12: ldv_handler_precall(); e1000_cfg_on_link_up_80003es2lan(var_group1); goto ldv_41831; case 13: ; if (ldv_s_es2_nvm_ops_e1000_nvm_operations == 0) { ldv_handler_precall(); e1000_acquire_nvm_80003es2lan(var_group1); ldv_s_es2_nvm_ops_e1000_nvm_operations = ldv_s_es2_nvm_ops_e1000_nvm_operations + 1; } else { } goto ldv_41831; case 14: ; if (ldv_s_es2_nvm_ops_e1000_nvm_operations == 1) { ldv_handler_precall(); e1000_release_nvm_80003es2lan(var_group1); ldv_s_es2_nvm_ops_e1000_nvm_operations = 0; } else { } goto ldv_41831; case 15: ldv_handler_precall(); e1000_write_nvm_80003es2lan(var_group1, (int )var_e1000_write_nvm_80003es2lan_14_p1, (int )var_e1000_write_nvm_80003es2lan_14_p2, var_e1000_write_nvm_80003es2lan_14_p3); goto ldv_41831; case 16: ldv_handler_precall(); e1000_get_variants_80003es2lan(var_group2); goto ldv_41831; default: ; goto ldv_41831; } ldv_41831: ; ldv_41850: tmp___0 = __VERIFIER_nondet_int(); if ((tmp___0 != 0 || ldv_s_es2_phy_ops_e1000_phy_operations != 0) || ldv_s_es2_nvm_ops_e1000_nvm_operations != 0) { goto ldv_41849; } else { } ldv_check_final_state(); return; } } void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_34(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } extern void *memset(void * , int , size_t ) ; int ldv_mutex_trylock_44(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_42(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_45(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_41(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_43(struct mutex *ldv_func_arg1 ) ; __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } s32 e1000e_force_mac_fc(struct e1000_hw *hw ) ; void e1000e_reset_adaptive(struct e1000_hw *hw ) ; void e1000e_update_adaptive(struct e1000_hw *hw ) ; s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; struct e1000_bus_info *bus ; struct e1000_adapter *adapter ; u16 pcie_link_status ; u16 cap_offset ; { mac = & hw->mac; bus = & hw->bus; adapter = hw->adapter; cap_offset = (u16 )(adapter->pdev)->pcie_cap; if ((unsigned int )cap_offset == 0U) { bus->width = 0; } else { pci_read_config_word((struct pci_dev const *)adapter->pdev, (int )cap_offset + 18, & pcie_link_status); bus->width = (enum e1000_bus_width )(((int )pcie_link_status & 1008) >> 4); } (*(mac->ops.set_lan_id))(hw); return (0); } } void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw ) { struct e1000_bus_info *bus ; u32 reg ; { bus = & hw->bus; reg = __er32(hw, 8UL); bus->func = (u16 )((reg & 12U) >> 2); return; } } void e1000_set_lan_id_single_port(struct e1000_hw *hw ) { struct e1000_bus_info *bus ; { bus = & hw->bus; bus->func = 0U; return; } } void e1000_clear_vfta_generic(struct e1000_hw *hw ) { u32 offset ; { offset = 0U; goto ldv_41559; ldv_41558: __ew32___1(hw, (unsigned long )((offset << 2) + 22016U), 0U); __er32(hw, 8UL); offset = offset + 1U; ldv_41559: ; if (offset <= 127U) { goto ldv_41558; } else { } return; } } void e1000_write_vfta_generic(struct e1000_hw *hw , u32 offset , u32 value ) { { __ew32___1(hw, (unsigned long )((offset << 2) + 22016U), value); __er32(hw, 8UL); return; } } void e1000e_init_rx_addrs(struct e1000_hw *hw , u16 rar_count ) { u32 i ; u8 mac_addr[6U] ; unsigned int tmp ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; { mac_addr[0] = 0U; tmp = 1U; while (1) { if (tmp >= 6U) { break; } else { } mac_addr[tmp] = (unsigned char)0; tmp = tmp + 1U; } descriptor.modname = "e1000e"; descriptor.function = "e1000e_init_rx_addrs"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Programming MAC Address into RAR[0]\n"; descriptor.lineno = 182U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Programming MAC Address into RAR[0]\n"); } else { } (*(hw->mac.ops.rar_set))(hw, (u8 *)(& hw->mac.addr), 0U); descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_init_rx_addrs"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Clearing RAR[1-%u]\n"; descriptor___0.lineno = 187U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Clearing RAR[1-%u]\n", (int )rar_count + -1); } else { } i = 1U; goto ldv_41576; ldv_41575: (*(hw->mac.ops.rar_set))(hw, (u8 *)(& mac_addr), i); i = i + 1U; ldv_41576: ; if ((u32 )rar_count > i) { goto ldv_41575; } else { } return; } } s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw ) { u32 i ; s32 ret_val ; u16 offset ; u16 nvm_alt_mac_addr_offset ; u16 nvm_data ; u8 alt_mac_addr[6U] ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; bool tmp___2 ; { ret_val = e1000_read_nvm(hw, 3, 1, & nvm_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )hw->mac.type == 2U) { return (0); } else { } ret_val = e1000_read_nvm(hw, 55, 1, & nvm_alt_mac_addr_offset); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_check_alt_mac_addr_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "NVM Read Error\n"; descriptor.lineno = 222U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } if ((unsigned int )nvm_alt_mac_addr_offset == 65535U || (unsigned int )nvm_alt_mac_addr_offset == 0U) { return (0); } else { } if ((unsigned int )hw->bus.func == 1U) { nvm_alt_mac_addr_offset = (unsigned int )nvm_alt_mac_addr_offset + 3U; } else { } i = 0U; goto ldv_41591; ldv_41590: offset = (int )((u16 )(i >> 1)) + (int )nvm_alt_mac_addr_offset; ret_val = e1000_read_nvm(hw, (int )offset, 1, & nvm_data); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_check_alt_mac_addr_generic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "NVM Read Error\n"; descriptor___0.lineno = 237U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } alt_mac_addr[i] = (unsigned char )nvm_data; alt_mac_addr[i + 1U] = (unsigned char )((int )nvm_data >> 8); i = i + 2U; ldv_41591: ; if (i <= 5U) { goto ldv_41590; } else { } tmp___2 = is_multicast_ether_addr((u8 const *)(& alt_mac_addr)); if ((int )tmp___2) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_check_alt_mac_addr_generic"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___1.format = "Ignoring Alternate Mac Address with MC bit set\n"; descriptor___1.lineno = 247U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Ignoring Alternate Mac Address with MC bit set\n"); } else { } return (0); } else { } (*(hw->mac.ops.rar_set))(hw, (u8 *)(& alt_mac_addr), 0U); return (0); } } void e1000e_rar_set_generic(struct e1000_hw *hw , u8 *addr , u32 index ) { u32 rar_low ; u32 rar_high ; { rar_low = (((unsigned int )*addr | ((unsigned int )*(addr + 1UL) << 8)) | ((unsigned int )*(addr + 2UL) << 16)) | ((unsigned int )*(addr + 3UL) << 24); rar_high = (unsigned int )*(addr + 4UL) | ((unsigned int )*(addr + 5UL) << 8); if (rar_low != 0U || rar_high != 0U) { rar_high = rar_high | 2147483648U; } else { } __ew32___1(hw, (unsigned long )(index <= 15U ? (index + 2688U) * 8U : (index + 2700U) * 8U), rar_low); __er32(hw, 8UL); __ew32___1(hw, (unsigned long )(index <= 15U ? index * 8U + 21508U : (index + 536870896U) * 8U + 21732U), rar_high); __er32(hw, 8UL); return; } } static u32 e1000_hash_mc_addr(struct e1000_hw *hw , u8 *mc_addr ) { u32 hash_value ; u32 hash_mask ; u8 bit_shift ; { bit_shift = 0U; hash_mask = (u32 )((int )hw->mac.mta_reg_count * 32 + -1); goto ldv_41609; ldv_41608: bit_shift = (u8 )((int )bit_shift + 1); ldv_41609: ; if (hash_mask >> (int )bit_shift != 255U) { goto ldv_41608; } else { } switch (hw->mac.mc_filter_type) { default: ; case 0U: ; goto ldv_41613; case 1U: bit_shift = (unsigned int )bit_shift + 1U; goto ldv_41613; case 2U: bit_shift = (unsigned int )bit_shift + 2U; goto ldv_41613; case 3U: bit_shift = (unsigned int )bit_shift + 4U; goto ldv_41613; } ldv_41613: hash_value = (u32 )(((int )*(mc_addr + 4UL) >> (8 - (int )bit_shift)) | ((int )*(mc_addr + 5UL) << (int )bit_shift)) & hash_mask; return (hash_value); } } void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw , u8 *mc_addr_list , u32 mc_addr_count ) { u32 hash_value ; u32 hash_bit ; u32 hash_reg ; int i ; { memset((void *)(& hw->mac.mta_shadow), 0, 512UL); i = 0; goto ldv_41627; ldv_41626: hash_value = e1000_hash_mc_addr(hw, mc_addr_list); hash_reg = (hash_value >> 5) & (u32 )((int )hw->mac.mta_reg_count + -1); hash_bit = hash_value & 31U; hw->mac.mta_shadow[hash_reg] = hw->mac.mta_shadow[hash_reg] | (u32 )(1 << (int )hash_bit); mc_addr_list = mc_addr_list + 6UL; i = i + 1; ldv_41627: ; if ((unsigned int )i < mc_addr_count) { goto ldv_41626; } else { } i = (int )hw->mac.mta_reg_count + -1; goto ldv_41630; ldv_41629: __ew32___1(hw, (unsigned long )((i << 2) + 20992), hw->mac.mta_shadow[i]); i = i - 1; ldv_41630: ; if (i >= 0) { goto ldv_41629; } else { } __er32(hw, 8UL); return; } } void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw ) { { __er32(hw, 16384UL); __er32(hw, 16392UL); __er32(hw, 16400UL); __er32(hw, 16404UL); __er32(hw, 16408UL); __er32(hw, 16412UL); __er32(hw, 16416UL); __er32(hw, 16424UL); __er32(hw, 16432UL); __er32(hw, 16440UL); __er32(hw, 16448UL); __er32(hw, 16456UL); __er32(hw, 16460UL); __er32(hw, 16464UL); __er32(hw, 16468UL); __er32(hw, 16472UL); __er32(hw, 16500UL); __er32(hw, 16504UL); __er32(hw, 16508UL); __er32(hw, 16512UL); __er32(hw, 16520UL); __er32(hw, 16524UL); __er32(hw, 16528UL); __er32(hw, 16532UL); __er32(hw, 16544UL); __er32(hw, 16548UL); __er32(hw, 16552UL); __er32(hw, 16556UL); __er32(hw, 16560UL); __er32(hw, 16576UL); __er32(hw, 16580UL); __er32(hw, 16584UL); __er32(hw, 16588UL); __er32(hw, 16592UL); __er32(hw, 16596UL); __er32(hw, 16624UL); __er32(hw, 16628UL); return; } } s32 e1000e_check_for_copper_link(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; s32 ret_val ; bool link ; struct _ddebug descriptor ; long tmp ; { mac = & hw->mac; if (! mac->get_link_status) { return (0); } else { } ret_val = e1000e_phy_has_link_generic(hw, 1U, 0U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { return (0); } else { } mac->get_link_status = 0; e1000e_check_downshift(hw); if (! mac->autoneg) { return (-3); } else { } (*(mac->ops.config_collision_dist))(hw); ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_check_for_copper_link"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Error configuring flow control\n"; descriptor.lineno = 504U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error configuring flow control\n"); } else { } } else { } return (ret_val); } } s32 e1000e_check_for_fiber_link(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 rxcw ; u32 ctrl ; u32 status ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { mac = & hw->mac; ctrl = __er32(hw, 0UL); status = __er32(hw, 8UL); rxcw = __er32(hw, 384UL); if (((ctrl & 524288U) != 0U && (status & 2U) == 0U) && (rxcw & 536870912U) == 0U) { if (! mac->autoneg_failed) { mac->autoneg_failed = 1; return (0); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000e_check_for_fiber_link"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "NOT Rx\'ing /C/, disable AutoNeg and force link.\n"; descriptor.lineno = 542U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NOT Rx\'ing /C/, disable AutoNeg and force link.\n"); } else { } __ew32___1(hw, 376UL, mac->txcw & 2147483647U); ctrl = __er32(hw, 0UL); ctrl = ctrl | 65U; __ew32___1(hw, 0UL, ctrl); ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_check_for_fiber_link"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Error configuring flow control\n"; descriptor___0.lineno = 555U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Error configuring flow control\n"); } else { } return (ret_val); } else { } } else if ((ctrl & 64U) != 0U && (rxcw & 536870912U) != 0U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_check_for_fiber_link"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___1.format = "Rx\'ing /C/, enable AutoNeg and stop forcing link.\n"; descriptor___1.lineno = 564U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Rx\'ing /C/, enable AutoNeg and stop forcing link.\n"); } else { } __ew32___1(hw, 376UL, mac->txcw); __ew32___1(hw, 0UL, ctrl & 4294967231U); mac->serdes_has_link = 1; } else { } return (0); } } s32 e1000e_check_for_serdes_link(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 rxcw ; u32 ctrl ; u32 status ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; u32 tmp___4 ; struct _ddebug descriptor___4 ; long tmp___5 ; struct _ddebug descriptor___5 ; long tmp___6 ; struct _ddebug descriptor___6 ; long tmp___7 ; struct _ddebug descriptor___7 ; long tmp___8 ; u32 tmp___9 ; { mac = & hw->mac; ctrl = __er32(hw, 0UL); status = __er32(hw, 8UL); rxcw = __er32(hw, 384UL); if ((status & 2U) == 0U && (rxcw & 536870912U) == 0U) { if (! mac->autoneg_failed) { mac->autoneg_failed = 1; return (0); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000e_check_for_serdes_link"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "NOT Rx\'ing /C/, disable AutoNeg and force link.\n"; descriptor.lineno = 605U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NOT Rx\'ing /C/, disable AutoNeg and force link.\n"); } else { } __ew32___1(hw, 376UL, mac->txcw & 2147483647U); ctrl = __er32(hw, 0UL); ctrl = ctrl | 65U; __ew32___1(hw, 0UL, ctrl); ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_check_for_serdes_link"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Error configuring flow control\n"; descriptor___0.lineno = 618U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Error configuring flow control\n"); } else { } return (ret_val); } else { } } else if ((ctrl & 64U) != 0U && (rxcw & 536870912U) != 0U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_check_for_serdes_link"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___1.format = "Rx\'ing /C/, enable AutoNeg and stop forcing link.\n"; descriptor___1.lineno = 627U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Rx\'ing /C/, enable AutoNeg and stop forcing link.\n"); } else { } __ew32___1(hw, 376UL, mac->txcw); __ew32___1(hw, 0UL, ctrl & 4294967231U); mac->serdes_has_link = 1; } else { tmp___4 = __er32(hw, 376UL); if ((int )tmp___4 >= 0) { usleep_range(10UL, 20UL); rxcw = __er32(hw, 384UL); if ((rxcw & 1073741824U) != 0U) { if ((rxcw & 134217728U) == 0U) { mac->serdes_has_link = 1; descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000e_check_for_serdes_link"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___2.format = "SERDES: Link up - forced.\n"; descriptor___2.lineno = 643U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "SERDES: Link up - forced.\n"); } else { } } else { } } else { mac->serdes_has_link = 0; descriptor___3.modname = "e1000e"; descriptor___3.function = "e1000e_check_for_serdes_link"; descriptor___3.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___3.format = "SERDES: Link down - force failed.\n"; descriptor___3.lineno = 647U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)(hw->adapter)->netdev, "SERDES: Link down - force failed.\n"); } else { } } } else { } } tmp___9 = __er32(hw, 376UL); if ((int )tmp___9 < 0) { status = __er32(hw, 8UL); if ((status & 2U) != 0U) { usleep_range(10UL, 20UL); rxcw = __er32(hw, 384UL); if ((rxcw & 1073741824U) != 0U) { if ((rxcw & 134217728U) == 0U) { mac->serdes_has_link = 1; descriptor___4.modname = "e1000e"; descriptor___4.function = "e1000e_check_for_serdes_link"; descriptor___4.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___4.format = "SERDES: Link up - autoneg completed successfully.\n"; descriptor___4.lineno = 660U; descriptor___4.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)(hw->adapter)->netdev, "SERDES: Link up - autoneg completed successfully.\n"); } else { } } else { mac->serdes_has_link = 0; descriptor___5.modname = "e1000e"; descriptor___5.function = "e1000e_check_for_serdes_link"; descriptor___5.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___5.format = "SERDES: Link down - invalid codewords detected in autoneg.\n"; descriptor___5.lineno = 663U; descriptor___5.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)(hw->adapter)->netdev, "SERDES: Link down - invalid codewords detected in autoneg.\n"); } else { } } } else { mac->serdes_has_link = 0; descriptor___6.modname = "e1000e"; descriptor___6.function = "e1000e_check_for_serdes_link"; descriptor___6.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___6.format = "SERDES: Link down - no sync.\n"; descriptor___6.lineno = 667U; descriptor___6.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)(hw->adapter)->netdev, "SERDES: Link down - no sync.\n"); } else { } } } else { mac->serdes_has_link = 0; descriptor___7.modname = "e1000e"; descriptor___7.function = "e1000e_check_for_serdes_link"; descriptor___7.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___7.format = "SERDES: Link down - autoneg failed\n"; descriptor___7.lineno = 671U; descriptor___7.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___8 != 0L) { __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)(hw->adapter)->netdev, "SERDES: Link down - autoneg failed\n"); } else { } } } else { } return (0); } } static s32 e1000_set_default_fc_generic(struct e1000_hw *hw ) { s32 ret_val ; u16 nvm_data ; struct _ddebug descriptor ; long tmp ; { ret_val = e1000_read_nvm(hw, 15, 1, & nvm_data); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_set_default_fc_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "NVM Read Error\n"; descriptor.lineno = 701U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } if (((int )nvm_data & 12288) == 0) { hw->fc.requested_mode = 0; } else if (((int )nvm_data & 12288) == 8192) { hw->fc.requested_mode = 2; } else { hw->fc.requested_mode = 3; } return (0); } } s32 e1000e_setup_link_generic(struct e1000_hw *hw ) { s32 ret_val ; s32 tmp ; struct _ddebug descriptor ; long tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; s32 tmp___2 ; { if ((unsigned long )hw->phy.ops.check_reset_block != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { tmp = (*(hw->phy.ops.check_reset_block))(hw); if (tmp != 0) { return (0); } else { } } else { } if ((unsigned int )hw->fc.requested_mode == 255U) { ret_val = e1000_set_default_fc_generic(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } hw->fc.current_mode = hw->fc.requested_mode; descriptor.modname = "e1000e"; descriptor.function = "e1000e_setup_link_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "After fix-ups FlowControl is now = %x\n"; descriptor.lineno = 749U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "After fix-ups FlowControl is now = %x\n", (unsigned int )hw->fc.current_mode); } else { } ret_val = (*(hw->mac.ops.setup_physical_interface))(hw); if (ret_val != 0) { return (ret_val); } else { } descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_setup_link_generic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Initializing the Flow Control address, type and timer regs\n"; descriptor___0.lineno = 761U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Initializing the Flow Control address, type and timer regs\n"); } else { } __ew32___1(hw, 48UL, 34824U); __ew32___1(hw, 44UL, 256U); __ew32___1(hw, 40UL, 12746753U); __ew32___1(hw, 368UL, (u32 )hw->fc.pause_time); tmp___2 = e1000e_set_fc_watermarks(hw); return (tmp___2); } } static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 txcw ; struct _ddebug descriptor ; long tmp ; { mac = & hw->mac; switch ((unsigned int )hw->fc.current_mode) { case 0U: txcw = 2147483680U; goto ldv_41693; case 1U: txcw = 2147484064U; goto ldv_41693; case 2U: txcw = 2147483936U; goto ldv_41693; case 3U: txcw = 2147484064U; goto ldv_41693; default: descriptor.modname = "e1000e"; descriptor.function = "e1000_commit_fc_settings_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Flow control param set incorrectly\n"; descriptor.lineno = 827U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Flow control param set incorrectly\n"); } else { } return (-3); } ldv_41693: __ew32___1(hw, 376UL, txcw); mac->txcw = txcw; return (0); } } static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; u32 i ; u32 status ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { mac = & hw->mac; i = 0U; goto ldv_41709; ldv_41708: usleep_range(10000UL, 20000UL); status = __er32(hw, 8UL); if ((status & 2U) != 0U) { goto ldv_41707; } else { } i = i + 1U; ldv_41709: ; if (i <= 49U) { goto ldv_41708; } else { } ldv_41707: ; if (i == 50U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_poll_fiber_serdes_link_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Never got a valid link from auto-neg!!!\n"; descriptor.lineno = 864U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Never got a valid link from auto-neg!!!\n"); } else { } mac->autoneg_failed = 1; ret_val = (*(mac->ops.check_for_link))(hw); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_poll_fiber_serdes_link_generic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Error while checking for link\n"; descriptor___0.lineno = 873U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Error while checking for link\n"); } else { } return (ret_val); } else { } mac->autoneg_failed = 0; } else { mac->autoneg_failed = 0; descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_poll_fiber_serdes_link_generic"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___1.format = "Valid Link Found\n"; descriptor___1.lineno = 879U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Valid Link Found\n"); } else { } } return (0); } } s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw ) { u32 ctrl ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; u32 tmp___1 ; { ctrl = __er32(hw, 0UL); ctrl = ctrl & 4294967287U; (*(hw->mac.ops.config_collision_dist))(hw); ret_val = e1000_commit_fc_settings_generic(hw); if (ret_val != 0) { return (ret_val); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000e_setup_fiber_serdes_link"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Auto-negotiation enabled\n"; descriptor.lineno = 914U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Auto-negotiation enabled\n"); } else { } __ew32___1(hw, 0UL, ctrl); __er32(hw, 8UL); usleep_range(1000UL, 2000UL); if ((unsigned int )hw->phy.media_type == 3U) { ret_val = e1000_poll_fiber_serdes_link_generic(hw); } else { tmp___1 = __er32(hw, 0UL); if ((tmp___1 & 524288U) != 0U) { ret_val = e1000_poll_fiber_serdes_link_generic(hw); } else { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_setup_fiber_serdes_link"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "No signal detected\n"; descriptor___0.lineno = 928U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "No signal detected\n"); } else { } } } return (ret_val); } } void e1000e_config_collision_dist_generic(struct e1000_hw *hw ) { u32 tctl ; { tctl = __er32(hw, 1024UL); tctl = tctl & 4290777087U; tctl = tctl | 258048U; __ew32___1(hw, 1024UL, tctl); __er32(hw, 8UL); return; } } s32 e1000e_set_fc_watermarks(struct e1000_hw *hw ) { u32 fcrtl ; u32 fcrth ; { fcrtl = 0U; fcrth = 0U; if (((unsigned int )hw->fc.current_mode & 2U) != 0U) { fcrtl = hw->fc.low_water; if ((int )hw->fc.send_xon) { fcrtl = fcrtl | 2147483648U; } else { } fcrth = hw->fc.high_water; } else { } __ew32___1(hw, 8544UL, fcrtl); __ew32___1(hw, 8552UL, fcrth); return (0); } } s32 e1000e_force_mac_fc(struct e1000_hw *hw ) { u32 ctrl ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { ctrl = __er32(hw, 0UL); descriptor.modname = "e1000e"; descriptor.function = "e1000e_force_mac_fc"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "hw->fc.current_mode = %u\n"; descriptor.lineno = 1022U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "hw->fc.current_mode = %u\n", (unsigned int )hw->fc.current_mode); } else { } switch ((unsigned int )hw->fc.current_mode) { case 0U: ctrl = ctrl & 3892314111U; goto ldv_41738; case 1U: ctrl = ctrl & 4026531839U; ctrl = ctrl | 134217728U; goto ldv_41738; case 2U: ctrl = ctrl & 4160749567U; ctrl = ctrl | 268435456U; goto ldv_41738; case 3U: ctrl = ctrl | 402653184U; goto ldv_41738; default: descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_force_mac_fc"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Flow control param set incorrectly\n"; descriptor___0.lineno = 1040U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Flow control param set incorrectly\n"); } else { } return (-3); } ldv_41738: __ew32___1(hw, 0UL, ctrl); return (0); } } s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; s32 ret_val ; u32 pcs_status_reg ; u32 pcs_adv_reg ; u32 pcs_lp_ability_reg ; u32 pcs_ctrl_reg ; u16 mii_status_reg ; u16 mii_nway_adv_reg ; u16 mii_nway_lp_ability_reg ; u16 speed ; u16 duplex ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; struct _ddebug descriptor___8 ; long tmp___8 ; struct _ddebug descriptor___9 ; long tmp___9 ; struct _ddebug descriptor___10 ; long tmp___10 ; struct _ddebug descriptor___11 ; long tmp___11 ; struct _ddebug descriptor___12 ; long tmp___12 ; struct _ddebug descriptor___13 ; long tmp___13 ; struct _ddebug descriptor___14 ; long tmp___14 ; { mac = & hw->mac; ret_val = 0; if ((int )mac->autoneg_failed) { if ((unsigned int )hw->phy.media_type == 2U || (unsigned int )hw->phy.media_type == 3U) { ret_val = e1000e_force_mac_fc(hw); } else { } } else if ((unsigned int )hw->phy.media_type == 1U) { ret_val = e1000e_force_mac_fc(hw); } else { } if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_config_fc_after_link_up"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Error forcing flow control settings\n"; descriptor.lineno = 1081U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error forcing flow control settings\n"); } else { } return (ret_val); } else { } if ((unsigned int )hw->phy.media_type == 1U && (int )mac->autoneg) { ret_val = e1e_rphy(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 1U, & mii_status_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_status_reg & 32) == 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_config_fc_after_link_up"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Copper PHY and Auto Neg has not completed.\n"; descriptor___0.lineno = 1103U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Copper PHY and Auto Neg has not completed.\n"); } else { } return (ret_val); } else { } ret_val = e1e_rphy(hw, 4U, & mii_nway_adv_reg); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 5U, & mii_nway_lp_ability_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )mii_nway_adv_reg & 1024) != 0 && ((int )mii_nway_lp_ability_reg & 1024) != 0) { if ((unsigned int )hw->fc.requested_mode == 3U) { hw->fc.current_mode = 3; descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_config_fc_after_link_up"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___1.format = "Flow Control = FULL.\n"; descriptor___1.lineno = 1163U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = FULL.\n"); } else { } } else { hw->fc.current_mode = 1; descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000e_config_fc_after_link_up"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___2.format = "Flow Control = Rx PAUSE frames only.\n"; descriptor___2.lineno = 1166U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = Rx PAUSE frames only.\n"); } else { } } } else if (((((int )mii_nway_adv_reg & 1024) == 0 && ((int )mii_nway_adv_reg & 2048) != 0) && ((int )mii_nway_lp_ability_reg & 1024) != 0) && ((int )mii_nway_lp_ability_reg & 2048) != 0) { hw->fc.current_mode = 2; descriptor___3.modname = "e1000e"; descriptor___3.function = "e1000e_config_fc_after_link_up"; descriptor___3.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___3.format = "Flow Control = Tx PAUSE frames only.\n"; descriptor___3.lineno = 1181U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = Tx PAUSE frames only.\n"); } else { } } else if (((((int )mii_nway_adv_reg & 1024) != 0 && ((int )mii_nway_adv_reg & 2048) != 0) && ((int )mii_nway_lp_ability_reg & 1024) == 0) && ((int )mii_nway_lp_ability_reg & 2048) != 0) { hw->fc.current_mode = 1; descriptor___4.modname = "e1000e"; descriptor___4.function = "e1000e_config_fc_after_link_up"; descriptor___4.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___4.format = "Flow Control = Rx PAUSE frames only.\n"; descriptor___4.lineno = 1195U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = Rx PAUSE frames only.\n"); } else { } } else { hw->fc.current_mode = 0; descriptor___5.modname = "e1000e"; descriptor___5.function = "e1000e_config_fc_after_link_up"; descriptor___5.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___5.format = "Flow Control = NONE.\n"; descriptor___5.lineno = 1201U; descriptor___5.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = NONE.\n"); } else { } } ret_val = (*(mac->ops.get_link_up_info))(hw, & speed, & duplex); if (ret_val != 0) { descriptor___6.modname = "e1000e"; descriptor___6.function = "e1000e_config_fc_after_link_up"; descriptor___6.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___6.format = "Error getting link speed and duplex\n"; descriptor___6.lineno = 1210U; descriptor___6.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)(hw->adapter)->netdev, "Error getting link speed and duplex\n"); } else { } return (ret_val); } else { } if ((unsigned int )duplex == 1U) { hw->fc.current_mode = 0; } else { } ret_val = e1000e_force_mac_fc(hw); if (ret_val != 0) { descriptor___7.modname = "e1000e"; descriptor___7.function = "e1000e_config_fc_after_link_up"; descriptor___7.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___7.format = "Error forcing flow control settings\n"; descriptor___7.lineno = 1222U; descriptor___7.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)(hw->adapter)->netdev, "Error forcing flow control settings\n"); } else { } return (ret_val); } else { } } else { } if ((unsigned int )hw->phy.media_type == 3U && (int )mac->autoneg) { pcs_status_reg = __er32(hw, 16908UL); if ((pcs_status_reg & 65536U) == 0U) { descriptor___8.modname = "e1000e"; descriptor___8.function = "e1000e_config_fc_after_link_up"; descriptor___8.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___8.format = "PCS Auto Neg has not completed.\n"; descriptor___8.lineno = 1240U; descriptor___8.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); if (tmp___8 != 0L) { __dynamic_netdev_dbg(& descriptor___8, (struct net_device const *)(hw->adapter)->netdev, "PCS Auto Neg has not completed.\n"); } else { } return (ret_val); } else { } pcs_adv_reg = __er32(hw, 16920UL); pcs_lp_ability_reg = __er32(hw, 16924UL); if ((pcs_adv_reg & 128U) != 0U && (pcs_lp_ability_reg & 128U) != 0U) { if ((unsigned int )hw->fc.requested_mode == 3U) { hw->fc.current_mode = 3; descriptor___9.modname = "e1000e"; descriptor___9.function = "e1000e_config_fc_after_link_up"; descriptor___9.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___9.format = "Flow Control = FULL.\n"; descriptor___9.lineno = 1296U; descriptor___9.flags = 0U; tmp___9 = ldv__builtin_expect((long )descriptor___9.flags & 1L, 0L); if (tmp___9 != 0L) { __dynamic_netdev_dbg(& descriptor___9, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = FULL.\n"); } else { } } else { hw->fc.current_mode = 1; descriptor___10.modname = "e1000e"; descriptor___10.function = "e1000e_config_fc_after_link_up"; descriptor___10.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___10.format = "Flow Control = Rx PAUSE frames only.\n"; descriptor___10.lineno = 1299U; descriptor___10.flags = 0U; tmp___10 = ldv__builtin_expect((long )descriptor___10.flags & 1L, 0L); if (tmp___10 != 0L) { __dynamic_netdev_dbg(& descriptor___10, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = Rx PAUSE frames only.\n"); } else { } } } else if ((((pcs_adv_reg & 128U) == 0U && (pcs_adv_reg & 256U) != 0U) && (pcs_lp_ability_reg & 128U) != 0U) && (pcs_lp_ability_reg & 256U) != 0U) { hw->fc.current_mode = 2; descriptor___11.modname = "e1000e"; descriptor___11.function = "e1000e_config_fc_after_link_up"; descriptor___11.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___11.format = "Flow Control = Tx PAUSE frames only.\n"; descriptor___11.lineno = 1314U; descriptor___11.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor___11.flags & 1L, 0L); if (tmp___11 != 0L) { __dynamic_netdev_dbg(& descriptor___11, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = Tx PAUSE frames only.\n"); } else { } } else if ((((pcs_adv_reg & 128U) != 0U && (pcs_adv_reg & 256U) != 0U) && (pcs_lp_ability_reg & 128U) == 0U) && (pcs_lp_ability_reg & 256U) != 0U) { hw->fc.current_mode = 1; descriptor___12.modname = "e1000e"; descriptor___12.function = "e1000e_config_fc_after_link_up"; descriptor___12.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___12.format = "Flow Control = Rx PAUSE frames only.\n"; descriptor___12.lineno = 1328U; descriptor___12.flags = 0U; tmp___12 = ldv__builtin_expect((long )descriptor___12.flags & 1L, 0L); if (tmp___12 != 0L) { __dynamic_netdev_dbg(& descriptor___12, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = Rx PAUSE frames only.\n"); } else { } } else { hw->fc.current_mode = 0; descriptor___13.modname = "e1000e"; descriptor___13.function = "e1000e_config_fc_after_link_up"; descriptor___13.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___13.format = "Flow Control = NONE.\n"; descriptor___13.lineno = 1334U; descriptor___13.flags = 0U; tmp___13 = ldv__builtin_expect((long )descriptor___13.flags & 1L, 0L); if (tmp___13 != 0L) { __dynamic_netdev_dbg(& descriptor___13, (struct net_device const *)(hw->adapter)->netdev, "Flow Control = NONE.\n"); } else { } } pcs_ctrl_reg = __er32(hw, 16904UL); pcs_ctrl_reg = pcs_ctrl_reg | 128U; __ew32___1(hw, 16904UL, pcs_ctrl_reg); ret_val = e1000e_force_mac_fc(hw); if (ret_val != 0) { descriptor___14.modname = "e1000e"; descriptor___14.function = "e1000e_config_fc_after_link_up"; descriptor___14.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___14.format = "Error forcing flow control settings\n"; descriptor___14.lineno = 1346U; descriptor___14.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___14.flags & 1L, 0L); if (tmp___14 != 0L) { __dynamic_netdev_dbg(& descriptor___14, (struct net_device const *)(hw->adapter)->netdev, "Error forcing flow control settings\n"); } else { } return (ret_val); } else { } } else { } return (0); } } s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw , u16 *speed , u16 *duplex ) { u32 status ; struct _ddebug descriptor ; long tmp ; { status = __er32(hw, 8UL); if ((status & 128U) != 0U) { *speed = 1000U; } else if ((status & 64U) != 0U) { *speed = 100U; } else { *speed = 10U; } if ((int )status & 1) { *duplex = 2U; } else { *duplex = 1U; } descriptor.modname = "e1000e"; descriptor.function = "e1000e_get_speed_and_duplex_copper"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "%u Mbps, %s Duplex\n"; descriptor.lineno = 1383U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "%u Mbps, %s Duplex\n", (unsigned int )*speed != 1000U ? ((unsigned int )*speed == 100U ? 100 : 10) : 1000, (unsigned int )*duplex == 2U ? (char *)"Full" : (char *)"Half"); } else { } return (0); } } s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw , u16 *speed , u16 *duplex ) { { *speed = 1000U; *duplex = 2U; return (0); } } s32 e1000e_get_hw_semaphore(struct e1000_hw *hw ) { u32 swsm ; s32 timeout ; s32 i ; struct _ddebug descriptor ; long tmp ; u32 tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; { timeout = (int )hw->nvm.word_size + 1; i = 0; goto ldv_41796; ldv_41795: swsm = __er32(hw, 23376UL); if ((swsm & 1U) == 0U) { goto ldv_41794; } else { } usleep_range(50UL, 100UL); i = i + 1; ldv_41796: ; if (i < timeout) { goto ldv_41795; } else { } ldv_41794: ; if (i == timeout) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_get_hw_semaphore"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Driver can\'t access device - SMBI bit is set.\n"; descriptor.lineno = 1429U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Driver can\'t access device - SMBI bit is set.\n"); } else { } return (-1); } else { } i = 0; goto ldv_41801; ldv_41800: swsm = __er32(hw, 23376UL); __ew32___1(hw, 23376UL, swsm | 2U); tmp___0 = __er32(hw, 23376UL); if ((tmp___0 & 2U) != 0U) { goto ldv_41799; } else { } usleep_range(50UL, 100UL); i = i + 1; ldv_41801: ; if (i < timeout) { goto ldv_41800; } else { } ldv_41799: ; if (i == timeout) { e1000e_put_hw_semaphore(hw); descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_get_hw_semaphore"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor___0.format = "Driver can\'t access the NVM\n"; descriptor___0.lineno = 1448U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Driver can\'t access the NVM\n"); } else { } return (-1); } else { } return (0); } } void e1000e_put_hw_semaphore(struct e1000_hw *hw ) { u32 swsm ; { swsm = __er32(hw, 23376UL); swsm = swsm & 4294967292U; __ew32___1(hw, 23376UL, swsm); return; } } s32 e1000e_get_auto_rd_done(struct e1000_hw *hw ) { s32 i ; u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { i = 0; goto ldv_41813; ldv_41812: tmp = __er32(hw, 16UL); if ((tmp & 512U) != 0U) { goto ldv_41811; } else { } usleep_range(1000UL, 2000UL); i = i + 1; ldv_41813: ; if (i <= 9) { goto ldv_41812; } else { } ldv_41811: ; if (i == 10) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_get_auto_rd_done"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Auto read by HW from NVM has not completed.\n"; descriptor.lineno = 1488U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Auto read by HW from NVM has not completed.\n"); } else { } return (-9); } else { } return (0); } } s32 e1000e_valid_led_default(struct e1000_hw *hw , u16 *data ) { s32 ret_val ; struct _ddebug descriptor ; long tmp ; { ret_val = e1000_read_nvm(hw, 4, 1, data); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_valid_led_default"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "NVM Read Error\n"; descriptor.lineno = 1509U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } if ((unsigned int )*data == 0U || (unsigned int )*data == 65535U) { *data = 35089U; } else { } return (0); } } s32 e1000e_id_led_init_generic(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; s32 ret_val ; u32 ledctl_mask ; u32 ledctl_on ; u32 ledctl_off ; u16 data ; u16 i ; u16 temp ; u16 led_mask ; { mac = & hw->mac; ledctl_mask = 255U; ledctl_on = 14U; ledctl_off = 15U; led_mask = 15U; ret_val = (*(hw->nvm.ops.valid_led_default))(hw, & data); if (ret_val != 0) { return (ret_val); } else { } mac->ledctl_default = __er32(hw, 3584UL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; i = 0U; goto ldv_41852; ldv_41851: temp = (u16 )((int )((short )((int )data >> ((int )i << 2))) & (int )((short )led_mask)); switch ((int )temp) { case 4: ; case 5: ; case 6: mac->ledctl_mode1 = mac->ledctl_mode1 & ~ (ledctl_mask << ((int )i << 3)); mac->ledctl_mode1 = mac->ledctl_mode1 | (ledctl_on << ((int )i << 3)); goto ldv_41838; case 7: ; case 8: ; case 9: mac->ledctl_mode1 = mac->ledctl_mode1 & ~ (ledctl_mask << ((int )i << 3)); mac->ledctl_mode1 = mac->ledctl_mode1 | (ledctl_off << ((int )i << 3)); goto ldv_41838; default: ; goto ldv_41838; } ldv_41838: ; switch ((int )temp) { case 2: ; case 5: ; case 8: mac->ledctl_mode2 = mac->ledctl_mode2 & ~ (ledctl_mask << ((int )i << 3)); mac->ledctl_mode2 = mac->ledctl_mode2 | (ledctl_on << ((int )i << 3)); goto ldv_41846; case 3: ; case 6: ; case 9: mac->ledctl_mode2 = mac->ledctl_mode2 & ~ (ledctl_mask << ((int )i << 3)); mac->ledctl_mode2 = mac->ledctl_mode2 | (ledctl_off << ((int )i << 3)); goto ldv_41846; default: ; goto ldv_41846; } ldv_41846: i = (u16 )((int )i + 1); ldv_41852: ; if ((unsigned int )i <= 3U) { goto ldv_41851; } else { } return (0); } } s32 e1000e_setup_led_generic(struct e1000_hw *hw ) { u32 ledctl ; { if ((unsigned long )hw->mac.ops.setup_led != (unsigned long )(& e1000e_setup_led_generic)) { return (-3); } else { } if ((unsigned int )hw->phy.media_type == 2U) { ledctl = __er32(hw, 3584UL); hw->mac.ledctl_default = ledctl; ledctl = ledctl & 4294967088U; ledctl = ledctl | 15U; __ew32___1(hw, 3584UL, ledctl); } else if ((unsigned int )hw->phy.media_type == 1U) { __ew32___1(hw, 3584UL, hw->mac.ledctl_mode1); } else { } return (0); } } s32 e1000e_cleanup_led_generic(struct e1000_hw *hw ) { { __ew32___1(hw, 3584UL, hw->mac.ledctl_default); return (0); } } s32 e1000e_blink_led_generic(struct e1000_hw *hw ) { u32 ledctl_blink ; u32 i ; u32 mode ; u32 led_default ; { ledctl_blink = 0U; if ((unsigned int )hw->phy.media_type == 2U) { ledctl_blink = 142U; } else { ledctl_blink = hw->mac.ledctl_mode2; i = 0U; goto ldv_41869; ldv_41868: mode = (hw->mac.ledctl_mode2 >> (int )i) & 15U; led_default = hw->mac.ledctl_default >> (int )i; if (((led_default & 64U) == 0U && mode == 14U) || ((led_default & 64U) != 0U && mode == 15U)) { ledctl_blink = (u32 )(~ (15 << (int )i)) & ledctl_blink; ledctl_blink = (u32 )(142 << (int )i) | ledctl_blink; } else { } i = i + 8U; ldv_41869: ; if (i <= 31U) { goto ldv_41868; } else { } } __ew32___1(hw, 3584UL, ledctl_blink); return (0); } } s32 e1000e_led_on_generic(struct e1000_hw *hw ) { u32 ctrl ; { switch ((unsigned int )hw->phy.media_type) { case 2U: ctrl = __er32(hw, 0UL); ctrl = ctrl & 4294705151U; ctrl = ctrl | 4194304U; __ew32___1(hw, 0UL, ctrl); goto ldv_41876; case 1U: __ew32___1(hw, 3584UL, hw->mac.ledctl_mode2); goto ldv_41876; default: ; goto ldv_41876; } ldv_41876: ; return (0); } } s32 e1000e_led_off_generic(struct e1000_hw *hw ) { u32 ctrl ; { switch ((unsigned int )hw->phy.media_type) { case 2U: ctrl = __er32(hw, 0UL); ctrl = ctrl | 262144U; ctrl = ctrl | 4194304U; __ew32___1(hw, 0UL, ctrl); goto ldv_41884; case 1U: __ew32___1(hw, 3584UL, hw->mac.ledctl_mode1); goto ldv_41884; default: ; goto ldv_41884; } ldv_41884: ; return (0); } } void e1000e_set_pcie_no_snoop(struct e1000_hw *hw , u32 no_snoop ) { u32 gcr ; { if (no_snoop != 0U) { gcr = __er32(hw, 23296UL); gcr = gcr & 4294967232U; gcr = gcr | no_snoop; __ew32___1(hw, 23296UL, gcr); } else { } return; } } s32 e1000e_disable_pcie_master(struct e1000_hw *hw ) { u32 ctrl ; s32 timeout ; u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { timeout = 800; ctrl = __er32(hw, 0UL); ctrl = ctrl | 4U; __ew32___1(hw, 0UL, ctrl); goto ldv_41899; ldv_41898: tmp = __er32(hw, 8UL); if ((tmp & 524288U) == 0U) { goto ldv_41897; } else { } usleep_range(100UL, 200UL); timeout = timeout - 1; ldv_41899: ; if (timeout != 0) { goto ldv_41898; } else { } ldv_41897: ; if (timeout == 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_disable_pcie_master"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Master requests are pending.\n"; descriptor.lineno = 1772U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Master requests are pending.\n"); } else { } return (-10); } else { } return (0); } } void e1000e_reset_adaptive(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; struct _ddebug descriptor ; long tmp ; { mac = & hw->mac; if (! mac->adaptive_ifs) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_reset_adaptive"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Not in Adaptive IFS mode!\n"; descriptor.lineno = 1790U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Not in Adaptive IFS mode!\n"); } else { } return; } else { } mac->current_ifs_val = 0U; mac->ifs_min_val = 40U; mac->ifs_max_val = 80U; mac->ifs_step_size = 10U; mac->ifs_ratio = 4U; mac->in_ifs_mode = 0; __ew32___1(hw, 1112UL, 0U); return; } } void e1000e_update_adaptive(struct e1000_hw *hw ) { struct e1000_mac_info *mac ; struct _ddebug descriptor ; long tmp ; { mac = & hw->mac; if (! mac->adaptive_ifs) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_update_adaptive"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/mac.c.prepared"; descriptor.format = "Not in Adaptive IFS mode!\n"; descriptor.lineno = 1816U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Not in Adaptive IFS mode!\n"); } else { } return; } else { } if (mac->collision_delta * (u32 )mac->ifs_ratio > mac->tx_packet_delta) { if (mac->tx_packet_delta > 1000U) { mac->in_ifs_mode = 1; if ((int )mac->current_ifs_val < (int )mac->ifs_max_val) { if ((unsigned int )mac->current_ifs_val == 0U) { mac->current_ifs_val = mac->ifs_min_val; } else { mac->current_ifs_val = (int )mac->current_ifs_val + (int )mac->ifs_step_size; } __ew32___1(hw, 1112UL, (u32 )mac->current_ifs_val); } else { } } else { } } else if ((int )mac->in_ifs_mode && mac->tx_packet_delta <= 1000U) { mac->current_ifs_val = 0U; mac->in_ifs_mode = 0; __ew32___1(hw, 1112UL, 0U); } else { } return; } } void ldv_mutex_lock_41(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_42(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_43(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_44(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_45(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_54(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_52(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_55(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_51(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_53(struct mutex *ldv_func_arg1 ) ; s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw , u8 *buffer , u16 length ) ; bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw ) ; static u8 e1000_calculate_checksum(u8 *buffer , u32 length ) { u32 i ; u8 sum ; { sum = 0U; if ((unsigned long )buffer == (unsigned long )((u8 *)0)) { return (0U); } else { } i = 0U; goto ldv_41544; ldv_41543: sum = (int )*(buffer + (unsigned long )i) + (int )sum; i = i + 1U; ldv_41544: ; if (i < length) { goto ldv_41543; } else { } return (- ((int )sum)); } } static s32 e1000_mng_enable_host_if(struct e1000_hw *hw ) { u32 hicr ; u8 i ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; { if (! hw->mac.arc_subsystem_valid) { descriptor.modname = "e1000e"; descriptor.function = "e1000_mng_enable_host_if"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/manage.c.prepared"; descriptor.format = "ARC subsystem not valid.\n"; descriptor.lineno = 108U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "ARC subsystem not valid.\n"); } else { } return (-11); } else { } hicr = __er32(hw, 36608UL); if ((hicr & 1U) == 0U) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_mng_enable_host_if"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/manage.c.prepared"; descriptor___0.format = "E1000_HOST_EN bit disabled.\n"; descriptor___0.lineno = 115U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "E1000_HOST_EN bit disabled.\n"); } else { } return (-11); } else { } i = 0U; goto ldv_41560; ldv_41559: hicr = __er32(hw, 36608UL); if ((hicr & 2U) == 0U) { goto ldv_41554; } else { } if (1) { __const_udelay(4295000UL); } else { __ms = 1UL; goto ldv_41557; ldv_41556: __const_udelay(4295000UL); ldv_41557: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_41556; } else { } } i = (u8 )((int )i + 1); ldv_41560: ; if ((unsigned int )i <= 9U) { goto ldv_41559; } else { } ldv_41554: ; if ((unsigned int )i == 10U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_mng_enable_host_if"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/manage.c.prepared"; descriptor___1.format = "Previous command timeout failed .\n"; descriptor___1.lineno = 127U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Previous command timeout failed .\n"); } else { } return (-11); } else { } return (0); } } bool e1000e_check_mng_mode_generic(struct e1000_hw *hw ) { u32 fwsm ; u32 tmp ; { tmp = __er32(hw, 23380UL); fwsm = tmp; return ((fwsm & 14U) == 6U); } } bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw ) { struct e1000_host_mng_dhcp_cookie *hdr ; u32 *buffer ; u32 offset ; s32 ret_val ; s32 hdr_csum ; s32 csum ; u8 i ; u8 len ; bool tmp ; int tmp___0 ; u8 tmp___1 ; { hdr = & hw->mng_cookie; buffer = (u32 *)(& hw->mng_cookie); hw->mac.tx_pkt_filtering = 1; tmp = (*(hw->mac.ops.check_mng_mode))(hw); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { hw->mac.tx_pkt_filtering = 0; return (hw->mac.tx_pkt_filtering); } else { } ret_val = e1000_mng_enable_host_if(hw); if (ret_val != 0) { hw->mac.tx_pkt_filtering = 0; return (hw->mac.tx_pkt_filtering); } else { } len = 4U; offset = 444U; i = 0U; goto ldv_41578; ldv_41577: *(buffer + (unsigned long )i) = readl((void const volatile *)(hw->hw_addr + ((unsigned long )(((u32 )i + offset) << 2) + 34816UL))); i = (u8 )((int )i + 1); ldv_41578: ; if ((int )i < (int )len) { goto ldv_41577; } else { } hdr_csum = (s32 )hdr->checksum; hdr->checksum = 0U; tmp___1 = e1000_calculate_checksum((u8 *)hdr, 16U); csum = (s32 )tmp___1; if (hdr_csum != csum || hdr->signature != 1414349129U) { hw->mac.tx_pkt_filtering = 1; return (hw->mac.tx_pkt_filtering); } else { } if (((int )hdr->status & 1) == 0) { hw->mac.tx_pkt_filtering = 0; } else { } return (hw->mac.tx_pkt_filtering); } } static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw , struct e1000_host_mng_command_header *hdr ) { u16 i ; u16 length ; { length = 8U; hdr->checksum = e1000_calculate_checksum((u8 *)hdr, (u32 )length); length = (u16 )((int )length >> 2); i = 0U; goto ldv_41587; ldv_41586: __ew32___1(hw, (unsigned long )(((int )i << 2) + 34816), *((u32 *)hdr + (unsigned long )i)); __er32(hw, 8UL); i = (u16 )((int )i + 1); ldv_41587: ; if ((int )i < (int )length) { goto ldv_41586; } else { } return (0); } } static s32 e1000_mng_host_if_write(struct e1000_hw *hw , u8 *buffer , u16 length , u16 offset , u8 *sum ) { u8 *tmp ; u8 *bufptr ; u32 data ; u16 remaining ; u16 i ; u16 j ; u16 prev_bytes ; u8 *tmp___0 ; u8 *tmp___1 ; u8 *tmp___2 ; { bufptr = buffer; data = 0U; if ((unsigned int )length == 0U || (int )offset + (int )length > 1784) { return (-4); } else { } tmp = (u8 *)(& data); prev_bytes = (unsigned int )offset & 3U; offset = (u16 )((int )offset >> 2); if ((unsigned int )prev_bytes != 0U) { data = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((int )offset << 2) + 34816UL))); j = prev_bytes; goto ldv_41604; ldv_41603: tmp___0 = bufptr; bufptr = bufptr + 1; *(tmp + (unsigned long )j) = *tmp___0; *sum = (int )*sum + (int )*(tmp + (unsigned long )j); j = (u16 )((int )j + 1); ldv_41604: ; if ((unsigned int )j <= 3U) { goto ldv_41603; } else { } __ew32___1(hw, (unsigned long )(((int )offset << 2) + 34816), data); length = ((int )prev_bytes - (int )j) + (int )length; offset = (u16 )((int )offset + 1); } else { } remaining = (unsigned int )length & 3U; length = (int )length - (int )remaining; length = (u16 )((int )length >> 2); i = 0U; goto ldv_41610; ldv_41609: j = 0U; goto ldv_41607; ldv_41606: tmp___1 = bufptr; bufptr = bufptr + 1; *(tmp + (unsigned long )j) = *tmp___1; *sum = (int )*sum + (int )*(tmp + (unsigned long )j); j = (u16 )((int )j + 1); ldv_41607: ; if ((unsigned int )j <= 3U) { goto ldv_41606; } else { } __ew32___1(hw, (unsigned long )((((int )offset + (int )i) << 2) + 34816), data); i = (u16 )((int )i + 1); ldv_41610: ; if ((int )i < (int )length) { goto ldv_41609; } else { } if ((unsigned int )remaining != 0U) { j = 0U; goto ldv_41613; ldv_41612: ; if ((int )j < (int )remaining) { tmp___2 = bufptr; bufptr = bufptr + 1; *(tmp + (unsigned long )j) = *tmp___2; } else { *(tmp + (unsigned long )j) = 0U; } *sum = (int )*sum + (int )*(tmp + (unsigned long )j); j = (u16 )((int )j + 1); ldv_41613: ; if ((unsigned int )j <= 3U) { goto ldv_41612; } else { } __ew32___1(hw, (unsigned long )((((int )offset + (int )i) << 2) + 34816), data); } else { } return (0); } } s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw , u8 *buffer , u16 length ) { struct e1000_host_mng_command_header hdr ; s32 ret_val ; u32 hicr ; { hdr.command_id = 64U; hdr.command_length = length; hdr.reserved1 = 0U; hdr.reserved2 = 0U; hdr.checksum = 0U; ret_val = e1000_mng_enable_host_if(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_mng_host_if_write(hw, buffer, (int )length, 8, & hdr.checksum); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_mng_write_cmd_header(hw, & hdr); if (ret_val != 0) { return (ret_val); } else { } hicr = __er32(hw, 36608UL); __ew32___1(hw, 36608UL, hicr | 2U); return (0); } } bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw ) { u32 manc ; u32 fwsm ; u32 factps ; u16 data ; { manc = __er32(hw, 22560UL); if ((manc & 131072U) == 0U) { return (0); } else { } if ((int )hw->mac.has_fwsm) { fwsm = __er32(hw, 23380UL); factps = __er32(hw, 23344UL); if ((factps & 536870912U) == 0U && (fwsm & 14U) == 4U) { return (1); } else { } } else if ((unsigned int )hw->mac.type == 3U || (unsigned int )hw->mac.type == 4U) { factps = __er32(hw, 23344UL); e1000_read_nvm(hw, 15, 1, & data); if ((factps & 536870912U) == 0U && ((int )data & 24576) == 16384) { return (1); } else { } } else if ((int )manc & 1 && (manc & 2U) == 0U) { return (1); } else { } return (0); } } void ldv_mutex_lock_51(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_52(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_53(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_54(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_55(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_64(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_62(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_65(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_61(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_63(struct mutex *ldv_func_arg1 ) ; extern void __udelay(unsigned long ) ; s32 e1000_read_pba_string_generic(struct e1000_hw *hw , u8 *pba_num , u32 pba_num_size ) ; static void e1000_raise_eec_clk(struct e1000_hw *hw , u32 *eecd ) { { *eecd = *eecd | 1U; __ew32___1(hw, 16UL, *eecd); __er32(hw, 8UL); __udelay((unsigned long )hw->nvm.delay_usec); return; } } static void e1000_lower_eec_clk(struct e1000_hw *hw , u32 *eecd ) { { *eecd = *eecd & 4294967294U; __ew32___1(hw, 16UL, *eecd); __er32(hw, 8UL); __udelay((unsigned long )hw->nvm.delay_usec); return; } } static void e1000_shift_out_eec_bits(struct e1000_hw *hw , u16 data , u16 count ) { struct e1000_nvm_info *nvm ; u32 eecd ; u32 tmp ; u32 mask ; { nvm = & hw->nvm; tmp = __er32(hw, 16UL); eecd = tmp; mask = (u32 )(1 << ((int )count + -1)); if ((unsigned int )nvm->type == 2U) { eecd = eecd | 8U; } else { } ldv_41553: eecd = eecd & 4294967291U; if (((u32 )data & mask) != 0U) { eecd = eecd | 4U; } else { } __ew32___1(hw, 16UL, eecd); __er32(hw, 8UL); __udelay((unsigned long )nvm->delay_usec); e1000_raise_eec_clk(hw, & eecd); e1000_lower_eec_clk(hw, & eecd); mask = mask >> 1; if (mask != 0U) { goto ldv_41553; } else { } eecd = eecd & 4294967291U; __ew32___1(hw, 16UL, eecd); return; } } static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw , u16 count ) { u32 eecd ; u32 i ; u16 data ; { eecd = __er32(hw, 16UL); eecd = eecd & 4294967283U; data = 0U; i = 0U; goto ldv_41563; ldv_41562: data = (int )data << 1U; e1000_raise_eec_clk(hw, & eecd); eecd = __er32(hw, 16UL); eecd = eecd & 4294967291U; if ((eecd & 8U) != 0U) { data = (u16 )((unsigned int )data | 1U); } else { } e1000_lower_eec_clk(hw, & eecd); i = i + 1U; ldv_41563: ; if ((u32 )count > i) { goto ldv_41562; } else { } return (data); } } s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw , int ee_reg ) { u32 attempts ; u32 i ; u32 reg ; { attempts = 100000U; reg = 0U; i = 0U; goto ldv_41573; ldv_41572: ; if (ee_reg == 0) { reg = __er32(hw, 20UL); } else { reg = __er32(hw, 4140UL); } if ((reg & 2U) != 0U) { return (0); } else { } __const_udelay(21475UL); i = i + 1U; ldv_41573: ; if (i < attempts) { goto ldv_41572; } else { } return (-1); } } s32 e1000e_acquire_nvm(struct e1000_hw *hw ) { u32 eecd ; u32 tmp ; s32 timeout ; struct _ddebug descriptor ; long tmp___0 ; { tmp = __er32(hw, 16UL); eecd = tmp; timeout = 1000; __ew32___1(hw, 16UL, eecd | 64U); eecd = __er32(hw, 16UL); goto ldv_41582; ldv_41581: ; if ((eecd & 128U) != 0U) { goto ldv_41580; } else { } __const_udelay(21475UL); eecd = __er32(hw, 16UL); timeout = timeout - 1; ldv_41582: ; if (timeout != 0) { goto ldv_41581; } else { } ldv_41580: ; if (timeout == 0) { eecd = eecd & 4294967231U; __ew32___1(hw, 16UL, eecd); descriptor.modname = "e1000e"; descriptor.function = "e1000e_acquire_nvm"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor.format = "Could not acquire NVM grant\n"; descriptor.lineno = 234U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Could not acquire NVM grant\n"); } else { } return (-1); } else { } return (0); } } static void e1000_standby_nvm(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; u32 eecd ; u32 tmp ; { nvm = & hw->nvm; tmp = __er32(hw, 16UL); eecd = tmp; if ((unsigned int )nvm->type == 2U) { eecd = eecd | 2U; __ew32___1(hw, 16UL, eecd); __er32(hw, 8UL); __udelay((unsigned long )nvm->delay_usec); eecd = eecd & 4294967293U; __ew32___1(hw, 16UL, eecd); __er32(hw, 8UL); __udelay((unsigned long )nvm->delay_usec); } else { } return; } } static void e1000_stop_nvm(struct e1000_hw *hw ) { u32 eecd ; { eecd = __er32(hw, 16UL); if ((unsigned int )hw->nvm.type == 2U) { eecd = eecd | 2U; e1000_lower_eec_clk(hw, & eecd); } else { } return; } } void e1000e_release_nvm(struct e1000_hw *hw ) { u32 eecd ; { e1000_stop_nvm(hw); eecd = __er32(hw, 16UL); eecd = eecd & 4294967231U; __ew32___1(hw, 16UL, eecd); return; } } static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw ) { struct e1000_nvm_info *nvm ; u32 eecd ; u32 tmp ; u8 spi_stat_reg ; u16 timeout ; u16 tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; { nvm = & hw->nvm; tmp = __er32(hw, 16UL); eecd = tmp; if ((unsigned int )nvm->type == 2U) { timeout = 5000U; eecd = eecd & 4294967292U; __ew32___1(hw, 16UL, eecd); __er32(hw, 8UL); __const_udelay(4295UL); goto ldv_41607; ldv_41606: e1000_shift_out_eec_bits(hw, 5, (int )hw->nvm.opcode_bits); tmp___0 = e1000_shift_in_eec_bits(hw, 8); spi_stat_reg = (unsigned char )tmp___0; if (((int )spi_stat_reg & 1) == 0) { goto ldv_41605; } else { } __const_udelay(21475UL); e1000_standby_nvm(hw); timeout = (u16 )((int )timeout - 1); ldv_41607: ; if ((unsigned int )timeout != 0U) { goto ldv_41606; } else { } ldv_41605: ; if ((unsigned int )timeout == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_ready_nvm_eeprom"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor.format = "SPI NVM Status error\n"; descriptor.lineno = 339U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "SPI NVM Status error\n"); } else { } return (-1); } else { } } else { } return (0); } } s32 e1000e_read_nvm_eerd(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_nvm_info *nvm ; u32 i ; u32 eerd ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; u32 tmp___0 ; { nvm = & hw->nvm; eerd = 0U; ret_val = 0; if (((int )nvm->word_size <= (int )offset || (int )words > (int )nvm->word_size - (int )offset) || (unsigned int )words == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_read_nvm_eerd"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor.format = "nvm parameter(s) out of bounds\n"; descriptor.lineno = 367U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "nvm parameter(s) out of bounds\n"); } else { } return (-1); } else { } i = 0U; goto ldv_41624; ldv_41623: eerd = (((u32 )offset + i) << 2) + 1U; __ew32___1(hw, 20UL, eerd); ret_val = e1000e_poll_eerd_eewr_done(hw, 0); if (ret_val != 0) { goto ldv_41622; } else { } tmp___0 = __er32(hw, 20UL); *(data + (unsigned long )i) = (u16 )(tmp___0 >> 16); i = i + 1U; ldv_41624: ; if ((u32 )words > i) { goto ldv_41623; } else { } ldv_41622: ; return (ret_val); } } s32 e1000e_write_nvm_spi(struct e1000_hw *hw , u16 offset , u16 words , u16 *data ) { struct e1000_nvm_info *nvm ; s32 ret_val ; u16 widx ; struct _ddebug descriptor ; long tmp ; u8 write_opcode ; u16 word_out ; { nvm = & hw->nvm; ret_val = -1; widx = 0U; if (((int )nvm->word_size <= (int )offset || (int )words > (int )nvm->word_size - (int )offset) || (unsigned int )words == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_write_nvm_spi"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor.format = "nvm parameter(s) out of bounds\n"; descriptor.lineno = 409U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "nvm parameter(s) out of bounds\n"); } else { } return (-1); } else { } goto ldv_41642; ldv_41641: write_opcode = 2U; ret_val = (*(nvm->ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val != 0) { (*(nvm->ops.release))(hw); return (ret_val); } else { } e1000_standby_nvm(hw); e1000_shift_out_eec_bits(hw, 6, (int )nvm->opcode_bits); e1000_standby_nvm(hw); if ((unsigned int )nvm->address_bits == 8U && (unsigned int )offset > 127U) { write_opcode = (u8 )((unsigned int )write_opcode | 8U); } else { } e1000_shift_out_eec_bits(hw, (int )write_opcode, (int )nvm->opcode_bits); e1000_shift_out_eec_bits(hw, (int )((unsigned int )((unsigned short )((int )offset + (int )widx)) * 2U), (int )nvm->address_bits); goto ldv_41640; ldv_41639: word_out = *(data + (unsigned long )widx); word_out = (u16 )((int )((short )((int )word_out >> 8)) | (int )((short )((int )word_out << 8))); e1000_shift_out_eec_bits(hw, (int )word_out, 16); widx = (u16 )((int )widx + 1); if ((((int )offset + (int )widx) * 2) % (int )nvm->page_size == 0) { e1000_standby_nvm(hw); goto ldv_41638; } else { } ldv_41640: ; if ((int )widx < (int )words) { goto ldv_41639; } else { } ldv_41638: usleep_range(10000UL, 20000UL); (*(nvm->ops.release))(hw); ldv_41642: ; if ((int )widx < (int )words) { goto ldv_41641; } else { } return (ret_val); } } s32 e1000_read_pba_string_generic(struct e1000_hw *hw , u8 *pba_num , u32 pba_num_size ) { s32 ret_val ; u16 nvm_data ; u16 pba_ptr ; u16 offset ; u16 length ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; { if ((unsigned long )pba_num == (unsigned long )((u8 *)0)) { descriptor.modname = "e1000e"; descriptor.function = "e1000_read_pba_string_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor.format = "PBA string buffer was null\n"; descriptor.lineno = 483U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "PBA string buffer was null\n"); } else { } return (-16); } else { } ret_val = e1000_read_nvm(hw, 8, 1, & nvm_data); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_read_pba_string_generic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___0.format = "NVM Read Error\n"; descriptor___0.lineno = 489U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } ret_val = e1000_read_nvm(hw, 9, 1, & pba_ptr); if (ret_val != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_read_pba_string_generic"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___1.format = "NVM Read Error\n"; descriptor___1.lineno = 495U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } if ((unsigned int )nvm_data != 64250U) { descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000_read_pba_string_generic"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___2.format = "NVM PBA number is not stored as string\n"; descriptor___2.lineno = 504U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "NVM PBA number is not stored as string\n"); } else { } if (pba_num_size <= 10U) { descriptor___3.modname = "e1000e"; descriptor___3.function = "e1000_read_pba_string_generic"; descriptor___3.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___3.format = "PBA string buffer too small\n"; descriptor___3.lineno = 508U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)(hw->adapter)->netdev, "PBA string buffer too small\n"); } else { } return (17); } else { } *pba_num = (unsigned int )((u8 )((int )nvm_data >> 12)) & 15U; *(pba_num + 1UL) = (unsigned int )((u8 )((int )nvm_data >> 8)) & 15U; *(pba_num + 2UL) = (unsigned int )((u8 )((int )nvm_data >> 4)) & 15U; *(pba_num + 3UL) = (unsigned int )((u8 )nvm_data) & 15U; *(pba_num + 4UL) = (unsigned int )((u8 )((int )pba_ptr >> 12)) & 15U; *(pba_num + 5UL) = (unsigned int )((u8 )((int )pba_ptr >> 8)) & 15U; *(pba_num + 6UL) = 45U; *(pba_num + 7UL) = 0U; *(pba_num + 8UL) = (unsigned int )((u8 )((int )pba_ptr >> 4)) & 15U; *(pba_num + 9UL) = (unsigned int )((u8 )pba_ptr) & 15U; *(pba_num + 10UL) = 0U; offset = 0U; goto ldv_41661; ldv_41660: ; if ((unsigned int )*(pba_num + (unsigned long )offset) <= 9U) { *(pba_num + (unsigned long )offset) = (unsigned int )*(pba_num + (unsigned long )offset) + 48U; } else if ((unsigned int )*(pba_num + (unsigned long )offset) <= 15U) { *(pba_num + (unsigned long )offset) = (unsigned int )*(pba_num + (unsigned long )offset) + 55U; } else { } offset = (u16 )((int )offset + 1); ldv_41661: ; if ((unsigned int )offset <= 9U) { goto ldv_41660; } else { } return (0); } else { } ret_val = e1000_read_nvm(hw, (int )pba_ptr, 1, & length); if (ret_val != 0) { descriptor___4.modname = "e1000e"; descriptor___4.function = "e1000_read_pba_string_generic"; descriptor___4.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___4.format = "NVM Read Error\n"; descriptor___4.lineno = 540U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } if ((unsigned int )length == 65535U || (unsigned int )length == 0U) { descriptor___5.modname = "e1000e"; descriptor___5.function = "e1000_read_pba_string_generic"; descriptor___5.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___5.format = "NVM PBA number section invalid length\n"; descriptor___5.lineno = 545U; descriptor___5.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)(hw->adapter)->netdev, "NVM PBA number section invalid length\n"); } else { } return (-18); } else { } if ((unsigned int )length * 2U - 1U > pba_num_size) { descriptor___6.modname = "e1000e"; descriptor___6.function = "e1000_read_pba_string_generic"; descriptor___6.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___6.format = "PBA string buffer too small\n"; descriptor___6.lineno = 550U; descriptor___6.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)(hw->adapter)->netdev, "PBA string buffer too small\n"); } else { } return (-17); } else { } pba_ptr = (u16 )((int )pba_ptr + 1); length = (u16 )((int )length - 1); offset = 0U; goto ldv_41668; ldv_41667: ret_val = e1000_read_nvm(hw, (int )pba_ptr + (int )offset, 1, & nvm_data); if (ret_val != 0) { descriptor___7.modname = "e1000e"; descriptor___7.function = "e1000_read_pba_string_generic"; descriptor___7.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___7.format = "NVM Read Error\n"; descriptor___7.lineno = 561U; descriptor___7.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } *(pba_num + (unsigned long )((int )offset * 2)) = (unsigned char )((int )nvm_data >> 8); *(pba_num + ((unsigned long )((int )offset * 2) + 1UL)) = (unsigned char )nvm_data; offset = (u16 )((int )offset + 1); ldv_41668: ; if ((int )offset < (int )length) { goto ldv_41667; } else { } *(pba_num + (unsigned long )((int )offset * 2)) = 0U; return (0); } } s32 e1000_read_mac_addr_generic(struct e1000_hw *hw ) { u32 rar_high ; u32 rar_low ; u16 i ; { rar_high = __er32(hw, 21508UL); rar_low = __er32(hw, 21504UL); i = 0U; goto ldv_41677; ldv_41676: hw->mac.perm_addr[(int )i] = (unsigned char )(rar_low >> (int )i * 8); i = (u16 )((int )i + 1); ldv_41677: ; if ((unsigned int )i <= 3U) { goto ldv_41676; } else { } i = 0U; goto ldv_41680; ldv_41679: hw->mac.perm_addr[(int )i + 4] = (unsigned char )(rar_high >> (int )i * 8); i = (u16 )((int )i + 1); ldv_41680: ; if ((unsigned int )i <= 1U) { goto ldv_41679; } else { } i = 0U; goto ldv_41683; ldv_41682: hw->mac.addr[(int )i] = hw->mac.perm_addr[(int )i]; i = (u16 )((int )i + 1); ldv_41683: ; if ((unsigned int )i <= 5U) { goto ldv_41682; } else { } return (0); } } s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw ) { s32 ret_val ; u16 checksum ; u16 i ; u16 nvm_data ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { checksum = 0U; i = 0U; goto ldv_41695; ldv_41694: ret_val = e1000_read_nvm(hw, (int )i, 1, & nvm_data); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_validate_nvm_checksum_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor.format = "NVM Read Error\n"; descriptor.lineno = 617U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error\n"); } else { } return (ret_val); } else { } checksum = (int )checksum + (int )nvm_data; i = (u16 )((int )i + 1); ldv_41695: ; if ((unsigned int )i <= 63U) { goto ldv_41694; } else { } if ((unsigned int )checksum != 47802U) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_validate_nvm_checksum_generic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___0.format = "NVM Checksum Invalid\n"; descriptor___0.lineno = 624U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "NVM Checksum Invalid\n"); } else { } return (-1); } else { } return (0); } } s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw ) { s32 ret_val ; u16 checksum ; u16 i ; u16 nvm_data ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { checksum = 0U; i = 0U; goto ldv_41708; ldv_41707: ret_val = e1000_read_nvm(hw, (int )i, 1, & nvm_data); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_update_nvm_checksum_generic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor.format = "NVM Read Error while updating checksum.\n"; descriptor.lineno = 648U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "NVM Read Error while updating checksum.\n"); } else { } return (ret_val); } else { } checksum = (int )checksum + (int )nvm_data; i = (u16 )((int )i + 1); ldv_41708: ; if ((unsigned int )i <= 62U) { goto ldv_41707; } else { } checksum = 47802U - (unsigned int )checksum; ret_val = e1000_write_nvm(hw, 63, 1, & checksum); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_update_nvm_checksum_generic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/nvm.c.prepared"; descriptor___0.format = "NVM Write Error while updating checksum.\n"; descriptor___0.lineno = 656U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "NVM Write Error while updating checksum.\n"); } else { } } else { } return (ret_val); } } void e1000e_reload_nvm_generic(struct e1000_hw *hw ) { u32 ctrl_ext ; { usleep_range(10UL, 20UL); ctrl_ext = __er32(hw, 24UL); ctrl_ext = ctrl_ext | 8192U; __ew32___1(hw, 24UL, ctrl_ext); __er32(hw, 8UL); return; } } void ldv_mutex_lock_61(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_62(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_63(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_64(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_65(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_74(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_72(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_75(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_71(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_73(struct mutex *ldv_func_arg1 ) ; static s32 e1000_wait_autoneg(struct e1000_hw *hw ) ; static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw , u32 offset , u16 *data , bool read , bool page_set ) ; static u32 e1000_get_phy_addr_for_hv_page(u32 page ) ; static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw , u32 offset , u16 *data , bool read ) ; static u16 const e1000_m88_cable_length_table[7U] = { 0U, 50U, 80U, 110U, 140U, 140U, 255U}; static u16 const e1000_igp_2_cable_length_table[113U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 3U, 5U, 8U, 11U, 13U, 16U, 18U, 21U, 0U, 0U, 0U, 3U, 6U, 10U, 13U, 16U, 19U, 23U, 26U, 29U, 32U, 35U, 38U, 41U, 6U, 10U, 14U, 18U, 22U, 26U, 30U, 33U, 37U, 41U, 44U, 48U, 51U, 54U, 58U, 61U, 21U, 26U, 31U, 35U, 40U, 44U, 49U, 53U, 57U, 61U, 65U, 68U, 72U, 75U, 79U, 82U, 40U, 45U, 51U, 56U, 61U, 66U, 70U, 75U, 79U, 83U, 87U, 91U, 94U, 98U, 101U, 104U, 60U, 66U, 72U, 77U, 82U, 87U, 92U, 96U, 100U, 104U, 108U, 111U, 114U, 117U, 119U, 121U, 83U, 89U, 95U, 100U, 105U, 109U, 113U, 116U, 119U, 122U, 124U, 104U, 109U, 114U, 118U, 121U, 124U}; s32 e1000e_check_reset_block_generic(struct e1000_hw *hw ) { u32 manc ; { manc = __er32(hw, 22560UL); return ((manc & 262144U) != 0U ? 12 : 0); } } s32 e1000e_get_phy_id(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_id ; u16 retry_count ; { phy = & hw->phy; ret_val = 0; retry_count = 0U; if ((unsigned long )phy->ops.read_reg == (unsigned long )((s32 (*)(struct e1000_hw * , u32 , u16 * ))0)) { return (0); } else { } goto ldv_41566; ldv_41565: ret_val = e1e_rphy(hw, 2U, & phy_id); if (ret_val != 0) { return (ret_val); } else { } phy->id = (unsigned int )((int )phy_id << 16); usleep_range(20UL, 40UL); ret_val = e1e_rphy(hw, 3U, & phy_id); if (ret_val != 0) { return (ret_val); } else { } phy->id = phy->id | ((u32 )phy_id & 4294967280U); phy->revision = (unsigned int )phy_id & 15U; if (phy->id != 0U && phy->id != 4294967280U) { return (0); } else { } retry_count = (u16 )((int )retry_count + 1); ldv_41566: ; if ((unsigned int )retry_count <= 1U) { goto ldv_41565; } else { } return (0); } } s32 e1000e_phy_reset_dsp(struct e1000_hw *hw ) { s32 ret_val ; s32 tmp ; { ret_val = e1e_wphy(hw, 30U, 193); if (ret_val != 0) { return (ret_val); } else { } tmp = e1e_wphy(hw, 30U, 0); return (tmp); } } s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw , u32 offset , u16 *data ) { struct e1000_phy_info *phy ; u32 i ; u32 mdic ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { phy = & hw->phy; mdic = 0U; if (offset > 31U) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_read_phy_reg_mdic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "PHY Address %d is out of range\n"; descriptor.lineno = 188U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "PHY Address %d is out of range\n", offset); } else { } return (-4); } else { } mdic = ((offset << 16) | (phy->addr << 21)) | 134217728U; __ew32___1(hw, 32UL, mdic); i = 0U; goto ldv_41584; ldv_41583: __const_udelay(214750UL); mdic = __er32(hw, 32UL); if ((mdic & 268435456U) != 0U) { goto ldv_41582; } else { } i = i + 1U; ldv_41584: ; if (i <= 1919U) { goto ldv_41583; } else { } ldv_41582: ; if ((mdic & 268435456U) == 0U) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_read_phy_reg_mdic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "MDI Read did not complete\n"; descriptor___0.lineno = 213U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "MDI Read did not complete\n"); } else { } return (-2); } else { } if ((mdic & 1073741824U) != 0U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_read_phy_reg_mdic"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "MDI Error\n"; descriptor___1.lineno = 217U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "MDI Error\n"); } else { } return (-2); } else { } if ((mdic & 2031616U) >> 16 != offset) { descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000e_read_phy_reg_mdic"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___2.format = "MDI Read offset error - requested %d, returned %d\n"; descriptor___2.lineno = 223U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "MDI Read offset error - requested %d, returned %d\n", offset, (mdic & 2031616U) >> 16); } else { } return (-2); } else { } *data = (unsigned short )mdic; if ((unsigned int )hw->mac.type == 10U) { __const_udelay(429500UL); } else { } return (0); } } s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw , u32 offset , u16 data ) { struct e1000_phy_info *phy ; u32 i ; u32 mdic ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { phy = & hw->phy; mdic = 0U; if (offset > 31U) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_write_phy_reg_mdic"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "PHY Address %d is out of range\n"; descriptor.lineno = 251U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "PHY Address %d is out of range\n", offset); } else { } return (-4); } else { } mdic = (((unsigned int )data | (offset << 16)) | (phy->addr << 21)) | 67108864U; __ew32___1(hw, 32UL, mdic); i = 0U; goto ldv_41600; ldv_41599: __const_udelay(214750UL); mdic = __er32(hw, 32UL); if ((mdic & 268435456U) != 0U) { goto ldv_41598; } else { } i = i + 1U; ldv_41600: ; if (i <= 1919U) { goto ldv_41599; } else { } ldv_41598: ; if ((mdic & 268435456U) == 0U) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_write_phy_reg_mdic"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "MDI Write did not complete\n"; descriptor___0.lineno = 277U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "MDI Write did not complete\n"); } else { } return (-2); } else { } if ((mdic & 1073741824U) != 0U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_write_phy_reg_mdic"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "MDI Error\n"; descriptor___1.lineno = 281U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "MDI Error\n"); } else { } return (-2); } else { } if ((mdic & 2031616U) >> 16 != offset) { descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000e_write_phy_reg_mdic"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___2.format = "MDI Write offset error - requested %d, returned %d\n"; descriptor___2.lineno = 287U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "MDI Write offset error - requested %d, returned %d\n", offset, (mdic & 2031616U) >> 16); } else { } return (-2); } else { } if ((unsigned int )hw->mac.type == 10U) { __const_udelay(429500UL); } else { } return (0); } } s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 ret_val ; { ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_read_phy_reg_mdic(hw, offset & 31U, data); (*(hw->phy.ops.release))(hw); return (ret_val); } } s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw , u32 offset , u16 data ) { s32 ret_val ; { ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_write_phy_reg_mdic(hw, offset & 31U, (int )data); (*(hw->phy.ops.release))(hw); return (ret_val); } } s32 e1000_set_page_igp(struct e1000_hw *hw , u16 page ) { struct _ddebug descriptor ; long tmp ; s32 tmp___0 ; { descriptor.modname = "e1000e"; descriptor.function = "e1000_set_page_igp"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Setting page 0x%x\n"; descriptor.lineno = 362U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Setting page 0x%x\n", (int )page); } else { } hw->phy.addr = 1U; tmp___0 = e1000e_write_phy_reg_mdic(hw, 31U, (int )page); return (tmp___0); } } static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw , u32 offset , u16 *data , bool locked ) { s32 ret_val ; { ret_val = 0; if (! locked) { if ((unsigned long )hw->phy.ops.acquire == (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { return (0); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } if (offset > 15U) { ret_val = e1000e_write_phy_reg_mdic(hw, 31U, (int )((unsigned short )offset)); } else { } if (ret_val == 0) { ret_val = e1000e_read_phy_reg_mdic(hw, offset & 31U, data); } else { } if (! locked) { (*(hw->phy.ops.release))(hw); } else { } return (ret_val); } } s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = __e1000e_read_phy_reg_igp(hw, offset, data, 0); return (tmp); } } s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = __e1000e_read_phy_reg_igp(hw, offset, data, 1); return (tmp); } } static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw , u32 offset , u16 data , bool locked ) { s32 ret_val ; { ret_val = 0; if (! locked) { if ((unsigned long )hw->phy.ops.acquire == (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { return (0); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } if (offset > 15U) { ret_val = e1000e_write_phy_reg_mdic(hw, 31U, (int )((unsigned short )offset)); } else { } if (ret_val == 0) { ret_val = e1000e_write_phy_reg_mdic(hw, offset & 31U, (int )data); } else { } if (! locked) { (*(hw->phy.ops.release))(hw); } else { } return (ret_val); } } s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = __e1000e_write_phy_reg_igp(hw, offset, (int )data, 0); return (tmp); } } s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = __e1000e_write_phy_reg_igp(hw, offset, (int )data, 1); return (tmp); } } static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw , u32 offset , u16 *data , bool locked ) { u32 kmrnctrlsta ; s32 ret_val ; { if (! locked) { ret_val = 0; if ((unsigned long )hw->phy.ops.acquire == (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { return (0); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } kmrnctrlsta = ((offset << 16) & 2031616U) | 2097152U; __ew32___1(hw, 52UL, kmrnctrlsta); __er32(hw, 8UL); __const_udelay(8590UL); kmrnctrlsta = __er32(hw, 52UL); *data = (unsigned short )kmrnctrlsta; if (! locked) { (*(hw->phy.ops.release))(hw); } else { } return (0); } } s32 e1000e_read_kmrn_reg(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = __e1000_read_kmrn_reg(hw, offset, data, 0); return (tmp); } } s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = __e1000_read_kmrn_reg(hw, offset, data, 1); return (tmp); } } static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw , u32 offset , u16 data , bool locked ) { u32 kmrnctrlsta ; s32 ret_val ; { if (! locked) { ret_val = 0; if ((unsigned long )hw->phy.ops.acquire == (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { return (0); } else { } ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } kmrnctrlsta = ((offset << 16) & 2031616U) | (u32 )data; __ew32___1(hw, 52UL, kmrnctrlsta); __er32(hw, 8UL); __const_udelay(8590UL); if (! locked) { (*(hw->phy.ops.release))(hw); } else { } return (0); } } s32 e1000e_write_kmrn_reg(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = __e1000_write_kmrn_reg(hw, offset, (int )data, 0); return (tmp); } } s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = __e1000_write_kmrn_reg(hw, offset, (int )data, 1); return (tmp); } } static s32 e1000_set_master_slave_mode(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; s32 tmp ; { ret_val = e1e_rphy(hw, 9U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } hw->phy.original_ms_type = ((int )phy_data & 4096) != 0 ? (((int )phy_data & 2048) != 0 ? 1 : 2) : 3; switch ((unsigned int )hw->phy.ms_type) { case 1U: phy_data = (u16 )((unsigned int )phy_data | 6144U); goto ldv_41698; case 2U: phy_data = (u16 )((unsigned int )phy_data | 4096U); phy_data = (unsigned int )phy_data & 63487U; goto ldv_41698; case 3U: phy_data = (unsigned int )phy_data & 61439U; default: ; goto ldv_41698; } ldv_41698: tmp = e1e_wphy(hw, 9U, (int )phy_data); return (tmp); } } s32 e1000_copper_link_setup_82577(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_data ; s32 tmp ; { ret_val = e1e_rphy(hw, 22U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 32768U); phy_data = (u16 )((unsigned int )phy_data | 3072U); ret_val = e1e_wphy(hw, 22U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 18U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 63999U; switch ((int )hw->phy.mdix) { case 1: ; goto ldv_41708; case 2: phy_data = (u16 )((unsigned int )phy_data | 512U); goto ldv_41708; case 0: ; default: phy_data = (u16 )((unsigned int )phy_data | 1024U); goto ldv_41708; } ldv_41708: ret_val = e1e_wphy(hw, 18U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } tmp = e1000_set_master_slave_mode(hw); return (tmp); } } s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )phy->type != 8U) { phy_data = (u16 )((unsigned int )phy_data | 2048U); } else { } phy_data = (unsigned int )phy_data & 65439U; switch ((int )phy->mdix) { case 1: phy_data = phy_data; goto ldv_41719; case 2: phy_data = (u16 )((unsigned int )phy_data | 32U); goto ldv_41719; case 3: phy_data = (u16 )((unsigned int )phy_data | 64U); goto ldv_41719; case 0: ; default: phy_data = (u16 )((unsigned int )phy_data | 96U); goto ldv_41719; } ldv_41719: phy_data = (unsigned int )phy_data & 65533U; if ((int )phy->disable_polarity_correction) { phy_data = (u16 )((unsigned int )phy_data | 2U); } else { } if ((unsigned int )phy->type == 8U) { if (phy->id == 21040305U) { phy_data = (unsigned int )phy_data & 63487U; ret_val = e1e_wphy(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = (*(phy->ops.commit))(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_copper_link_setup_m88"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Error committing the PHY changes\n"; descriptor.lineno = 804U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error committing the PHY changes\n"); } else { } return (ret_val); } else { } } else { } phy_data = (u16 )((unsigned int )phy_data | 2048U); } else { } ret_val = e1e_wphy(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } if (((unsigned int )phy->type == 2U && phy->revision <= 3U) && phy->id != 21040305U) { ret_val = e1e_rphy(hw, 20U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 112U); if (phy->revision == 2U && phy->id == 21040320U) { phy_data = (unsigned int )phy_data & 61951U; phy_data = (u16 )((unsigned int )phy_data | 2048U); } else { phy_data = (unsigned int )phy_data & 61695U; phy_data = (u16 )((unsigned int )phy_data | 256U); } ret_val = e1e_wphy(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )phy->type == 8U && phy->id == 21040305U) { ret_val = e1e_wphy(hw, 29U, 3); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_wphy(hw, 30U, 0); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned long )phy->ops.commit != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { ret_val = (*(phy->ops.commit))(hw); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_copper_link_setup_m88"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Error committing the PHY changes\n"; descriptor___0.lineno = 860U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Error committing the PHY changes\n"); } else { } return (ret_val); } else { } } else { } if ((unsigned int )phy->type == 9U) { ret_val = e1e_rphy(hw, 20U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 32U); phy_data = (unsigned int )phy_data & 65507U; ret_val = e1e_wphy(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { phy = & hw->phy; ret_val = e1000_phy_hw_reset(hw); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_copper_link_setup_igp"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Error resetting the PHY.\n"; descriptor.lineno = 896U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Error resetting the PHY.\n"); } else { } return (ret_val); } else { } msleep(100U); if ((unsigned long )hw->phy.ops.set_d0_lplu_state != (unsigned long )((s32 (*)(struct e1000_hw * , bool ))0)) { ret_val = (*(hw->phy.ops.set_d0_lplu_state))(hw, 0); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_copper_link_setup_igp"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Error Disabling LPLU D0\n"; descriptor___0.lineno = 909U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Error Disabling LPLU D0\n"); } else { } return (ret_val); } else { } } else { } ret_val = e1e_rphy(hw, 18U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 61439U; switch ((int )phy->mdix) { case 1: data = (unsigned int )data & 57343U; goto ldv_41737; case 2: data = (u16 )((unsigned int )data | 8192U); goto ldv_41737; case 0: ; default: data = (u16 )((unsigned int )data | 4096U); goto ldv_41737; } ldv_41737: ret_val = e1e_wphy(hw, 18U, (int )data); if (ret_val != 0) { return (ret_val); } else { } if ((int )hw->mac.autoneg) { if ((unsigned int )phy->autoneg_advertised == 32U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 9U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 61439U; ret_val = e1e_wphy(hw, 9U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { } ret_val = e1000_set_master_slave_mode(hw); } else { } return (ret_val); } } static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 mii_autoneg_adv_reg ; u16 mii_1000t_ctrl_reg ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; struct _ddebug descriptor___4 ; long tmp___4 ; struct _ddebug descriptor___5 ; long tmp___5 ; struct _ddebug descriptor___6 ; long tmp___6 ; struct _ddebug descriptor___7 ; long tmp___7 ; { phy = & hw->phy; mii_1000t_ctrl_reg = 0U; phy->autoneg_advertised = (u16 )((int )phy->autoneg_advertised & (int )phy->autoneg_mask); ret_val = e1e_rphy(hw, 4U, & mii_autoneg_adv_reg); if (ret_val != 0) { return (ret_val); } else { } if (((int )phy->autoneg_mask & 32) != 0) { ret_val = e1e_rphy(hw, 9U, & mii_1000t_ctrl_reg); if (ret_val != 0) { return (ret_val); } else { } } else { } mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 65055U; mii_1000t_ctrl_reg = (unsigned int )mii_1000t_ctrl_reg & 64767U; descriptor.modname = "e1000e"; descriptor.function = "e1000_phy_setup_autoneg"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "autoneg_advertised %x\n"; descriptor.lineno = 1018U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "autoneg_advertised %x\n", (int )phy->autoneg_advertised); } else { } if ((int )phy->autoneg_advertised & 1) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_phy_setup_autoneg"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Advertise 10mb Half duplex\n"; descriptor___0.lineno = 1022U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Advertise 10mb Half duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 32U); } else { } if (((int )phy->autoneg_advertised & 2) != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_phy_setup_autoneg"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Advertise 10mb Full duplex\n"; descriptor___1.lineno = 1028U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Advertise 10mb Full duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 64U); } else { } if (((int )phy->autoneg_advertised & 4) != 0) { descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000_phy_setup_autoneg"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___2.format = "Advertise 100mb Half duplex\n"; descriptor___2.lineno = 1034U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "Advertise 100mb Half duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 128U); } else { } if (((int )phy->autoneg_advertised & 8) != 0) { descriptor___3.modname = "e1000e"; descriptor___3.function = "e1000_phy_setup_autoneg"; descriptor___3.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___3.format = "Advertise 100mb Full duplex\n"; descriptor___3.lineno = 1040U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)(hw->adapter)->netdev, "Advertise 100mb Full duplex\n"); } else { } mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 256U); } else { } if (((int )phy->autoneg_advertised & 16) != 0) { descriptor___4.modname = "e1000e"; descriptor___4.function = "e1000_phy_setup_autoneg"; descriptor___4.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___4.format = "Advertise 1000mb Half duplex request denied!\n"; descriptor___4.lineno = 1046U; descriptor___4.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_netdev_dbg(& descriptor___4, (struct net_device const *)(hw->adapter)->netdev, "Advertise 1000mb Half duplex request denied!\n"); } else { } } else { } if (((int )phy->autoneg_advertised & 32) != 0) { descriptor___5.modname = "e1000e"; descriptor___5.function = "e1000_phy_setup_autoneg"; descriptor___5.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___5.format = "Advertise 1000mb Full duplex\n"; descriptor___5.lineno = 1050U; descriptor___5.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); if (tmp___5 != 0L) { __dynamic_netdev_dbg(& descriptor___5, (struct net_device const *)(hw->adapter)->netdev, "Advertise 1000mb Full duplex\n"); } else { } mii_1000t_ctrl_reg = (u16 )((unsigned int )mii_1000t_ctrl_reg | 512U); } else { } switch ((unsigned int )hw->fc.current_mode) { case 0U: mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 62463U; goto ldv_41757; case 1U: mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 3072U); goto ldv_41757; case 2U: mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 2048U); mii_autoneg_adv_reg = (unsigned int )mii_autoneg_adv_reg & 64511U; goto ldv_41757; case 3U: mii_autoneg_adv_reg = (u16 )((unsigned int )mii_autoneg_adv_reg | 3072U); goto ldv_41757; default: descriptor___6.modname = "e1000e"; descriptor___6.function = "e1000_phy_setup_autoneg"; descriptor___6.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___6.format = "Flow control param set incorrectly\n"; descriptor___6.lineno = 1107U; descriptor___6.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); if (tmp___6 != 0L) { __dynamic_netdev_dbg(& descriptor___6, (struct net_device const *)(hw->adapter)->netdev, "Flow control param set incorrectly\n"); } else { } return (-3); } ldv_41757: ret_val = e1e_wphy(hw, 4U, (int )mii_autoneg_adv_reg); if (ret_val != 0) { return (ret_val); } else { } descriptor___7.modname = "e1000e"; descriptor___7.function = "e1000_phy_setup_autoneg"; descriptor___7.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___7.format = "Auto-Neg Advertising %x\n"; descriptor___7.lineno = 1115U; descriptor___7.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); if (tmp___7 != 0L) { __dynamic_netdev_dbg(& descriptor___7, (struct net_device const *)(hw->adapter)->netdev, "Auto-Neg Advertising %x\n", (int )mii_autoneg_adv_reg); } else { } if (((int )phy->autoneg_mask & 32) != 0) { ret_val = e1e_wphy(hw, 9U, (int )mii_1000t_ctrl_reg); } else { } return (ret_val); } } static s32 e1000_copper_link_autoneg(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_ctrl ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { phy = & hw->phy; phy->autoneg_advertised = (u16 )((int )phy->autoneg_advertised & (int )phy->autoneg_mask); if ((unsigned int )phy->autoneg_advertised == 0U) { phy->autoneg_advertised = phy->autoneg_mask; } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000_copper_link_autoneg"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Reconfiguring auto-neg advertisement params\n"; descriptor.lineno = 1149U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Reconfiguring auto-neg advertisement params\n"); } else { } ret_val = e1000_phy_setup_autoneg(hw); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_copper_link_autoneg"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Error Setting up Auto-Negotiation\n"; descriptor___0.lineno = 1152U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Error Setting up Auto-Negotiation\n"); } else { } return (ret_val); } else { } descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_copper_link_autoneg"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Restarting Auto-Neg\n"; descriptor___1.lineno = 1155U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Restarting Auto-Neg\n"); } else { } ret_val = e1e_rphy(hw, 0U, & phy_ctrl); if (ret_val != 0) { return (ret_val); } else { } phy_ctrl = (u16 )((unsigned int )phy_ctrl | 4608U); ret_val = e1e_wphy(hw, 0U, (int )phy_ctrl); if (ret_val != 0) { return (ret_val); } else { } if ((int )phy->autoneg_wait_to_complete) { ret_val = e1000_wait_autoneg(hw); if (ret_val != 0) { descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000_copper_link_autoneg"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___2.format = "Error while waiting for autoneg to complete\n"; descriptor___2.lineno = 1175U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "Error while waiting for autoneg to complete\n"); } else { } return (ret_val); } else { } } else { } hw->mac.get_link_status = 1; return (ret_val); } } s32 e1000e_setup_copper_link(struct e1000_hw *hw ) { s32 ret_val ; bool link ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { if ((int )hw->mac.autoneg) { ret_val = e1000_copper_link_autoneg(hw); if (ret_val != 0) { return (ret_val); } else { } } else { descriptor.modname = "e1000e"; descriptor.function = "e1000e_setup_copper_link"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Forcing Speed and Duplex\n"; descriptor.lineno = 1210U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Forcing Speed and Duplex\n"); } else { } ret_val = (*(hw->phy.ops.force_speed_duplex))(hw); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_setup_copper_link"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Error Forcing Speed and Duplex\n"; descriptor___0.lineno = 1213U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Error Forcing Speed and Duplex\n"); } else { } return (ret_val); } else { } } ret_val = e1000e_phy_has_link_generic(hw, 10U, 10U, & link); if (ret_val != 0) { return (ret_val); } else { } if ((int )link) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_setup_copper_link"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Valid link established!!!\n"; descriptor___1.lineno = 1227U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Valid link established!!!\n"); } else { } (*(hw->mac.ops.config_collision_dist))(hw); ret_val = e1000e_config_fc_after_link_up(hw); } else { descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000e_setup_copper_link"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___2.format = "Unable to establish link!!!\n"; descriptor___2.lineno = 1231U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "Unable to establish link!!!\n"); } else { } } return (ret_val); } } s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; bool link ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 0U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } e1000e_phy_force_speed_duplex_setup(hw, & phy_data); ret_val = e1e_wphy(hw, 0U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 18U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 61439U; phy_data = (unsigned int )phy_data & 57343U; ret_val = e1e_wphy(hw, 18U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000e_phy_force_speed_duplex_igp"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "IGP PSCR: %X\n"; descriptor.lineno = 1276U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "IGP PSCR: %X\n", (int )phy_data); } else { } __const_udelay(4295UL); if ((int )phy->autoneg_wait_to_complete) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_phy_force_speed_duplex_igp"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Waiting for forced speed/duplex link on IGP phy.\n"; descriptor___0.lineno = 1281U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Waiting for forced speed/duplex link on IGP phy.\n"); } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_phy_force_speed_duplex_igp"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Link taking longer than expected.\n"; descriptor___1.lineno = 1289U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Link taking longer than expected.\n"); } else { } } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); } else { } return (ret_val); } } s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; bool link ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (unsigned int )phy_data & 65439U; ret_val = e1e_wphy(hw, 16U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000e_phy_force_speed_duplex_m88"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "M88E1000 PSCR: %X\n"; descriptor.lineno = 1328U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "M88E1000 PSCR: %X\n", (int )phy_data); } else { } ret_val = e1e_rphy(hw, 0U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } e1000e_phy_force_speed_duplex_setup(hw, & phy_data); ret_val = e1e_wphy(hw, 0U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned long )hw->phy.ops.commit != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { ret_val = (*(hw->phy.ops.commit))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((int )phy->autoneg_wait_to_complete) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_phy_force_speed_duplex_m88"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Waiting for forced speed/duplex link on M88 phy.\n"; descriptor___0.lineno = 1348U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Waiting for forced speed/duplex link on M88 phy.\n"); } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { if ((unsigned int )hw->phy.type != 2U) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_phy_force_speed_duplex_m88"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Link taking longer than expected.\n"; descriptor___1.lineno = 1357U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Link taking longer than expected.\n"); } else { } } else { ret_val = e1e_wphy(hw, 29U, 29); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1000e_phy_reset_dsp(hw); if (ret_val != 0) { return (ret_val); } else { } } } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )hw->phy.type != 2U) { return (0); } else { } ret_val = e1e_rphy(hw, 20U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 112U); ret_val = e1e_wphy(hw, 20U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy_data = (u16 )((unsigned int )phy_data | 2048U); ret_val = e1e_wphy(hw, 16U, (int )phy_data); return (ret_val); } } s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; bool link ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 0U, & data); if (ret_val != 0) { return (ret_val); } else { } e1000e_phy_force_speed_duplex_setup(hw, & data); ret_val = e1e_wphy(hw, 0U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 28U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; data = (unsigned int )data & 65471U; ret_val = e1e_wphy(hw, 28U, (int )data); if (ret_val != 0) { return (ret_val); } else { } descriptor.modname = "e1000e"; descriptor.function = "e1000_phy_force_speed_duplex_ife"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "IFE PMC: %X\n"; descriptor.lineno = 1445U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "IFE PMC: %X\n", (int )data); } else { } __const_udelay(4295UL); if ((int )phy->autoneg_wait_to_complete) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_phy_force_speed_duplex_ife"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Waiting for forced speed/duplex link on IFE phy.\n"; descriptor___0.lineno = 1450U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Waiting for forced speed/duplex link on IFE phy.\n"); } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_phy_force_speed_duplex_ife"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Link taking longer than expected.\n"; descriptor___1.lineno = 1458U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Link taking longer than expected.\n"); } else { } } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } } else { } return (0); } } void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw , u16 *phy_ctrl ) { struct e1000_mac_info *mac ; u32 ctrl ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; { mac = & hw->mac; hw->fc.current_mode = 0; ctrl = __er32(hw, 0UL); ctrl = ctrl | 6144U; ctrl = ctrl & 4294966527U; ctrl = ctrl & 4294967263U; *phy_ctrl = (unsigned int )*phy_ctrl & 61439U; if (((int )mac->forced_speed_duplex & 5) != 0) { ctrl = ctrl & 4294967294U; *phy_ctrl = (unsigned int )*phy_ctrl & 65279U; descriptor.modname = "e1000e"; descriptor.function = "e1000e_phy_force_speed_duplex_setup"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Half Duplex\n"; descriptor.lineno = 1505U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Half Duplex\n"); } else { } } else { ctrl = ctrl | 1U; *phy_ctrl = (u16 )((unsigned int )*phy_ctrl | 256U); descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_phy_force_speed_duplex_setup"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Full Duplex\n"; descriptor___0.lineno = 1509U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Full Duplex\n"); } else { } } if (((int )mac->forced_speed_duplex & 12) != 0) { ctrl = ctrl | 256U; *phy_ctrl = (u16 )((unsigned int )*phy_ctrl | 8192U); *phy_ctrl = (unsigned int )*phy_ctrl & 65471U; descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000e_phy_force_speed_duplex_setup"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Forcing 100mb\n"; descriptor___1.lineno = 1517U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Forcing 100mb\n"); } else { } } else { ctrl = ctrl & 4294966527U; *phy_ctrl = (unsigned int )*phy_ctrl & 57279U; descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000e_phy_force_speed_duplex_setup"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___2.format = "Forcing 10mb\n"; descriptor___2.lineno = 1521U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "Forcing 10mb\n"); } else { } } (*(hw->mac.ops.config_collision_dist))(hw); __ew32___1(hw, 0UL, ctrl); return; } } s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw , bool active ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 25U, & data); if (ret_val != 0) { return (ret_val); } else { } if (! active) { data = (unsigned int )data & 65531U; ret_val = e1e_wphy(hw, 25U, (int )data); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )phy->smart_speed == 1U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (u16 )((unsigned int )data | 128U); ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else if ((unsigned int )phy->smart_speed == 2U) { ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); if (ret_val != 0) { return (ret_val); } else { } } else { } } else if (((unsigned int )phy->autoneg_advertised == 47U || (unsigned int )phy->autoneg_advertised == 15U) || (unsigned int )phy->autoneg_advertised == 3U) { data = (u16 )((unsigned int )data | 4U); ret_val = e1e_wphy(hw, 25U, (int )data); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 16U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 65407U; ret_val = e1e_wphy(hw, 16U, (int )data); } else { } return (ret_val); } } s32 e1000e_check_downshift(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; u16 offset ; u16 mask ; { phy = & hw->phy; switch ((unsigned int )phy->type) { case 2U: ; case 5U: ; case 8U: ; case 9U: offset = 17U; mask = 32U; goto ldv_41848; case 4U: ; case 6U: offset = 19U; mask = 32768U; goto ldv_41848; default: phy->speed_downgraded = 0; return (0); } ldv_41848: ret_val = e1e_rphy(hw, (u32 )offset, & phy_data); if (ret_val == 0) { phy->speed_downgraded = (unsigned int )((int )phy_data & (int )mask) != 0U; } else { } return (ret_val); } } s32 e1000_check_polarity_m88(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 17U, & data); if (ret_val == 0) { phy->cable_polarity = ((int )data & 2) != 0; } else { } return (ret_val); } } s32 e1000_check_polarity_igp(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; u16 offset ; u16 mask ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 17U, & data); if (ret_val != 0) { return (ret_val); } else { } if (((int )data & 49152) == 49152) { offset = 180U; mask = 120U; } else { offset = 17U; mask = 2U; } ret_val = e1e_rphy(hw, (u32 )offset, & data); if (ret_val == 0) { phy->cable_polarity = (unsigned int )((int )data & (int )mask) != 0U; } else { } return (ret_val); } } s32 e1000_check_polarity_ife(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; u16 offset ; u16 mask ; { phy = & hw->phy; if ((int )phy->polarity_correction) { offset = 16U; mask = 256U; } else { offset = 17U; mask = 32U; } ret_val = e1e_rphy(hw, (u32 )offset, & phy_data); if (ret_val == 0) { phy->cable_polarity = (unsigned int )((int )phy_data & (int )mask) != 0U; } else { } return (ret_val); } } static s32 e1000_wait_autoneg(struct e1000_hw *hw ) { s32 ret_val ; u16 i ; u16 phy_status ; { ret_val = 0; i = 45U; goto ldv_41882; ldv_41881: ret_val = e1e_rphy(hw, 1U, & phy_status); if (ret_val != 0) { goto ldv_41880; } else { } ret_val = e1e_rphy(hw, 1U, & phy_status); if (ret_val != 0) { goto ldv_41880; } else { } if (((int )phy_status & 32) != 0) { goto ldv_41880; } else { } msleep(100U); i = (u16 )((int )i - 1); ldv_41882: ; if ((unsigned int )i != 0U) { goto ldv_41881; } else { } ldv_41880: ; return (ret_val); } } s32 e1000e_phy_has_link_generic(struct e1000_hw *hw , u32 iterations , u32 usec_interval , bool *success ) { s32 ret_val ; u16 i ; u16 phy_status ; unsigned long __ms ; unsigned long tmp ; { ret_val = 0; i = 0U; goto ldv_41898; ldv_41897: ret_val = e1e_rphy(hw, 1U, & phy_status); if (ret_val != 0) { __udelay((unsigned long )usec_interval); } else { } ret_val = e1e_rphy(hw, 1U, & phy_status); if (ret_val != 0) { goto ldv_41892; } else { } if (((int )phy_status & 4) != 0) { goto ldv_41892; } else { } if (usec_interval > 999U) { __ms = (unsigned long )(usec_interval / 1000U); goto ldv_41895; ldv_41894: __const_udelay(4295000UL); ldv_41895: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_41894; } else { } } else { __udelay((unsigned long )usec_interval); } i = (u16 )((int )i + 1); ldv_41898: ; if ((u32 )i < iterations) { goto ldv_41897; } else { } ldv_41892: *success = (u32 )i < iterations; return (ret_val); } } s32 e1000e_get_cable_length_m88(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; u16 index ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } index = (u16 )(((int )phy_data & 896) >> 7); if ((unsigned int )index > 5U) { return (-2); } else { } phy->min_cable_length = e1000_m88_cable_length_table[(int )index]; phy->max_cable_length = e1000_m88_cable_length_table[(int )index + 1]; phy->cable_length = (u16 )(((int )phy->min_cable_length + (int )phy->max_cable_length) / 2); return (0); } } s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; u16 i ; u16 agc_value ; u16 cur_agc_index ; u16 max_agc_index ; u16 min_agc_index ; u16 agc_reg_array[4U] ; { phy = & hw->phy; agc_value = 0U; max_agc_index = 0U; min_agc_index = 112U; agc_reg_array[0] = 4529U; agc_reg_array[1] = 4785U; agc_reg_array[2] = 5297U; agc_reg_array[3] = 6321U; i = 0U; goto ldv_41925; ldv_41924: ret_val = e1e_rphy(hw, (u32 )agc_reg_array[(int )i], & phy_data); if (ret_val != 0) { return (ret_val); } else { } cur_agc_index = (u16 )((int )phy_data >> 9); if ((unsigned int )cur_agc_index > 112U || (unsigned int )cur_agc_index == 0U) { return (-2); } else { } if ((int )((unsigned short )e1000_igp_2_cable_length_table[(int )min_agc_index]) > (int )((unsigned short )e1000_igp_2_cable_length_table[(int )cur_agc_index])) { min_agc_index = cur_agc_index; } else { } if ((int )((unsigned short )e1000_igp_2_cable_length_table[(int )max_agc_index]) < (int )((unsigned short )e1000_igp_2_cable_length_table[(int )cur_agc_index])) { max_agc_index = cur_agc_index; } else { } agc_value = (int )((u16 )e1000_igp_2_cable_length_table[(int )cur_agc_index]) + (int )agc_value; i = (u16 )((int )i + 1); ldv_41925: ; if ((unsigned int )i <= 3U) { goto ldv_41924; } else { } agc_value = (int )agc_value - ((int )((u16 )e1000_igp_2_cable_length_table[(int )min_agc_index]) + (int )((u16 )e1000_igp_2_cable_length_table[(int )max_agc_index])); agc_value = (u16 )((unsigned int )agc_value / 2U); phy->min_cable_length = (u16 )(0 > (int )agc_value + -15 ? 0 : (int )agc_value + -15); phy->max_cable_length = (unsigned int )agc_value + 15U; phy->cable_length = (u16 )(((int )phy->min_cable_length + (int )phy->max_cable_length) / 2); return (0); } } s32 e1000e_get_phy_info_m88(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; bool link ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { phy = & hw->phy; if ((unsigned int )phy->media_type != 1U) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_get_phy_info_m88"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Phy info is only valid for copper media\n"; descriptor.lineno = 1947U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Phy info is only valid for copper media\n"); } else { } return (-3); } else { } ret_val = e1000e_phy_has_link_generic(hw, 1U, 0U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000e_get_phy_info_m88"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Phy info is only valid if link is up\n"; descriptor___0.lineno = 1956U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Phy info is only valid if link is up\n"); } else { } return (-3); } else { } ret_val = e1e_rphy(hw, 16U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy->polarity_correction = ((int )phy_data & 2) != 0; ret_val = e1000_check_polarity_m88(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 17U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy->is_mdix = ((int )phy_data & 64) != 0; if (((int )phy_data & 49152) == 32768) { ret_val = (*(hw->phy.ops.get_cable_length))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 10U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } phy->local_rx = ((int )phy_data & 8192) != 0; phy->remote_rx = ((int )phy_data & 4096) != 0; } else { phy->cable_length = 255U; phy->local_rx = 255; phy->remote_rx = 255; } return (ret_val); } } s32 e1000e_get_phy_info_igp(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; bool link ; struct _ddebug descriptor ; long tmp ; { phy = & hw->phy; ret_val = e1000e_phy_has_link_generic(hw, 1U, 0U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { descriptor.modname = "e1000e"; descriptor.function = "e1000e_get_phy_info_igp"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Phy info is only valid if link is up\n"; descriptor.lineno = 2022U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Phy info is only valid if link is up\n"); } else { } return (-3); } else { } phy->polarity_correction = 1; ret_val = e1000_check_polarity_igp(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 17U, & data); if (ret_val != 0) { return (ret_val); } else { } phy->is_mdix = ((int )data & 2048) != 0; if (((int )data & 49152) == 49152) { ret_val = (*(phy->ops.get_cable_length))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 10U, & data); if (ret_val != 0) { return (ret_val); } else { } phy->local_rx = ((int )data & 8192) != 0; phy->remote_rx = ((int )data & 4096) != 0; } else { phy->cable_length = 255U; phy->local_rx = 255; phy->remote_rx = 255; } return (ret_val); } } s32 e1000_get_phy_info_ife(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; bool link ; struct _ddebug descriptor ; long tmp ; { phy = & hw->phy; ret_val = e1000e_phy_has_link_generic(hw, 1U, 0U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { descriptor.modname = "e1000e"; descriptor.function = "e1000_get_phy_info_ife"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Phy info is only valid if link is up\n"; descriptor.lineno = 2080U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Phy info is only valid if link is up\n"); } else { } return (-3); } else { } ret_val = e1e_rphy(hw, 17U, & data); if (ret_val != 0) { return (ret_val); } else { } phy->polarity_correction = ((int )data & 16) == 0; if ((int )phy->polarity_correction) { ret_val = e1000_check_polarity_ife(hw); if (ret_val != 0) { return (ret_val); } else { } } else { phy->cable_polarity = ((int )data & 32) != 0; } ret_val = e1e_rphy(hw, 28U, & data); if (ret_val != 0) { return (ret_val); } else { } phy->is_mdix = ((int )data & 32) != 0; phy->cable_length = 255U; phy->local_rx = 255; phy->remote_rx = 255; return (0); } } s32 e1000e_phy_sw_reset(struct e1000_hw *hw ) { s32 ret_val ; u16 phy_ctrl ; { ret_val = e1e_rphy(hw, 0U, & phy_ctrl); if (ret_val != 0) { return (ret_val); } else { } phy_ctrl = (u16 )((unsigned int )phy_ctrl | 32768U); ret_val = e1e_wphy(hw, 0U, (int )phy_ctrl); if (ret_val != 0) { return (ret_val); } else { } __const_udelay(4295UL); return (ret_val); } } s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u32 ctrl ; s32 tmp ; { phy = & hw->phy; if ((unsigned long )phy->ops.check_reset_block != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { ret_val = (*(phy->ops.check_reset_block))(hw); if (ret_val != 0) { return (0); } else { } } else { } ret_val = (*(phy->ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } ctrl = __er32(hw, 0UL); __ew32___1(hw, 0UL, ctrl | 2147483648U); __er32(hw, 8UL); __udelay((unsigned long )phy->reset_delay_us); __ew32___1(hw, 0UL, ctrl); __er32(hw, 8UL); usleep_range(150UL, 300UL); (*(phy->ops.release))(hw); tmp = (*(phy->ops.get_cfg_done))(hw); return (tmp); } } s32 e1000e_get_cfg_done_generic(struct e1000_hw *hw ) { unsigned long __ms ; unsigned long tmp ; { __ms = 10UL; goto ldv_41971; ldv_41970: __const_udelay(4295000UL); ldv_41971: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_41970; } else { } return (0); } } s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw ) { struct _ddebug descriptor ; long tmp ; { descriptor.modname = "e1000e"; descriptor.function = "e1000e_phy_init_script_igp3"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Running IGP 3 PHY init script\n"; descriptor.lineno = 2203U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Running IGP 3 PHY init script\n"); } else { } e1e_wphy(hw, 12123U, 36888); e1e_wphy(hw, 12114U, 0); e1e_wphy(hw, 12209U, 35620); e1e_wphy(hw, 12210U, 63728); e1e_wphy(hw, 8208U, 4272); e1e_wphy(hw, 8209U, 0); e1e_wphy(hw, 8413U, 9370); e1e_wphy(hw, 8414U, 211); e1e_wphy(hw, 10420U, 1230); e1e_wphy(hw, 12144U, 10724); e1e_wphy(hw, 0U, 320); e1e_wphy(hw, 7984U, 5638); e1e_wphy(hw, 7985U, 47124); e1e_wphy(hw, 7989U, 42); e1e_wphy(hw, 7998U, 103); e1e_wphy(hw, 8020U, 101); e1e_wphy(hw, 8021U, 42); e1e_wphy(hw, 8022U, 42); e1e_wphy(hw, 8050U, 16304); e1e_wphy(hw, 8054U, 49407); e1e_wphy(hw, 8055U, 7660); e1e_wphy(hw, 8056U, 63983); e1e_wphy(hw, 8057U, 528); e1e_wphy(hw, 6293U, 3); e1e_wphy(hw, 6038U, 8); e1e_wphy(hw, 6040U, 53256); e1e_wphy(hw, 6296U, 55576); e1e_wphy(hw, 6266U, 2048); e1e_wphy(hw, 25U, 141); e1e_wphy(hw, 27U, 8320); e1e_wphy(hw, 20U, 69); e1e_wphy(hw, 0U, 4928); return (0); } } enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id ) { enum e1000_phy_type phy_type ; { phy_type = 0; switch (phy_id) { case 21040176U: ; case 21040208U: ; case 21040320U: ; case 21040160U: phy_type = 2; goto ldv_41986; case 44565376U: phy_type = 4; goto ldv_41986; case 21040288U: phy_type = 5; goto ldv_41986; case 44565392U: phy_type = 6; goto ldv_41986; case 44565296U: ; case 44565280U: ; case 44565264U: phy_type = 7; goto ldv_41986; case 21040304U: ; case 21040305U: phy_type = 8; goto ldv_41986; case 5099584U: phy_type = 9; goto ldv_41986; case 22282320U: phy_type = 10; goto ldv_41986; case 22282384U: phy_type = 11; goto ldv_41986; case 22282400U: phy_type = 12; goto ldv_41986; default: phy_type = 0; goto ldv_41986; } ldv_41986: ; return (phy_type); } } s32 e1000e_determine_phy_address(struct e1000_hw *hw ) { u32 phy_addr ; u32 i ; enum e1000_phy_type phy_type ; { phy_addr = 0U; phy_type = 0; hw->phy.id = (u32 )phy_type; phy_addr = 0U; goto ldv_42009; ldv_42008: hw->phy.addr = phy_addr; i = 0U; ldv_42006: e1000e_get_phy_id(hw); phy_type = e1000e_get_phy_type_from_id(hw->phy.id); if ((unsigned int )phy_type != 0U) { return (0); } else { } usleep_range(1000UL, 2000UL); i = i + 1U; if (i <= 9U) { goto ldv_42006; } else { } phy_addr = phy_addr + 1U; ldv_42009: ; if (phy_addr <= 7U) { goto ldv_42008; } else { } return (-6); } } static u32 e1000_get_phy_addr_for_bm_page(u32 page , u32 reg ) { u32 phy_addr ; { phy_addr = 2U; if ((page > 767U || (page == 0U && reg == 25U)) || reg == 31U) { phy_addr = 1U; } else { } return (phy_addr); } } s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw , u32 offset , u16 data ) { s32 ret_val ; u32 page ; u32 page_shift ; u32 page_select ; { page = offset >> 5; ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } if (page == 800U) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, & data, 0, 0); goto release; } else { } hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); if (offset > 15U) { if (hw->phy.addr == 1U) { page_shift = 5U; page_select = 31U; } else { page_shift = 0U; page_select = 22U; } ret_val = e1000e_write_phy_reg_mdic(hw, page_select, (int )((u16 )(page << (int )page_shift))); if (ret_val != 0) { goto release; } else { } } else { } ret_val = e1000e_write_phy_reg_mdic(hw, offset & 31U, (int )data); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 ret_val ; u32 page ; u32 page_shift ; u32 page_select ; { page = offset >> 5; ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } if (page == 800U) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 1, 0); goto release; } else { } hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); if (offset > 15U) { if (hw->phy.addr == 1U) { page_shift = 5U; page_select = 31U; } else { page_shift = 0U; page_select = 22U; } ret_val = e1000e_write_phy_reg_mdic(hw, page_select, (int )((u16 )(page << (int )page_shift))); if (ret_val != 0) { goto release; } else { } } else { } ret_val = e1000e_read_phy_reg_mdic(hw, offset & 31U, data); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 ret_val ; u16 page ; { page = (unsigned short )(offset >> 5); ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )page == 800U) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 1, 0); goto release; } else { } hw->phy.addr = 1U; if (offset > 15U) { ret_val = e1000e_write_phy_reg_mdic(hw, 22U, (int )page); if (ret_val != 0) { goto release; } else { } } else { } ret_val = e1000e_read_phy_reg_mdic(hw, offset & 31U, data); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw , u32 offset , u16 data ) { s32 ret_val ; u16 page ; { page = (unsigned short )(offset >> 5); ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } if ((unsigned int )page == 800U) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, & data, 0, 0); goto release; } else { } hw->phy.addr = 1U; if (offset > 15U) { ret_val = e1000e_write_phy_reg_mdic(hw, 22U, (int )page); if (ret_val != 0) { goto release; } else { } } else { } ret_val = e1000e_write_phy_reg_mdic(hw, offset & 31U, (int )data); release: (*(hw->phy.ops.release))(hw); return (ret_val); } } s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw , u16 *phy_reg ) { s32 ret_val ; u16 temp ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; s32 tmp___2 ; { hw->phy.addr = 1U; ret_val = e1000_set_page_igp(hw, 24608); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_enable_phy_wakeup_reg_access_bm"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Could not set Port Control page\n"; descriptor.lineno = 2607U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Could not set Port Control page\n"); } else { } return (ret_val); } else { } ret_val = e1000e_read_phy_reg_mdic(hw, 17U, phy_reg); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_enable_phy_wakeup_reg_access_bm"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Could not read PHY register %d.%d\n"; descriptor___0.lineno = 2614U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Could not read PHY register %d.%d\n", 769, 17); } else { } return (ret_val); } else { } temp = *phy_reg; temp = (u16 )((unsigned int )temp | 4U); temp = (unsigned int )temp & 65487U; ret_val = e1000e_write_phy_reg_mdic(hw, 17U, (int )temp); if (ret_val != 0) { descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_enable_phy_wakeup_reg_access_bm"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Could not write PHY register %d.%d\n"; descriptor___1.lineno = 2628U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Could not write PHY register %d.%d\n", 769, 17); } else { } return (ret_val); } else { } tmp___2 = e1000_set_page_igp(hw, 25600); return (tmp___2); } } s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw , u16 *phy_reg ) { s32 ret_val ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { ret_val = e1000_set_page_igp(hw, 24608); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_disable_phy_wakeup_reg_access_bm"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Could not set Port Control page\n"; descriptor.lineno = 2656U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Could not set Port Control page\n"); } else { } return (ret_val); } else { } ret_val = e1000e_write_phy_reg_mdic(hw, 17U, (int )*phy_reg); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_disable_phy_wakeup_reg_access_bm"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Could not restore PHY register %d.%d\n"; descriptor___0.lineno = 2664U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Could not restore PHY register %d.%d\n", 769, 17); } else { } } else { } return (ret_val); } } static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw , u32 offset , u16 *data , bool read , bool page_set ) { s32 ret_val ; u16 reg ; u16 page ; u16 phy_reg ; struct _ddebug descriptor ; long tmp ; u32 tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; struct _ddebug descriptor___3 ; long tmp___4 ; { reg = ((unsigned int )((unsigned short )offset) & 31U) | ((unsigned int )((unsigned short )(offset >> 16)) & 65504U); page = (unsigned short )(offset >> 5); phy_reg = 0U; if ((unsigned int )hw->mac.type == 9U) { tmp___0 = __er32(hw, 3856UL); if ((tmp___0 & 64U) == 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_access_phy_wakeup_reg_bm"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Attempting to access page %d while gig enabled.\n"; descriptor.lineno = 2706U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Attempting to access page %d while gig enabled.\n", (int )page); } else { } } else { } } else { } if (! page_set) { ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, & phy_reg); if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_access_phy_wakeup_reg_bm"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Could not enable PHY wakeup reg access\n"; descriptor___0.lineno = 2712U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Could not enable PHY wakeup reg access\n"); } else { } return (ret_val); } else { } } else { } descriptor___1.modname = "e1000e"; descriptor___1.function = "e1000_access_phy_wakeup_reg_bm"; descriptor___1.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___1.format = "Accessing PHY page %d reg 0x%x\n"; descriptor___1.lineno = 2717U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___1, (struct net_device const *)(hw->adapter)->netdev, "Accessing PHY page %d reg 0x%x\n", (int )page, (int )reg); } else { } ret_val = e1000e_write_phy_reg_mdic(hw, 17U, (int )reg); if (ret_val != 0) { descriptor___2.modname = "e1000e"; descriptor___2.function = "e1000_access_phy_wakeup_reg_bm"; descriptor___2.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___2.format = "Could not write address opcode to page %d\n"; descriptor___2.lineno = 2722U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); if (tmp___3 != 0L) { __dynamic_netdev_dbg(& descriptor___2, (struct net_device const *)(hw->adapter)->netdev, "Could not write address opcode to page %d\n", (int )page); } else { } return (ret_val); } else { } if ((int )read) { ret_val = e1000e_read_phy_reg_mdic(hw, 18U, data); } else { ret_val = e1000e_write_phy_reg_mdic(hw, 18U, (int )*data); } if (ret_val != 0) { descriptor___3.modname = "e1000e"; descriptor___3.function = "e1000_access_phy_wakeup_reg_bm"; descriptor___3.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___3.format = "Could not access PHY reg %d.%d\n"; descriptor___3.lineno = 2737U; descriptor___3.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); if (tmp___4 != 0L) { __dynamic_netdev_dbg(& descriptor___3, (struct net_device const *)(hw->adapter)->netdev, "Could not access PHY reg %d.%d\n", (int )page, (int )reg); } else { } return (ret_val); } else { } if (! page_set) { ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, & phy_reg); } else { } return (ret_val); } } void e1000_power_up_phy_copper(struct e1000_hw *hw ) { u16 mii_reg ; { mii_reg = 0U; e1e_rphy(hw, 0U, & mii_reg); mii_reg = (unsigned int )mii_reg & 63487U; e1e_wphy(hw, 0U, (int )mii_reg); return; } } void e1000_power_down_phy_copper(struct e1000_hw *hw ) { u16 mii_reg ; { mii_reg = 0U; e1e_rphy(hw, 0U, & mii_reg); mii_reg = (u16 )((unsigned int )mii_reg | 2048U); e1e_wphy(hw, 0U, (int )mii_reg); usleep_range(1000UL, 2000UL); return; } } static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw , u32 offset , u16 *data , bool locked , bool page_set ) { s32 ret_val ; u16 page ; u16 reg ; u32 phy_addr ; u32 tmp ; struct _ddebug descriptor ; long tmp___0 ; { page = (unsigned short )(offset >> 5); reg = ((unsigned int )((unsigned short )offset) & 31U) | ((unsigned int )((unsigned short )(offset >> 16)) & 65504U); tmp = e1000_get_phy_addr_for_hv_page((u32 )page); hw->phy.addr = tmp; phy_addr = tmp; if (! locked) { ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )page == 800U) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 1, (int )page_set); goto out; } else { } if ((unsigned int )page != 0U && (unsigned int )page <= 767U) { ret_val = e1000_access_phy_debug_regs_hv(hw, offset, data, 1); goto out; } else { } if (! page_set) { if ((unsigned int )page == 768U) { page = 0U; } else { } if ((unsigned int )reg > 15U) { ret_val = e1000_set_page_igp(hw, (int )page << 5U); hw->phy.addr = phy_addr; if (ret_val != 0) { goto out; } else { } } else { } } else { } descriptor.modname = "e1000e"; descriptor.function = "__e1000_read_phy_reg_hv"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "reading PHY page %d (or 0x%x shifted) reg 0x%x\n"; descriptor.lineno = 2839U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "reading PHY page %d (or 0x%x shifted) reg 0x%x\n", (int )page, (int )page << 5, (int )reg); } else { } ret_val = e1000e_read_phy_reg_mdic(hw, (u32 )reg & 31U, data); out: ; if (! locked) { (*(hw->phy.ops.release))(hw); } else { } return (ret_val); } } s32 e1000_read_phy_reg_hv(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = __e1000_read_phy_reg_hv(hw, offset, data, 0, 0); return (tmp); } } s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = __e1000_read_phy_reg_hv(hw, offset, data, 1, 0); return (tmp); } } s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw , u32 offset , u16 *data ) { s32 tmp ; { tmp = __e1000_read_phy_reg_hv(hw, offset, data, 1, 1); return (tmp); } } static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw , u32 offset , u16 data , bool locked , bool page_set ) { s32 ret_val ; u16 page ; u16 reg ; u32 phy_addr ; u32 tmp ; u16 data2 ; struct _ddebug descriptor ; long tmp___0 ; { page = (unsigned short )(offset >> 5); reg = ((unsigned int )((unsigned short )offset) & 31U) | ((unsigned int )((unsigned short )(offset >> 16)) & 65504U); tmp = e1000_get_phy_addr_for_hv_page((u32 )page); hw->phy.addr = tmp; phy_addr = tmp; if (! locked) { ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return (ret_val); } else { } } else { } if ((unsigned int )page == 800U) { ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, & data, 0, (int )page_set); goto out; } else { } if ((unsigned int )page != 0U && (unsigned int )page <= 767U) { ret_val = e1000_access_phy_debug_regs_hv(hw, offset, & data, 0); goto out; } else { } if (! page_set) { if ((unsigned int )page == 768U) { page = 0U; } else { } if (((((unsigned int )hw->phy.type == 9U && hw->phy.revision != 0U) && hw->phy.addr == 2U) && ((unsigned int )reg & 31U) == 0U) && ((int )data & 2048) != 0) { data2 = 32511U; ret_val = e1000_access_phy_debug_regs_hv(hw, 67U, & data2, 0); if (ret_val != 0) { goto out; } else { } } else { } if ((unsigned int )reg > 15U) { ret_val = e1000_set_page_igp(hw, (int )page << 5U); hw->phy.addr = phy_addr; if (ret_val != 0) { goto out; } else { } } else { } } else { } descriptor.modname = "e1000e"; descriptor.function = "__e1000_write_phy_reg_hv"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "writing PHY page %d (or 0x%x shifted) reg 0x%x\n"; descriptor.lineno = 2961U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "writing PHY page %d (or 0x%x shifted) reg 0x%x\n", (int )page, (int )page << 5, (int )reg); } else { } ret_val = e1000e_write_phy_reg_mdic(hw, (u32 )reg & 31U, (int )data); out: ; if (! locked) { (*(hw->phy.ops.release))(hw); } else { } return (ret_val); } } s32 e1000_write_phy_reg_hv(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = __e1000_write_phy_reg_hv(hw, offset, (int )data, 0, 0); return (tmp); } } s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = __e1000_write_phy_reg_hv(hw, offset, (int )data, 1, 0); return (tmp); } } s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw , u32 offset , u16 data ) { s32 tmp ; { tmp = __e1000_write_phy_reg_hv(hw, offset, (int )data, 1, 1); return (tmp); } } static u32 e1000_get_phy_addr_for_hv_page(u32 page ) { u32 phy_addr ; { phy_addr = 2U; if (page > 767U) { phy_addr = 1U; } else { } return (phy_addr); } } static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw , u32 offset , u16 *data , bool read ) { s32 ret_val ; u32 addr_reg ; u32 data_reg ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { addr_reg = (unsigned int )hw->phy.type == 9U ? 29U : 16U; data_reg = addr_reg + 1U; hw->phy.addr = 2U; ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (int )((u16 )offset) & 63); if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_access_phy_debug_regs_hv"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Could not write the Address Offset port register\n"; descriptor.lineno = 3059U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Could not write the Address Offset port register\n"); } else { } return (ret_val); } else { } if ((int )read) { ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); } else { ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, (int )*data); } if (ret_val != 0) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_access_phy_debug_regs_hv"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Could not access the Data port register\n"; descriptor___0.lineno = 3070U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Could not access the Data port register\n"); } else { } } else { } return (ret_val); } } s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw ) { s32 ret_val ; u16 data ; s32 tmp ; { ret_val = 0; if ((unsigned int )hw->phy.type != 9U) { return (0); } else { } e1e_rphy(hw, 0U, & data); if (((int )data & 16384) != 0) { return (0); } else { } ret_val = e1e_rphy(hw, 17U, & data); if (ret_val != 0) { return (ret_val); } else { } data = (unsigned int )data & 52224U; if ((unsigned int )data != 35840U) { return (0); } else { } msleep(200U); ret_val = e1e_wphy(hw, 24848U, 1028); if (ret_val != 0) { return (ret_val); } else { } tmp = e1e_wphy(hw, 24848U, 1024); return (tmp); } } s32 e1000_check_polarity_82577(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 26U, & data); if (ret_val == 0) { phy->cable_polarity = ((int )data & 1024) != 0; } else { } return (ret_val); } } s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; bool link ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 0U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } e1000e_phy_force_speed_duplex_setup(hw, & phy_data); ret_val = e1e_wphy(hw, 0U, (int )phy_data); if (ret_val != 0) { return (ret_val); } else { } __const_udelay(4295UL); if ((int )phy->autoneg_wait_to_complete) { descriptor.modname = "e1000e"; descriptor.function = "e1000_phy_force_speed_duplex_82577"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Waiting for forced speed/duplex link on 82577 phy\n"; descriptor.lineno = 3173U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Waiting for forced speed/duplex link on 82577 phy\n"); } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_phy_force_speed_duplex_82577"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor___0.format = "Link taking longer than expected.\n"; descriptor___0.lineno = 3181U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Link taking longer than expected.\n"); } else { } } else { } ret_val = e1000e_phy_has_link_generic(hw, 20U, 100000U, & link); } else { } return (ret_val); } } s32 e1000_get_phy_info_82577(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 data ; bool link ; struct _ddebug descriptor ; long tmp ; { phy = & hw->phy; ret_val = e1000e_phy_has_link_generic(hw, 1U, 0U, & link); if (ret_val != 0) { return (ret_val); } else { } if (! link) { descriptor.modname = "e1000e"; descriptor.function = "e1000_get_phy_info_82577"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/phy.c.prepared"; descriptor.format = "Phy info is only valid if link is up\n"; descriptor.lineno = 3212U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Phy info is only valid if link is up\n"); } else { } return (-3); } else { } phy->polarity_correction = 1; ret_val = e1000_check_polarity_82577(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 26U, & data); if (ret_val != 0) { return (ret_val); } else { } phy->is_mdix = ((int )data & 2048) != 0; if (((int )data & 768) == 512) { ret_val = (*(hw->phy.ops.get_cable_length))(hw); if (ret_val != 0) { return (ret_val); } else { } ret_val = e1e_rphy(hw, 10U, & data); if (ret_val != 0) { return (ret_val); } else { } phy->local_rx = ((int )data & 8192) != 0; phy->remote_rx = ((int )data & 4096) != 0; } else { phy->cable_length = 255U; phy->local_rx = 255; phy->remote_rx = 255; } return (0); } } s32 e1000_get_cable_length_82577(struct e1000_hw *hw ) { struct e1000_phy_info *phy ; s32 ret_val ; u16 phy_data ; u16 length ; { phy = & hw->phy; ret_val = e1e_rphy(hw, 31U, & phy_data); if (ret_val != 0) { return (ret_val); } else { } length = (u16 )(((int )phy_data & 1020) >> 2); if ((unsigned int )length == 255U) { return (-2); } else { } phy->cable_length = length; return (0); } } void ldv_mutex_lock_71(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_72(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_73(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_74(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_75(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } extern char *kstrdup(char const * , gfp_t ) ; int ldv_mutex_trylock_84(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_82(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_85(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_81(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_83(struct mutex *ldv_func_arg1 ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_notice(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void kfree(void const * ) ; void e1000e_check_options(struct e1000_adapter *adapter ) ; unsigned int copybreak ; unsigned int copybreak = 256U; static int TxIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxIntDelay ; static int TxAbsIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_TxAbsIntDelay ; static int RxIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxIntDelay ; static int RxAbsIntDelay[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_RxAbsIntDelay ; static int InterruptThrottleRate[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_InterruptThrottleRate ; static int IntMode[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_IntMode ; static int SmartPowerDownEnable[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_SmartPowerDownEnable ; static int KumeranLockLoss[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_KumeranLockLoss ; static int WriteProtectNVM[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_WriteProtectNVM ; static int CrcStripping[33U] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; static unsigned int num_CrcStripping ; static int e1000_validate_option(unsigned int *value , struct e1000_option const *opt , struct e1000_adapter *adapter ) { int i ; struct e1000_opt_list *ent ; { if (*value == 4294967295U) { *value = (unsigned int )opt->def; return (0); } else { } switch ((unsigned int )opt->type) { case 0U: ; switch (*value) { case 1U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s Enabled\n", opt->name); return (0); case 0U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s Disabled\n", opt->name); return (0); } goto ldv_42539; case 1U: ; if (*value >= (unsigned int )opt->arg.r.min && *value <= (unsigned int )opt->arg.r.max) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to %i\n", opt->name, *value); return (0); } else { } goto ldv_42539; case 2U: i = 0; goto ldv_42545; ldv_42544: ent = opt->arg.l.p + (unsigned long )i; if (*value == (unsigned int )ent->i) { if ((int )((signed char )*(ent->str)) != 0) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s\n", ent->str); } else { } return (0); } else { } i = i + 1; ldv_42545: ; if ((int )opt->arg.l.nr > i) { goto ldv_42544; } else { } goto ldv_42539; default: __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/param.c.prepared"), "i" (265), "i" (12UL)); ldv_42548: ; goto ldv_42548; } ldv_42539: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Invalid %s value specified (%i) %s\n", opt->name, *value, opt->err); *value = (unsigned int )opt->def; return (-1); } } void e1000e_check_options(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; int bd ; struct e1000_option opt ; struct e1000_option opt___0 ; struct e1000_option opt___1 ; struct e1000_option opt___2 ; struct e1000_option opt___3 ; int tmp ; struct e1000_option opt___4 ; char *tmp___0 ; char *tmp___1 ; unsigned int int_mode ; struct e1000_option opt___5 ; unsigned int spd ; struct e1000_option opt___6 ; unsigned int crc_stripping ; struct e1000_option opt___7 ; bool enabled ; unsigned int kmrn_lock_loss ; struct e1000_option opt___8 ; unsigned int write_protect_nvm ; { hw = & adapter->hw; bd = (int )adapter->bd_number; if (bd > 31) { dev_notice((struct device const *)(& (adapter->pdev)->dev), "Warning: no configuration for board #%i\n", bd); dev_notice((struct device const *)(& (adapter->pdev)->dev), "Using defaults for all values\n"); } else { } opt.type = 1; opt.name = "Transmit Interrupt Delay"; opt.err = "using default of 8"; opt.def = 8; opt.arg.r.min = 0; opt.arg.r.max = 65535; if ((unsigned int )bd < num_TxIntDelay) { adapter->tx_int_delay = (u32 )TxIntDelay[bd]; e1000_validate_option(& adapter->tx_int_delay, & opt, adapter); } else { adapter->tx_int_delay = (u32 )opt.def; } opt___0.type = 1; opt___0.name = "Transmit Absolute Interrupt Delay"; opt___0.err = "using default of 32"; opt___0.def = 32; opt___0.arg.r.min = 0; opt___0.arg.r.max = 65535; if ((unsigned int )bd < num_TxAbsIntDelay) { adapter->tx_abs_int_delay = (u32 )TxAbsIntDelay[bd]; e1000_validate_option(& adapter->tx_abs_int_delay, & opt___0, adapter); } else { adapter->tx_abs_int_delay = (u32 )opt___0.def; } opt___1.type = 1; opt___1.name = "Receive Interrupt Delay"; opt___1.err = "using default of 0"; opt___1.def = 0; opt___1.arg.r.min = 0; opt___1.arg.r.max = 65535; if ((unsigned int )bd < num_RxIntDelay) { adapter->rx_int_delay = (u32 )RxIntDelay[bd]; e1000_validate_option(& adapter->rx_int_delay, (struct e1000_option const *)(& opt___1), adapter); } else { adapter->rx_int_delay = (u32 )opt___1.def; } opt___2.type = 1; opt___2.name = "Receive Absolute Interrupt Delay"; opt___2.err = "using default of 8"; opt___2.def = 8; opt___2.arg.r.min = 0; opt___2.arg.r.max = 65535; if ((unsigned int )bd < num_RxAbsIntDelay) { adapter->rx_abs_int_delay = (u32 )RxAbsIntDelay[bd]; e1000_validate_option(& adapter->rx_abs_int_delay, & opt___2, adapter); } else { adapter->rx_abs_int_delay = (u32 )opt___2.def; } opt___3.type = 1; opt___3.name = "Interrupt Throttling Rate (ints/sec)"; opt___3.err = "using default of 3"; opt___3.def = 3; opt___3.arg.r.min = 100; opt___3.arg.r.max = 100000; if ((unsigned int )bd < num_InterruptThrottleRate) { adapter->itr = (u32 )InterruptThrottleRate[bd]; if (adapter->itr > 4U) { tmp = e1000_validate_option(& adapter->itr, & opt___3, adapter); if (tmp != 0) { adapter->itr = (u32 )opt___3.def; } else { } } else { } } else { adapter->itr = (u32 )opt___3.def; if (adapter->itr > 4U) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to default %d\n", opt___3.name, adapter->itr); } else { } } adapter->itr_setting = adapter->itr; switch (adapter->itr) { case 0U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s turned off\n", opt___3.name); goto ldv_42560; case 1U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to dynamic mode\n", opt___3.name); adapter->itr = 20000U; goto ldv_42560; case 3U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to dynamic conservative mode\n", opt___3.name); adapter->itr = 20000U; goto ldv_42560; case 4U: _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s set to simplified (2000-8000 ints) mode\n", opt___3.name); goto ldv_42560; default: adapter->itr_setting = adapter->itr_setting & 4294967292U; goto ldv_42560; } ldv_42560: opt___4.type = 1; opt___4.name = "Interrupt Mode"; opt___4.err = 0; opt___4.def = 0; opt___4.arg.l.nr = 0; opt___4.arg.l.p = 0; if ((adapter->flags & 1024U) != 0U) { tmp___0 = kstrdup("defaulting to 2 (MSI-X)", 208U); opt___4.err = (char const *)tmp___0; opt___4.def = 2; opt___4.arg.r.max = 2; } else { tmp___1 = kstrdup("defaulting to 1 (MSI)", 208U); opt___4.err = (char const *)tmp___1; opt___4.def = 1; opt___4.arg.r.max = 1; } if ((unsigned long )opt___4.err == (unsigned long )((char const *)0)) { dev_err((struct device const *)(& (adapter->pdev)->dev), "Failed to allocate memory\n"); return; } else { } if ((unsigned int )bd < num_IntMode) { int_mode = (unsigned int )IntMode[bd]; e1000_validate_option(& int_mode, (struct e1000_option const *)(& opt___4), adapter); adapter->int_mode = (int )int_mode; } else { adapter->int_mode = opt___4.def; } kfree((void const *)opt___4.err); opt___5.type = 0; opt___5.name = "PHY Smart Power Down"; opt___5.err = "defaulting to Disabled"; opt___5.def = 0; opt___5.arg.l.nr = 0; opt___5.arg.l.p = 0; if ((unsigned int )bd < num_SmartPowerDownEnable) { spd = (unsigned int )SmartPowerDownEnable[bd]; e1000_validate_option(& spd, & opt___5, adapter); if ((adapter->flags & 2048U) != 0U && spd != 0U) { adapter->flags = adapter->flags | 67108864U; } else { } } else { } opt___6.type = 0; opt___6.name = "CRC Stripping"; opt___6.err = "defaulting to Enabled"; opt___6.def = 1; opt___6.arg.l.nr = 0; opt___6.arg.l.p = 0; if ((unsigned int )bd < num_CrcStripping) { crc_stripping = (unsigned int )CrcStripping[bd]; e1000_validate_option(& crc_stripping, & opt___6, adapter); if (crc_stripping == 1U) { adapter->flags2 = adapter->flags2 | 1U; adapter->flags2 = adapter->flags2 | 4096U; } else { } } else { adapter->flags2 = adapter->flags2 | 1U; adapter->flags2 = adapter->flags2 | 4096U; } opt___7.type = 0; opt___7.name = "Kumeran Lock Loss Workaround"; opt___7.err = "defaulting to Enabled"; opt___7.def = 1; opt___7.arg.l.nr = 0; opt___7.arg.l.p = 0; enabled = opt___7.def != 0; if ((unsigned int )bd < num_KumeranLockLoss) { kmrn_lock_loss = (unsigned int )KumeranLockLoss[bd]; e1000_validate_option(& kmrn_lock_loss, & opt___7, adapter); enabled = kmrn_lock_loss != 0U; } else { } if ((unsigned int )hw->mac.type == 6U) { e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, (int )enabled); } else { } opt___8.type = 0; opt___8.name = "Write-protect NVM"; opt___8.err = "defaulting to Enabled"; opt___8.def = 1; opt___8.arg.l.nr = 0; opt___8.arg.l.p = 0; if ((adapter->flags & 512U) != 0U) { if ((unsigned int )bd < num_WriteProtectNVM) { write_protect_nvm = (unsigned int )WriteProtectNVM[bd]; e1000_validate_option(& write_protect_nvm, & opt___8, adapter); if (write_protect_nvm != 0U) { adapter->flags = adapter->flags | 256U; } else { } } else if (opt___8.def != 0) { adapter->flags = adapter->flags | 256U; } else { } } else { } return; } } void ldv_main7_sequence_infinite_withcheck_stateful(void) { int tmp ; int tmp___0 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_42595; ldv_42594: tmp = __VERIFIER_nondet_int(); switch (tmp) { default: ; goto ldv_42593; } ldv_42593: ; ldv_42595: tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { goto ldv_42594; } else { } ldv_check_final_state(); return; } } void ldv_mutex_lock_81(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_82(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_83(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_84(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_85(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static void set_bit(unsigned int nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static int constant_test_bit(unsigned int nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr / 64U)) >> ((int )nr & 63)) & 1); } } extern int snprintf(char * , size_t , char const * , ...) ; extern struct pv_irq_ops pv_irq_ops ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/exper_fp/inst/current/envs/linux-3.10-rc1.tar/linux-3.10-rc1/arch/x86/include/asm/paravirt.h"), "i" (824), "i" (12UL)); ldv_4781: ; goto ldv_4781; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } int ldv_mutex_trylock_94(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_92(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_95(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_91(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_93(struct mutex *ldv_func_arg1 ) ; extern unsigned long volatile jiffies ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static bool device_can_wakeup(struct device *dev ) { { return ((int )dev->power.can_wakeup != 0); } } extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } tmp = kobject_name(& dev->kobj); return (tmp); } } extern unsigned long msleep_interruptible(unsigned int ) ; extern void *vmalloc(unsigned long ) ; extern void vfree(void const * ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern int __VERIFIER_nondet_int(void); extern void *malloc(size_t size); long ldv_is_err(const void *ptr) { return ((unsigned long)ptr > ((unsigned long)-4095)); } void *ldv_malloc(size_t size) { if (__VERIFIER_nondet_int()) { void *res = malloc(size); assume_abort_if_not(!ldv_is_err(res)); return res; } else { return ((void *)0); } } void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && 0xffffffffffffffffUL / size < n) { return (0); } else { } tmp = __kmalloc(n * size, flags); return (tmp); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc_array(n, size, flags | 32768U); return (tmp); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_27212: ; goto ldv_27212; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, 0xffffea0000000000UL + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, 0xffffea0000000000UL + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_27221: ; goto ldv_27221; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); ldv_27271: ; goto ldv_27271; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); ldv_27279: ; goto ldv_27279; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_device(dev, addr, size, (int )dir); return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); return (tmp___0); } else { } return (dma_addr == 0ULL); } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } tmp___0 = is_device_dma_capable(dev); if (tmp___0 == 0) { return (0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return (0); } else { } tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { warn_slowpath_null("/work/ldvuser/exper_fp/inst/current/envs/linux-3.10-rc1.tar/linux-3.10-rc1/arch/x86/include/asm/dma-mapping.h", 166); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { (*(ops->free))(dev, size, vaddr, bus, attrs); } else { } return; } } extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *__alloc_skb(unsigned int , gfp_t , int , int ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { tmp = __alloc_skb(size, priority, 0, -1); return (tmp); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern int ethtool_op_get_ts_info(struct net_device * , struct ethtool_ts_info * ) ; __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 2816U); } } extern int dev_open(struct net_device * ) ; extern int dev_close(struct net_device * ) ; __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& dev->state)); return (tmp != 0); } } __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { tmp = constant_test_bit(2U, (unsigned long const volatile *)(& dev->state)); return (tmp == 0); } } extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq, handler, 0, flags, name, dev); return (tmp); } } extern void free_irq(unsigned int , void * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { tmp = dev_name(& pdev->dev); return (tmp); } } extern int __pm_runtime_idle(struct device * , int ) ; extern int __pm_runtime_resume(struct device * , int ) ; __inline static int pm_runtime_get_sync(struct device *dev ) { int tmp ; { tmp = __pm_runtime_resume(dev, 4); return (tmp); } } __inline static int pm_runtime_put_sync(struct device *dev ) { int tmp ; { tmp = __pm_runtime_idle(dev, 4); return (tmp); } } extern int ptp_clock_index(struct ptp_clock * ) ; __inline static u32 mmd_eee_cap_to_ethtool_sup_t(u16 eee_cap ) { u32 supported ; { supported = 0U; if (((int )eee_cap & 2) != 0) { supported = supported | 8U; } else { } if (((int )eee_cap & 4) != 0) { supported = supported | 32U; } else { } if (((int )eee_cap & 8) != 0) { supported = supported | 4096U; } else { } if (((int )eee_cap & 16) != 0) { supported = supported | 131072U; } else { } if (((int )eee_cap & 32) != 0) { supported = supported | 262144U; } else { } if (((int )eee_cap & 64) != 0) { supported = supported | 524288U; } else { } return (supported); } } __inline static u16 ethtool_adv_to_mmd_eee_adv_t(u32 adv ) { u16 reg ; { reg = 0U; if ((adv & 8U) != 0U) { reg = (u16 )((unsigned int )reg | 2U); } else { } if ((adv & 32U) != 0U) { reg = (u16 )((unsigned int )reg | 4U); } else { } if ((adv & 4096U) != 0U) { reg = (u16 )((unsigned int )reg | 8U); } else { } if ((adv & 131072U) != 0U) { reg = (u16 )((unsigned int )reg | 16U); } else { } if ((adv & 262144U) != 0U) { reg = (u16 )((unsigned int )reg | 32U); } else { } if ((adv & 524288U) != 0U) { reg = (u16 )((unsigned int )reg | 64U); } else { } return (reg); } } char e1000e_driver_name[7U] ; char const e1000e_driver_version[8U] ; void e1000e_set_ethtool_ops(struct net_device *netdev ) ; int e1000e_up(struct e1000_adapter *adapter ) ; void e1000e_down(struct e1000_adapter *adapter ) ; void e1000e_reinit_locked(struct e1000_adapter *adapter ) ; void e1000e_reset(struct e1000_adapter *adapter ) ; void e1000e_power_up_phy(struct e1000_adapter *adapter ) ; int e1000e_setup_rx_resources(struct e1000_ring *rx_ring ) ; int e1000e_setup_tx_resources(struct e1000_ring *tx_ring ) ; void e1000e_free_rx_resources(struct e1000_ring *rx_ring ) ; void e1000e_free_tx_resources(struct e1000_ring *tx_ring ) ; struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev , struct rtnl_link_stats64 *stats ) ; void e1000e_set_interrupt_capability(struct e1000_adapter *adapter ) ; void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter ) ; void e1000e_get_hw_control(struct e1000_adapter *adapter ) ; void e1000e_release_hw_control(struct e1000_adapter *adapter ) ; void e1000e_write_itr(struct e1000_adapter *adapter , u32 itr ) ; __inline static s32 __ew32_prepare___6(struct e1000_hw *hw ) { s32 i ; u32 tmp ; { i = 2000; goto ldv_42010; ldv_42009: __const_udelay(214750UL); ldv_42010: tmp = __er32(hw, 23380UL); if ((tmp & 16777216U) != 0U) { i = i - 1; if (i != 0) { goto ldv_42009; } else { goto ldv_42011; } } else { } ldv_42011: ; return (i); } } __inline static void __ew32___6(struct e1000_hw *hw , unsigned long reg , u32 val ) { { if (((hw->adapter)->flags2 & 2048U) != 0U) { __ew32_prepare___6(hw); } else { } writel(val, (void volatile *)(hw->hw_addr + reg)); return; } } static struct e1000_stats const e1000_gstrings_stats[51U] = { {{'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, 1, 8, 11240}, {{'t', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, 1, 8, 11264}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 1, 8, 11272}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 1, 8, 11280}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 1, 8, 11248}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, 1, 8, 11440}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 11256}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 11432}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 32}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 40}, {{'t', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}, 0, 8, 56}, {{'m', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, 1, 8, 11256}, {{'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, 1, 8, 11104}, {{'r', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 80}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 88}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11032}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 104}, {{'r', 'x', '_', 'n', 'o', '_', 'b', 'u', 'f', 'f', 'e', 'r', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 8, 11288}, {{'r', 'x', '_', 'm', 'i', 's', 's', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11064}, {{'t', 'x', '_', 'a', 'b', 'o', 'r', 't', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11080}, {{'t', 'x', '_', 'c', 'a', 'r', 'r', 'i', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11120}, {{'t', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 144}, {{'t', 'x', '_', 'h', 'e', 'a', 'r', 't', 'b', 'e', 'a', 't', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 0, 8, 152}, {{'t', 'x', '_', 'w', 'i', 'n', 'd', 'o', 'w', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11096}, {{'t', 'x', '_', 'a', 'b', 'o', 'r', 't', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', '\000'}, 1, 8, 11096}, {{'t', 'x', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'e', 'd', '_', 'o', 'k', '\000'}, 1, 8, 11112}, {{'t', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', '_', 'o', 'k', '\000'}, 1, 8, 11072}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', '_', 'c', 'o', 'l', 'l', '_', 'o', 'k', '\000'}, 1, 8, 11088}, {{'t', 'x', '_', 't', 'i', 'm', 'e', 'o', 'u', 't', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 1, 4, 1408}, {{'t', 'x', '_', 'r', 'e', 's', 't', 'a', 'r', 't', '_', 'q', 'u', 'e', 'u', 'e', '\000'}, 1, 4, 1336}, {{'r', 'x', '_', 'l', 'o', 'n', 'g', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11312}, {{'r', 'x', '_', 's', 'h', 'o', 'r', 't', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11296}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 11040}, {{'t', 'x', '_', 't', 'c', 'p', '_', 's', 'e', 'g', '_', 'g', 'o', 'o', 'd', '\000'}, 1, 8, 11448}, {{'t', 'x', '_', 't', 'c', 'p', '_', 's', 'e', 'g', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 8, 11456}, {{'r', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'n', '\000'}, 1, 8, 11152}, {{'r', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'f', 'f', '\000'}, 1, 8, 11168}, {{'t', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'n', '\000'}, 1, 8, 11160}, {{'t', 'x', '_', 'f', 'l', 'o', 'w', '_', 'c', 'o', 'n', 't', 'r', 'o', 'l', '_', 'x', 'o', 'f', 'f', '\000'}, 1, 8, 11176}, {{'r', 'x', '_', 'c', 's', 'u', 'm', '_', 'o', 'f', 'f', 'l', 'o', 'a', 'd', '_', 'g', 'o', 'o', 'd', '\000'}, 1, 8, 1512}, {{'r', 'x', '_', 'c', 's', 'u', 'm', '_', 'o', 'f', 'f', 'l', 'o', 'a', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 8, 1504}, {{'r', 'x', '_', 'h', 'e', 'a', 'd', 'e', 'r', '_', 's', 'p', 'l', 'i', 't', '\000'}, 1, 8, 1520}, {{'a', 'l', 'l', 'o', 'c', '_', 'r', 'x', '_', 'b', 'u', 'f', 'f', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 4, 1544}, {{'t', 'x', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 11344}, {{'r', 'x', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 11328}, {{'d', 'r', 'o', 'p', 'p', 'e', 'd', '_', 's', 'm', 'b', 'u', 's', '\000'}, 1, 8, 11336}, {{'r', 'x', '_', 'd', 'm', 'a', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 4, 1548}, {{'t', 'x', '_', 'd', 'm', 'a', '_', 'f', 'a', 'i', 'l', 'e', 'd', '\000'}, 1, 4, 1424}, {{'r', 'x', '_', 'h', 'w', 't', 's', 't', 'a', 'm', 'p', '_', 'c', 'l', 'e', 'a', 'r', 'e', 'd', '\000'}, 1, 4, 1552}, {{'u', 'n', 'c', 'o', 'r', 'r', '_', 'e', 'c', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 4, 1328}, {{'c', 'o', 'r', 'r', '_', 'e', 'c', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 1, 4, 1332}}; static char const e1000_gstrings_test[5U][32U] = { { 'R', 'e', 'g', 'i', 's', 't', 'e', 'r', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'E', 'e', 'p', 'r', 'o', 'm', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'I', 'n', 't', 'e', 'r', 'r', 'u', 'p', 't', ' ', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'i', 'n', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', '(', 'o', 'n', '/', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}; static int e1000_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 speed ; bool tmp___0 ; u32 status ; u32 tmp___1 ; bool tmp___2 ; bool tmp___3 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if ((unsigned int )hw->phy.media_type == 1U) { ecmd->supported = 239U; if ((unsigned int )hw->phy.type == 7U) { ecmd->supported = ecmd->supported & 4294967263U; } else { } ecmd->advertising = 128U; if ((int )hw->mac.autoneg) { ecmd->advertising = ecmd->advertising | 64U; ecmd->advertising = ecmd->advertising | (__u32 )hw->phy.autoneg_advertised; } else { } ecmd->port = 0U; ecmd->phy_address = (__u8 )hw->phy.addr; ecmd->transceiver = 0U; } else { ecmd->supported = 1120U; ecmd->advertising = 1120U; ecmd->port = 3U; ecmd->transceiver = 1U; } speed = 4294967295U; ecmd->duplex = 255U; tmp___2 = netif_running((struct net_device const *)netdev); if ((int )tmp___2) { tmp___0 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___0) { speed = (u32 )adapter->link_speed; ecmd->duplex = (unsigned int )((__u8 )adapter->link_duplex) + 255U; } else { } } else { tmp___1 = __er32(hw, 8UL); status = tmp___1; if ((status & 2U) != 0U) { if ((status & 128U) != 0U) { speed = 1000U; } else if ((status & 64U) != 0U) { speed = 100U; } else { speed = 10U; } if ((int )status & 1) { ecmd->duplex = 1U; } else { ecmd->duplex = 0U; } } else { } } ethtool_cmd_speed_set(ecmd, speed); ecmd->autoneg = (__u8 )((unsigned int )hw->phy.media_type == 2U || (int )hw->mac.autoneg); if ((unsigned int )hw->phy.media_type == 1U) { tmp___3 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___3) { ecmd->eth_tp_mdix = (int )hw->phy.is_mdix ? 2U : 1U; } else { ecmd->eth_tp_mdix = 0U; } } else { ecmd->eth_tp_mdix = 0U; } if ((unsigned int )hw->phy.mdix == 0U) { ecmd->eth_tp_mdix_ctrl = 3U; } else { ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; } return (0); } } static int e1000_set_spd_dplx(struct e1000_adapter *adapter , u32 spd , u8 dplx ) { struct e1000_mac_info *mac ; { mac = & adapter->hw.mac; mac->autoneg = 0; if ((int )spd & 1 || ((int )dplx & -2) != 0) { goto err_inval; } else { } if (((unsigned int )adapter->hw.phy.media_type == 2U && spd != 1000U) && (unsigned int )dplx != 1U) { goto err_inval; } else { } switch ((u32 )dplx + spd) { case 10U: mac->forced_speed_duplex = 1U; goto ldv_42043; case 11U: mac->forced_speed_duplex = 2U; goto ldv_42043; case 100U: mac->forced_speed_duplex = 4U; goto ldv_42043; case 101U: mac->forced_speed_duplex = 8U; goto ldv_42043; case 1001U: mac->autoneg = 1; adapter->hw.phy.autoneg_advertised = 32U; goto ldv_42043; case 1000U: ; default: ; goto err_inval; } ldv_42043: adapter->hw.phy.mdix = 0U; return (0); err_inval: netdev_err((struct net_device const *)adapter->netdev, "Unsupported Speed/Duplex configuration\n"); return (-22); } } static int e1000_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; s32 tmp___0 ; int tmp___1 ; u32 speed ; __u32 tmp___2 ; int tmp___3 ; bool tmp___4 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if ((unsigned long )hw->phy.ops.check_reset_block != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { tmp___0 = (*(hw->phy.ops.check_reset_block))(hw); if (tmp___0 != 0) { netdev_err((struct net_device const *)adapter->netdev, "Cannot change link characteristics when SoL/IDER is active.\n"); return (-22); } else { } } else { } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 0U) { if ((unsigned int )hw->phy.media_type != 1U) { return (-95); } else { } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 3U && (unsigned int )ecmd->autoneg != 1U) { netdev_err((struct net_device const *)adapter->netdev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); return (-22); } else { } } else { } goto ldv_42057; ldv_42056: usleep_range(1000UL, 2000UL); ldv_42057: tmp___1 = test_and_set_bit(1, (unsigned long volatile *)(& adapter->state)); if (tmp___1 != 0) { goto ldv_42056; } else { } if ((unsigned int )ecmd->autoneg == 1U) { hw->mac.autoneg = 1; if ((unsigned int )hw->phy.media_type == 2U) { hw->phy.autoneg_advertised = 1120U; } else { hw->phy.autoneg_advertised = (unsigned int )((u16 )ecmd->advertising) | 192U; } ecmd->advertising = (__u32 )hw->phy.autoneg_advertised; if ((int )adapter->fc_autoneg) { hw->fc.requested_mode = 255; } else { } } else { tmp___2 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___2; tmp___3 = e1000_set_spd_dplx(adapter, speed, (int )ecmd->duplex); if (tmp___3 != 0) { clear_bit(1, (unsigned long volatile *)(& adapter->state)); return (-22); } else { } } if ((unsigned int )ecmd->eth_tp_mdix_ctrl != 0U) { if ((unsigned int )ecmd->eth_tp_mdix_ctrl == 3U) { hw->phy.mdix = 0U; } else { hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; } } else { } tmp___4 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___4) { e1000e_down(adapter); e1000e_up(adapter); } else { e1000e_reset(adapter); } clear_bit(1, (unsigned long volatile *)(& adapter->state)); return (0); } } static void e1000_get_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; pause->autoneg = (__u32 )adapter->fc_autoneg; if ((unsigned int )hw->fc.current_mode == 1U) { pause->rx_pause = 1U; } else if ((unsigned int )hw->fc.current_mode == 2U) { pause->tx_pause = 1U; } else if ((unsigned int )hw->fc.current_mode == 3U) { pause->rx_pause = 1U; pause->tx_pause = 1U; } else { } return; } } static int e1000_set_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; int retval ; int tmp___0 ; bool tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; retval = 0; adapter->fc_autoneg = pause->autoneg != 0U; goto ldv_42074; ldv_42073: usleep_range(1000UL, 2000UL); ldv_42074: tmp___0 = test_and_set_bit(1, (unsigned long volatile *)(& adapter->state)); if (tmp___0 != 0) { goto ldv_42073; } else { } if ((int )adapter->fc_autoneg) { hw->fc.requested_mode = 255; tmp___1 = netif_running((struct net_device const *)adapter->netdev); if ((int )tmp___1) { e1000e_down(adapter); e1000e_up(adapter); } else { e1000e_reset(adapter); } } else { if (pause->rx_pause != 0U && pause->tx_pause != 0U) { hw->fc.requested_mode = 3; } else if (pause->rx_pause != 0U && pause->tx_pause == 0U) { hw->fc.requested_mode = 1; } else if (pause->rx_pause == 0U && pause->tx_pause != 0U) { hw->fc.requested_mode = 2; } else if (pause->rx_pause == 0U && pause->tx_pause == 0U) { hw->fc.requested_mode = 0; } else { } hw->fc.current_mode = hw->fc.requested_mode; if ((unsigned int )hw->phy.media_type == 2U) { retval = (*(hw->mac.ops.setup_link))(hw); } else { retval = e1000e_force_mac_fc(hw); if (retval != 0) { goto out; } else { } e1000e_set_fc_watermarks(hw); } } out: clear_bit(1, (unsigned long volatile *)(& adapter->state)); return (retval); } } static u32 e1000_get_msglevel(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; return (adapter->msg_enable); } } static void e1000_set_msglevel(struct net_device *netdev , u32 data ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; adapter->msg_enable = data; return; } } static int e1000_get_regs_len(struct net_device *netdev ) { { return (128); } } static void e1000_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 *regs_buff ; u16 phy_data ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; regs_buff = (u32 *)p; memset(p, 0, 128UL); regs->version = (__u32 )((((int )(adapter->pdev)->revision << 16) | 16777216) | (int )(adapter->pdev)->device); *regs_buff = __er32(hw, 0UL); *(regs_buff + 1UL) = __er32(hw, 8UL); *(regs_buff + 2UL) = __er32(hw, 256UL); *(regs_buff + 3UL) = __er32(hw, 10248UL); *(regs_buff + 4UL) = __er32(hw, 10256UL); *(regs_buff + 5UL) = __er32(hw, 10264UL); *(regs_buff + 6UL) = __er32(hw, 10272UL); *(regs_buff + 7UL) = __er32(hw, 1024UL); *(regs_buff + 8UL) = __er32(hw, 14344UL); *(regs_buff + 9UL) = __er32(hw, 14352UL); *(regs_buff + 10UL) = __er32(hw, 14360UL); *(regs_buff + 11UL) = __er32(hw, 14368UL); *(regs_buff + 12UL) = (u32 )adapter->hw.phy.type; if ((unsigned int )hw->phy.type == 2U) { e1e_rphy(hw, 17U, & phy_data); *(regs_buff + 13UL) = (unsigned int )phy_data; *(regs_buff + 14UL) = 0U; *(regs_buff + 15UL) = 0U; *(regs_buff + 16UL) = 0U; e1e_rphy(hw, 16U, & phy_data); *(regs_buff + 17UL) = (unsigned int )phy_data; *(regs_buff + 18UL) = *(regs_buff + 13UL); *(regs_buff + 19UL) = 0U; *(regs_buff + 20UL) = *(regs_buff + 17UL); *(regs_buff + 22UL) = adapter->phy_stats.receive_errors; *(regs_buff + 23UL) = *(regs_buff + 13UL); } else { } *(regs_buff + 21UL) = 0U; e1e_rphy(hw, 10U, & phy_data); *(regs_buff + 24UL) = (unsigned int )phy_data; *(regs_buff + 25UL) = *(regs_buff + 24UL); return; } } static int e1000_get_eeprom_len(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; return ((int )adapter->hw.nvm.word_size * 2); } } static int e1000_get_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u16 *eeprom_buff ; int first_word ; int last_word ; int ret_val ; u16 i ; void *tmp___0 ; size_t __len ; void *__ret ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; ret_val = 0; if (eeprom->len == 0U) { return (-22); } else { } eeprom->magic = (__u32 )((int )(adapter->pdev)->vendor | ((int )(adapter->pdev)->device << 16)); first_word = (int )(eeprom->offset >> 1); last_word = (int )(((eeprom->offset + eeprom->len) - 1U) >> 1); tmp___0 = kmalloc((unsigned long )((last_word - first_word) + 1) * 2UL, 208U); eeprom_buff = (u16 *)tmp___0; if ((unsigned long )eeprom_buff == (unsigned long )((u16 *)0)) { return (-12); } else { } if ((unsigned int )hw->nvm.type == 2U) { ret_val = e1000_read_nvm(hw, (int )((u16 )first_word), (int )((unsigned int )((int )((u16 )last_word) - (int )((u16 )first_word)) + 1U), eeprom_buff); } else { i = 0U; goto ldv_42116; ldv_42115: ret_val = e1000_read_nvm(hw, (int )((u16 )first_word) + (int )i, 1, eeprom_buff + (unsigned long )i); if (ret_val != 0) { goto ldv_42114; } else { } i = (u16 )((int )i + 1); ldv_42116: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_42115; } else { } ldv_42114: ; } if (ret_val != 0) { memset((void *)eeprom_buff, 255, (unsigned long )((last_word - first_word) + 1) * 2UL); } else { i = 0U; goto ldv_42118; ldv_42117: i = (u16 )((int )i + 1); ldv_42118: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_42117; } else { } } __len = (size_t )eeprom->len; __ret = memcpy((void *)bytes, (void const *)eeprom_buff + ((unsigned long )eeprom->offset & 1UL), __len); kfree((void const *)eeprom_buff); return (ret_val); } } static int e1000_set_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u16 *eeprom_buff ; void *ptr ; int max_len ; int first_word ; int last_word ; int ret_val ; u16 i ; void *tmp___0 ; size_t __len ; void *__ret ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; ret_val = 0; if (eeprom->len == 0U) { return (-95); } else { } if (eeprom->magic != (__u32 )((int )(adapter->pdev)->vendor | ((int )(adapter->pdev)->device << 16))) { return (-14); } else { } if ((adapter->flags & 256U) != 0U) { return (-22); } else { } max_len = (int )hw->nvm.word_size * 2; first_word = (int )(eeprom->offset >> 1); last_word = (int )(((eeprom->offset + eeprom->len) - 1U) >> 1); tmp___0 = kmalloc((size_t )max_len, 208U); eeprom_buff = (u16 *)tmp___0; if ((unsigned long )eeprom_buff == (unsigned long )((u16 *)0)) { return (-12); } else { } ptr = (void *)eeprom_buff; if ((int )eeprom->offset & 1) { ret_val = e1000_read_nvm(hw, (int )((u16 )first_word), 1, eeprom_buff); ptr = ptr + 1; } else { } if ((int )(eeprom->offset + eeprom->len) & 1 && ret_val == 0) { ret_val = e1000_read_nvm(hw, (int )((u16 )last_word), 1, eeprom_buff + (unsigned long )(last_word - first_word)); } else { } if (ret_val != 0) { goto out; } else { } i = 0U; goto ldv_42139; ldv_42138: i = (u16 )((int )i + 1); ldv_42139: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_42138; } else { } __len = (size_t )eeprom->len; __ret = memcpy(ptr, (void const *)bytes, __len); i = 0U; goto ldv_42145; ldv_42144: i = (u16 )((int )i + 1); ldv_42145: ; if ((int )i < (last_word - first_word) + 1) { goto ldv_42144; } else { } ret_val = e1000_write_nvm(hw, (int )((u16 )first_word), (int )((unsigned int )((int )((u16 )last_word) - (int )((u16 )first_word)) + 1U), eeprom_buff); if (ret_val != 0) { goto out; } else { } if (((first_word <= 63 || (unsigned int )hw->mac.type == 4U) || (unsigned int )hw->mac.type == 3U) || (unsigned int )hw->mac.type == 2U) { ret_val = e1000e_update_nvm_checksum(hw); } else { } out: kfree((void const *)eeprom_buff); return (ret_val); } } static void e1000_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct e1000_adapter *adapter ; void *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& e1000e_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& e1000e_driver_version), 32UL); snprintf((char *)(& drvinfo->fw_version), 32UL, "%d.%d-%d", (int )adapter->eeprom_vers >> 12, ((int )adapter->eeprom_vers & 4080) >> 4, (int )adapter->eeprom_vers & 15); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); tmp___1 = e1000_get_regs_len(netdev); drvinfo->regdump_len = (__u32 )tmp___1; tmp___2 = e1000_get_eeprom_len(netdev); drvinfo->eedump_len = (__u32 )tmp___2; return; } } static void e1000_get_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; ring->rx_max_pending = 4096U; ring->tx_max_pending = 4096U; ring->rx_pending = (__u32 )adapter->rx_ring_count; ring->tx_pending = (__u32 )adapter->tx_ring_count; return; } } static int e1000_set_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_ring *temp_tx ; struct e1000_ring *temp_rx ; int err ; int size ; bool set_tx ; bool set_rx ; u16 new_rx_count ; u16 new_tx_count ; u32 __val ; u32 __min ; u32 __max ; u32 __val___0 ; u32 __min___0 ; u32 __max___0 ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; size_t __len___2 ; void *__ret___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; temp_tx = 0; temp_rx = 0; err = 0; size = 120; set_tx = 0; set_rx = 0; if (ring->rx_mini_pending != 0U || ring->rx_jumbo_pending != 0U) { return (-22); } else { } __val = ring->rx_pending; __min = 64U; __max = 4096U; __val = __min > __val ? __min : __val; new_rx_count = (u16 )(__max < __val ? __max : __val); new_rx_count = (unsigned int )((u16 )((unsigned int )new_rx_count + 7U)) & 65528U; __val___0 = ring->tx_pending; __min___0 = 64U; __max___0 = 4096U; __val___0 = __min___0 > __val___0 ? __min___0 : __val___0; new_tx_count = (u16 )(__max___0 < __val___0 ? __max___0 : __val___0); new_tx_count = (unsigned int )((u16 )((unsigned int )new_tx_count + 7U)) & 65528U; if ((int )adapter->tx_ring_count == (int )new_tx_count && (int )adapter->rx_ring_count == (int )new_rx_count) { return (0); } else { } goto ldv_42179; ldv_42178: usleep_range(1000UL, 2000UL); ldv_42179: tmp___0 = test_and_set_bit(1, (unsigned long volatile *)(& adapter->state)); if (tmp___0 != 0) { goto ldv_42178; } else { } tmp___1 = netif_running((struct net_device const *)adapter->netdev); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { (adapter->tx_ring)->count = (unsigned int )new_tx_count; (adapter->rx_ring)->count = (unsigned int )new_rx_count; adapter->tx_ring_count = new_tx_count; adapter->rx_ring_count = new_rx_count; goto clear_reset; } else { } set_tx = (int )adapter->tx_ring_count != (int )new_tx_count; set_rx = (int )adapter->rx_ring_count != (int )new_rx_count; if ((int )set_tx) { tmp___3 = vmalloc((unsigned long )size); temp_tx = (struct e1000_ring *)tmp___3; if ((unsigned long )temp_tx == (unsigned long )((struct e1000_ring *)0)) { err = -12; goto free_temp; } else { } } else { } if ((int )set_rx) { tmp___4 = vmalloc((unsigned long )size); temp_rx = (struct e1000_ring *)tmp___4; if ((unsigned long )temp_rx == (unsigned long )((struct e1000_ring *)0)) { err = -12; goto free_temp; } else { } } else { } e1000e_down(adapter); if ((int )set_tx) { __len = (size_t )size; __ret = memcpy((void *)temp_tx, (void const *)adapter->tx_ring, __len); temp_tx->count = (unsigned int )new_tx_count; err = e1000e_setup_tx_resources(temp_tx); if (err != 0) { goto err_setup; } else { } } else { } if ((int )set_rx) { __len___0 = (size_t )size; __ret___0 = memcpy((void *)temp_rx, (void const *)adapter->rx_ring, __len___0); temp_rx->count = (unsigned int )new_rx_count; err = e1000e_setup_rx_resources(temp_rx); if (err != 0) { goto err_setup_rx; } else { } } else { } if ((int )set_tx) { e1000e_free_tx_resources(adapter->tx_ring); __len___1 = (size_t )size; __ret___1 = memcpy((void *)adapter->tx_ring, (void const *)temp_tx, __len___1); adapter->tx_ring_count = new_tx_count; } else { } if ((int )set_rx) { e1000e_free_rx_resources(adapter->rx_ring); __len___2 = (size_t )size; __ret___2 = memcpy((void *)adapter->rx_ring, (void const *)temp_rx, __len___2); adapter->rx_ring_count = new_rx_count; } else { } err_setup_rx: ; if (err != 0 && (int )set_tx) { e1000e_free_tx_resources(temp_tx); } else { } err_setup: e1000e_up(adapter); free_temp: vfree((void const *)temp_tx); vfree((void const *)temp_rx); clear_reset: clear_bit(1, (unsigned long volatile *)(& adapter->state)); return (err); } } static bool reg_pattern_test(struct e1000_adapter *adapter , u64 *data , int reg , int offset , u32 mask , u32 write ) { u32 pat ; u32 val ; u32 test[4U] ; { test[0] = 1515870810U; test[1] = 2779096485U; test[2] = 0U; test[3] = 4294967295U; pat = 0U; goto ldv_42211; ldv_42210: __ew32___6(& adapter->hw, (unsigned long )((offset << 2) + reg), test[pat] & write); val = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )reg + (unsigned long )(offset << 2)))); if (((test[pat] & write) & mask) != val) { netdev_err((struct net_device const *)adapter->netdev, "pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", (offset << 2) + reg, val, (test[pat] & write) & mask); *data = (u64 )reg; return (1); } else { } pat = pat + 1U; ldv_42211: ; if (pat <= 3U) { goto ldv_42210; } else { } return (0); } } static bool reg_set_and_check(struct e1000_adapter *adapter , u64 *data , int reg , u32 mask , u32 write ) { u32 val ; { __ew32___6(& adapter->hw, (unsigned long )reg, write & mask); val = __er32(& adapter->hw, (unsigned long )reg); if (((write ^ val) & mask) != 0U) { netdev_err((struct net_device const *)adapter->netdev, "set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", reg, val & mask, write & mask); *data = (u64 )reg; return (1); } else { } return (0); } } static int e1000_reg_test(struct e1000_adapter *adapter , u64 *data ) { struct e1000_hw *hw ; struct e1000_mac_info *mac ; u32 value ; u32 before ; u32 after ; u32 i ; u32 toggle ; u32 mask ; u32 wlock_mac ; u32 tmp ; u32 tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; bool tmp___4 ; bool tmp___5 ; bool tmp___6 ; bool tmp___7 ; bool tmp___8 ; bool tmp___9 ; bool tmp___10 ; bool tmp___11 ; bool tmp___12 ; bool tmp___13 ; bool tmp___14 ; bool tmp___15 ; bool tmp___16 ; bool tmp___17 ; bool tmp___18 ; bool tmp___19 ; bool tmp___20 ; bool tmp___21 ; bool tmp___22 ; u32 tmp___23 ; bool tmp___24 ; bool tmp___25 ; { hw = & adapter->hw; mac = & adapter->hw.mac; wlock_mac = 0U; switch ((unsigned int )mac->type) { case 0U: ; case 1U: ; case 5U: toggle = 2147480575U; goto ldv_42237; default: toggle = 2147479603U; goto ldv_42237; } ldv_42237: before = __er32(hw, 8UL); tmp = __er32(hw, 8UL); value = tmp & toggle; __ew32___6(hw, 8UL, toggle); tmp___0 = __er32(hw, 8UL); after = tmp___0 & toggle; if (value != after) { netdev_err((struct net_device const *)adapter->netdev, "failed STATUS register test got: 0x%08X expected: 0x%08X\n", after, value); *data = 1ULL; return (1); } else { } __ew32___6(hw, 8UL, before); if ((adapter->flags & 512U) == 0U) { tmp___1 = reg_pattern_test(adapter, data, 40, 0, 4294967295U, 4294967295U); if ((int )tmp___1) { return (1); } else { } tmp___2 = reg_pattern_test(adapter, data, 44, 0, 65535U, 4294967295U); if ((int )tmp___2) { return (1); } else { } tmp___3 = reg_pattern_test(adapter, data, 48, 0, 65535U, 4294967295U); if ((int )tmp___3) { return (1); } else { } tmp___4 = reg_pattern_test(adapter, data, 56, 0, 65535U, 4294967295U); if ((int )tmp___4) { return (1); } else { } } else { } tmp___5 = reg_pattern_test(adapter, data, 10272, 0, 65535U, 4294967295U); if ((int )tmp___5) { return (1); } else { } tmp___6 = reg_pattern_test(adapter, data, 10244, 0, 4294967295U, 4294967295U); if ((int )tmp___6) { return (1); } else { } tmp___7 = reg_pattern_test(adapter, data, 10248, 0, 1048448U, 1048575U); if ((int )tmp___7) { return (1); } else { } tmp___8 = reg_pattern_test(adapter, data, 10256, 0, 65535U, 65535U); if ((int )tmp___8) { return (1); } else { } tmp___9 = reg_pattern_test(adapter, data, 10264, 0, 65535U, 65535U); if ((int )tmp___9) { return (1); } else { } tmp___10 = reg_pattern_test(adapter, data, 8552, 0, 65528U, 65528U); if ((int )tmp___10) { return (1); } else { } tmp___11 = reg_pattern_test(adapter, data, 368, 0, 65535U, 65535U); if ((int )tmp___11) { return (1); } else { } tmp___12 = reg_pattern_test(adapter, data, 1040, 0, 1073741823U, 1073741823U); if ((int )tmp___12) { return (1); } else { } tmp___13 = reg_pattern_test(adapter, data, 14340, 0, 4294967295U, 4294967295U); if ((int )tmp___13) { return (1); } else { } tmp___14 = reg_pattern_test(adapter, data, 14344, 0, 1048448U, 1048575U); if ((int )tmp___14) { return (1); } else { } tmp___15 = reg_set_and_check(adapter, data, 256, 4294967295U, 0U); if ((int )tmp___15) { return (1); } else { } before = (adapter->flags & 512U) != 0U ? 113488702U : 115323902U; tmp___16 = reg_set_and_check(adapter, data, 256, before, 4194299U); if ((int )tmp___16) { return (1); } else { } tmp___17 = reg_set_and_check(adapter, data, 1024, 4294967295U, 0U); if ((int )tmp___17) { return (1); } else { } tmp___18 = reg_set_and_check(adapter, data, 256, before, 4294967295U); if ((int )tmp___18) { return (1); } else { } tmp___19 = reg_pattern_test(adapter, data, 10240, 0, 4294967280U, 4294967295U); if ((int )tmp___19) { return (1); } else { } if ((adapter->flags & 512U) == 0U) { tmp___20 = reg_pattern_test(adapter, data, 376, 0, 3221291007U, 65535U); if ((int )tmp___20) { return (1); } else { } } else { } tmp___21 = reg_pattern_test(adapter, data, 14336, 0, 4294967280U, 4294967295U); if ((int )tmp___21) { return (1); } else { } tmp___22 = reg_pattern_test(adapter, data, 14368, 0, 65535U, 65535U); if ((int )tmp___22) { return (1); } else { } mask = 2147745791U; switch ((unsigned int )mac->type) { case 8U: ; case 9U: ; case 10U: ; case 11U: mask = mask | 262144U; goto ldv_42243; default: ; goto ldv_42243; } ldv_42243: ; if ((unsigned int )mac->type == 11U) { tmp___23 = __er32(hw, 23380UL); wlock_mac = (tmp___23 & 896U) >> 7; } else { } i = 0U; goto ldv_42247; ldv_42246: ; if ((unsigned int )mac->type == 11U) { if (wlock_mac == 1U || (wlock_mac != 0U && i > wlock_mac)) { goto ldv_42245; } else { } if (i == 10U) { mask = mask | 1073741824U; } else { mask = mask & 3221225471U; } } else { } tmp___24 = reg_pattern_test(adapter, data, 21504, (int )((i << 1) + 1U), mask, 4294967295U); if ((int )tmp___24) { return (1); } else { } ldv_42245: i = i + 1U; ldv_42247: ; if ((u32 )mac->rar_entry_count > i) { goto ldv_42246; } else { } i = 0U; goto ldv_42250; ldv_42249: tmp___25 = reg_pattern_test(adapter, data, 20992, (int )i, 4294967295U, 4294967295U); if ((int )tmp___25) { return (1); } else { } i = i + 1U; ldv_42250: ; if ((u32 )mac->mta_reg_count > i) { goto ldv_42249; } else { } *data = 0ULL; return (0); } } static int e1000_eeprom_test(struct e1000_adapter *adapter , u64 *data ) { u16 temp ; u16 checksum ; u16 i ; s32 tmp ; { checksum = 0U; *data = 0ULL; i = 0U; goto ldv_42260; ldv_42259: tmp = e1000_read_nvm(& adapter->hw, (int )i, 1, & temp); if (tmp < 0) { *data = 1ULL; return ((int )*data); } else { } checksum = (int )checksum + (int )temp; i = (u16 )((int )i + 1); ldv_42260: ; if ((unsigned int )i <= 63U) { goto ldv_42259; } else { } if ((unsigned int )checksum != 47802U && *data == 0ULL) { *data = 2ULL; } else { } return ((int )*data); } } static irqreturn_t e1000_test_intr(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 tmp___0 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = __er32(hw, 192UL); adapter->test_icr = adapter->test_icr | tmp___0; return (1); } } static int e1000_intr_test(struct e1000_adapter *adapter , u64 *data ) { struct net_device *netdev ; struct e1000_hw *hw ; u32 mask ; u32 shared_int ; u32 irq ; int i ; int ret_val ; int int_mode ; int tmp ; int tmp___0 ; { netdev = adapter->netdev; hw = & adapter->hw; shared_int = 1U; irq = (adapter->pdev)->irq; ret_val = 0; int_mode = 0; *data = 0ULL; if (adapter->int_mode == 2) { int_mode = adapter->int_mode; e1000e_reset_interrupt_capability(adapter); adapter->int_mode = 0; e1000e_set_interrupt_capability(adapter); } else { } tmp___0 = request_irq(irq, & e1000_test_intr, 256UL, (char const *)(& netdev->name), (void *)netdev); if (tmp___0 == 0) { shared_int = 0U; } else { tmp = request_irq(irq, & e1000_test_intr, 128UL, (char const *)(& netdev->name), (void *)netdev); if (tmp != 0) { *data = 1ULL; ret_val = -1; goto out; } else { } } netdev_info((struct net_device const *)adapter->netdev, "testing %s interrupt\n", shared_int != 0U ? (char *)"shared" : (char *)"unshared"); __ew32___6(hw, 216UL, 4294967295U); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); i = 0; goto ldv_42289; ldv_42288: mask = (u32 )(1 << i); if ((adapter->flags & 512U) != 0U) { switch (mask) { case 8U: ; goto ldv_42283; case 256U: ; if ((unsigned int )adapter->hw.mac.type == 6U || (unsigned int )adapter->hw.mac.type == 7U) { goto ldv_42283; } else { } goto ldv_42285; default: ; goto ldv_42285; } ldv_42285: ; } else { } if (shared_int == 0U) { adapter->test_icr = 0U; __ew32___6(hw, 216UL, mask); __ew32___6(hw, 200UL, mask); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); if ((adapter->test_icr & mask) != 0U) { *data = 3ULL; goto ldv_42287; } else { } } else { } adapter->test_icr = 0U; __ew32___6(hw, 208UL, mask); __ew32___6(hw, 200UL, mask); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); if ((adapter->test_icr & mask) == 0U) { *data = 4ULL; goto ldv_42287; } else { } if (shared_int == 0U) { adapter->test_icr = 0U; __ew32___6(hw, 216UL, ~ mask & 32767U); __ew32___6(hw, 200UL, ~ mask & 32767U); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); if (adapter->test_icr != 0U) { *data = 5ULL; goto ldv_42287; } else { } } else { } ldv_42283: i = i + 1; ldv_42289: ; if (i <= 9) { goto ldv_42288; } else { } ldv_42287: __ew32___6(hw, 216UL, 4294967295U); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); free_irq(irq, (void *)netdev); out: ; if (int_mode == 2) { e1000e_reset_interrupt_capability(adapter); adapter->int_mode = int_mode; e1000e_set_interrupt_capability(adapter); } else { } return (ret_val); } } static void e1000_free_desc_rings(struct e1000_adapter *adapter ) { struct e1000_ring *tx_ring ; struct e1000_ring *rx_ring ; struct pci_dev *pdev ; struct e1000_buffer *buffer_info ; int i ; { tx_ring = & adapter->test_tx_ring; rx_ring = & adapter->test_rx_ring; pdev = adapter->pdev; if ((unsigned long )tx_ring->desc != (unsigned long )((void *)0) && (unsigned long )tx_ring->buffer_info != (unsigned long )((struct e1000_buffer *)0)) { i = 0; goto ldv_42299; ldv_42298: buffer_info = tx_ring->buffer_info + (unsigned long )i; if (buffer_info->dma != 0ULL) { dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, (size_t )buffer_info->ldv_41273.ldv_41268.length, 1, 0); } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { consume_skb(buffer_info->skb); } else { } i = i + 1; ldv_42299: ; if ((unsigned int )i < tx_ring->count) { goto ldv_42298; } else { } } else { } if ((unsigned long )rx_ring->desc != (unsigned long )((void *)0) && (unsigned long )rx_ring->buffer_info != (unsigned long )((struct e1000_buffer *)0)) { i = 0; goto ldv_42302; ldv_42301: buffer_info = rx_ring->buffer_info + (unsigned long )i; if (buffer_info->dma != 0ULL) { dma_unmap_single_attrs(& pdev->dev, buffer_info->dma, 2048UL, 2, 0); } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { consume_skb(buffer_info->skb); } else { } i = i + 1; ldv_42302: ; if ((unsigned int )i < rx_ring->count) { goto ldv_42301; } else { } } else { } if ((unsigned long )tx_ring->desc != (unsigned long )((void *)0)) { dma_free_attrs(& pdev->dev, (size_t )tx_ring->size, tx_ring->desc, tx_ring->dma, 0); tx_ring->desc = 0; } else { } if ((unsigned long )rx_ring->desc != (unsigned long )((void *)0)) { dma_free_attrs(& pdev->dev, (size_t )rx_ring->size, rx_ring->desc, rx_ring->dma, 0); rx_ring->desc = 0; } else { } kfree((void const *)tx_ring->buffer_info); tx_ring->buffer_info = 0; kfree((void const *)rx_ring->buffer_info); rx_ring->buffer_info = 0; return; } } static int e1000_setup_desc_rings(struct e1000_adapter *adapter ) { struct e1000_ring *tx_ring ; struct e1000_ring *rx_ring ; struct pci_dev *pdev ; struct e1000_hw *hw ; u32 rctl ; int i ; int ret_val ; void *tmp ; struct e1000_tx_desc *tx_desc ; struct sk_buff *skb ; unsigned int skb_size ; int tmp___0 ; void *tmp___1 ; union e1000_rx_desc_extended *rx_desc ; struct sk_buff *skb___0 ; int tmp___2 ; { tx_ring = & adapter->test_tx_ring; rx_ring = & adapter->test_rx_ring; pdev = adapter->pdev; hw = & adapter->hw; if (tx_ring->count == 0U) { tx_ring->count = 256U; } else { } tmp = kcalloc((size_t )tx_ring->count, 40UL, 208U); tx_ring->buffer_info = (struct e1000_buffer *)tmp; if ((unsigned long )tx_ring->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { ret_val = 1; goto err_nomem; } else { } tx_ring->size = tx_ring->count * 16U; tx_ring->size = (tx_ring->size + 4095U) & 4294963200U; tx_ring->desc = dma_alloc_attrs(& pdev->dev, (size_t )tx_ring->size, & tx_ring->dma, 208U, 0); if ((unsigned long )tx_ring->desc == (unsigned long )((void *)0)) { ret_val = 2; goto err_nomem; } else { } tx_ring->next_to_use = 0U; tx_ring->next_to_clean = 0U; __ew32___6(hw, 14336UL, (u32 )tx_ring->dma); __ew32___6(hw, 14340UL, (u32 )(tx_ring->dma >> 32)); __ew32___6(hw, 14344UL, tx_ring->count * 16U); __ew32___6(hw, 14352UL, 0U); __ew32___6(hw, 14360UL, 0U); __ew32___6(hw, 1024UL, 268693754U); i = 0; goto ldv_42319; ldv_42318: tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; skb_size = 1024U; skb = alloc_skb(skb_size, 208U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { ret_val = 3; goto err_nomem; } else { } skb_put(skb, skb_size); (tx_ring->buffer_info + (unsigned long )i)->skb = skb; (tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.length = (u16 )skb->len; (tx_ring->buffer_info + (unsigned long )i)->dma = dma_map_single_attrs(& pdev->dev, (void *)skb->data, (size_t )skb->len, 1, 0); tmp___0 = dma_mapping_error(& pdev->dev, (tx_ring->buffer_info + (unsigned long )i)->dma); if (tmp___0 != 0) { ret_val = 4; goto err_nomem; } else { } tx_desc->buffer_addr = (tx_ring->buffer_info + (unsigned long )i)->dma; tx_desc->lower.data = skb->len; tx_desc->lower.data = tx_desc->lower.data | 184549376U; tx_desc->upper.data = 0U; i = i + 1; ldv_42319: ; if ((unsigned int )i < tx_ring->count) { goto ldv_42318; } else { } if (rx_ring->count == 0U) { rx_ring->count = 256U; } else { } tmp___1 = kcalloc((size_t )rx_ring->count, 40UL, 208U); rx_ring->buffer_info = (struct e1000_buffer *)tmp___1; if ((unsigned long )rx_ring->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { ret_val = 5; goto err_nomem; } else { } rx_ring->size = rx_ring->count * 16U; rx_ring->desc = dma_alloc_attrs(& pdev->dev, (size_t )rx_ring->size, & rx_ring->dma, 208U, 0); if ((unsigned long )rx_ring->desc == (unsigned long )((void *)0)) { ret_val = 6; goto err_nomem; } else { } rx_ring->next_to_use = 0U; rx_ring->next_to_clean = 0U; rctl = __er32(hw, 256UL); if ((adapter->flags2 & 1024U) == 0U) { __ew32___6(hw, 256UL, rctl & 4294967293U); } else { } __ew32___6(hw, 10240UL, (u32 )rx_ring->dma); __ew32___6(hw, 10244UL, (u32 )(rx_ring->dma >> 32)); __ew32___6(hw, 10248UL, rx_ring->size); __ew32___6(hw, 10256UL, 0U); __ew32___6(hw, 10264UL, 0U); rctl = (adapter->hw.mac.mc_filter_type << 12) | 67141694U; __ew32___6(hw, 256UL, rctl); i = 0; goto ldv_42324; ldv_42323: skb___0 = alloc_skb(2048U, 208U); if ((unsigned long )skb___0 == (unsigned long )((struct sk_buff *)0)) { ret_val = 7; goto err_nomem; } else { } skb_reserve(skb___0, 0); (rx_ring->buffer_info + (unsigned long )i)->skb = skb___0; (rx_ring->buffer_info + (unsigned long )i)->dma = dma_map_single_attrs(& pdev->dev, (void *)skb___0->data, 2048UL, 2, 0); tmp___2 = dma_mapping_error(& pdev->dev, (rx_ring->buffer_info + (unsigned long )i)->dma); if (tmp___2 != 0) { ret_val = 8; goto err_nomem; } else { } rx_desc = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; rx_desc->read.buffer_addr = (rx_ring->buffer_info + (unsigned long )i)->dma; memset((void *)skb___0->data, 0, (size_t )skb___0->len); i = i + 1; ldv_42324: ; if ((unsigned int )i < rx_ring->count) { goto ldv_42323; } else { } return (0); err_nomem: e1000_free_desc_rings(adapter); return (ret_val); } } static void e1000_phy_disable_receiver(struct e1000_adapter *adapter ) { { e1e_wphy(& adapter->hw, 29U, 31); e1e_wphy(& adapter->hw, 30U, 36860); e1e_wphy(& adapter->hw, 29U, 26); e1e_wphy(& adapter->hw, 30U, 36848); return; } } static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl_reg ; u16 phy_reg ; s32 ret_val ; u32 tmp ; { hw = & adapter->hw; ctrl_reg = 0U; phy_reg = 0U; ret_val = 0; hw->mac.autoneg = 0; if ((unsigned int )hw->phy.type == 7U) { e1e_wphy(hw, 0U, 24832); ctrl_reg = __er32(hw, 0UL); ctrl_reg = ctrl_reg & 4294966527U; ctrl_reg = ctrl_reg | 6401U; __ew32___6(hw, 0UL, ctrl_reg); __er32(hw, 8UL); usleep_range(500UL, 1000UL); return (0); } else { } switch ((unsigned int )hw->phy.type) { case 2U: e1e_wphy(hw, 16U, 2056); e1e_wphy(hw, 0U, 37184); e1e_wphy(hw, 0U, 33088); goto ldv_42337; case 5U: e1e_wphy(hw, 6192U, 460); goto ldv_42337; case 8U: e1e_rphy(hw, 85U, & phy_reg); phy_reg = (unsigned int )phy_reg & 65528U; phy_reg = (u16 )((unsigned int )phy_reg | 6U); e1e_wphy(hw, 85U, (int )phy_reg); (*(hw->phy.ops.commit))(hw); usleep_range(1000UL, 2000UL); e1e_rphy(hw, 24624U, & phy_reg); e1e_wphy(hw, 24624U, (int )((unsigned int )phy_reg | 12U)); e1e_rphy(hw, 24848U, & phy_reg); e1e_wphy(hw, 24848U, (int )((unsigned int )phy_reg | 64U)); e1e_rphy(hw, 24624U, & phy_reg); e1e_wphy(hw, 24624U, (int )((unsigned int )phy_reg | 64U)); e1e_rphy(hw, 24628U, & phy_reg); e1e_wphy(hw, 24628U, (int )((unsigned int )phy_reg | 1024U)); goto ldv_42337; case 10U: ; case 9U: ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { netdev_err((struct net_device const *)adapter->netdev, "Cannot setup 1Gbps loopback.\n"); return (ret_val); } else { } e1000_configure_k1_ich8lan(hw, 0); (*(hw->phy.ops.release))(hw); goto ldv_42337; case 11U: e1e_rphy(hw, 21U, & phy_reg); e1e_wphy(hw, 21U, (int )phy_reg & 65527); e1e_rphy(hw, 24850U, & phy_reg); e1e_wphy(hw, 24850U, (int )((unsigned int )phy_reg | 1U)); e1e_wphy(hw, 19U, 32769); goto ldv_42337; default: ; goto ldv_42337; } ldv_42337: e1e_wphy(hw, 0U, 16704); msleep(250U); ctrl_reg = __er32(hw, 0UL); ctrl_reg = ctrl_reg & 4294966527U; ctrl_reg = ctrl_reg | 6657U; if ((adapter->flags & 512U) != 0U) { ctrl_reg = ctrl_reg | 64U; } else { } if ((unsigned int )hw->phy.media_type == 1U && (unsigned int )hw->phy.type == 2U) { ctrl_reg = ctrl_reg | 128U; } else { tmp = __er32(hw, 8UL); if ((tmp & 1U) == 0U) { ctrl_reg = ctrl_reg | 192U; } else { } } __ew32___6(hw, 0UL, ctrl_reg); if ((unsigned int )hw->phy.type == 2U) { e1000_phy_disable_receiver(adapter); } else { } usleep_range(500UL, 1000UL); return (0); } } static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl ; u32 tmp ; int link ; u32 tmp___0 ; { hw = & adapter->hw; tmp = __er32(hw, 0UL); ctrl = tmp; ctrl = ctrl | 64U; __ew32___6(hw, 0UL, ctrl); ctrl = __er32(hw, 376UL); ctrl = ctrl & 2147483647U; __ew32___6(hw, 376UL, ctrl); tmp___0 = __er32(hw, 8UL); link = (int )tmp___0 & 2; if (link == 0) { ctrl = __er32(hw, 0UL); ctrl = ctrl | 128U; __ew32___6(hw, 0UL, ctrl); } else { } __ew32___6(hw, 36UL, 1040U); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); return (0); } } static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrlext ; u32 tmp ; u32 ctrl ; u32 tmp___0 ; { hw = & adapter->hw; tmp = __er32(hw, 24UL); ctrlext = tmp; tmp___0 = __er32(hw, 0UL); ctrl = tmp___0; adapter->tx_fifo_head = ctrlext; ctrlext = ctrlext & 4282384383U; __ew32___6(hw, 24UL, ctrlext); ctrl = ctrl & 4294966527U; ctrl = ctrl | 6721U; __ew32___6(hw, 0UL, ctrl); ctrl = __er32(hw, 256UL); ctrl = ctrl | 64U; __ew32___6(hw, 256UL, ctrl); __ew32___6(hw, 52UL, 2033026U); return (0); } } static int e1000_setup_loopback_test(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; int tmp ; int tmp___0 ; int tmp___1 ; { hw = & adapter->hw; if ((unsigned int )hw->phy.media_type == 2U || (unsigned int )hw->phy.media_type == 3U) { switch ((unsigned int )hw->mac.type) { case 5U: tmp = e1000_set_es2lan_mac_loopback(adapter); return (tmp); case 0U: ; case 1U: tmp___0 = e1000_set_82571_fiber_loopback(adapter); return (tmp___0); default: rctl = __er32(hw, 256UL); rctl = rctl | 192U; __ew32___6(hw, 256UL, rctl); return (0); } } else if ((unsigned int )hw->phy.media_type == 1U) { tmp___1 = e1000_integrated_phy_loopback(adapter); return (tmp___1); } else { } return (7); } } static void e1000_loopback_cleanup(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; u16 phy_reg ; { hw = & adapter->hw; rctl = __er32(hw, 256UL); rctl = rctl & 4294967103U; __ew32___6(hw, 256UL, rctl); switch ((unsigned int )hw->mac.type) { case 5U: ; if ((unsigned int )hw->phy.media_type == 2U || (unsigned int )hw->phy.media_type == 3U) { __ew32___6(hw, 24UL, adapter->tx_fifo_head); adapter->tx_fifo_head = 0U; } else { } case 0U: ; case 1U: ; if ((unsigned int )hw->phy.media_type == 2U || (unsigned int )hw->phy.media_type == 3U) { __ew32___6(hw, 36UL, 1024U); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); goto ldv_42374; } else { } default: hw->mac.autoneg = 1; if ((unsigned int )hw->phy.type == 5U) { e1e_wphy(hw, 6192U, 384); } else { } e1e_rphy(hw, 0U, & phy_reg); if (((int )phy_reg & 16384) != 0) { phy_reg = (unsigned int )phy_reg & 49151U; e1e_wphy(hw, 0U, (int )phy_reg); if ((unsigned long )hw->phy.ops.commit != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { (*(hw->phy.ops.commit))(hw); } else { } } else { } goto ldv_42374; } ldv_42374: ; return; } } static void e1000_create_lbtest_frame(struct sk_buff *skb , unsigned int frame_size ) { { memset((void *)skb->data, 255, (size_t )frame_size); frame_size = frame_size & 4294967294U; memset((void *)skb->data + (unsigned long )(frame_size / 2U), 170, (size_t )(frame_size / 2U - 1U)); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 10U), 190, 1UL); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 12U), 175, 1UL); return; } } static int e1000_check_lbtest_frame(struct sk_buff *skb , unsigned int frame_size ) { { frame_size = frame_size & 4294967294U; if ((unsigned int )*(skb->data + 3UL) == 255U) { if ((unsigned int )*(skb->data + ((unsigned long )(frame_size / 2U) + 10UL)) == 190U && (unsigned int )*(skb->data + ((unsigned long )(frame_size / 2U) + 12UL)) == 175U) { return (0); } else { } } else { } return (13); } } static int e1000_run_loopback_test(struct e1000_adapter *adapter ) { struct e1000_ring *tx_ring ; struct e1000_ring *rx_ring ; struct pci_dev *pdev ; struct e1000_hw *hw ; struct e1000_buffer *buffer_info ; int i ; int j ; int k ; int l ; int lc ; int good_cnt ; int ret_val ; unsigned long time ; { tx_ring = & adapter->test_tx_ring; rx_ring = & adapter->test_rx_ring; pdev = adapter->pdev; hw = & adapter->hw; ret_val = 0; __ew32___6(hw, 10264UL, rx_ring->count - 1U); if (rx_ring->count <= tx_ring->count) { lc = (int )((tx_ring->count / 64U) * 2U + 1U); } else { lc = (int )((rx_ring->count / 64U) * 2U + 1U); } k = 0; l = 0; j = 0; goto ldv_42413; ldv_42412: i = 0; goto ldv_42401; ldv_42400: buffer_info = tx_ring->buffer_info + (unsigned long )k; e1000_create_lbtest_frame(buffer_info->skb, 1024U); dma_sync_single_for_device(& pdev->dev, buffer_info->dma, (size_t )buffer_info->ldv_41273.ldv_41268.length, 1); k = k + 1; if ((unsigned int )k == tx_ring->count) { k = 0; } else { } i = i + 1; ldv_42401: ; if (i <= 63) { goto ldv_42400; } else { } __ew32___6(hw, 14360UL, (u32 )k); __er32(hw, 8UL); msleep(200U); time = jiffies; good_cnt = 0; ldv_42409: buffer_info = rx_ring->buffer_info + (unsigned long )l; dma_sync_single_for_cpu(& pdev->dev, buffer_info->dma, 2048UL, 2); ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1024U); if (ret_val == 0) { good_cnt = good_cnt + 1; } else { } l = l + 1; if ((unsigned int )l == rx_ring->count) { l = 0; } else { } if (good_cnt <= 63 && (long )(time + 20UL) - (long )jiffies >= 0L) { goto ldv_42409; } else { } if (good_cnt != 64) { ret_val = 13; goto ldv_42411; } else { } if (time + 20UL <= (unsigned long )jiffies) { ret_val = 14; goto ldv_42411; } else { } j = j + 1; ldv_42413: ; if (j <= lc) { goto ldv_42412; } else { } ldv_42411: ; return (ret_val); } } static int e1000_loopback_test(struct e1000_adapter *adapter , u64 *data ) { struct e1000_hw *hw ; s32 tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { hw = & adapter->hw; if ((unsigned long )hw->phy.ops.check_reset_block != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { tmp = (*(hw->phy.ops.check_reset_block))(hw); if (tmp != 0) { netdev_err((struct net_device const *)adapter->netdev, "Cannot do PHY loopback test when SoL/IDER is active.\n"); *data = 0ULL; goto out; } else { } } else { } tmp___0 = e1000_setup_desc_rings(adapter); *data = (u64 )tmp___0; if (*data != 0ULL) { goto out; } else { } tmp___1 = e1000_setup_loopback_test(adapter); *data = (u64 )tmp___1; if (*data != 0ULL) { goto err_loopback; } else { } tmp___2 = e1000_run_loopback_test(adapter); *data = (u64 )tmp___2; e1000_loopback_cleanup(adapter); err_loopback: e1000_free_desc_rings(adapter); out: ; return ((int )*data); } } static int e1000_link_test(struct e1000_adapter *adapter , u64 *data ) { struct e1000_hw *hw ; int i ; int tmp ; u32 tmp___0 ; { hw = & adapter->hw; *data = 0ULL; if ((unsigned int )hw->phy.media_type == 3U) { i = 0; hw->mac.serdes_has_link = 0; ldv_42427: (*(hw->mac.ops.check_for_link))(hw); if ((int )hw->mac.serdes_has_link) { return ((int )*data); } else { } msleep(20U); tmp = i; i = i + 1; if (tmp <= 3749) { goto ldv_42427; } else { } *data = 1ULL; } else { (*(hw->mac.ops.check_for_link))(hw); if ((int )hw->mac.autoneg) { msleep_interruptible(5000U); } else { } tmp___0 = __er32(hw, 8UL); if ((tmp___0 & 2U) == 0U) { *data = 1ULL; } else { } } return ((int )*data); } } static int e1000e_get_sset_count(struct net_device *netdev , int sset ) { { switch (sset) { case 0: ; return (5); case 1: ; return (51); default: ; return (-95); } } } static void e1000_diag_test(struct net_device *netdev , struct ethtool_test *eth_test , u64 *data ) { struct e1000_adapter *adapter ; void *tmp ; u16 autoneg_advertised ; u8 forced_speed_duplex ; u8 autoneg ; bool if_running ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); if_running = tmp___0; set_bit(0U, (unsigned long volatile *)(& adapter->state)); if (! if_running) { if ((int )adapter->flags & 1) { e1000e_get_hw_control(adapter); } else { } e1000e_power_up_phy(adapter); adapter->hw.phy.autoneg_wait_to_complete = 1; e1000e_reset(adapter); adapter->hw.phy.autoneg_wait_to_complete = 0; } else { } if (eth_test->flags == 1U) { autoneg_advertised = adapter->hw.phy.autoneg_advertised; forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; autoneg = (u8 )adapter->hw.mac.autoneg; netdev_info((struct net_device const *)adapter->netdev, "offline testing starting\n"); if ((int )if_running) { dev_close(netdev); } else { } tmp___1 = e1000_reg_test(adapter, data); if (tmp___1 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } e1000e_reset(adapter); tmp___2 = e1000_eeprom_test(adapter, data + 1UL); if (tmp___2 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } e1000e_reset(adapter); tmp___3 = e1000_intr_test(adapter, data + 2UL); if (tmp___3 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } e1000e_reset(adapter); tmp___4 = e1000_loopback_test(adapter, data + 3UL); if (tmp___4 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } adapter->hw.phy.autoneg_wait_to_complete = 1; e1000e_reset(adapter); adapter->hw.phy.autoneg_wait_to_complete = 0; tmp___5 = e1000_link_test(adapter, data + 4UL); if (tmp___5 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } adapter->hw.phy.autoneg_advertised = autoneg_advertised; adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; adapter->hw.mac.autoneg = (unsigned int )autoneg != 0U; e1000e_reset(adapter); clear_bit(0, (unsigned long volatile *)(& adapter->state)); if ((int )if_running) { dev_open(netdev); } else { } } else { netdev_info((struct net_device const *)adapter->netdev, "online testing starting\n"); *data = 0ULL; *(data + 1UL) = 0ULL; *(data + 2UL) = 0ULL; *(data + 3UL) = 0ULL; tmp___6 = e1000_link_test(adapter, data + 4UL); if (tmp___6 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } clear_bit(0, (unsigned long volatile *)(& adapter->state)); } if (! if_running) { e1000e_reset(adapter); if ((int )adapter->flags & 1) { e1000e_release_hw_control(adapter); } else { } } else { } msleep_interruptible(4000U); return; } } static void e1000_get_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct e1000_adapter *adapter ; void *tmp ; bool tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; wol->supported = 0U; wol->wolopts = 0U; if ((adapter->flags & 8U) == 0U) { return; } else { tmp___0 = device_can_wakeup(& (adapter->pdev)->dev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } } wol->supported = 47U; if ((adapter->flags & 524288U) != 0U) { wol->supported = wol->supported & 4294967293U; if ((adapter->wol & 4U) != 0U) { netdev_err((struct net_device const *)adapter->netdev, "Interface does not support directed (unicast) frame wake-up packets\n"); } else { } } else { } if ((adapter->wol & 4U) != 0U) { wol->wolopts = wol->wolopts | 2U; } else { } if ((adapter->wol & 8U) != 0U) { wol->wolopts = wol->wolopts | 4U; } else { } if ((adapter->wol & 16U) != 0U) { wol->wolopts = wol->wolopts | 8U; } else { } if ((adapter->wol & 2U) != 0U) { wol->wolopts = wol->wolopts | 32U; } else { } if ((int )adapter->wol & 1) { wol->wolopts = wol->wolopts | 1U; } else { } return; } } static int e1000_set_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct e1000_adapter *adapter ; void *tmp ; bool tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; if ((adapter->flags & 8U) == 0U) { return (-95); } else { tmp___0 = device_can_wakeup(& (adapter->pdev)->dev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-95); } else if ((wol->wolopts & 4294967248U) != 0U) { return (-95); } else { } } adapter->wol = 0U; if ((wol->wolopts & 2U) != 0U) { adapter->wol = adapter->wol | 4U; } else { } if ((wol->wolopts & 4U) != 0U) { adapter->wol = adapter->wol | 8U; } else { } if ((wol->wolopts & 8U) != 0U) { adapter->wol = adapter->wol | 16U; } else { } if ((wol->wolopts & 32U) != 0U) { adapter->wol = adapter->wol | 2U; } else { } if ((int )wol->wolopts & 1) { adapter->wol = adapter->wol | 1U; } else { } device_set_wakeup_enable(& (adapter->pdev)->dev, adapter->wol != 0U); return (0); } } static int e1000_set_phys_id(struct net_device *netdev , enum ethtool_phys_id_state state ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; switch ((unsigned int )state) { case 1U: ; if ((unsigned long )hw->mac.ops.blink_led == (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { return (2); } else { } (*(hw->mac.ops.blink_led))(hw); goto ldv_42467; case 0U: ; if ((unsigned int )hw->phy.type == 7U) { e1e_wphy(hw, 27U, 0); } else { } (*(hw->mac.ops.led_off))(hw); (*(hw->mac.ops.cleanup_led))(hw); goto ldv_42467; case 2U: (*(hw->mac.ops.led_on))(hw); goto ldv_42467; case 3U: (*(hw->mac.ops.led_off))(hw); goto ldv_42467; } ldv_42467: ; return (0); } } static int e1000_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; if (adapter->itr_setting <= 4U) { ec->rx_coalesce_usecs = adapter->itr_setting; } else { ec->rx_coalesce_usecs = 1000000U / adapter->itr_setting; } return (0); } } static int e1000_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; if ((ec->rx_coalesce_usecs > 10000U || (ec->rx_coalesce_usecs > 4U && ec->rx_coalesce_usecs <= 9U)) || ec->rx_coalesce_usecs == 2U) { return (-22); } else { } if (ec->rx_coalesce_usecs == 4U) { adapter->itr_setting = 4U; adapter->itr = adapter->itr_setting; } else if (ec->rx_coalesce_usecs <= 3U) { adapter->itr = 20000U; adapter->itr_setting = ec->rx_coalesce_usecs; } else { adapter->itr = 1000000U / ec->rx_coalesce_usecs; adapter->itr_setting = adapter->itr & 4294967292U; } if (adapter->itr_setting != 0U) { e1000e_write_itr(adapter, adapter->itr); } else { e1000e_write_itr(adapter, 0U); } return (0); } } static int e1000_nway_reset(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; bool tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-11); } else { } if (! adapter->hw.mac.autoneg) { return (-22); } else { } e1000e_reinit_locked(adapter); return (0); } } static void e1000_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct e1000_adapter *adapter ; void *tmp ; struct rtnl_link_stats64 net_stats ; int i ; char *p ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; p = 0; e1000e_get_stats64(netdev, & net_stats); i = 0; goto ldv_42502; ldv_42501: ; switch (e1000_gstrings_stats[i].type) { case 0: p = (char *)(& net_stats) + (unsigned long )e1000_gstrings_stats[i].stat_offset; goto ldv_42497; case 1: p = (char *)adapter + (unsigned long )e1000_gstrings_stats[i].stat_offset; goto ldv_42497; default: *(data + (unsigned long )i) = 0ULL; goto ldv_42500; } ldv_42497: *(data + (unsigned long )i) = e1000_gstrings_stats[i].sizeof_stat == 8 ? *((u64 *)p) : (u64 )*((u32 *)p); ldv_42500: i = i + 1; ldv_42502: ; if ((unsigned int )i <= 50U) { goto ldv_42501; } else { } return; } } static void e1000_get_strings(struct net_device *netdev , u32 stringset , u8 *data ) { u8 *p ; int i ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { p = data; switch (stringset) { case 0U: __len = 160UL; if (__len > 63UL) { __ret = memcpy((void *)data, (void const *)(& e1000_gstrings_test), __len); } else { __ret = memcpy((void *)data, (void const *)(& e1000_gstrings_test), __len); } goto ldv_42515; case 1U: i = 0; goto ldv_42523; ldv_42522: __len___0 = 32UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)p, (void const *)(& e1000_gstrings_stats[i].stat_string), __len___0); } else { __ret___0 = memcpy((void *)p, (void const *)(& e1000_gstrings_stats[i].stat_string), __len___0); } p = p + 32UL; i = i + 1; ldv_42523: ; if ((unsigned int )i <= 50U) { goto ldv_42522; } else { } goto ldv_42515; } ldv_42515: ; return; } } static int e1000_get_rxnfc(struct net_device *netdev , struct ethtool_rxnfc *info , u32 *rule_locs ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 mrqc ; u32 tmp___0 ; { info->data = 0ULL; switch (info->cmd) { case 41U: tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = __er32(hw, 22552UL); mrqc = tmp___0; if ((mrqc & 4294901760U) == 0U) { return (0); } else { } switch (info->flow_type) { case 1U: ; if ((mrqc & 65536U) != 0U) { info->data = info->data | 192ULL; } else { } case 2U: ; case 3U: ; case 4U: ; case 16U: ; if ((mrqc & 131072U) != 0U) { info->data = info->data | 48ULL; } else { } goto ldv_42539; case 5U: ; if ((mrqc & 2097152U) != 0U) { info->data = info->data | 192ULL; } else { } case 6U: ; case 7U: ; case 8U: ; case 17U: ; if ((mrqc & 1048576U) != 0U) { info->data = info->data | 48ULL; } else { } goto ldv_42539; default: ; goto ldv_42539; } ldv_42539: ; return (0); default: ; return (-95); } } } static int e1000e_get_eee(struct net_device *netdev , struct ethtool_eee *edata ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u16 cap_addr ; u16 lpa_addr ; u16 pcs_stat_addr ; u16 phy_data ; u32 ret_val ; s32 tmp___0 ; s32 tmp___1 ; s32 tmp___2 ; s32 tmp___3 ; u32 tmp___4 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if ((adapter->flags2 & 32U) == 0U) { return (-95); } else { } switch ((unsigned int )hw->phy.type) { case 11U: cap_addr = 1040U; lpa_addr = 1039U; pcs_stat_addr = 6190U; goto ldv_42559; case 12U: cap_addr = 32768U; lpa_addr = 32770U; pcs_stat_addr = 37889U; goto ldv_42559; default: ; return (-95); } ldv_42559: tmp___0 = (*(hw->phy.ops.acquire))(hw); ret_val = (u32 )tmp___0; if (ret_val != 0U) { return (-16); } else { } tmp___1 = e1000_read_emi_reg_locked(hw, (int )cap_addr, & phy_data); ret_val = (u32 )tmp___1; if (ret_val != 0U) { goto release; } else { } edata->supported = mmd_eee_cap_to_ethtool_sup_t((int )phy_data); edata->advertised = mmd_eee_cap_to_ethtool_sup_t((int )adapter->eee_advert); tmp___2 = e1000_read_emi_reg_locked(hw, (int )lpa_addr, & phy_data); ret_val = (u32 )tmp___2; if (ret_val != 0U) { goto release; } else { } edata->lp_advertised = mmd_eee_cap_to_ethtool_sup_t((int )phy_data); tmp___3 = e1000_read_emi_reg_locked(hw, (int )pcs_stat_addr, & phy_data); ret_val = (u32 )tmp___3; if ((unsigned int )hw->phy.type == 11U) { phy_data = (int )phy_data << 8U; } else { } release: (*(hw->phy.ops.release))(hw); if (ret_val != 0U) { return (-61); } else { } if (((int )phy_data & 3072) != 0) { edata->eee_active = 1U; } else { } edata->eee_enabled = (__u32 )(! hw->dev_spec.ich8lan.eee_disable); edata->tx_lpi_enabled = 1U; tmp___4 = __er32(hw, 252UL); edata->tx_lpi_timer = tmp___4 >> 24; return (0); } } static int e1000e_set_eee(struct net_device *netdev , struct ethtool_eee *edata ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct ethtool_eee eee_curr ; s32 ret_val ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; ret_val = e1000e_get_eee(netdev, & eee_curr); if (ret_val != 0) { return (ret_val); } else { } if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { netdev_err((struct net_device const *)adapter->netdev, "Setting EEE tx-lpi is not supported\n"); return (-22); } else { } if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { netdev_err((struct net_device const *)adapter->netdev, "Setting EEE Tx LPI timer is not supported\n"); return (-22); } else { } if ((edata->advertised & 4294967255U) != 0U) { netdev_err((struct net_device const *)adapter->netdev, "EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); return (-22); } else { } adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); hw->dev_spec.ich8lan.eee_disable = edata->eee_enabled == 0U; tmp___0 = netif_running((struct net_device const *)netdev); if ((int )tmp___0) { e1000e_reinit_locked(adapter); } else { e1000e_reset(adapter); } return (0); } } static int e1000e_get_ts_info(struct net_device *netdev , struct ethtool_ts_info *info ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; ethtool_op_get_ts_info(netdev, info); if ((adapter->flags & 16384U) == 0U) { return (0); } else { } info->so_timestamping = info->so_timestamping | 69U; info->tx_types = 3U; info->rx_filters = 32179U; if ((unsigned long )adapter->ptp_clock != (unsigned long )((struct ptp_clock *)0)) { info->phc_index = ptp_clock_index(adapter->ptp_clock); } else { } return (0); } } static int e1000e_ethtool_begin(struct net_device *netdev ) { int tmp ; { tmp = pm_runtime_get_sync(netdev->dev.parent); return (tmp); } } static void e1000e_ethtool_complete(struct net_device *netdev ) { { pm_runtime_put_sync(netdev->dev.parent); return; } } static struct ethtool_ops const e1000_ethtool_ops = {& e1000_get_settings, & e1000_set_settings, & e1000_get_drvinfo, & e1000_get_regs_len, & e1000_get_regs, & e1000_get_wol, & e1000_set_wol, & e1000_get_msglevel, & e1000_set_msglevel, & e1000_nway_reset, & ethtool_op_get_link, & e1000_get_eeprom_len, & e1000_get_eeprom, & e1000_set_eeprom, & e1000_get_coalesce, & e1000_set_coalesce, & e1000_get_ringparam, & e1000_set_ringparam, & e1000_get_pauseparam, & e1000_set_pauseparam, & e1000_diag_test, & e1000_get_strings, & e1000_set_phys_id, & e1000_get_ethtool_stats, & e1000e_ethtool_begin, & e1000e_ethtool_complete, 0, 0, & e1000e_get_sset_count, & e1000_get_rxnfc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & e1000e_get_ts_info, 0, 0, & e1000e_get_eee, & e1000e_set_eee}; void e1000e_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & e1000_ethtool_ops; return; } } void ldv_main8_sequence_infinite_withcheck_stateful(void) { struct net_device *var_group1 ; struct ethtool_cmd *var_group2 ; struct ethtool_drvinfo *var_group3 ; struct net_device *var_group4 ; struct ethtool_regs *var_group5 ; void *var_e1000_get_regs_8_p2 ; struct ethtool_wolinfo *var_group6 ; u32 var_e1000_set_msglevel_6_p1 ; struct ethtool_eeprom *var_group7 ; u8 *var_e1000_get_eeprom_10_p2 ; u8 *var_e1000_set_eeprom_11_p2 ; struct ethtool_ringparam *var_group8 ; struct ethtool_pauseparam *var_group9 ; struct ethtool_test *var_group10 ; u64 *var_e1000_diag_test_35_p2 ; u32 var_e1000_get_strings_43_p1 ; u8 *var_e1000_get_strings_43_p2 ; enum ethtool_phys_id_state var_e1000_set_phys_id_38_p1 ; struct ethtool_stats *var_group11 ; u64 *var_e1000_get_ethtool_stats_42_p2 ; int var_e1000e_get_sset_count_34_p1 ; struct ethtool_coalesce *var_group12 ; struct ethtool_rxnfc *var_group13 ; u32 var_e1000_get_rxnfc_44_p2 ; struct ethtool_ts_info *var_group14 ; struct ethtool_eee *var_group15 ; int var_e1000_test_intr_19_p0 ; void *var_e1000_test_intr_19_p1 ; int tmp ; int tmp___0 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_42664; ldv_42663: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); e1000e_ethtool_begin(var_group1); goto ldv_42631; case 1: ldv_handler_precall(); e1000e_ethtool_complete(var_group1); goto ldv_42631; case 2: ldv_handler_precall(); e1000_get_settings(var_group1, var_group2); goto ldv_42631; case 3: ldv_handler_precall(); e1000_set_settings(var_group1, var_group2); goto ldv_42631; case 4: ldv_handler_precall(); e1000_get_drvinfo(var_group1, var_group3); goto ldv_42631; case 5: ldv_handler_precall(); e1000_get_regs_len(var_group4); goto ldv_42631; case 6: ldv_handler_precall(); e1000_get_regs(var_group1, var_group5, var_e1000_get_regs_8_p2); goto ldv_42631; case 7: ldv_handler_precall(); e1000_get_wol(var_group1, var_group6); goto ldv_42631; case 8: ldv_handler_precall(); e1000_set_wol(var_group1, var_group6); goto ldv_42631; case 9: ldv_handler_precall(); e1000_get_msglevel(var_group1); goto ldv_42631; case 10: ldv_handler_precall(); e1000_set_msglevel(var_group1, var_e1000_set_msglevel_6_p1); goto ldv_42631; case 11: ldv_handler_precall(); e1000_nway_reset(var_group1); goto ldv_42631; case 12: ldv_handler_precall(); e1000_get_eeprom_len(var_group1); goto ldv_42631; case 13: ldv_handler_precall(); e1000_get_eeprom(var_group1, var_group7, var_e1000_get_eeprom_10_p2); goto ldv_42631; case 14: ldv_handler_precall(); e1000_set_eeprom(var_group1, var_group7, var_e1000_set_eeprom_11_p2); goto ldv_42631; case 15: ldv_handler_precall(); e1000_get_ringparam(var_group1, var_group8); goto ldv_42631; case 16: ldv_handler_precall(); e1000_set_ringparam(var_group1, var_group8); goto ldv_42631; case 17: ldv_handler_precall(); e1000_get_pauseparam(var_group1, var_group9); goto ldv_42631; case 18: ldv_handler_precall(); e1000_set_pauseparam(var_group1, var_group9); goto ldv_42631; case 19: ldv_handler_precall(); e1000_diag_test(var_group1, var_group10, var_e1000_diag_test_35_p2); goto ldv_42631; case 20: ldv_handler_precall(); e1000_get_strings(var_group4, var_e1000_get_strings_43_p1, var_e1000_get_strings_43_p2); goto ldv_42631; case 21: ldv_handler_precall(); e1000_set_phys_id(var_group1, var_e1000_set_phys_id_38_p1); goto ldv_42631; case 22: ldv_handler_precall(); e1000_get_ethtool_stats(var_group1, var_group11, var_e1000_get_ethtool_stats_42_p2); goto ldv_42631; case 23: ldv_handler_precall(); e1000e_get_sset_count(var_group4, var_e1000e_get_sset_count_34_p1); goto ldv_42631; case 24: ldv_handler_precall(); e1000_get_coalesce(var_group1, var_group12); goto ldv_42631; case 25: ldv_handler_precall(); e1000_set_coalesce(var_group1, var_group12); goto ldv_42631; case 26: ldv_handler_precall(); e1000_get_rxnfc(var_group1, var_group13, (u32 *)((long )var_e1000_get_rxnfc_44_p2)); goto ldv_42631; case 27: ldv_handler_precall(); e1000e_get_ts_info(var_group1, var_group14); goto ldv_42631; case 28: ldv_handler_precall(); e1000e_get_eee(var_group1, var_group15); goto ldv_42631; case 29: ldv_handler_precall(); e1000e_set_eee(var_group1, var_group15); goto ldv_42631; case 30: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_test_intr(var_e1000_test_intr_19_p0, var_e1000_test_intr_19_p1); LDV_IN_INTERRUPT = 1; goto ldv_42631; default: ; goto ldv_42631; } ldv_42631: ; ldv_42664: tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { goto ldv_42663; } else { } ldv_check_final_state(); return; } } void ldv_mutex_lock_91(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_92(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_93(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_94(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_95(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } extern struct module __this_module ; __inline static int test_and_clear_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; extern unsigned long find_first_bit(unsigned long const * , unsigned long ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u16 __swab16p(__u16 const *p ) { __u16 tmp ; { tmp = __fswab16((int )*p); return (tmp); } } __inline static void __swab16s(__u16 *p ) { { *p = __swab16p((__u16 const *)p); return; } } extern int printk(char const * , ...) ; extern void print_hex_dump(char const * , char const * , int , int , int , void const * , size_t , bool ) ; extern void __might_sleep(char const * , int , int ) ; extern void might_fault(void) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __bad_percpu_size(void) ; extern size_t strlen(char const * ) ; extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; extern void __cmpxchg_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_cmpxchg(atomic_t *v , int old , int new ) { int __ret ; int __old ; int __new ; u8 volatile *__ptr ; u16 volatile *__ptr___0 ; u32 volatile *__ptr___1 ; u64 volatile *__ptr___2 ; { __old = old; __new = new; switch (4UL) { case 1UL: __ptr = (u8 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgb %2,%1": "=a" (__ret), "+m" (*__ptr): "q" (__new), "0" (__old): "memory"); goto ldv_5547; case 2UL: __ptr___0 = (u16 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgw %2,%1": "=a" (__ret), "+m" (*__ptr___0): "r" (__new), "0" (__old): "memory"); goto ldv_5547; case 4UL: __ptr___1 = (u32 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgl %2,%1": "=a" (__ret), "+m" (*__ptr___1): "r" (__new), "0" (__old): "memory"); goto ldv_5547; case 8UL: __ptr___2 = (u64 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgq %2,%1": "=a" (__ret), "+m" (*__ptr___2): "r" (__new), "0" (__old): "memory"); goto ldv_5547; default: __cmpxchg_wrong_size(); } ldv_5547: ; return (__ret); } } __inline static int __atomic_add_unless(atomic_t *v , int a , int u ) { int c ; int old ; long tmp ; long tmp___0 ; { c = atomic_read((atomic_t const *)v); ldv_5576: tmp = ldv__builtin_expect(c == u, 0L); if (tmp != 0L) { goto ldv_5575; } else { } old = atomic_cmpxchg(v, c, c + a); tmp___0 = ldv__builtin_expect(old == c, 1L); if (tmp___0 != 0L) { goto ldv_5575; } else { } c = old; goto ldv_5576; ldv_5575: ; return (c); } } __inline static int atomic_add_unless(atomic_t *v , int a , int u ) { int tmp ; { tmp = __atomic_add_unless(v, a, u); return (tmp != u); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; int ldv_mutex_trylock_104(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_103(struct mutex *ldv_func_arg1 ) ; extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6243; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6243; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6243; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6243; default: __bad_percpu_size(); } ldv_6243: ti = (struct thread_info *)(pfo_ret__ - 8152UL); return (ti); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->ldv_6014.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->ldv_6014.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->ldv_6014.rlock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->ldv_6014.rlock, flags); return; } } __inline static ktime_t ns_to_ktime(u64 ns ) { ktime_t ktime_zero ; ktime_t __constr_expr_0 ; { ktime_zero.tv64 = 0LL; __constr_expr_0.tv64 = (long long )((unsigned long long )ktime_zero.tv64 + ns); return (__constr_expr_0); } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; extern int del_timer_sync(struct timer_list * ) ; extern unsigned long round_jiffies(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { tmp = queue_work_on(4096, wq, work); return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { tmp = queue_work(system_wq, work); return (tmp); } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { tmp = ioremap_nocache(offset, size); return (tmp); } } extern void iounmap(void volatile * ) ; extern void *vzalloc(unsigned long ) ; extern void timecounter_init(struct timecounter * , struct cyclecounter const * , u64 ) ; extern u64 timecounter_cyc2time(struct timecounter * , cycle_t ) ; extern struct page *alloc_pages_current(gfp_t , unsigned int ) ; __inline static struct page *alloc_pages(gfp_t gfp_mask , unsigned int order ) { struct page *tmp ; { tmp = alloc_pages_current(gfp_mask, order); return (tmp); } } extern int device_wakeup_enable(struct device * ) ; extern void *dev_get_drvdata(struct device const * ) ; extern int dev_set_drvdata(struct device * , void * ) ; extern int dev_warn(struct device const * , char const * , ...) ; __inline static int pci_channel_offline(struct pci_dev *pdev ) { { return (pdev->error_state != 1U); } } extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); return (tmp); } } extern int pcie_capability_read_word(struct pci_dev * , int , u16 * ) ; extern int pcie_capability_write_word(struct pci_dev * , int , u16 ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_select_bars(struct pci_dev * , unsigned long ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; extern int pci_prepare_to_sleep(struct pci_dev * ) ; extern bool pci_dev_run_wake(struct pci_dev * ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { tmp = __pci_enable_wake(dev, state, 0, (int )enable); return (tmp); } } extern int pci_request_selected_regions_exclusive(struct pci_dev * , int , char const * ) ; extern void pci_release_selected_regions(struct pci_dev * , int ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; extern void pci_unregister_driver(struct pci_driver * ) ; extern int pci_enable_msi_block(struct pci_dev * , unsigned int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { tmp = constant_test_bit(15U, (unsigned long const volatile *)(& page->flags)); return (tmp); } } __inline static struct page *compound_head(struct page *page ) { int tmp ; long tmp___0 ; { tmp = PageTail((struct page const *)page); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); if (tmp___0 != 0L) { return (page->ldv_14198.first_page); } else { } return (page); } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } __inline static dma_addr_t dma_map_single_attrs___0(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); ldv_20616: ; goto ldv_20616; } else { } tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, 0xffffea0000000000UL + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, 0xffffea0000000000UL + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); return (addr); } } __inline static void dma_unmap_single_attrs___0(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); ldv_20625: ; goto ldv_20625; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); ldv_20659: ; goto ldv_20659; } else { } addr = (*(ops->map_page))(dev, page, offset, size, dir, 0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); ldv_20667: ; goto ldv_20667; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, 0); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 0); return; } } __inline static void dma_sync_single_for_cpu___0(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); ldv_20675: ; goto ldv_20675; } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); return; } } __inline static void dma_sync_single_for_device___0(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); ldv_20683: ; goto ldv_20683; } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { (*(ops->sync_single_for_device))(dev, addr, size, dir); } else { } debug_dma_sync_single_for_device(dev, addr, size, (int )dir); return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { tmp = dma_supported(dev, mask); if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; unsigned long tmp ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { tmp = __builtin_object_size((void const *)to, 0); sz = (int )tmp; might_fault(); tmp___1 = ldv__builtin_expect(sz == -1, 1L); if (tmp___1 != 0L) { n = _copy_from_user(to, from, (unsigned int )n); } else { tmp___2 = ldv__builtin_expect((unsigned long )sz >= n, 1L); if (tmp___2 != 0L) { n = _copy_from_user(to, from, (unsigned int )n); } else { __ret_warn_on = 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { warn_slowpath_fmt("/work/ldvuser/exper_fp/inst/current/envs/linux-3.10-rc1.tar/linux-3.10-rc1/arch/x86/include/asm/uaccess_64.h", 66, "Buffer overflow detected!\n"); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); } } return (n); } } __inline static int copy_to_user(void *dst , void const *src , unsigned int size ) { unsigned long tmp ; { might_fault(); tmp = _copy_to_user(dst, src, size); return ((int )tmp); } } __inline static void pagefault_disable(void) { struct thread_info *tmp ; { tmp = current_thread_info(); tmp->preempt_count = tmp->preempt_count + 1; __asm__ volatile ("": : : "memory"); return; } } __inline static void pagefault_enable(void) { struct thread_info *tmp ; { __asm__ volatile ("": : : "memory"); tmp = current_thread_info(); tmp->preempt_count = tmp->preempt_count + -1; __asm__ volatile ("": : : "memory"); return; } } extern void synchronize_irq(unsigned int ) ; __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { pagefault_enable(); return; } } extern void pm_qos_add_request(struct pm_qos_request * , int , s32 ) ; extern void pm_qos_update_request(struct pm_qos_request * , s32 ) ; extern void pm_qos_remove_request(struct pm_qos_request * ) ; __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { tmp = ldv__builtin_expect(count > 268435455U, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); ldv_27282: ; goto ldv_27282; } else { } dql->num_queued = dql->num_queued + count; dql->last_obj_cnt = count; return; } } __inline static int dql_avail(struct dql const *dql ) { { return ((int )((unsigned int )dql->adj_limit - (unsigned int )dql->num_queued)); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; extern ktime_t ktime_get_real(void) ; extern int net_ratelimit(void) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb ) { unsigned char *tmp ; { tmp = skb_end_pointer((struct sk_buff const *)skb); return (& ((struct skb_shared_info *)tmp)->hwtstamps); } } __inline static struct sk_buff *skb_get(struct sk_buff *skb ) { { atomic_inc(& skb->users); return (skb); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 0U) { return (0); } else { } tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); return (dataref != 1); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); if ((int )page->ldv_14182.ldv_14166.pfmemalloc && (unsigned long )page->mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; return; } } __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } __inline static void skb_reset_tail_pointer(struct sk_buff *skb ) { { skb->tail = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_tail_pointer(struct sk_buff *skb , int const offset ) { { skb_reset_tail_pointer(skb); skb->tail = skb->tail + (sk_buff_data_t )offset; return; } } extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static int pskb_may_pull(struct sk_buff *skb , unsigned int len ) { unsigned int tmp ; long tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; { tmp = skb_headlen((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(tmp >= len, 1L); if (tmp___0 != 0L) { return (1); } else { } tmp___1 = ldv__builtin_expect(skb->len < len, 0L); if (tmp___1 != 0L) { return (0); } else { } tmp___2 = skb_headlen((struct sk_buff const *)skb); tmp___3 = __pskb_pull_tail(skb, (int )(len - tmp___2)); return ((unsigned long )tmp___3 != (unsigned long )((unsigned char *)0)); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static int skb_tailroom(struct sk_buff const *skb ) { bool tmp ; { tmp = skb_is_nonlinear(skb); return ((int )tmp ? 0 : (int )((unsigned int )skb->end - (unsigned int )skb->tail)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static unsigned char *skb_mac_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->mac_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { tmp = skb_headroom(skb); return ((int )((unsigned int )skb->ldv_27712.ldv_27711.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern int ___pskb_trim(struct sk_buff * , unsigned int ) ; __inline static void __skb_trim(struct sk_buff *skb , unsigned int len ) { int __ret_warn_on ; long tmp ; bool tmp___0 ; long tmp___1 ; { tmp___0 = skb_is_nonlinear((struct sk_buff const *)skb); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); if (tmp___1 != 0L) { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/skbuff.h", 1858); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); return; } else { } skb->len = len; skb_set_tail_pointer(skb, (int const )len); return; } } extern void skb_trim(struct sk_buff * , unsigned int ) ; __inline static int __pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; { if (skb->data_len != 0U) { tmp = ___pskb_trim(skb, len); return (tmp); } else { } __skb_trim(skb, len); return (0); } } __inline static int pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; int tmp___0 ; { if (skb->len > len) { tmp = __pskb_trim(skb, len); tmp___0 = tmp; } else { tmp___0 = 0; } return (tmp___0); } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { tmp = __netdev_alloc_skb(dev, length, gfp); skb = tmp; return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); return (tmp___0); } } __inline static void skb_copy_to_linear_data_offset(struct sk_buff *skb , int const offset , void const *from , unsigned int const len ) { size_t __len ; void *__ret ; { __len = (size_t )len; __ret = memcpy((void *)skb->data + (unsigned long )offset, from, __len); return; } } extern void skb_clone_tx_timestamp(struct sk_buff * ) ; extern void skb_tstamp_tx(struct sk_buff * , struct skb_shared_hwtstamps * ) ; __inline static void sw_tx_timestamp(struct sk_buff *skb ) { unsigned char *tmp ; unsigned char *tmp___0 ; { tmp = skb_end_pointer((struct sk_buff const *)skb); if (((int )((struct skb_shared_info *)tmp)->tx_flags & 2) != 0) { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); if (((int )((struct skb_shared_info *)tmp___0)->tx_flags & 4) == 0) { skb_tstamp_tx(skb, 0); } else { } } else { } return; } } __inline static void skb_tx_timestamp(struct sk_buff *skb ) { { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_end_pointer(skb); return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static bool skb_is_gso_v6(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_end_pointer(skb); return (((int )((struct skb_shared_info *)tmp)->gso_type & 16) != 0); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { tmp = constant_test_bit(1U, (unsigned long const volatile *)(& n->state)); return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = napi_disable_pending(n); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = test_and_set_bit(0, (unsigned long volatile *)(& n->state)); if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { set_bit(1U, (unsigned long volatile *)(& n->state)); goto ldv_38832; ldv_38831: msleep(1U); ldv_38832: tmp = test_and_set_bit(0, (unsigned long volatile *)(& n->state)); if (tmp != 0) { goto ldv_38831; } else { } clear_bit(1, (unsigned long volatile *)(& n->state)); return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (472), "i" (12UL)); ldv_38837: ; goto ldv_38837; } else { } __asm__ volatile ("": : : "memory"); clear_bit(0, (unsigned long volatile *)(& n->state)); return; } } __inline static void napi_synchronize(struct napi_struct const *n ) { int tmp ; { goto ldv_38842; ldv_38841: msleep(1U); ldv_38842: tmp = constant_test_bit(0U, (unsigned long const volatile *)(& n->state)); if (tmp != 0) { goto ldv_38841; } else { } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_schedule_queue(struct netdev_queue *txq ) { { if ((txq->state & 3UL) == 0UL) { __netif_schedule(txq->qdisc); } else { } return; } } __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { clear_bit(0, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { tmp = netpoll_trap(); if (tmp != 0) { netif_tx_start_queue(dev_queue); return; } else { } tmp___0 = test_and_clear_bit(0, (unsigned long volatile *)(& dev_queue->state)); if (tmp___0 != 0) { __netif_schedule(dev_queue->qdisc); } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp != 0L) { warn_slowpath_null("include/linux/netdevice.h", 1907); } else { } tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { printk("\016e1000e: netif_stop_queue() cannot be called before register_netdev()\n"); return; } else { } set_bit(0U, (unsigned long volatile *)(& dev_queue->state)); return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& dev_queue->state)); return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); return (tmp___0); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); if (tmp___0 != 0L) { return; } else { } set_bit(1U, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); if (tmp___2 != 0L) { clear_bit(1, (unsigned long volatile *)(& dev_queue->state)); } else { } return; } } __inline static void netdev_sent_queue(struct net_device *dev , unsigned int bytes ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_sent_queue(tmp, bytes); return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { tmp = ldv__builtin_expect(bytes == 0U, 0L); if (tmp != 0L) { return; } else { } dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); if (tmp___0 < 0) { return; } else { } tmp___1 = test_and_clear_bit(1, (unsigned long volatile *)(& dev_queue->state)); if (tmp___1 != 0) { netif_schedule_queue(dev_queue); } else { } return; } } __inline static void netdev_completed_queue(struct net_device *dev , unsigned int pkts , unsigned int bytes ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_completed_queue(tmp, pkts, bytes); return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { clear_bit(1, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); return; } } __inline static void netdev_reset_queue(struct net_device *dev_queue ) { struct netdev_queue *tmp ; { tmp = netdev_get_tx_queue((struct net_device const *)dev_queue, 0U); netdev_tx_reset_queue(tmp); return; } } extern void dev_kfree_skb_irq(struct sk_buff * ) ; extern void dev_kfree_skb_any(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if (debug_value < 0 || (unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } extern int register_netdev(struct net_device * ) ; extern void unregister_netdev(struct net_device * ) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_transport_header(skb); return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { tmp = tcp_hdr(skb); return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct ipv6hdr *)tmp); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_network_header(skb); return ((struct iphdr *)tmp); } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return ((unsigned int )((((((int )((unsigned char )*addr) | (int )((unsigned char )*(addr + 1UL))) | (int )((unsigned char )*(addr + 2UL))) | (int )((unsigned char )*(addr + 3UL))) | (int )((unsigned char )*(addr + 4UL))) | (int )((unsigned char )*(addr + 5UL))) == 0U); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = is_multicast_ether_addr(addr); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { tmp___1 = is_zero_ether_addr(addr); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static struct vlan_ethhdr *vlan_eth_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { tmp = skb_mac_header(skb); return ((struct vlan_ethhdr *)tmp); } } __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } extern int pm_schedule_suspend(struct device * , unsigned int ) ; __inline static void pm_runtime_get_noresume(struct device *dev ) { { atomic_inc(& dev->power.usage_count); return; } } __inline static void pm_runtime_put_noidle(struct device *dev ) { { atomic_add_unless(& dev->power.usage_count, -1, 0); return; } } __inline static int pm_runtime_resume(struct device *dev ) { int tmp ; { tmp = __pm_runtime_resume(dev, 0); return (tmp); } } __inline static int pm_runtime_put(struct device *dev ) { int tmp ; { tmp = __pm_runtime_idle(dev, 5); return (tmp); } } extern int pci_enable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_disable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_cleanup_aer_uncorrect_error_status(struct pci_dev * ) ; extern void pci_disable_link_state_locked(struct pci_dev * , int ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } s32 e1000e_get_base_timinca(struct e1000_adapter *adapter , u32 *timinca ) ; void e1000e_ptp_init(struct e1000_adapter *adapter ) ; void e1000e_ptp_remove(struct e1000_adapter *adapter ) ; __inline static s32 e1000e_read_mac_addr(struct e1000_hw *hw ) { s32 tmp ; s32 tmp___0 ; { if ((unsigned long )hw->mac.ops.read_mac_addr != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { tmp = (*(hw->mac.ops.read_mac_addr))(hw); return (tmp); } else { } tmp___0 = e1000_read_mac_addr_generic(hw); return (tmp___0); } } __inline static s32 e1000_validate_nvm_checksum(struct e1000_hw *hw ) { s32 tmp ; { tmp = (*(hw->nvm.ops.validate))(hw); return (tmp); } } __inline static s32 e1000_get_phy_info(struct e1000_hw *hw ) { s32 tmp ; { tmp = (*(hw->phy.ops.get_info))(hw); return (tmp); } } __inline static s32 __ew32_prepare___7(struct e1000_hw *hw ) { s32 i ; u32 tmp ; { i = 2000; goto ldv_48042; ldv_48041: __const_udelay(214750UL); ldv_48042: tmp = __er32(hw, 23380UL); if ((tmp & 16777216U) != 0U) { i = i - 1; if (i != 0) { goto ldv_48041; } else { goto ldv_48043; } } else { } ldv_48043: ; return (i); } } __inline static void __ew32___7(struct e1000_hw *hw , unsigned long reg , u32 val ) { { if (((hw->adapter)->flags2 & 2048U) != 0U) { __ew32_prepare___7(hw); } else { } writel(val, (void volatile *)(hw->hw_addr + reg)); return; } } char e1000e_driver_name[7U] = { 'e', '1', '0', '0', '0', 'e', '\000'}; char const e1000e_driver_version[8U] = { '2', '.', '3', '.', '2', '-', 'k', '\000'}; static int debug = -1; static void e1000e_disable_aspm(struct pci_dev *pdev , u16 state ) ; static struct e1000_info const *e1000_info_tbl[12U] = { & e1000_82571_info, & e1000_82572_info, & e1000_82573_info, & e1000_82574_info, & e1000_82583_info, & e1000_es2_info, & e1000_ich8_info, & e1000_ich9_info, & e1000_ich10_info, & e1000_pch_info, & e1000_pch2_info, & e1000_pch_lpt_info}; static struct e1000_reg_info const e1000_reg_info_tbl[34U] = { {0U, (char *)"CTRL"}, {8U, (char *)"STATUS"}, {24U, (char *)"CTRL_EXT"}, {192U, (char *)"ICR"}, {256U, (char *)"RCTL"}, {10248U, (char *)"RDLEN"}, {10256U, (char *)"RDH"}, {10264U, (char *)"RDT"}, {10272U, (char *)"RDTR"}, {10280U, (char *)"RXDCTL"}, {8200U, (char *)"ERT"}, {10240U, (char *)"RDBAL"}, {10244U, (char *)"RDBAH"}, {9232U, (char *)"RDFH"}, {9240U, (char *)"RDFT"}, {9248U, (char *)"RDFHS"}, {9256U, (char *)"RDFTS"}, {9264U, (char *)"RDFPC"}, {1024U, (char *)"TCTL"}, {14336U, (char *)"TDBAL"}, {14340U, (char *)"TDBAH"}, {14344U, (char *)"TDLEN"}, {14352U, (char *)"TDH"}, {14360U, (char *)"TDT"}, {14368U, (char *)"TIDV"}, {14376U, (char *)"TXDCTL"}, {14380U, (char *)"TADV"}, {14400U, (char *)"TARC"}, {13328U, (char *)"TDFH"}, {13336U, (char *)"TDFT"}, {13344U, (char *)"TDFHS"}, {13352U, (char *)"TDFTS"}, {13360U, (char *)"TDFPC"}, {0U, 0}}; static void e1000_regdump(struct e1000_hw *hw , struct e1000_reg_info *reginfo ) { int n ; char rname[16U] ; u32 regs[8U] ; u32 tmp ; { n = 0; switch (reginfo->ofs) { case 10280U: n = 0; goto ldv_48081; ldv_48080: regs[n] = __er32(hw, (unsigned long )(n <= 3 ? n * 256 + 10280 : n * 64 + 49192)); n = n + 1; ldv_48081: ; if (n <= 1) { goto ldv_48080; } else { } goto ldv_48083; case 14376U: n = 0; goto ldv_48086; ldv_48085: regs[n] = __er32(hw, (unsigned long )(n <= 3 ? n * 256 + 14376 : n * 64 + 57384)); n = n + 1; ldv_48086: ; if (n <= 1) { goto ldv_48085; } else { } goto ldv_48083; case 14400U: n = 0; goto ldv_48090; ldv_48089: regs[n] = __er32(hw, (unsigned long )(n * 256 + 14400)); n = n + 1; ldv_48090: ; if (n <= 1) { goto ldv_48089; } else { } goto ldv_48083; default: tmp = __er32(hw, (unsigned long )reginfo->ofs); printk("\016e1000e: %-15s %08x\n", reginfo->name, tmp); return; } ldv_48083: snprintf((char *)(& rname), 16UL, "%s%s", reginfo->name, (char *)"[0-1]"); printk("\016e1000e: %-15s %08x %08x\n", (char *)(& rname), regs[0], regs[1]); return; } } static void e1000e_dump_ps_pages(struct e1000_adapter *adapter , struct e1000_buffer *bi ) { int i ; struct e1000_ps_page *ps_page ; void *tmp ; { i = 0; goto ldv_48100; ldv_48099: ps_page = bi->ldv_41273.ldv_41272.ps_pages + (unsigned long )i; if ((unsigned long )ps_page->page != (unsigned long )((struct page *)0)) { printk("\016e1000e: packet dump for ps_page %d:\n", i); tmp = lowmem_page_address((struct page const *)ps_page->page); print_hex_dump("\016", "", 1, 16, 1, (void const *)tmp, 4096UL, 1); } else { } i = i + 1; ldv_48100: ; if ((unsigned int )i < adapter->rx_ps_pages) { goto ldv_48099; } else { } return; } } static void e1000e_dump(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct e1000_hw *hw ; struct e1000_reg_info *reginfo ; struct e1000_ring *tx_ring ; struct e1000_tx_desc *tx_desc ; struct my_u0 *u0 ; struct e1000_buffer *buffer_info ; struct e1000_ring *rx_ring ; union e1000_rx_desc_packet_split *rx_desc_ps ; union e1000_rx_desc_extended *rx_desc ; struct my_u1 *u1 ; u32 staterr ; int i ; bool tmp ; int tmp___0 ; char const *next_desc ; char const *next_desc___0 ; char const *next_desc___1 ; { netdev = adapter->netdev; hw = & adapter->hw; tx_ring = adapter->tx_ring; rx_ring = adapter->rx_ring; i = 0; if ((adapter->msg_enable & 8192U) == 0U) { return; } else { } if ((unsigned long )netdev != (unsigned long )((struct net_device *)0)) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Net device Info\n"); printk("\016e1000e: Device Name state trans_start last_rx\n"); printk("\016e1000e: %-15s %016lX %016lX %016lX\n", (char *)(& netdev->name), netdev->state, netdev->trans_start, netdev->last_rx); } else { } _dev_info((struct device const *)(& (adapter->pdev)->dev), "Register Dump\n"); printk("\016e1000e: Register Name Value\n"); reginfo = (struct e1000_reg_info *)(& e1000_reg_info_tbl); goto ldv_48127; ldv_48126: e1000_regdump(hw, reginfo); reginfo = reginfo + 1; ldv_48127: ; if ((unsigned long )reginfo->name != (unsigned long )((char *)0)) { goto ldv_48126; } else { } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { return; } else { tmp = netif_running((struct net_device const *)netdev); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } } _dev_info((struct device const *)(& (adapter->pdev)->dev), "Tx Ring Summary\n"); printk("\016e1000e: Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); buffer_info = tx_ring->buffer_info + (unsigned long )tx_ring->next_to_clean; printk("\016e1000e: %5d %5X %5X %016llX %04X %3X %016llX\n", 0, (int )tx_ring->next_to_use, (int )tx_ring->next_to_clean, buffer_info->dma, (int )buffer_info->ldv_41273.ldv_41268.length, (int )buffer_info->ldv_41273.ldv_41268.next_to_watch, (unsigned long long )buffer_info->ldv_41273.ldv_41268.time_stamp); if ((adapter->msg_enable & 1024U) == 0U) { goto rx_ring_summary; } else { } _dev_info((struct device const *)(& (adapter->pdev)->dev), "Tx Ring Dump\n"); printk("\016e1000e: Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); printk("\016e1000e: Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); printk("\016e1000e: Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); i = 0; goto ldv_48132; ldv_48131: tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; u0 = (struct my_u0 *)tx_desc; if ((int )tx_ring->next_to_use == i && (int )tx_ring->next_to_clean == i) { next_desc = " NTC/U"; } else if ((int )tx_ring->next_to_use == i) { next_desc = " NTU"; } else if ((int )tx_ring->next_to_clean == i) { next_desc = " NTC"; } else { next_desc = ""; } printk("\016e1000e: T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", (u0->b & 536870912ULL) != 0ULL ? ((u0->b & 1048576ULL) != 0ULL ? 100 : 99) : 108, i, u0->a, u0->b, buffer_info->dma, (int )buffer_info->ldv_41273.ldv_41268.length, (int )buffer_info->ldv_41273.ldv_41268.next_to_watch, (unsigned long long )buffer_info->ldv_41273.ldv_41268.time_stamp, buffer_info->skb, next_desc); if ((adapter->msg_enable & 4096U) != 0U && (unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { print_hex_dump("\016", "", 1, 16, 1, (void const *)(buffer_info->skb)->data, (size_t )(buffer_info->skb)->len, 1); } else { } i = i + 1; ldv_48132: ; if ((unsigned long )tx_ring->desc != (unsigned long )((void *)0) && (unsigned int )i < tx_ring->count) { goto ldv_48131; } else { } rx_ring_summary: _dev_info((struct device const *)(& (adapter->pdev)->dev), "Rx Ring Summary\n"); printk("\016e1000e: Queue [NTU] [NTC]\n"); printk("\016e1000e: %5d %5X %5X\n", 0, (int )rx_ring->next_to_use, (int )rx_ring->next_to_clean); if ((adapter->msg_enable & 2048U) == 0U) { return; } else { } _dev_info((struct device const *)(& (adapter->pdev)->dev), "Rx Ring Dump\n"); switch (adapter->rx_ps_pages) { case 1U: ; case 2U: ; case 3U: printk("\016e1000e: R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); printk("\016e1000e: RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); i = 0; goto ldv_48139; ldv_48138: buffer_info = rx_ring->buffer_info + (unsigned long )i; rx_desc_ps = (union e1000_rx_desc_packet_split *)rx_ring->desc + (unsigned long )i; u1 = (struct my_u1 *)rx_desc_ps; staterr = rx_desc_ps->wb.middle.status_error; if ((int )rx_ring->next_to_use == i) { next_desc___0 = " NTU"; } else if ((int )rx_ring->next_to_clean == i) { next_desc___0 = " NTC"; } else { next_desc___0 = ""; } if ((int )staterr & 1) { printk("\016e1000e: %s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", (char *)"RWB", i, u1->a, u1->b, u1->c, u1->d, buffer_info->skb, next_desc___0); } else { printk("\016e1000e: %s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", (char *)"R ", i, u1->a, u1->b, u1->c, u1->d, buffer_info->dma, buffer_info->skb, next_desc___0); if ((adapter->msg_enable & 4096U) != 0U) { e1000e_dump_ps_pages(adapter, buffer_info); } else { } } i = i + 1; ldv_48139: ; if ((unsigned int )i < rx_ring->count) { goto ldv_48138; } else { } goto ldv_48141; default: ; case 0U: printk("\016e1000e: R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); printk("\016e1000e: RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); i = 0; goto ldv_48146; ldv_48145: buffer_info = rx_ring->buffer_info + (unsigned long )i; rx_desc = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; u1 = (struct my_u1 *)rx_desc; staterr = rx_desc->wb.upper.status_error; if ((int )rx_ring->next_to_use == i) { next_desc___1 = " NTU"; } else if ((int )rx_ring->next_to_clean == i) { next_desc___1 = " NTC"; } else { next_desc___1 = ""; } if ((int )staterr & 1) { printk("\016e1000e: %s[0x%03X] %016llX %016llX ---------------- %p%s\n", (char *)"RWB", i, u1->a, u1->b, buffer_info->skb, next_desc___1); } else { printk("\016e1000e: %s[0x%03X] %016llX %016llX %016llX %p%s\n", (char *)"R ", i, u1->a, u1->b, buffer_info->dma, buffer_info->skb, next_desc___1); if ((adapter->msg_enable & 4096U) != 0U && (unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { print_hex_dump("\016", "", 1, 16, 1, (void const *)(buffer_info->skb)->data, (size_t )adapter->rx_buffer_len, 1); } else { } } i = i + 1; ldv_48146: ; if ((unsigned int )i < rx_ring->count) { goto ldv_48145; } else { } } ldv_48141: ; return; } } static int e1000_desc_unused(struct e1000_ring *ring ) { { if ((int )ring->next_to_clean > (int )ring->next_to_use) { return (((int )ring->next_to_clean - (int )ring->next_to_use) + -1); } else { } return ((int )(((ring->count + (unsigned int )ring->next_to_clean) - (unsigned int )ring->next_to_use) - 1U)); } } static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter , struct skb_shared_hwtstamps *hwtstamps , u64 systim ) { u64 ns ; unsigned long flags ; raw_spinlock_t *tmp ; { tmp = spinlock_check(& adapter->systim_lock); flags = _raw_spin_lock_irqsave(tmp); ns = timecounter_cyc2time(& adapter->tc, systim); spin_unlock_irqrestore(& adapter->systim_lock, flags); memset((void *)hwtstamps, 0, 16UL); hwtstamps->hwtstamp = ns_to_ktime(ns); return; } } static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter , u32 status , struct sk_buff *skb ) { struct e1000_hw *hw ; u64 rxstmp ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; struct skb_shared_hwtstamps *tmp___2 ; { hw = & adapter->hw; if ((adapter->flags & 16384U) == 0U || (status & 256U) == 0U) { return; } else { tmp = __er32(hw, 46624UL); if ((tmp & 1U) == 0U) { return; } else { } } tmp___0 = __er32(hw, 46628UL); rxstmp = (unsigned long long )tmp___0; tmp___1 = __er32(hw, 46632UL); rxstmp = ((unsigned long long )tmp___1 << 32) | rxstmp; tmp___2 = skb_hwtstamps(skb); e1000e_systim_to_hwtstamp(adapter, tmp___2, rxstmp); adapter->flags2 = adapter->flags2 & 4294959103U; return; } } static void e1000_receive_skb(struct e1000_adapter *adapter , struct net_device *netdev , struct sk_buff *skb , u32 staterr , __le16 vlan ) { u16 tag ; { tag = vlan; e1000e_rx_hwtstamp(adapter, staterr, skb); skb->protocol = eth_type_trans(skb, netdev); if ((staterr & 8U) != 0U) { __vlan_hwaccel_put_tag(skb, 129, (int )tag); } else { } napi_gro_receive(& adapter->napi, skb); return; } } static void e1000_rx_checksum(struct e1000_adapter *adapter , u32 status_err , struct sk_buff *skb ) { u16 status ; u8 errors ; { status = (unsigned short )status_err; errors = (unsigned char )(status_err >> 24); skb_checksum_none_assert((struct sk_buff const *)skb); if (((adapter->netdev)->features & 536870912ULL) == 0ULL) { return; } else { } if (((int )status & 4) != 0) { return; } else { } if (((int )errors & 96) != 0) { adapter->hw_csum_err = adapter->hw_csum_err + 1ULL; return; } else { } if (((int )status & 48) == 0) { return; } else { } skb->ip_summed = 1U; adapter->hw_csum_good = adapter->hw_csum_good + 1ULL; return; } } static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring , unsigned int i ) { struct e1000_adapter *adapter ; struct e1000_hw *hw ; s32 ret_val ; s32 tmp ; u32 rctl ; u32 tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; long tmp___3 ; { adapter = rx_ring->adapter; hw = & adapter->hw; tmp = __ew32_prepare___7(hw); ret_val = tmp; writel(i, (void volatile *)rx_ring->tail); tmp___1 = ldv__builtin_expect(ret_val == 0, 0L); if (tmp___1 != 0L) { tmp___2 = readl((void const volatile *)rx_ring->tail); tmp___3 = ldv__builtin_expect(tmp___2 != i, 0L); if (tmp___3 != 0L) { tmp___0 = __er32(hw, 256UL); rctl = tmp___0; __ew32___7(hw, 256UL, rctl & 4294967293U); netdev_err((struct net_device const *)adapter->netdev, "ME firmware caused invalid RDT - resetting\n"); schedule_work(& adapter->reset_task); } else { } } else { } return; } } static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring , unsigned int i ) { struct e1000_adapter *adapter ; struct e1000_hw *hw ; s32 ret_val ; s32 tmp ; u32 tctl ; u32 tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; long tmp___3 ; { adapter = tx_ring->adapter; hw = & adapter->hw; tmp = __ew32_prepare___7(hw); ret_val = tmp; writel(i, (void volatile *)tx_ring->tail); tmp___1 = ldv__builtin_expect(ret_val == 0, 0L); if (tmp___1 != 0L) { tmp___2 = readl((void const volatile *)tx_ring->tail); tmp___3 = ldv__builtin_expect(tmp___2 != i, 0L); if (tmp___3 != 0L) { tmp___0 = __er32(hw, 1024UL); tctl = tmp___0; __ew32___7(hw, 1024UL, tctl & 4294967293U); netdev_err((struct net_device const *)adapter->netdev, "ME firmware caused invalid TDT - resetting\n"); schedule_work(& adapter->reset_task); } else { } } else { } return; } } static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring , int cleaned_count , gfp_t gfp ) { struct e1000_adapter *adapter ; struct net_device *netdev ; struct pci_dev *pdev ; union e1000_rx_desc_extended *rx_desc ; struct e1000_buffer *buffer_info ; struct sk_buff *skb ; unsigned int i ; unsigned int bufsz ; int tmp ; long tmp___0 ; int tmp___1 ; { adapter = rx_ring->adapter; netdev = adapter->netdev; pdev = adapter->pdev; bufsz = adapter->rx_buffer_len; i = (unsigned int )rx_ring->next_to_use; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_48215; ldv_48214: skb = buffer_info->skb; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { skb_trim(skb, 0U); goto map_skb; } else { } skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_48213; } else { } buffer_info->skb = skb; map_skb: buffer_info->dma = dma_map_single_attrs___0(& pdev->dev, (void *)skb->data, (size_t )adapter->rx_buffer_len, 2, 0); tmp = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp != 0) { dev_err((struct device const *)(& pdev->dev), "Rx DMA map failed\n"); adapter->rx_dma_failed = adapter->rx_dma_failed + 1U; goto ldv_48213; } else { } rx_desc = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; rx_desc->read.buffer_addr = buffer_info->dma; tmp___0 = ldv__builtin_expect((i & 15U) == 0U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("sfence": : : "memory"); if ((adapter->flags2 & 2048U) != 0U) { e1000e_update_rdt_wa(rx_ring, i); } else { writel(i, (void volatile *)rx_ring->tail); } } else { } i = i + 1U; if (rx_ring->count == i) { i = 0U; } else { } buffer_info = rx_ring->buffer_info + (unsigned long )i; ldv_48215: tmp___1 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___1 != 0) { goto ldv_48214; } else { } ldv_48213: rx_ring->next_to_use = (u16 )i; return; } } static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring , int cleaned_count , gfp_t gfp ) { struct e1000_adapter *adapter ; struct net_device *netdev ; struct pci_dev *pdev ; union e1000_rx_desc_packet_split *rx_desc ; struct e1000_buffer *buffer_info ; struct e1000_ps_page *ps_page ; struct sk_buff *skb ; unsigned int i ; unsigned int j ; int tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; { adapter = rx_ring->adapter; netdev = adapter->netdev; pdev = adapter->pdev; i = (unsigned int )rx_ring->next_to_use; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_48237; ldv_48236: rx_desc = (union e1000_rx_desc_packet_split *)rx_ring->desc + (unsigned long )i; j = 0U; goto ldv_48233; ldv_48232: ps_page = buffer_info->ldv_41273.ldv_41272.ps_pages + (unsigned long )j; if (adapter->rx_ps_pages <= j) { rx_desc->read.buffer_addr[j + 1U] = 0xffffffffffffffffULL; goto ldv_48230; } else { } if ((unsigned long )ps_page->page == (unsigned long )((struct page *)0)) { ps_page->page = alloc_pages(gfp, 0U); if ((unsigned long )ps_page->page == (unsigned long )((struct page *)0)) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto no_buffers; } else { } ps_page->dma = dma_map_page(& pdev->dev, ps_page->page, 0UL, 4096UL, 2); tmp = dma_mapping_error(& pdev->dev, ps_page->dma); if (tmp != 0) { dev_err((struct device const *)(& (adapter->pdev)->dev), "Rx DMA page map failed\n"); adapter->rx_dma_failed = adapter->rx_dma_failed + 1U; goto no_buffers; } else { } } else { } rx_desc->read.buffer_addr[j + 1U] = ps_page->dma; ldv_48230: j = j + 1U; ldv_48233: ; if (j <= 2U) { goto ldv_48232; } else { } skb = __netdev_alloc_skb_ip_align(netdev, (unsigned int )adapter->rx_ps_bsize0, gfp); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_48235; } else { } buffer_info->skb = skb; buffer_info->dma = dma_map_single_attrs___0(& pdev->dev, (void *)skb->data, (size_t )adapter->rx_ps_bsize0, 2, 0); tmp___0 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___0 != 0) { dev_err((struct device const *)(& pdev->dev), "Rx DMA map failed\n"); adapter->rx_dma_failed = adapter->rx_dma_failed + 1U; dev_kfree_skb_any(skb); buffer_info->skb = 0; goto ldv_48235; } else { } rx_desc->read.buffer_addr[0] = buffer_info->dma; tmp___1 = ldv__builtin_expect((i & 15U) == 0U, 0L); if (tmp___1 != 0L) { __asm__ volatile ("sfence": : : "memory"); if ((adapter->flags2 & 2048U) != 0U) { e1000e_update_rdt_wa(rx_ring, i << 1); } else { writel(i << 1, (void volatile *)rx_ring->tail); } } else { } i = i + 1U; if (rx_ring->count == i) { i = 0U; } else { } buffer_info = rx_ring->buffer_info + (unsigned long )i; ldv_48237: tmp___2 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___2 != 0) { goto ldv_48236; } else { } ldv_48235: ; no_buffers: rx_ring->next_to_use = (u16 )i; return; } } static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring , int cleaned_count , gfp_t gfp ) { struct e1000_adapter *adapter ; struct net_device *netdev ; struct pci_dev *pdev ; union e1000_rx_desc_extended *rx_desc ; struct e1000_buffer *buffer_info ; struct sk_buff *skb ; unsigned int i ; unsigned int bufsz ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; long tmp___5 ; long tmp___6 ; { adapter = rx_ring->adapter; netdev = adapter->netdev; pdev = adapter->pdev; bufsz = 240U; i = (unsigned int )rx_ring->next_to_use; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_48254; ldv_48253: skb = buffer_info->skb; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { skb_trim(skb, 0U); goto check_page; } else { } skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); tmp = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); if (tmp != 0L) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_48252; } else { } buffer_info->skb = skb; check_page: ; if ((unsigned long )buffer_info->ldv_41273.ldv_41272.page == (unsigned long )((struct page *)0)) { buffer_info->ldv_41273.ldv_41272.page = alloc_pages(gfp, 0U); tmp___0 = ldv__builtin_expect((unsigned long )buffer_info->ldv_41273.ldv_41272.page == (unsigned long )((struct page *)0), 0L); if (tmp___0 != 0L) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_48252; } else { } } else { } if (buffer_info->dma == 0ULL) { buffer_info->dma = dma_map_page(& pdev->dev, buffer_info->ldv_41273.ldv_41272.page, 0UL, 4096UL, 2); tmp___1 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___1 != 0) { adapter->alloc_rx_buff_failed = adapter->alloc_rx_buff_failed + 1U; goto ldv_48252; } else { } } else { } rx_desc = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; rx_desc->read.buffer_addr = buffer_info->dma; i = i + 1U; tmp___2 = ldv__builtin_expect(i == rx_ring->count, 0L); if (tmp___2 != 0L) { i = 0U; } else { } buffer_info = rx_ring->buffer_info + (unsigned long )i; ldv_48254: tmp___3 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___3 != 0) { goto ldv_48253; } else { } ldv_48252: tmp___6 = ldv__builtin_expect((unsigned int )rx_ring->next_to_use != i, 1L); if (tmp___6 != 0L) { rx_ring->next_to_use = (u16 )i; tmp___4 = i; i = i - 1U; tmp___5 = ldv__builtin_expect(tmp___4 == 0U, 0L); if (tmp___5 != 0L) { i = rx_ring->count - 1U; } else { } __asm__ volatile ("sfence": : : "memory"); if ((adapter->flags2 & 2048U) != 0U) { e1000e_update_rdt_wa(rx_ring, i); } else { writel(i, (void volatile *)rx_ring->tail); } } else { } return; } } __inline static void e1000_rx_hash(struct net_device *netdev , __le32 rss , struct sk_buff *skb ) { { if ((netdev->features & 268435456ULL) != 0ULL) { skb->rxhash = rss; } else { } return; } } static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring , int *work_done , int work_to_do ) { struct e1000_adapter *adapter ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_hw *hw ; union e1000_rx_desc_extended *rx_desc ; union e1000_rx_desc_extended *next_rxd ; struct e1000_buffer *buffer_info ; struct e1000_buffer *next_buffer ; u32 length ; u32 staterr ; unsigned int i ; int cleaned_count ; bool cleaned ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct sk_buff *skb ; long tmp ; struct _ddebug descriptor ; long tmp___0 ; long tmp___1 ; long tmp___2 ; struct sk_buff *new_skb ; struct sk_buff *tmp___3 ; { adapter = rx_ring->adapter; netdev = adapter->netdev; pdev = adapter->pdev; hw = & adapter->hw; cleaned_count = 0; cleaned = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = (unsigned int )rx_ring->next_to_clean; rx_desc = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; staterr = rx_desc->wb.upper.status_error; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_48287; ldv_48286: ; if (*work_done >= work_to_do) { goto ldv_48281; } else { } *work_done = *work_done + 1; __asm__ volatile ("lfence": : : "memory"); skb = buffer_info->skb; buffer_info->skb = 0; __builtin_prefetch((void const *)skb->data); i = i + 1U; if (rx_ring->count == i) { i = 0U; } else { } next_rxd = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); next_buffer = rx_ring->buffer_info + (unsigned long )i; cleaned = 1; cleaned_count = cleaned_count + 1; dma_unmap_single_attrs___0(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2, 0); buffer_info->dma = 0ULL; length = (u32 )rx_desc->wb.upper.length; tmp = ldv__builtin_expect((staterr & 2U) == 0U, 0L); if (tmp != 0L) { adapter->flags2 = adapter->flags2 | 4U; } else { } if ((adapter->flags2 & 4U) != 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_clean_rx_irq"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared"; descriptor.format = "Receive packet consumed multiple buffers\n"; descriptor.lineno = 1000U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Receive packet consumed multiple buffers\n"); } else { } buffer_info->skb = skb; if ((staterr & 2U) != 0U) { adapter->flags2 = adapter->flags2 & 4294967291U; } else { } goto next_desc; } else { } tmp___1 = ldv__builtin_expect((staterr & 2533359616U) != 0U, 0L); if (tmp___1 != 0L) { tmp___2 = ldv__builtin_expect((netdev->features & 8589934592ULL) == 0ULL, 0L); if (tmp___2 != 0L) { buffer_info->skb = skb; goto next_desc; } else { } } else { } if ((adapter->flags2 & 1U) == 0U) { if ((netdev->features & 4294967296ULL) != 0ULL) { total_rx_bytes = total_rx_bytes - 4U; } else { length = length - 4U; } } else { } total_rx_bytes = total_rx_bytes + length; total_rx_packets = total_rx_packets + 1U; if (length < copybreak) { tmp___3 = netdev_alloc_skb_ip_align(netdev, length); new_skb = tmp___3; if ((unsigned long )new_skb != (unsigned long )((struct sk_buff *)0)) { skb_copy_to_linear_data_offset(new_skb, 0, (void const *)skb->data, length); buffer_info->skb = skb; skb = new_skb; } else { } } else { } skb_put(skb, length); e1000_rx_checksum(adapter, staterr, skb); e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); e1000_receive_skb(adapter, netdev, skb, staterr, (int )rx_desc->wb.upper.vlan); next_desc: rx_desc->wb.upper.status_error = rx_desc->wb.upper.status_error & 4294967040U; if (cleaned_count > 15) { (*(adapter->alloc_rx_buf))(rx_ring, cleaned_count, 32U); cleaned_count = 0; } else { } rx_desc = next_rxd; buffer_info = next_buffer; staterr = rx_desc->wb.upper.status_error; ldv_48287: ; if ((int )staterr & 1) { goto ldv_48286; } else { } ldv_48281: rx_ring->next_to_clean = (u16 )i; cleaned_count = e1000_desc_unused(rx_ring); if (cleaned_count != 0) { (*(adapter->alloc_rx_buf))(rx_ring, cleaned_count, 32U); } else { } adapter->total_rx_bytes = adapter->total_rx_bytes + total_rx_bytes; adapter->total_rx_packets = adapter->total_rx_packets + total_rx_packets; return (cleaned); } } static void e1000_put_txbuf(struct e1000_ring *tx_ring , struct e1000_buffer *buffer_info ) { struct e1000_adapter *adapter ; { adapter = tx_ring->adapter; if (buffer_info->dma != 0ULL) { if ((unsigned int )buffer_info->ldv_41273.ldv_41268.mapped_as_page != 0U) { dma_unmap_page(& (adapter->pdev)->dev, buffer_info->dma, (size_t )buffer_info->ldv_41273.ldv_41268.length, 1); } else { dma_unmap_single_attrs___0(& (adapter->pdev)->dev, buffer_info->dma, (size_t )buffer_info->ldv_41273.ldv_41268.length, 1, 0); } buffer_info->dma = 0ULL; } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { dev_kfree_skb_any(buffer_info->skb); buffer_info->skb = 0; } else { } buffer_info->ldv_41273.ldv_41268.time_stamp = 0UL; return; } } static void e1000_print_hw_hang(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct net_device *netdev ; struct e1000_ring *tx_ring ; unsigned int i ; unsigned int eop ; struct e1000_tx_desc *eop_desc ; struct e1000_hw *hw ; u16 phy_status ; u16 phy_1000t_status ; u16 phy_ext_status ; u16 pci_status ; int tmp ; u32 tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; u32 tmp___3 ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffd018UL; netdev = adapter->netdev; tx_ring = adapter->tx_ring; i = (unsigned int )tx_ring->next_to_clean; eop = (unsigned int )(tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.next_to_watch; eop_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )eop; hw = & adapter->hw; tmp = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp != 0) { return; } else { } if (! adapter->tx_hang_recheck && (adapter->flags2 & 64U) != 0U) { __ew32___7(hw, 14368UL, adapter->tx_int_delay | 2147483648U); __er32(hw, 8UL); __ew32___7(hw, 14368UL, adapter->tx_int_delay | 2147483648U); __er32(hw, 8UL); adapter->tx_hang_recheck = 1; return; } else { } adapter->tx_hang_recheck = 0; netif_stop_queue(netdev); e1e_rphy(hw, 1U, & phy_status); e1e_rphy(hw, 10U, & phy_1000t_status); e1e_rphy(hw, 15U, & phy_ext_status); pci_read_config_word((struct pci_dev const *)adapter->pdev, 6, & pci_status); tmp___0 = __er32(hw, 8UL); tmp___1 = readl((void const volatile *)tx_ring->tail); tmp___2 = readl((void const volatile *)tx_ring->head); netdev_err((struct net_device const *)adapter->netdev, "Detected Hardware Unit Hang:\n TDH <%x>\n TDT <%x>\n next_to_use <%x>\n next_to_clean <%x>\nbuffer_info[next_to_clean]:\n time_stamp <%lx>\n next_to_watch <%x>\n jiffies <%lx>\n next_to_watch.status <%x>\nMAC Status <%x>\nPHY Status <%x>\nPHY 1000BASE-T Status <%x>\nPHY Extended Status <%x>\nPCI Status <%x>\n", tmp___2, tmp___1, (int )tx_ring->next_to_use, (int )tx_ring->next_to_clean, (tx_ring->buffer_info + (unsigned long )eop)->ldv_41273.ldv_41268.time_stamp, eop, jiffies, (int )eop_desc->upper.fields.status, tmp___0, (int )phy_status, (int )phy_1000t_status, (int )phy_ext_status, (int )pci_status); if ((unsigned int )hw->mac.type == 9U) { tmp___3 = __er32(hw, 0UL); if ((tmp___3 & 268435456U) != 0U) { netdev_err((struct net_device const *)adapter->netdev, "Try turning off Tx pause (flow control) via ethtool\n"); } else { } } else { } return; } } static void e1000e_tx_hwtstamp_work(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct e1000_hw *hw ; struct skb_shared_hwtstamps shhwtstamps ; u64 txstmp ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffcec8UL; hw = & adapter->hw; if ((unsigned long )adapter->tx_hwtstamp_skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } tmp___1 = __er32(hw, 46612UL); if ((int )tmp___1 & 1) { tmp = __er32(hw, 46616UL); txstmp = (u64 )tmp; tmp___0 = __er32(hw, 46620UL); txstmp = ((unsigned long long )tmp___0 << 32) | txstmp; e1000e_systim_to_hwtstamp(adapter, & shhwtstamps, txstmp); skb_tstamp_tx(adapter->tx_hwtstamp_skb, & shhwtstamps); dev_kfree_skb_any(adapter->tx_hwtstamp_skb); adapter->tx_hwtstamp_skb = 0; } else { schedule_work(& adapter->tx_hwtstamp_work); } return; } } static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring ) { struct e1000_adapter *adapter ; struct net_device *netdev ; struct e1000_hw *hw ; struct e1000_tx_desc *tx_desc ; struct e1000_tx_desc *eop_desc ; struct e1000_buffer *buffer_info ; unsigned int i ; unsigned int eop ; unsigned int count ; unsigned int total_tx_bytes ; unsigned int total_tx_packets ; unsigned int bytes_compl ; unsigned int pkts_compl ; bool cleaned ; bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; u32 tmp___3 ; { adapter = tx_ring->adapter; netdev = adapter->netdev; hw = & adapter->hw; count = 0U; total_tx_bytes = 0U; total_tx_packets = 0U; bytes_compl = 0U; pkts_compl = 0U; i = (unsigned int )tx_ring->next_to_clean; eop = (unsigned int )(tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.next_to_watch; eop_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )eop; goto ldv_48340; ldv_48339: cleaned = 0; __asm__ volatile ("lfence": : : "memory"); goto ldv_48336; ldv_48335: tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; cleaned = i == eop; if ((int )cleaned) { total_tx_packets = buffer_info->ldv_41273.ldv_41268.segs + total_tx_packets; total_tx_bytes = buffer_info->ldv_41273.ldv_41268.bytecount + total_tx_bytes; if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { bytes_compl = (buffer_info->skb)->len + bytes_compl; pkts_compl = pkts_compl + 1U; } else { } } else { } e1000_put_txbuf(tx_ring, buffer_info); tx_desc->upper.data = 0U; i = i + 1U; if (tx_ring->count == i) { i = 0U; } else { } count = count + 1U; ldv_48336: ; if (! cleaned) { goto ldv_48335; } else { } if ((unsigned int )tx_ring->next_to_use == i) { goto ldv_48338; } else { } eop = (unsigned int )(tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.next_to_watch; eop_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )eop; ldv_48340: ; if ((int )eop_desc->upper.data & 1 && tx_ring->count > count) { goto ldv_48339; } else { } ldv_48338: tx_ring->next_to_clean = (u16 )i; netdev_completed_queue(netdev, pkts_compl, bytes_compl); if (count != 0U) { tmp___1 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___1) { tmp___2 = e1000_desc_unused(tx_ring); if (tmp___2 > 31) { __asm__ volatile ("mfence": : : "memory"); tmp = netif_queue_stopped((struct net_device const *)netdev); if ((int )tmp) { tmp___0 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___0 == 0) { netif_wake_queue(netdev); adapter->restart_queue = adapter->restart_queue + 1U; } else { } } else { } } else { } } else { } } else { } if ((int )adapter->detect_tx_hung) { adapter->detect_tx_hung = 0; if ((tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.time_stamp != 0UL && (long )((tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.time_stamp + (unsigned long )((int )adapter->tx_timeout_factor * 250)) - (long )jiffies < 0L) { tmp___3 = __er32(hw, 8UL); if ((tmp___3 & 16U) == 0U) { schedule_work(& adapter->print_hang_task); } else { adapter->tx_hang_recheck = 0; } } else { adapter->tx_hang_recheck = 0; } } else { } adapter->total_tx_bytes = adapter->total_tx_bytes + total_tx_bytes; adapter->total_tx_packets = adapter->total_tx_packets + total_tx_packets; return (tx_ring->count > count); } } static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring , int *work_done , int work_to_do ) { struct e1000_adapter *adapter ; struct e1000_hw *hw ; union e1000_rx_desc_packet_split *rx_desc ; union e1000_rx_desc_packet_split *next_rxd ; struct net_device *netdev ; struct pci_dev *pdev ; struct e1000_buffer *buffer_info ; struct e1000_buffer *next_buffer ; struct e1000_ps_page *ps_page ; struct sk_buff *skb ; unsigned int i ; unsigned int j ; u32 length ; u32 staterr ; int cleaned_count ; bool cleaned ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct _ddebug descriptor ; long tmp ; long tmp___0 ; long tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; int l1 ; u8 *vaddr ; void *tmp___3 ; size_t __len ; void *__ret ; unsigned char *tmp___5 ; { adapter = rx_ring->adapter; hw = & adapter->hw; netdev = adapter->netdev; pdev = adapter->pdev; cleaned_count = 0; cleaned = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = (unsigned int )rx_ring->next_to_clean; rx_desc = (union e1000_rx_desc_packet_split *)rx_ring->desc + (unsigned long )i; staterr = rx_desc->wb.middle.status_error; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_48385; ldv_48384: ; if (*work_done >= work_to_do) { goto ldv_48370; } else { } *work_done = *work_done + 1; skb = buffer_info->skb; __asm__ volatile ("lfence": : : "memory"); __builtin_prefetch((void const *)skb->data); i = i + 1U; if (rx_ring->count == i) { i = 0U; } else { } next_rxd = (union e1000_rx_desc_packet_split *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); next_buffer = rx_ring->buffer_info + (unsigned long )i; cleaned = 1; cleaned_count = cleaned_count + 1; dma_unmap_single_attrs___0(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_ps_bsize0, 2, 0); buffer_info->dma = 0ULL; if ((staterr & 2U) == 0U) { adapter->flags2 = adapter->flags2 | 4U; } else { } if ((adapter->flags2 & 4U) != 0U) { descriptor.modname = "e1000e"; descriptor.function = "e1000_clean_rx_irq_ps"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared"; descriptor.format = "Packet Split buffers didn\'t pick up the full packet\n"; descriptor.lineno = 1363U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "Packet Split buffers didn\'t pick up the full packet\n"); } else { } dev_kfree_skb_irq(skb); if ((staterr & 2U) != 0U) { adapter->flags2 = adapter->flags2 & 4294967291U; } else { } goto next_desc; } else { } tmp___0 = ldv__builtin_expect((staterr & 2533359616U) != 0U, 0L); if (tmp___0 != 0L) { tmp___1 = ldv__builtin_expect((netdev->features & 8589934592ULL) == 0ULL, 0L); if (tmp___1 != 0L) { dev_kfree_skb_irq(skb); goto next_desc; } else { } } else { } length = (u32 )rx_desc->wb.middle.length0; if (length == 0U) { descriptor___0.modname = "e1000e"; descriptor___0.function = "e1000_clean_rx_irq_ps"; descriptor___0.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared"; descriptor___0.format = "Last part of the packet spanning multiple descriptors\n"; descriptor___0.lineno = 1379U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___2 != 0L) { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)(hw->adapter)->netdev, "Last part of the packet spanning multiple descriptors\n"); } else { } dev_kfree_skb_irq(skb); goto next_desc; } else { } skb_put(skb, length); l1 = (int )rx_desc->wb.upper.length[0]; if ((l1 != 0 && (unsigned int )l1 <= copybreak) && length + (u32 )l1 <= (u32 )adapter->rx_ps_bsize0) { ps_page = buffer_info->ldv_41273.ldv_41272.ps_pages; dma_sync_single_for_cpu___0(& pdev->dev, ps_page->dma, 4096UL, 2); tmp___3 = kmap_atomic(ps_page->page); vaddr = (u8 *)tmp___3; __len = (size_t )l1; tmp___5 = skb_tail_pointer((struct sk_buff const *)skb); __ret = memcpy((void *)tmp___5, (void const *)vaddr, __len); __kunmap_atomic((void *)vaddr); dma_sync_single_for_device___0(& pdev->dev, ps_page->dma, 4096UL, 2); if ((adapter->flags2 & 1U) == 0U) { if ((netdev->features & 4294967296ULL) == 0ULL) { l1 = l1 + -4; } else { } } else { } skb_put(skb, (unsigned int )l1); goto copydone; } else { } j = 0U; goto ldv_48383; ldv_48382: length = (u32 )rx_desc->wb.upper.length[j]; if (length == 0U) { goto ldv_48381; } else { } ps_page = buffer_info->ldv_41273.ldv_41272.ps_pages + (unsigned long )j; dma_unmap_page(& pdev->dev, ps_page->dma, 4096UL, 2); ps_page->dma = 0ULL; skb_fill_page_desc(skb, (int )j, ps_page->page, 0, (int )length); ps_page->page = 0; skb->len = skb->len + length; skb->data_len = skb->data_len + length; skb->truesize = skb->truesize + 4096U; j = j + 1U; ldv_48383: ; if (j <= 2U) { goto ldv_48382; } else { } ldv_48381: ; if ((adapter->flags2 & 1U) == 0U) { if ((netdev->features & 4294967296ULL) == 0ULL) { pskb_trim(skb, skb->len - 4U); } else { } } else { } copydone: total_rx_bytes = skb->len + total_rx_bytes; total_rx_packets = total_rx_packets + 1U; e1000_rx_checksum(adapter, staterr, skb); e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); if ((int )((short )rx_desc->wb.upper.header_status) < 0) { adapter->rx_hdr_split = adapter->rx_hdr_split + 1ULL; } else { } e1000_receive_skb(adapter, netdev, skb, staterr, (int )rx_desc->wb.middle.vlan); next_desc: rx_desc->wb.middle.status_error = rx_desc->wb.middle.status_error & 4294967040U; buffer_info->skb = 0; if (cleaned_count > 15) { (*(adapter->alloc_rx_buf))(rx_ring, cleaned_count, 32U); cleaned_count = 0; } else { } rx_desc = next_rxd; buffer_info = next_buffer; staterr = rx_desc->wb.middle.status_error; ldv_48385: ; if ((int )staterr & 1) { goto ldv_48384; } else { } ldv_48370: rx_ring->next_to_clean = (u16 )i; cleaned_count = e1000_desc_unused(rx_ring); if (cleaned_count != 0) { (*(adapter->alloc_rx_buf))(rx_ring, cleaned_count, 32U); } else { } adapter->total_rx_bytes = adapter->total_rx_bytes + total_rx_bytes; adapter->total_rx_packets = adapter->total_rx_packets + total_rx_packets; return (cleaned); } } static void e1000_consume_page(struct e1000_buffer *bi , struct sk_buff *skb , u16 length ) { { bi->ldv_41273.ldv_41272.page = 0; skb->len = skb->len + (unsigned int )length; skb->data_len = skb->data_len + (unsigned int )length; skb->truesize = skb->truesize + 4096U; return; } } static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring , int *work_done , int work_to_do ) { struct e1000_adapter *adapter ; struct net_device *netdev ; struct pci_dev *pdev ; union e1000_rx_desc_extended *rx_desc ; union e1000_rx_desc_extended *next_rxd ; struct e1000_buffer *buffer_info ; struct e1000_buffer *next_buffer ; u32 length ; u32 staterr ; unsigned int i ; int cleaned_count ; bool cleaned ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct skb_shared_info *shinfo ; struct sk_buff *skb ; long tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; unsigned char *tmp___3 ; unsigned char *tmp___4 ; u8 *vaddr ; void *tmp___5 ; size_t __len ; void *__ret ; unsigned char *tmp___7 ; int tmp___8 ; int tmp___9 ; long tmp___10 ; { adapter = rx_ring->adapter; netdev = adapter->netdev; pdev = adapter->pdev; cleaned_count = 0; cleaned = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = (unsigned int )rx_ring->next_to_clean; rx_desc = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; staterr = rx_desc->wb.upper.status_error; buffer_info = rx_ring->buffer_info + (unsigned long )i; goto ldv_48419; ldv_48418: ; if (*work_done >= work_to_do) { goto ldv_48412; } else { } *work_done = *work_done + 1; __asm__ volatile ("lfence": : : "memory"); skb = buffer_info->skb; buffer_info->skb = 0; i = i + 1U; if (rx_ring->count == i) { i = 0U; } else { } next_rxd = (union e1000_rx_desc_extended *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); next_buffer = rx_ring->buffer_info + (unsigned long )i; cleaned = 1; cleaned_count = cleaned_count + 1; dma_unmap_page(& pdev->dev, buffer_info->dma, 4096UL, 2); buffer_info->dma = 0ULL; length = (u32 )rx_desc->wb.upper.length; tmp = ldv__builtin_expect((staterr & 2U) != 0U, 0L); if (tmp != 0L) { tmp___0 = ldv__builtin_expect((staterr & 2533359616U) != 0U, 0L); if (tmp___0 != 0L) { tmp___1 = ldv__builtin_expect((netdev->features & 8589934592ULL) == 0ULL, 0L); if (tmp___1 != 0L) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } if (tmp___2 != 0) { buffer_info->skb = skb; if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { dev_kfree_skb_irq(rx_ring->rx_skb_top); } else { } rx_ring->rx_skb_top = 0; goto next_desc; } else { } } else { } if ((staterr & 2U) == 0U) { if ((unsigned long )rx_ring->rx_skb_top == (unsigned long )((struct sk_buff *)0)) { rx_ring->rx_skb_top = skb; skb_fill_page_desc(rx_ring->rx_skb_top, 0, buffer_info->ldv_41273.ldv_41272.page, 0, (int )length); } else { tmp___3 = skb_end_pointer((struct sk_buff const *)rx_ring->rx_skb_top); shinfo = (struct skb_shared_info *)tmp___3; skb_fill_page_desc(rx_ring->rx_skb_top, (int )shinfo->nr_frags, buffer_info->ldv_41273.ldv_41272.page, 0, (int )length); buffer_info->skb = skb; } e1000_consume_page(buffer_info, rx_ring->rx_skb_top, (int )((u16 )length)); goto next_desc; } else if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { tmp___4 = skb_end_pointer((struct sk_buff const *)rx_ring->rx_skb_top); shinfo = (struct skb_shared_info *)tmp___4; skb_fill_page_desc(rx_ring->rx_skb_top, (int )shinfo->nr_frags, buffer_info->ldv_41273.ldv_41272.page, 0, (int )length); buffer_info->skb = skb; skb = rx_ring->rx_skb_top; rx_ring->rx_skb_top = 0; e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } else if (length <= copybreak) { tmp___8 = skb_tailroom((struct sk_buff const *)skb); if ((u32 )tmp___8 >= length) { tmp___5 = kmap_atomic(buffer_info->ldv_41273.ldv_41272.page); vaddr = (u8 *)tmp___5; __len = (size_t )length; tmp___7 = skb_tail_pointer((struct sk_buff const *)skb); __ret = memcpy((void *)tmp___7, (void const *)vaddr, __len); __kunmap_atomic((void *)vaddr); skb_put(skb, length); } else { skb_fill_page_desc(skb, 0, buffer_info->ldv_41273.ldv_41272.page, 0, (int )length); e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } } else { skb_fill_page_desc(skb, 0, buffer_info->ldv_41273.ldv_41272.page, 0, (int )length); e1000_consume_page(buffer_info, skb, (int )((u16 )length)); } e1000_rx_checksum(adapter, staterr, skb); e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); total_rx_bytes = skb->len + total_rx_bytes; total_rx_packets = total_rx_packets + 1U; tmp___9 = pskb_may_pull(skb, 14U); if (tmp___9 == 0) { netdev_err((struct net_device const *)adapter->netdev, "pskb_may_pull failed.\n"); dev_kfree_skb_irq(skb); goto next_desc; } else { } e1000_receive_skb(adapter, netdev, skb, staterr, (int )rx_desc->wb.upper.vlan); next_desc: rx_desc->wb.upper.status_error = rx_desc->wb.upper.status_error & 4294967040U; tmp___10 = ldv__builtin_expect(cleaned_count > 15, 0L); if (tmp___10 != 0L) { (*(adapter->alloc_rx_buf))(rx_ring, cleaned_count, 32U); cleaned_count = 0; } else { } rx_desc = next_rxd; buffer_info = next_buffer; staterr = rx_desc->wb.upper.status_error; ldv_48419: ; if ((int )staterr & 1) { goto ldv_48418; } else { } ldv_48412: rx_ring->next_to_clean = (u16 )i; cleaned_count = e1000_desc_unused(rx_ring); if (cleaned_count != 0) { (*(adapter->alloc_rx_buf))(rx_ring, cleaned_count, 32U); } else { } adapter->total_rx_bytes = adapter->total_rx_bytes + total_rx_bytes; adapter->total_rx_packets = adapter->total_rx_packets + total_rx_packets; return (cleaned); } } static void e1000_clean_rx_ring(struct e1000_ring *rx_ring ) { struct e1000_adapter *adapter ; struct e1000_buffer *buffer_info ; struct e1000_ps_page *ps_page ; struct pci_dev *pdev ; unsigned int i ; unsigned int j ; { adapter = rx_ring->adapter; pdev = adapter->pdev; i = 0U; goto ldv_48433; ldv_48432: buffer_info = rx_ring->buffer_info + (unsigned long )i; if (buffer_info->dma != 0ULL) { if ((unsigned long )adapter->clean_rx == (unsigned long )(& e1000_clean_rx_irq)) { dma_unmap_single_attrs___0(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_buffer_len, 2, 0); } else if ((unsigned long )adapter->clean_rx == (unsigned long )(& e1000_clean_jumbo_rx_irq)) { dma_unmap_page(& pdev->dev, buffer_info->dma, 4096UL, 2); } else if ((unsigned long )adapter->clean_rx == (unsigned long )(& e1000_clean_rx_irq_ps)) { dma_unmap_single_attrs___0(& pdev->dev, buffer_info->dma, (size_t )adapter->rx_ps_bsize0, 2, 0); } else { } buffer_info->dma = 0ULL; } else { } if ((unsigned long )buffer_info->ldv_41273.ldv_41272.page != (unsigned long )((struct page *)0)) { put_page(buffer_info->ldv_41273.ldv_41272.page); buffer_info->ldv_41273.ldv_41272.page = 0; } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { consume_skb(buffer_info->skb); buffer_info->skb = 0; } else { } j = 0U; goto ldv_48431; ldv_48430: ps_page = buffer_info->ldv_41273.ldv_41272.ps_pages + (unsigned long )j; if ((unsigned long )ps_page->page == (unsigned long )((struct page *)0)) { goto ldv_48429; } else { } dma_unmap_page(& pdev->dev, ps_page->dma, 4096UL, 2); ps_page->dma = 0ULL; put_page(ps_page->page); ps_page->page = 0; j = j + 1U; ldv_48431: ; if (j <= 2U) { goto ldv_48430; } else { } ldv_48429: i = i + 1U; ldv_48433: ; if (rx_ring->count > i) { goto ldv_48432; } else { } if ((unsigned long )rx_ring->rx_skb_top != (unsigned long )((struct sk_buff *)0)) { consume_skb(rx_ring->rx_skb_top); rx_ring->rx_skb_top = 0; } else { } memset(rx_ring->desc, 0, (size_t )rx_ring->size); rx_ring->next_to_clean = 0U; rx_ring->next_to_use = 0U; adapter->flags2 = adapter->flags2 & 4294967291U; writel(0U, (void volatile *)rx_ring->head); if (((rx_ring->adapter)->flags2 & 2048U) != 0U) { e1000e_update_rdt_wa(rx_ring, 0U); } else { writel(0U, (void volatile *)rx_ring->tail); } return; } } static void e1000e_downshift_workaround(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; int tmp ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffd0b8UL; tmp = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp != 0) { return; } else { } e1000e_gig_downshift_workaround_ich8lan(& adapter->hw); return; } } static irqreturn_t e1000_intr_msi(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 icr ; u32 tmp___0 ; u32 tmp___1 ; u32 rctl ; u32 tmp___2 ; bool tmp___3 ; int tmp___4 ; u32 pbeccsts ; u32 tmp___5 ; bool tmp___6 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = __er32(hw, 192UL); icr = tmp___0; if ((icr & 4U) != 0U) { hw->mac.get_link_status = 1; if ((adapter->flags & 33554432U) != 0U) { tmp___1 = __er32(hw, 8UL); if ((tmp___1 & 2U) == 0U) { schedule_work(& adapter->downshift_task); } else { } } else { } tmp___3 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___3 && (adapter->flags & 16777216U) != 0U) { tmp___2 = __er32(hw, 256UL); rctl = tmp___2; __ew32___7(hw, 256UL, rctl & 4294967293U); adapter->flags = adapter->flags | 1073741824U; } else { } tmp___4 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___4 == 0) { mod_timer(& adapter->watchdog_timer, (unsigned long )jiffies + 1UL); } else { } } else { } if ((icr & 4194304U) != 0U && (unsigned int )hw->mac.type == 11U) { tmp___5 = __er32(hw, 4108UL); pbeccsts = tmp___5; adapter->corr_errors = adapter->corr_errors + (pbeccsts & 255U); adapter->uncorr_errors = adapter->uncorr_errors + ((pbeccsts & 65280U) >> 8); schedule_work(& adapter->reset_task); return (1); } else { } tmp___6 = napi_schedule_prep(& adapter->napi); if ((int )tmp___6) { adapter->total_tx_bytes = 0U; adapter->total_tx_packets = 0U; adapter->total_rx_bytes = 0U; adapter->total_rx_packets = 0U; __napi_schedule(& adapter->napi); } else { } return (1); } } static irqreturn_t e1000_intr(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 rctl ; u32 icr ; u32 tmp___0 ; int tmp___1 ; u32 tmp___2 ; bool tmp___3 ; int tmp___4 ; u32 pbeccsts ; u32 tmp___5 ; bool tmp___6 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = __er32(hw, 192UL); icr = tmp___0; if (icr == 0U) { return (0); } else { tmp___1 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___1 != 0) { return (0); } else { } } if ((int )icr >= 0) { return (0); } else { } if ((icr & 4U) != 0U) { hw->mac.get_link_status = 1; if ((adapter->flags & 33554432U) != 0U) { tmp___2 = __er32(hw, 8UL); if ((tmp___2 & 2U) == 0U) { schedule_work(& adapter->downshift_task); } else { } } else { } tmp___3 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___3 && (adapter->flags & 16777216U) != 0U) { rctl = __er32(hw, 256UL); __ew32___7(hw, 256UL, rctl & 4294967293U); adapter->flags = adapter->flags | 1073741824U; } else { } tmp___4 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___4 == 0) { mod_timer(& adapter->watchdog_timer, (unsigned long )jiffies + 1UL); } else { } } else { } if ((icr & 4194304U) != 0U && (unsigned int )hw->mac.type == 11U) { tmp___5 = __er32(hw, 4108UL); pbeccsts = tmp___5; adapter->corr_errors = adapter->corr_errors + (pbeccsts & 255U); adapter->uncorr_errors = adapter->uncorr_errors + ((pbeccsts & 65280U) >> 8); schedule_work(& adapter->reset_task); return (1); } else { } tmp___6 = napi_schedule_prep(& adapter->napi); if ((int )tmp___6) { adapter->total_tx_bytes = 0U; adapter->total_tx_packets = 0U; adapter->total_rx_bytes = 0U; adapter->total_rx_packets = 0U; __napi_schedule(& adapter->napi); } else { } return (1); } } static irqreturn_t e1000_msix_other(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 icr ; u32 tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = __er32(hw, 192UL); icr = tmp___0; if ((int )icr >= 0) { tmp___1 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___1 == 0) { __ew32___7(hw, 208UL, 16777216U); } else { } return (0); } else { } if ((adapter->eiac_mask & icr) != 0U) { __ew32___7(hw, 200UL, adapter->eiac_mask & icr); } else { } if ((icr & 16777216U) != 0U) { if ((icr & 4U) == 0U) { goto no_link_interrupt; } else { } hw->mac.get_link_status = 1; tmp___2 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___2 == 0) { mod_timer(& adapter->watchdog_timer, (unsigned long )jiffies + 1UL); } else { } } else { } no_link_interrupt: tmp___3 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___3 == 0) { __ew32___7(hw, 208UL, 16777220U); } else { } return (1); } } static irqreturn_t e1000_intr_msix_tx(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct e1000_ring *tx_ring ; bool tmp___0 ; int tmp___1 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tx_ring = adapter->tx_ring; adapter->total_tx_bytes = 0U; adapter->total_tx_packets = 0U; tmp___0 = e1000_clean_tx_irq(tx_ring); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { __ew32___7(hw, 200UL, tx_ring->ims_val); } else { } return (1); } } static irqreturn_t e1000_intr_msix_rx(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_ring *rx_ring ; bool tmp___0 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; rx_ring = adapter->rx_ring; if (rx_ring->set_itr != 0) { writel(1000000000U / (rx_ring->itr_val * 256U), (void volatile *)rx_ring->itr_register); rx_ring->set_itr = 0; } else { } tmp___0 = napi_schedule_prep(& adapter->napi); if ((int )tmp___0) { adapter->total_rx_bytes = 0U; adapter->total_rx_packets = 0U; __napi_schedule(& adapter->napi); } else { } return (1); } } static void e1000_configure_msix(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_ring *rx_ring ; struct e1000_ring *tx_ring ; int vector ; u32 ctrl_ext ; u32 ivar ; u32 rfctl ; u32 tmp ; { hw = & adapter->hw; rx_ring = adapter->rx_ring; tx_ring = adapter->tx_ring; vector = 0; ivar = 0U; adapter->eiac_mask = 0U; if ((unsigned int )hw->mac.type == 3U) { tmp = __er32(hw, 20488UL); rfctl = tmp; rfctl = rfctl | 4096U; __ew32___7(hw, 20488UL, rfctl); } else { } rx_ring->ims_val = 1048576U; adapter->eiac_mask = adapter->eiac_mask | rx_ring->ims_val; if (rx_ring->itr_val != 0U) { writel(1000000000U / (rx_ring->itr_val * 256U), (void volatile *)rx_ring->itr_register); } else { writel(1U, (void volatile *)rx_ring->itr_register); } ivar = (u32 )(vector | 8); tx_ring->ims_val = 4194304U; vector = vector + 1; if (tx_ring->itr_val != 0U) { writel(1000000000U / (tx_ring->itr_val * 256U), (void volatile *)tx_ring->itr_register); } else { writel(1U, (void volatile *)tx_ring->itr_register); } adapter->eiac_mask = adapter->eiac_mask | tx_ring->ims_val; ivar = (u32 )((vector | 8) << 8) | ivar; vector = vector + 1; ivar = (u32 )((vector | 8) << 16) | ivar; if (rx_ring->itr_val != 0U) { writel(1000000000U / (rx_ring->itr_val * 256U), (void volatile *)hw->hw_addr + (unsigned long )((vector + 58) * 4)); } else { writel(1U, (void volatile *)hw->hw_addr + (unsigned long )((vector + 58) * 4)); } ivar = ivar | 2147483648U; __ew32___7(hw, 228UL, ivar); ctrl_ext = __er32(hw, 24UL); ctrl_ext = ctrl_ext | 2147483648U; __ew32___7(hw, 224UL, 4279238655U); ctrl_ext = ctrl_ext | 16777216U; __ew32___7(hw, 24UL, ctrl_ext); __er32(hw, 8UL); return; } } void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter ) { { if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { pci_disable_msix(adapter->pdev); kfree((void const *)adapter->msix_entries); adapter->msix_entries = 0; } else if ((adapter->flags & 134217728U) != 0U) { pci_disable_msi(adapter->pdev); adapter->flags = adapter->flags & 4160749567U; } else { } return; } } void e1000e_set_interrupt_capability(struct e1000_adapter *adapter ) { int err ; int i ; void *tmp ; int tmp___0 ; { switch (adapter->int_mode) { case 2: ; if ((adapter->flags & 1024U) != 0U) { adapter->num_vectors = 3U; tmp = kcalloc((size_t )adapter->num_vectors, 8UL, 208U); adapter->msix_entries = (struct msix_entry *)tmp; if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { i = 0; goto ldv_48505; ldv_48504: (adapter->msix_entries + (unsigned long )i)->entry = (u16 )i; i = i + 1; ldv_48505: ; if ((unsigned int )i < adapter->num_vectors) { goto ldv_48504; } else { } err = pci_enable_msix(adapter->pdev, adapter->msix_entries, (int )adapter->num_vectors); if (err == 0) { return; } else { } } else { } netdev_err((struct net_device const *)adapter->netdev, "Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); e1000e_reset_interrupt_capability(adapter); } else { } adapter->int_mode = 1; case 1: tmp___0 = pci_enable_msi_block(adapter->pdev, 1U); if (tmp___0 == 0) { adapter->flags = adapter->flags | 134217728U; } else { adapter->int_mode = 0; netdev_err((struct net_device const *)adapter->netdev, "Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); } case 0: ; goto ldv_48509; } ldv_48509: adapter->num_vectors = 1U; return; } } static int e1000_request_msix(struct e1000_adapter *adapter ) { struct net_device *netdev ; int err ; int vector ; size_t __len ; void *__ret ; size_t tmp ; size_t __len___0 ; void *__ret___0 ; size_t tmp___0 ; { netdev = adapter->netdev; err = 0; vector = 0; tmp = strlen((char const *)(& netdev->name)); if (tmp <= 10UL) { snprintf((char *)(& (adapter->rx_ring)->name), 20UL, "%s-rx-0", (char *)(& netdev->name)); } else { __len = 16UL; if (__len > 63UL) { __ret = memcpy((void *)(& (adapter->rx_ring)->name), (void const *)(& netdev->name), __len); } else { __ret = memcpy((void *)(& (adapter->rx_ring)->name), (void const *)(& netdev->name), __len); } } err = request_irq((adapter->msix_entries + (unsigned long )vector)->vector, & e1000_intr_msix_rx, 0UL, (char const *)(& (adapter->rx_ring)->name), (void *)netdev); if (err != 0) { return (err); } else { } (adapter->rx_ring)->itr_register = adapter->hw.hw_addr + (unsigned long )((vector + 58) * 4); (adapter->rx_ring)->itr_val = adapter->itr; vector = vector + 1; tmp___0 = strlen((char const *)(& netdev->name)); if (tmp___0 <= 10UL) { snprintf((char *)(& (adapter->tx_ring)->name), 20UL, "%s-tx-0", (char *)(& netdev->name)); } else { __len___0 = 16UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& (adapter->tx_ring)->name), (void const *)(& netdev->name), __len___0); } else { __ret___0 = memcpy((void *)(& (adapter->tx_ring)->name), (void const *)(& netdev->name), __len___0); } } err = request_irq((adapter->msix_entries + (unsigned long )vector)->vector, & e1000_intr_msix_tx, 0UL, (char const *)(& (adapter->tx_ring)->name), (void *)netdev); if (err != 0) { return (err); } else { } (adapter->tx_ring)->itr_register = adapter->hw.hw_addr + (unsigned long )((vector + 58) * 4); (adapter->tx_ring)->itr_val = adapter->itr; vector = vector + 1; err = request_irq((adapter->msix_entries + (unsigned long )vector)->vector, & e1000_msix_other, 0UL, (char const *)(& netdev->name), (void *)netdev); if (err != 0) { return (err); } else { } e1000_configure_msix(adapter); return (0); } } static int e1000_request_irq(struct e1000_adapter *adapter ) { struct net_device *netdev ; int err ; { netdev = adapter->netdev; if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { err = e1000_request_msix(adapter); if (err == 0) { return (err); } else { } e1000e_reset_interrupt_capability(adapter); adapter->int_mode = 1; e1000e_set_interrupt_capability(adapter); } else { } if ((adapter->flags & 134217728U) != 0U) { err = request_irq((adapter->pdev)->irq, & e1000_intr_msi, 0UL, (char const *)(& netdev->name), (void *)netdev); if (err == 0) { return (err); } else { } e1000e_reset_interrupt_capability(adapter); adapter->int_mode = 0; } else { } err = request_irq((adapter->pdev)->irq, & e1000_intr, 128UL, (char const *)(& netdev->name), (void *)netdev); if (err != 0) { netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate interrupt, Error: %d\n", err); } else { } return (err); } } static void e1000_free_irq(struct e1000_adapter *adapter ) { struct net_device *netdev ; int vector ; { netdev = adapter->netdev; if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { vector = 0; free_irq((adapter->msix_entries + (unsigned long )vector)->vector, (void *)netdev); vector = vector + 1; free_irq((adapter->msix_entries + (unsigned long )vector)->vector, (void *)netdev); vector = vector + 1; free_irq((adapter->msix_entries + (unsigned long )vector)->vector, (void *)netdev); return; } else { } free_irq((adapter->pdev)->irq, (void *)netdev); return; } } static void e1000_irq_disable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; int i ; { hw = & adapter->hw; __ew32___7(hw, 216UL, 4294967295U); if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { __ew32___7(hw, 220UL, 0U); } else { } __er32(hw, 8UL); if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { i = 0; goto ldv_48538; ldv_48537: synchronize_irq((adapter->msix_entries + (unsigned long )i)->vector); i = i + 1; ldv_48538: ; if ((unsigned int )i < adapter->num_vectors) { goto ldv_48537; } else { } } else { synchronize_irq((adapter->pdev)->irq); } return; } } static void e1000_irq_enable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { hw = & adapter->hw; if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { __ew32___7(hw, 220UL, adapter->eiac_mask & 32505856U); __ew32___7(hw, 208UL, adapter->eiac_mask | 16777220U); } else if ((unsigned int )hw->mac.type == 11U) { __ew32___7(hw, 208UL, 4194461U); } else { __ew32___7(hw, 208UL, 157U); } __er32(hw, 8UL); return; } } void e1000e_get_hw_control(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl_ext ; u32 swsm ; { hw = & adapter->hw; if ((adapter->flags & 64U) != 0U) { swsm = __er32(hw, 23376UL); __ew32___7(hw, 23376UL, swsm | 8U); } else if ((adapter->flags & 32U) != 0U) { ctrl_ext = __er32(hw, 24UL); __ew32___7(hw, 24UL, ctrl_ext | 268435456U); } else { } return; } } void e1000e_release_hw_control(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl_ext ; u32 swsm ; { hw = & adapter->hw; if ((adapter->flags & 64U) != 0U) { swsm = __er32(hw, 23376UL); __ew32___7(hw, 23376UL, swsm & 4294967287U); } else if ((adapter->flags & 32U) != 0U) { ctrl_ext = __er32(hw, 24UL); __ew32___7(hw, 24UL, ctrl_ext & 4026531839U); } else { } return; } } static int e1000_alloc_ring_dma(struct e1000_adapter *adapter , struct e1000_ring *ring ) { struct pci_dev *pdev ; { pdev = adapter->pdev; ring->desc = dma_alloc_attrs(& pdev->dev, (size_t )ring->size, & ring->dma, 208U, 0); if ((unsigned long )ring->desc == (unsigned long )((void *)0)) { return (-12); } else { } return (0); } } int e1000e_setup_tx_resources(struct e1000_ring *tx_ring ) { struct e1000_adapter *adapter ; int err ; int size ; void *tmp ; { adapter = tx_ring->adapter; err = -12; size = (int )(tx_ring->count * 40U); tmp = vzalloc((unsigned long )size); tx_ring->buffer_info = (struct e1000_buffer *)tmp; if ((unsigned long )tx_ring->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { goto err; } else { } tx_ring->size = tx_ring->count * 16U; tx_ring->size = (tx_ring->size + 4095U) & 4294963200U; err = e1000_alloc_ring_dma(adapter, tx_ring); if (err != 0) { goto err; } else { } tx_ring->next_to_use = 0U; tx_ring->next_to_clean = 0U; return (0); err: vfree((void const *)tx_ring->buffer_info); netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate memory for the transmit descriptor ring\n"); return (err); } } int e1000e_setup_rx_resources(struct e1000_ring *rx_ring ) { struct e1000_adapter *adapter ; struct e1000_buffer *buffer_info ; int i ; int size ; int desc_len ; int err ; void *tmp ; void *tmp___0 ; { adapter = rx_ring->adapter; err = -12; size = (int )(rx_ring->count * 40U); tmp = vzalloc((unsigned long )size); rx_ring->buffer_info = (struct e1000_buffer *)tmp; if ((unsigned long )rx_ring->buffer_info == (unsigned long )((struct e1000_buffer *)0)) { goto err; } else { } i = 0; goto ldv_48580; ldv_48579: buffer_info = rx_ring->buffer_info + (unsigned long )i; tmp___0 = kcalloc(3UL, 16UL, 208U); buffer_info->ldv_41273.ldv_41272.ps_pages = (struct e1000_ps_page *)tmp___0; if ((unsigned long )buffer_info->ldv_41273.ldv_41272.ps_pages == (unsigned long )((struct e1000_ps_page *)0)) { goto err_pages; } else { } i = i + 1; ldv_48580: ; if ((unsigned int )i < rx_ring->count) { goto ldv_48579; } else { } desc_len = 32; rx_ring->size = rx_ring->count * (unsigned int )desc_len; rx_ring->size = (rx_ring->size + 4095U) & 4294963200U; err = e1000_alloc_ring_dma(adapter, rx_ring); if (err != 0) { goto err_pages; } else { } rx_ring->next_to_clean = 0U; rx_ring->next_to_use = 0U; rx_ring->rx_skb_top = 0; return (0); err_pages: i = 0; goto ldv_48583; ldv_48582: buffer_info = rx_ring->buffer_info + (unsigned long )i; kfree((void const *)buffer_info->ldv_41273.ldv_41272.ps_pages); i = i + 1; ldv_48583: ; if ((unsigned int )i < rx_ring->count) { goto ldv_48582; } else { } err: vfree((void const *)rx_ring->buffer_info); netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate memory for the receive descriptor ring\n"); return (err); } } static void e1000_clean_tx_ring(struct e1000_ring *tx_ring ) { struct e1000_adapter *adapter ; struct e1000_buffer *buffer_info ; unsigned long size ; unsigned int i ; { adapter = tx_ring->adapter; i = 0U; goto ldv_48593; ldv_48592: buffer_info = tx_ring->buffer_info + (unsigned long )i; e1000_put_txbuf(tx_ring, buffer_info); i = i + 1U; ldv_48593: ; if (tx_ring->count > i) { goto ldv_48592; } else { } netdev_reset_queue(adapter->netdev); size = (unsigned long )tx_ring->count * 40UL; memset((void *)tx_ring->buffer_info, 0, size); memset(tx_ring->desc, 0, (size_t )tx_ring->size); tx_ring->next_to_use = 0U; tx_ring->next_to_clean = 0U; writel(0U, (void volatile *)tx_ring->head); if (((tx_ring->adapter)->flags2 & 2048U) != 0U) { e1000e_update_tdt_wa(tx_ring, 0U); } else { writel(0U, (void volatile *)tx_ring->tail); } return; } } void e1000e_free_tx_resources(struct e1000_ring *tx_ring ) { struct e1000_adapter *adapter ; struct pci_dev *pdev ; { adapter = tx_ring->adapter; pdev = adapter->pdev; e1000_clean_tx_ring(tx_ring); vfree((void const *)tx_ring->buffer_info); tx_ring->buffer_info = 0; dma_free_attrs(& pdev->dev, (size_t )tx_ring->size, tx_ring->desc, tx_ring->dma, 0); tx_ring->desc = 0; return; } } void e1000e_free_rx_resources(struct e1000_ring *rx_ring ) { struct e1000_adapter *adapter ; struct pci_dev *pdev ; int i ; { adapter = rx_ring->adapter; pdev = adapter->pdev; e1000_clean_rx_ring(rx_ring); i = 0; goto ldv_48607; ldv_48606: kfree((void const *)(rx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41272.ps_pages); i = i + 1; ldv_48607: ; if ((unsigned int )i < rx_ring->count) { goto ldv_48606; } else { } vfree((void const *)rx_ring->buffer_info); rx_ring->buffer_info = 0; dma_free_attrs(& pdev->dev, (size_t )rx_ring->size, rx_ring->desc, rx_ring->dma, 0); rx_ring->desc = 0; return; } } static unsigned int e1000_update_itr(u16 itr_setting , int packets , int bytes ) { unsigned int retval ; { retval = (unsigned int )itr_setting; if (packets == 0) { return ((unsigned int )itr_setting); } else { } switch ((int )itr_setting) { case 0: ; if (bytes / packets > 8000) { retval = 2U; } else if (packets <= 4 && bytes > 512) { retval = 1U; } else { } goto ldv_48616; case 1: ; if (bytes > 10000) { if (bytes / packets > 8000) { retval = 2U; } else if (packets <= 9 || bytes / packets > 1200) { retval = 2U; } else if (packets > 35) { retval = 0U; } else { } } else if (bytes / packets > 2000) { retval = 2U; } else if (packets <= 2 && bytes <= 511) { retval = 0U; } else { } goto ldv_48616; case 2: ; if (bytes > 25000) { if (packets > 35) { retval = 1U; } else { } } else if (bytes <= 5999) { retval = 1U; } else { } goto ldv_48616; } ldv_48616: ; return (retval); } } static void e1000_set_itr(struct e1000_adapter *adapter ) { u16 current_itr ; u32 new_itr ; unsigned int tmp ; unsigned int tmp___0 ; u16 _max1 ; u16 _max2 ; u32 _min1 ; u32 _min2 ; { new_itr = adapter->itr; if ((unsigned int )adapter->link_speed != 1000U) { current_itr = 0U; new_itr = 4000U; goto set_itr_now; } else { } if ((adapter->flags2 & 256U) != 0U) { new_itr = 0U; goto set_itr_now; } else { } tmp = e1000_update_itr((int )adapter->tx_itr, (int )adapter->total_tx_packets, (int )adapter->total_tx_bytes); adapter->tx_itr = (u16 )tmp; if (adapter->itr_setting == 3U && (unsigned int )adapter->tx_itr == 0U) { adapter->tx_itr = 1U; } else { } tmp___0 = e1000_update_itr((int )adapter->rx_itr, (int )adapter->total_rx_packets, (int )adapter->total_rx_bytes); adapter->rx_itr = (u16 )tmp___0; if (adapter->itr_setting == 3U && (unsigned int )adapter->rx_itr == 0U) { adapter->rx_itr = 1U; } else { } _max1 = adapter->rx_itr; _max2 = adapter->tx_itr; current_itr = (u16 )((int )_max1 > (int )_max2 ? _max1 : _max2); switch ((int )current_itr) { case 0: new_itr = 70000U; goto ldv_48629; case 1: new_itr = 20000U; goto ldv_48629; case 2: new_itr = 4000U; goto ldv_48629; default: ; goto ldv_48629; } ldv_48629: ; set_itr_now: ; if (adapter->itr != new_itr) { if (adapter->itr < new_itr) { _min1 = adapter->itr + (new_itr >> 2); _min2 = new_itr; new_itr = _min1 < _min2 ? _min1 : _min2; } else { new_itr = new_itr; } adapter->itr = new_itr; (adapter->rx_ring)->itr_val = new_itr; if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { (adapter->rx_ring)->set_itr = 1; } else { e1000e_write_itr(adapter, new_itr); } } else { } return; } } void e1000e_write_itr(struct e1000_adapter *adapter , u32 itr ) { struct e1000_hw *hw ; u32 new_itr ; int vector ; { hw = & adapter->hw; new_itr = itr != 0U ? 1000000000U / (itr * 256U) : 0U; if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { vector = 0; goto ldv_48644; ldv_48643: writel(new_itr, (void volatile *)hw->hw_addr + (unsigned long )((vector + 58) * 4)); vector = vector + 1; ldv_48644: ; if ((unsigned int )vector < adapter->num_vectors) { goto ldv_48643; } else { } } else { __ew32___7(hw, 196UL, new_itr); } return; } } static int e1000_alloc_queues(struct e1000_adapter *adapter ) { int size ; void *tmp ; void *tmp___0 ; { size = 120; tmp = kzalloc((size_t )size, 208U); adapter->tx_ring = (struct e1000_ring *)tmp; if ((unsigned long )adapter->tx_ring == (unsigned long )((struct e1000_ring *)0)) { goto err; } else { } (adapter->tx_ring)->count = (unsigned int )adapter->tx_ring_count; (adapter->tx_ring)->adapter = adapter; tmp___0 = kzalloc((size_t )size, 208U); adapter->rx_ring = (struct e1000_ring *)tmp___0; if ((unsigned long )adapter->rx_ring == (unsigned long )((struct e1000_ring *)0)) { goto err; } else { } (adapter->rx_ring)->count = (unsigned int )adapter->rx_ring_count; (adapter->rx_ring)->adapter = adapter; return (0); err: netdev_err((struct net_device const *)adapter->netdev, "Unable to allocate memory for queues\n"); kfree((void const *)adapter->rx_ring); kfree((void const *)adapter->tx_ring); return (-12); } } static int e1000e_poll(struct napi_struct *napi , int weight ) { struct e1000_adapter *adapter ; struct napi_struct const *__mptr ; struct e1000_hw *hw ; struct net_device *poll_dev ; int tx_cleaned ; int work_done ; void *tmp ; bool tmp___0 ; int tmp___1 ; { __mptr = (struct napi_struct const *)napi; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffffb70UL; hw = & adapter->hw; poll_dev = adapter->netdev; tx_cleaned = 1; work_done = 0; tmp = netdev_priv((struct net_device const *)poll_dev); adapter = (struct e1000_adapter *)tmp; if ((unsigned long )adapter->msix_entries == (unsigned long )((struct msix_entry *)0) || ((adapter->rx_ring)->ims_val & (adapter->tx_ring)->ims_val) != 0U) { tmp___0 = e1000_clean_tx_irq(adapter->tx_ring); tx_cleaned = (int )tmp___0; } else { } (*(adapter->clean_rx))(adapter->rx_ring, & work_done, weight); if (tx_cleaned == 0) { work_done = weight; } else { } if (work_done < weight) { if ((adapter->itr_setting & 3U) != 0U) { e1000_set_itr(adapter); } else { } napi_complete(napi); tmp___1 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___1 == 0) { if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { __ew32___7(hw, 208UL, (adapter->rx_ring)->ims_val); } else { e1000_irq_enable(adapter); } } else { } } else { } return (work_done); } } static int e1000_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 vfta ; u32 index ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if (((int )adapter->hw.mng_cookie.status & 2) != 0 && (int )adapter->mng_vlan_id == (int )vid) { return (0); } else { } if ((adapter->flags & 4U) != 0U) { index = (u32 )((int )vid >> 5) & 127U; vfta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )(index << 2) + 22016UL))); vfta = (u32 )(1 << ((int )vid & 31)) | vfta; (*(hw->mac.ops.write_vfta))(hw, index, vfta); } else { } set_bit((unsigned int )vid, (unsigned long volatile *)(& adapter->active_vlans)); return (0); } } static int e1000_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 vfta ; u32 index ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if (((int )adapter->hw.mng_cookie.status & 2) != 0 && (int )adapter->mng_vlan_id == (int )vid) { e1000e_release_hw_control(adapter); return (0); } else { } if ((adapter->flags & 4U) != 0U) { index = (u32 )((int )vid >> 5) & 127U; vfta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )(index << 2) + 22016UL))); vfta = (u32 )(~ (1 << ((int )vid & 31))) & vfta; (*(hw->mac.ops.write_vfta))(hw, index, vfta); } else { } clear_bit((int )vid, (unsigned long volatile *)(& adapter->active_vlans)); return (0); } } static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct e1000_hw *hw ; u32 rctl ; { netdev = adapter->netdev; hw = & adapter->hw; if ((adapter->flags & 4U) != 0U) { rctl = __er32(hw, 256UL); rctl = rctl & 4294180863U; __ew32___7(hw, 256UL, rctl); if ((unsigned int )adapter->mng_vlan_id != 65535U) { e1000_vlan_rx_kill_vid(netdev, 129, (int )adapter->mng_vlan_id); adapter->mng_vlan_id = 65535U; } else { } } else { } return; } } static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; { hw = & adapter->hw; if ((adapter->flags & 4U) != 0U) { rctl = __er32(hw, 256UL); rctl = rctl | 262144U; rctl = rctl & 4294443007U; __ew32___7(hw, 256UL, rctl); } else { } return; } } static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl ; { hw = & adapter->hw; ctrl = __er32(hw, 0UL); ctrl = ctrl & 3221225471U; __ew32___7(hw, 0UL, ctrl); return; } } static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl ; { hw = & adapter->hw; ctrl = __er32(hw, 0UL); ctrl = ctrl | 1073741824U; __ew32___7(hw, 0UL, ctrl); return; } } static void e1000_update_mng_vlan(struct e1000_adapter *adapter ) { struct net_device *netdev ; u16 vid ; u16 old_vid ; { netdev = adapter->netdev; vid = adapter->hw.mng_cookie.vlan_id; old_vid = adapter->mng_vlan_id; if (((int )adapter->hw.mng_cookie.status & 2) != 0) { e1000_vlan_rx_add_vid(netdev, 129, (int )vid); adapter->mng_vlan_id = vid; } else { } if ((unsigned int )old_vid != 65535U && (int )vid != (int )old_vid) { e1000_vlan_rx_kill_vid(netdev, 129, (int )old_vid); } else { } return; } } static void e1000_restore_vlan(struct e1000_adapter *adapter ) { u16 vid ; unsigned long tmp ; unsigned long tmp___0 ; { e1000_vlan_rx_add_vid(adapter->netdev, 129, 0); tmp = find_first_bit((unsigned long const *)(& adapter->active_vlans), 4096UL); vid = (u16 )tmp; goto ldv_48712; ldv_48711: e1000_vlan_rx_add_vid(adapter->netdev, 129, (int )vid); tmp___0 = find_next_bit((unsigned long const *)(& adapter->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___0; ldv_48712: ; if ((unsigned int )vid <= 4095U) { goto ldv_48711; } else { } return; } } static void e1000_init_manageability_pt(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 manc ; u32 manc2h ; u32 mdef ; u32 i ; u32 j ; u32 tmp ; { hw = & adapter->hw; if ((adapter->flags & 1048576U) == 0U) { return; } else { } manc = __er32(hw, 22560UL); manc = manc | 2097152U; manc2h = __er32(hw, 22624UL); switch ((unsigned int )hw->mac.type) { default: manc2h = manc2h | 96U; goto ldv_48724; case 3U: ; case 4U: i = 0U; j = 0U; goto ldv_48729; ldv_48728: mdef = __er32(hw, (unsigned long )((i + 5668U) * 4U)); if ((mdef & 4294964223U) != 0U) { goto ldv_48727; } else { } if (mdef != 0U) { manc2h = (u32 )(1 << (int )i) | manc2h; } else { } j = j | mdef; ldv_48727: i = i + 1U; ldv_48729: ; if (i <= 7U) { goto ldv_48728; } else { } if (j == 3072U) { goto ldv_48724; } else { } i = 0U; j = 0U; goto ldv_48733; ldv_48732: tmp = __er32(hw, (unsigned long )((i + 5668U) * 4U)); if (tmp == 0U) { __ew32___7(hw, (unsigned long )((i + 5668U) * 4U), 3072U); manc2h = manc2h | 2U; j = j + 1U; goto ldv_48731; } else { } i = i + 1U; ldv_48733: ; if (i <= 7U) { goto ldv_48732; } else { } ldv_48731: ; if (j == 0U) { netdev_warn((struct net_device const *)adapter->netdev, "Unable to create IPMI pass-through filter\n"); } else { } goto ldv_48724; } ldv_48724: __ew32___7(hw, 22624UL, manc2h); __ew32___7(hw, 22560UL, manc); return; } } static void e1000_configure_tx(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_ring *tx_ring ; u64 tdba ; u32 tdlen ; u32 tarc ; u32 txdctl ; u32 tmp ; u32 tmp___0 ; { hw = & adapter->hw; tx_ring = adapter->tx_ring; tdba = tx_ring->dma; tdlen = tx_ring->count * 16U; __ew32___7(hw, 14336UL, (u32 )tdba); __ew32___7(hw, 14340UL, (u32 )(tdba >> 32)); __ew32___7(hw, 14344UL, tdlen); __ew32___7(hw, 14352UL, 0U); __ew32___7(hw, 14360UL, 0U); tx_ring->head = adapter->hw.hw_addr + 14352UL; tx_ring->tail = adapter->hw.hw_addr + 14360UL; __ew32___7(hw, 14368UL, adapter->tx_int_delay); __ew32___7(hw, 14380UL, adapter->tx_abs_int_delay); if ((adapter->flags2 & 64U) != 0U) { tmp = __er32(hw, 14376UL); txdctl = tmp; txdctl = txdctl & 4290822336U; txdctl = txdctl | 21037343U; __ew32___7(hw, 14376UL, txdctl); } else { } tmp___0 = __er32(hw, 14376UL); __ew32___7(hw, 14632UL, tmp___0); if ((adapter->flags & 4194304U) != 0U) { tarc = __er32(hw, 14400UL); tarc = tarc | 2097152U; __ew32___7(hw, 14400UL, tarc); } else { } if ((adapter->flags & 8388608U) != 0U) { tarc = __er32(hw, 14400UL); tarc = tarc | 1U; __ew32___7(hw, 14400UL, tarc); tarc = __er32(hw, 14656UL); tarc = tarc | 1U; __ew32___7(hw, 14656UL, tarc); } else { } adapter->txd_cmd = 50331648U; if (adapter->tx_int_delay != 0U) { adapter->txd_cmd = adapter->txd_cmd | 2147483648U; } else { } adapter->txd_cmd = adapter->txd_cmd | 134217728U; (*(hw->mac.ops.config_collision_dist))(hw); return; } } static void e1000_setup_rctl(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; u32 rfctl ; u32 pages ; s32 ret_val ; struct _ddebug descriptor ; long tmp ; u16 phy_data ; u32 psrctl ; { hw = & adapter->hw; pages = 0U; if ((unsigned int )hw->mac.type > 9U) { if ((adapter->netdev)->mtu > 1500U) { ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, 1); } else { ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, 0); } if (ret_val != 0) { descriptor.modname = "e1000e"; descriptor.function = "e1000_setup_rctl"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared"; descriptor.format = "failed to enable jumbo frame workaround mode\n"; descriptor.lineno = 3031U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "failed to enable jumbo frame workaround mode\n"); } else { } } else { } } else { } rctl = __er32(hw, 256UL); rctl = rctl & 4294955007U; rctl = ((adapter->hw.mac.mc_filter_type << 12) | rctl) | 32770U; rctl = rctl & 4294967291U; if ((adapter->netdev)->mtu <= 1500U) { rctl = rctl & 4294967263U; } else { rctl = rctl | 32U; } if ((int )adapter->flags2 & 1) { rctl = rctl | 67108864U; } else { } if ((unsigned int )hw->phy.type == 10U && (rctl & 32U) != 0U) { e1e_rphy(hw, 24666U, & phy_data); phy_data = (unsigned int )phy_data & 65528U; phy_data = (u16 )((unsigned int )phy_data | 4U); e1e_wphy(hw, 24666U, (int )phy_data); e1e_rphy(hw, 22U, & phy_data); phy_data = (unsigned int )phy_data & 4095U; phy_data = (u16 )((unsigned int )phy_data | 16384U); e1e_wphy(hw, 16U, 10275); e1e_wphy(hw, 17U, 3); e1e_wphy(hw, 22U, (int )phy_data); } else { } rctl = rctl & 4294770687U; rctl = rctl | 33554432U; switch (adapter->rx_buffer_len) { case 2048U: ; default: rctl = rctl; rctl = rctl & 4261412863U; goto ldv_48756; case 4096U: rctl = rctl | 196608U; goto ldv_48756; case 8192U: rctl = rctl | 131072U; goto ldv_48756; case 16384U: rctl = rctl | 65536U; goto ldv_48756; } ldv_48756: rfctl = __er32(hw, 20488UL); rfctl = rfctl | 32768U; __ew32___7(hw, 20488UL, rfctl); pages = ((adapter->netdev)->mtu >> 12) + (((unsigned long )(adapter->netdev)->mtu & 4095UL) != 0UL ? 1U : 0U); if (pages <= 3U && (rctl & 32U) != 0U) { adapter->rx_ps_pages = pages; } else { adapter->rx_ps_pages = 0U; } if (adapter->rx_ps_pages != 0U) { psrctl = 0U; rctl = rctl | 1024U; psrctl = (u32 )((int )adapter->rx_ps_bsize0 >> 7) | psrctl; switch (adapter->rx_ps_pages) { case 3U: psrctl = psrctl | 67108864U; case 2U: psrctl = psrctl | 262144U; case 1U: psrctl = psrctl | 1024U; goto ldv_48764; } ldv_48764: __ew32___7(hw, 8560UL, psrctl); } else { } if (((adapter->netdev)->features & 8589934592ULL) != 0ULL) { rctl = rctl | 8421380U; rctl = rctl & 4289986559U; } else { } __ew32___7(hw, 256UL, rctl); adapter->flags = adapter->flags & 3221225471U; return; } } static void e1000_configure_rx(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_ring *rx_ring ; u64 rdba ; u32 rdlen ; u32 rctl ; u32 rxcsum ; u32 ctrl_ext ; u32 lat ; u32 tmp ; u32 rxdctl ; u32 tmp___0 ; { hw = & adapter->hw; rx_ring = adapter->rx_ring; if (adapter->rx_ps_pages != 0U) { rdlen = rx_ring->count * 32U; adapter->clean_rx = & e1000_clean_rx_irq_ps; adapter->alloc_rx_buf = & e1000_alloc_rx_buffers_ps; } else if ((adapter->netdev)->mtu > 1518U) { rdlen = rx_ring->count * 16U; adapter->clean_rx = & e1000_clean_jumbo_rx_irq; adapter->alloc_rx_buf = & e1000_alloc_jumbo_rx_buffers; } else { rdlen = rx_ring->count * 16U; adapter->clean_rx = & e1000_clean_rx_irq; adapter->alloc_rx_buf = & e1000_alloc_rx_buffers; } rctl = __er32(hw, 256UL); if ((adapter->flags2 & 1024U) == 0U) { __ew32___7(hw, 256UL, rctl & 4294967293U); } else { } __er32(hw, 8UL); usleep_range(10000UL, 20000UL); if ((adapter->flags2 & 64U) != 0U) { __ew32___7(hw, 10280UL, 17040416U); __ew32___7(hw, 10536UL, 17040416U); if (adapter->rx_int_delay == 0U) { adapter->rx_int_delay = 32U; } else { } if (adapter->rx_abs_int_delay == 8U) { adapter->rx_abs_int_delay = 32U; } else { } } else { } __ew32___7(hw, 10272UL, adapter->rx_int_delay); __ew32___7(hw, 10284UL, adapter->rx_abs_int_delay); if (adapter->itr_setting != 0U && adapter->itr != 0U) { e1000e_write_itr(adapter, adapter->itr); } else { } ctrl_ext = __er32(hw, 24UL); ctrl_ext = ctrl_ext | 134217728U; __ew32___7(hw, 224UL, 4294967295U); __ew32___7(hw, 24UL, ctrl_ext); __er32(hw, 8UL); rdba = rx_ring->dma; __ew32___7(hw, 10240UL, (u32 )rdba); __ew32___7(hw, 10244UL, (u32 )(rdba >> 32)); __ew32___7(hw, 10248UL, rdlen); __ew32___7(hw, 10256UL, 0U); __ew32___7(hw, 10264UL, 0U); rx_ring->head = adapter->hw.hw_addr + 10256UL; rx_ring->tail = adapter->hw.hw_addr + 10264UL; rxcsum = __er32(hw, 20480UL); if (((adapter->netdev)->features & 536870912ULL) != 0ULL) { rxcsum = rxcsum | 512U; } else { rxcsum = rxcsum & 4294966783U; } __ew32___7(hw, 20480UL, rxcsum); if ((adapter->netdev)->mtu > 1500U) { tmp = __er32(hw, 4096UL); lat = (((tmp & 65535U) * 1024U - adapter->max_frame_size) * 8U) / 1000U; if ((adapter->flags & 512U) != 0U) { tmp___0 = __er32(hw, 10280UL); rxdctl = tmp___0; __ew32___7(hw, 10280UL, rxdctl | 3U); } else { } pm_qos_update_request(& (adapter->netdev)->pm_qos_req, (s32 )lat); } else { pm_qos_update_request(& (adapter->netdev)->pm_qos_req, -1); } __ew32___7(hw, 256UL, rctl); return; } } static int e1000e_write_mc_addr_list(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct netdev_hw_addr *ha ; u8 *mta_list ; int i ; void *tmp___0 ; struct list_head const *__mptr ; size_t __len ; void *__ret ; int tmp___1 ; int tmp___2 ; struct list_head const *__mptr___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; if (netdev->mc.count == 0) { (*(hw->mac.ops.update_mc_addr_list))(hw, 0, 0U); return (0); } else { } tmp___0 = kzalloc((size_t )(netdev->mc.count * 6), 32U); mta_list = (u8 *)tmp___0; if ((unsigned long )mta_list == (unsigned long )((u8 *)0)) { return (-12); } else { } i = 0; __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_48793; ldv_48792: __len = 6UL; if (__len > 63UL) { tmp___1 = i; i = i + 1; __ret = memcpy((void *)mta_list + (unsigned long )(tmp___1 * 6), (void const *)(& ha->addr), __len); } else { tmp___2 = i; i = i + 1; __ret = memcpy((void *)mta_list + (unsigned long )(tmp___2 * 6), (void const *)(& ha->addr), __len); } __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_48793: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_48792; } else { } (*(hw->mac.ops.update_mc_addr_list))(hw, mta_list, (u32 )i); kfree((void const *)mta_list); return (netdev->mc.count); } } static int e1000e_write_uc_addr_list(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; unsigned int rar_entries ; int count ; struct netdev_hw_addr *ha ; struct list_head const *__mptr ; unsigned int tmp___0 ; struct list_head const *__mptr___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; rar_entries = (unsigned int )hw->mac.rar_entry_count; count = 0; rar_entries = rar_entries - 1U; if ((adapter->flags & 2097152U) != 0U) { rar_entries = rar_entries - 1U; } else { } if ((unsigned int )netdev->uc.count > rar_entries) { return (-12); } else { } if (netdev->uc.count != 0 && rar_entries != 0U) { __mptr = (struct list_head const *)netdev->uc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_48809; ldv_48808: ; if (rar_entries == 0U) { goto ldv_48807; } else { } tmp___0 = rar_entries; rar_entries = rar_entries - 1U; (*(hw->mac.ops.rar_set))(hw, (u8 *)(& ha->addr), tmp___0); count = count + 1; __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_48809: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->uc.list)) { goto ldv_48808; } else { } ldv_48807: ; } else { } goto ldv_48811; ldv_48810: __ew32___7(hw, (unsigned long )(rar_entries <= 15U ? rar_entries * 8U + 21508U : (rar_entries + 536870896U) * 8U + 21732U), 0U); __ew32___7(hw, (unsigned long )(rar_entries <= 15U ? (rar_entries + 2688U) * 8U : (rar_entries + 2700U) * 8U), 0U); rar_entries = rar_entries - 1U; ldv_48811: ; if (rar_entries != 0U) { goto ldv_48810; } else { } __er32(hw, 8UL); return (count); } } static void e1000e_set_rx_mode(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 rctl ; int count ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; rctl = __er32(hw, 256UL); rctl = rctl & 4294967271U; if ((netdev->flags & 256U) != 0U) { rctl = rctl | 24U; e1000e_vlan_filter_disable(adapter); } else { if ((netdev->flags & 512U) != 0U) { rctl = rctl | 16U; } else { count = e1000e_write_mc_addr_list(netdev); if (count < 0) { rctl = rctl | 16U; } else { } } e1000e_vlan_filter_enable(adapter); count = e1000e_write_uc_addr_list(netdev); if (count < 0) { rctl = rctl | 8U; } else { } } __ew32___7(hw, 256UL, rctl); if ((netdev->features & 256ULL) != 0ULL) { e1000e_vlan_strip_enable(adapter); } else { e1000e_vlan_strip_disable(adapter); } return; } } static void e1000e_setup_rss_hash(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 mrqc ; u32 rxcsum ; int i ; u32 rsskey[10U] ; { hw = & adapter->hw; rsskey[0] = 3663092333U; rsskey[1] = 3255720741U; rsskey[2] = 1025861441U; rsskey[3] = 2962203459U; rsskey[4] = 3408644816U; rsskey[5] = 3023076270U; rsskey[6] = 2737687415U; rsskey[7] = 217198720U; rsskey[8] = 1001865834U; rsskey[9] = 4194413758U; i = 0; goto ldv_48829; ldv_48828: __ew32___7(hw, (unsigned long )((i + 5920) * 4), rsskey[i]); i = i + 1; ldv_48829: ; if (i <= 9) { goto ldv_48828; } else { } i = 0; goto ldv_48832; ldv_48831: __ew32___7(hw, (unsigned long )((i + 5888) * 4), 0U); i = i + 1; ldv_48832: ; if (i <= 31) { goto ldv_48831; } else { } rxcsum = __er32(hw, 20480UL); rxcsum = rxcsum | 8192U; __ew32___7(hw, 20480UL, rxcsum); mrqc = 3604480U; __ew32___7(hw, 22552UL, mrqc); return; } } s32 e1000e_get_base_timinca(struct e1000_adapter *adapter , u32 *timinca ) { struct e1000_hw *hw ; u32 incvalue ; u32 incperiod ; u32 shift ; u32 fextnvm7 ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; { hw = & adapter->hw; if ((unsigned int )hw->mac.type == 11U) { tmp___0 = __er32(hw, 46612UL); if ((tmp___0 & 16U) == 0U) { tmp___1 = __er32(hw, 46624UL); if ((tmp___1 & 16U) == 0U) { tmp = __er32(hw, 228UL); fextnvm7 = tmp; if ((fextnvm7 & 1U) == 0U) { __ew32___7(hw, 228UL, fextnvm7 | 1U); __er32(hw, 8UL); } else { } } else { } } else { } } else { } switch ((unsigned int )hw->mac.type) { case 10U: ; case 11U: ; if ((unsigned int )hw->mac.type != 11U) { incperiod = 3U; incvalue = 125U; shift = 17U; adapter->cc.shift = shift + 2U; goto ldv_48845; } else { tmp___2 = __er32(hw, 46624UL); if ((tmp___2 & 32U) != 0U) { incperiod = 3U; incvalue = 125U; shift = 17U; adapter->cc.shift = shift + 2U; goto ldv_48845; } else { } } case 3U: ; case 4U: incperiod = 1U; incvalue = 40U; shift = 18U; adapter->cc.shift = shift; goto ldv_48845; default: ; return (-22); } ldv_48845: *timinca = (incperiod << 24) | ((incvalue << (int )shift) & 16777215U); return (0); } } static int e1000e_config_hwtstamp(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct hwtstamp_config *config ; u32 tsync_tx_ctl ; u32 tsync_rx_ctl ; u32 rxmtrl ; u16 rxudp ; bool is_l4 ; bool is_l2 ; u32 regval ; s32 ret_val ; u32 tmp ; u32 tmp___0 ; ktime_t tmp___1 ; { hw = & adapter->hw; config = & adapter->hwtstamp_config; tsync_tx_ctl = 16U; tsync_rx_ctl = 16U; rxmtrl = 0U; rxudp = 0U; is_l4 = 0; is_l2 = 0; if ((adapter->flags & 16384U) == 0U) { return (-22); } else { } if (config->flags != 0) { return (-22); } else { } switch (config->tx_type) { case 0: tsync_tx_ctl = 0U; goto ldv_48863; case 1: ; goto ldv_48863; default: ; return (-34); } ldv_48863: ; switch (config->rx_filter) { case 0: tsync_rx_ctl = 0U; goto ldv_48867; case 4: tsync_rx_ctl = tsync_rx_ctl | 2U; rxmtrl = 0U; is_l4 = 1; goto ldv_48867; case 5: tsync_rx_ctl = tsync_rx_ctl | 2U; rxmtrl = 65536U; is_l4 = 1; goto ldv_48867; case 10: tsync_rx_ctl = tsync_rx_ctl; rxmtrl = 0U; is_l2 = 1; goto ldv_48867; case 11: tsync_rx_ctl = tsync_rx_ctl; rxmtrl = 16777216U; is_l2 = 1; goto ldv_48867; case 7: ; case 13: tsync_rx_ctl = tsync_rx_ctl | 4U; rxmtrl = 0U; is_l2 = 1; is_l4 = 1; goto ldv_48867; case 8: ; case 14: tsync_rx_ctl = tsync_rx_ctl | 4U; rxmtrl = 16777216U; is_l2 = 1; is_l4 = 1; goto ldv_48867; case 6: ; case 9: ; case 12: tsync_rx_ctl = tsync_rx_ctl | 10U; config->rx_filter = 12; is_l2 = 1; is_l4 = 1; goto ldv_48867; case 3: ; case 1: is_l2 = 1; is_l4 = 1; tsync_rx_ctl = tsync_rx_ctl | 8U; config->rx_filter = 1; goto ldv_48867; default: ; return (-34); } ldv_48867: regval = __er32(hw, 46612UL); regval = regval & 4294967279U; regval = regval | tsync_tx_ctl; __ew32___7(hw, 46612UL, regval); tmp = __er32(hw, 46612UL); if (((tmp ^ regval) & 16U) != 0U) { netdev_err((struct net_device const *)adapter->netdev, "Timesync Tx Control register not set as expected\n"); return (-11); } else { } regval = __er32(hw, 46624UL); regval = regval & 4294967265U; regval = regval | tsync_rx_ctl; __ew32___7(hw, 46624UL, regval); tmp___0 = __er32(hw, 46624UL); if (((tmp___0 ^ regval) & 30U) != 0U) { netdev_err((struct net_device const *)adapter->netdev, "Timesync Rx Control register not set as expected\n"); return (-11); } else { } if ((int )is_l2) { rxmtrl = rxmtrl | 35063U; } else { } __ew32___7(hw, 46644UL, rxmtrl); if ((int )is_l4) { rxudp = 319U; __swab16s(& rxudp); } else { } __ew32___7(hw, 46648UL, (u32 )rxudp); __er32(hw, 8UL); __er32(hw, 46632UL); __er32(hw, 46620UL); ret_val = e1000e_get_base_timinca(adapter, & regval); if (ret_val != 0) { return (ret_val); } else { } __ew32___7(hw, 46600UL, regval); tmp___1 = ktime_get_real(); timecounter_init(& adapter->tc, (struct cyclecounter const *)(& adapter->cc), (u64 )tmp___1.tv64); return (0); } } static void e1000_configure(struct e1000_adapter *adapter ) { struct e1000_ring *rx_ring ; int tmp ; { rx_ring = adapter->rx_ring; e1000e_set_rx_mode(adapter->netdev); e1000_restore_vlan(adapter); e1000_init_manageability_pt(adapter); e1000_configure_tx(adapter); if (((adapter->netdev)->features & 268435456ULL) != 0ULL) { e1000e_setup_rss_hash(adapter); } else { } e1000_setup_rctl(adapter); e1000_configure_rx(adapter); tmp = e1000_desc_unused(rx_ring); (*(adapter->alloc_rx_buf))(rx_ring, tmp, 208U); return; } } void e1000e_power_up_phy(struct e1000_adapter *adapter ) { { if ((unsigned long )adapter->hw.phy.ops.power_up != (unsigned long )((void (*)(struct e1000_hw * ))0)) { (*(adapter->hw.phy.ops.power_up))(& adapter->hw); } else { } (*(adapter->hw.mac.ops.setup_link))(& adapter->hw); return; } } static void e1000_power_down_phy(struct e1000_adapter *adapter ) { { if (adapter->wol != 0U) { return; } else { } if ((unsigned long )adapter->hw.phy.ops.power_down != (unsigned long )((void (*)(struct e1000_hw * ))0)) { (*(adapter->hw.phy.ops.power_down))(& adapter->hw); } else { } return; } } void e1000e_reset(struct e1000_adapter *adapter ) { struct e1000_mac_info *mac ; struct e1000_fc_info *fc ; struct e1000_hw *hw ; u32 tx_space ; u32 min_tx_space ; u32 min_rx_space ; u32 pba ; u16 hwm ; u32 _min1 ; u32 _min2 ; u32 __min1 ; u32 tmp ; u32 __min2 ; s32 tmp___0 ; s32 ret_val ; u16 adv_addr ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; u16 phy_data ; { mac = & adapter->hw.mac; fc = & adapter->hw.fc; hw = & adapter->hw; pba = adapter->pba; __ew32___7(hw, 4096UL, pba); if (adapter->max_frame_size > 1518U) { pba = __er32(hw, 4096UL); tx_space = pba >> 16; pba = pba & 65535U; min_tx_space = (u32 )((unsigned long )adapter->max_frame_size + 12UL) * 2U; min_tx_space = (min_tx_space + 1023U) & 4294966272U; min_tx_space = min_tx_space >> 10; min_rx_space = adapter->max_frame_size; min_rx_space = (min_rx_space + 1023U) & 4294966272U; min_rx_space = min_rx_space >> 10; if (tx_space < min_tx_space && min_tx_space - tx_space < pba) { pba = (tx_space - min_tx_space) + pba; if (pba < min_rx_space) { pba = min_rx_space; } else { } } else { } __ew32___7(hw, 4096UL, pba); } else { } if ((adapter->flags & 262144U) != 0U) { fc->pause_time = 65535U; } else { fc->pause_time = 1664U; } fc->send_xon = 1; fc->current_mode = fc->requested_mode; switch ((unsigned int )hw->mac.type) { case 7U: ; case 8U: ; if ((adapter->netdev)->mtu > 1500U) { pba = 14U; __ew32___7(hw, 4096UL, pba); fc->high_water = 10240U; fc->low_water = fc->high_water - 8U; goto ldv_48905; } else { } default: _min1 = (pba * 9216U) / 10U; _min2 = (pba << 10) - adapter->max_frame_size; hwm = (u16 )(_min1 < _min2 ? _min1 : _min2); fc->high_water = (u32 )hwm & 65528U; fc->low_water = fc->high_water - 8U; goto ldv_48905; case 9U: ; if ((adapter->netdev)->mtu > 1500U) { fc->high_water = 13568U; fc->low_water = 5376U; } else { fc->high_water = 20480U; fc->low_water = 12288U; } fc->refresh_time = 4096U; goto ldv_48905; case 10U: ; case 11U: fc->refresh_time = 1024U; if ((adapter->netdev)->mtu <= 1500U) { fc->high_water = 23584U; fc->low_water = 20552U; fc->pause_time = 1616U; goto ldv_48905; } else { } fc->high_water = (pba * 9216U) / 10U & 65528U; fc->low_water = (pba * 8192U) / 10U & 65528U; goto ldv_48905; } ldv_48905: tmp = __er32(hw, 4096UL); __min1 = ((tmp >> 16) << 10) - 96U; __min2 = 24576U; adapter->tx_fifo_limit = __min1 < __min2 ? __min1 : __min2; if ((adapter->itr_setting & 3U) != 0U) { if (adapter->max_frame_size * 2U > pba << 10) { if ((adapter->flags2 & 256U) == 0U) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Interrupt Throttle Rate off\n"); adapter->flags2 = adapter->flags2 | 256U; e1000e_write_itr(adapter, 0U); } else { } } else if ((adapter->flags2 & 256U) != 0U) { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Interrupt Throttle Rate on\n"); adapter->flags2 = adapter->flags2 & 4294967039U; adapter->itr = 20000U; e1000e_write_itr(adapter, adapter->itr); } else { } } else { } (*(mac->ops.reset_hw))(hw); if ((int )adapter->flags & 1) { e1000e_get_hw_control(adapter); } else { } __ew32___7(hw, 22528UL, 0U); tmp___0 = (*(mac->ops.init_hw))(hw); if (tmp___0 != 0) { netdev_err((struct net_device const *)adapter->netdev, "Hardware Error\n"); } else { } e1000_update_mng_vlan(adapter); __ew32___7(hw, 56UL, 33024U); e1000e_reset_adaptive(hw); e1000e_config_hwtstamp(adapter); if ((adapter->flags2 & 32U) != 0U) { switch ((unsigned int )hw->phy.type) { case 11U: adv_addr = 1038U; goto ldv_48919; case 12U: adv_addr = 32769U; goto ldv_48919; default: dev_err((struct device const *)(& (adapter->pdev)->dev), "Invalid PHY type setting EEE advertisement\n"); return; } ldv_48919: ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { dev_err((struct device const *)(& (adapter->pdev)->dev), "EEE advertisement - unable to acquire PHY\n"); return; } else { } e1000_write_emi_reg_locked(hw, (int )adv_addr, (int )hw->dev_spec.ich8lan.eee_disable ? 0 : (int )adapter->eee_advert); (*(hw->phy.ops.release))(hw); } else { } tmp___1 = netif_running((struct net_device const *)adapter->netdev); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = constant_test_bit(0U, (unsigned long const volatile *)(& adapter->state)); if (tmp___3 == 0) { e1000_power_down_phy(adapter); return; } else { } } else { } e1000_get_phy_info(hw); if ((adapter->flags & 2048U) != 0U && (adapter->flags & 67108864U) == 0U) { phy_data = 0U; e1e_rphy(hw, 25U, & phy_data); phy_data = (unsigned int )phy_data & 65534U; e1e_wphy(hw, 25U, (int )phy_data); } else { } return; } } int e1000e_up(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { hw = & adapter->hw; e1000_configure(adapter); clear_bit(3, (unsigned long volatile *)(& adapter->state)); if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { e1000_configure_msix(adapter); } else { } e1000_irq_enable(adapter); netif_start_queue(adapter->netdev); if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { __ew32___7(hw, 200UL, 16777220U); } else { __ew32___7(hw, 200UL, 4U); } return (0); } } static void e1000e_flush_descriptors(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; { hw = & adapter->hw; if ((adapter->flags2 & 64U) == 0U) { return; } else { } __ew32___7(hw, 14368UL, adapter->tx_int_delay | 2147483648U); __ew32___7(hw, 10272UL, adapter->rx_int_delay | 2147483648U); __er32(hw, 8UL); __ew32___7(hw, 14368UL, adapter->tx_int_delay | 2147483648U); __ew32___7(hw, 10272UL, adapter->rx_int_delay | 2147483648U); __er32(hw, 8UL); return; } } static void e1000e_update_stats(struct e1000_adapter *adapter ) ; void e1000e_down(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct e1000_hw *hw ; u32 tctl ; u32 rctl ; int tmp ; { netdev = adapter->netdev; hw = & adapter->hw; set_bit(3U, (unsigned long volatile *)(& adapter->state)); rctl = __er32(hw, 256UL); if ((adapter->flags2 & 1024U) == 0U) { __ew32___7(hw, 256UL, rctl & 4294967293U); } else { } netif_stop_queue(netdev); tctl = __er32(hw, 1024UL); tctl = tctl & 4294967293U; __ew32___7(hw, 1024UL, tctl); __er32(hw, 8UL); usleep_range(10000UL, 20000UL); e1000_irq_disable(adapter); napi_synchronize((struct napi_struct const *)(& adapter->napi)); del_timer_sync(& adapter->watchdog_timer); del_timer_sync(& adapter->phy_info_timer); netif_carrier_off(netdev); spin_lock(& adapter->stats64_lock); e1000e_update_stats(adapter); spin_unlock(& adapter->stats64_lock); e1000e_flush_descriptors(adapter); e1000_clean_tx_ring(adapter->tx_ring); e1000_clean_rx_ring(adapter->rx_ring); adapter->link_speed = 0U; adapter->link_duplex = 0U; tmp = pci_channel_offline(adapter->pdev); if (tmp == 0) { e1000e_reset(adapter); } else { } return; } } void e1000e_reinit_locked(struct e1000_adapter *adapter ) { int tmp ; { __might_sleep("/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared", 4087, 0); goto ldv_48944; ldv_48943: usleep_range(1000UL, 2000UL); ldv_48944: tmp = test_and_set_bit(1, (unsigned long volatile *)(& adapter->state)); if (tmp != 0) { goto ldv_48943; } else { } e1000e_down(adapter); e1000e_up(adapter); clear_bit(1, (unsigned long volatile *)(& adapter->state)); return; } } static cycle_t e1000e_cyclecounter_read(struct cyclecounter const *cc ) { struct e1000_adapter *adapter ; struct cyclecounter const *__mptr ; struct e1000_hw *hw ; cycle_t systim ; u32 tmp ; u32 tmp___0 ; { __mptr = cc; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffce30UL; hw = & adapter->hw; tmp = __er32(hw, 46592UL); systim = (unsigned long long )tmp; tmp___0 = __er32(hw, 46596UL); systim = ((unsigned long long )tmp___0 << 32) | systim; return (systim); } } static int e1000_sw_init(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct lock_class_key __key ; int tmp ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; { netdev = adapter->netdev; adapter->rx_buffer_len = 1522U; adapter->rx_ps_bsize0 = 128U; adapter->max_frame_size = netdev->mtu + 18U; adapter->min_frame_size = 64U; adapter->tx_ring_count = 256U; adapter->rx_ring_count = 256U; spinlock_check(& adapter->stats64_lock); __raw_spin_lock_init(& adapter->stats64_lock.ldv_6014.rlock, "&(&adapter->stats64_lock)->rlock", & __key); e1000e_set_interrupt_capability(adapter); tmp = e1000_alloc_queues(adapter); if (tmp != 0) { return (-12); } else { } if ((adapter->flags & 16384U) != 0U) { adapter->cc.read = & e1000e_cyclecounter_read; adapter->cc.mask = 0xffffffffffffffffULL; adapter->cc.mult = 1U; spinlock_check(& adapter->systim_lock); __raw_spin_lock_init(& adapter->systim_lock.ldv_6014.rlock, "&(&adapter->systim_lock)->rlock", & __key___0); __init_work(& adapter->tx_hwtstamp_work, 0); __constr_expr_0.counter = 137438953408L; adapter->tx_hwtstamp_work.data = __constr_expr_0; lockdep_init_map(& adapter->tx_hwtstamp_work.lockdep_map, "(&adapter->tx_hwtstamp_work)", & __key___1, 0); INIT_LIST_HEAD(& adapter->tx_hwtstamp_work.entry); adapter->tx_hwtstamp_work.func = & e1000e_tx_hwtstamp_work; } else { } e1000_irq_disable(adapter); set_bit(3U, (unsigned long volatile *)(& adapter->state)); return (0); } } static irqreturn_t e1000_intr_msi_test(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; u32 icr ; u32 tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; tmp___0 = __er32(hw, 192UL); icr = tmp___0; descriptor.modname = "e1000e"; descriptor.function = "e1000_intr_msi_test"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared"; descriptor.format = "icr is %08X\n"; descriptor.lineno = 4169U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "icr is %08X\n", icr); } else { } if ((icr & 8U) != 0U) { adapter->flags = adapter->flags & 2147483647U; __asm__ volatile ("sfence": : : "memory"); } else { } return (1); } } static int e1000_test_msi_interrupt(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct e1000_hw *hw ; int err ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; { netdev = adapter->netdev; hw = & adapter->hw; __er32(hw, 192UL); e1000_free_irq(adapter); e1000e_reset_interrupt_capability(adapter); adapter->flags = adapter->flags | 2147483648U; err = pci_enable_msi_block(adapter->pdev, 1U); if (err != 0) { goto msi_test_failed; } else { } err = request_irq((adapter->pdev)->irq, & e1000_intr_msi_test, 0UL, (char const *)(& netdev->name), (void *)netdev); if (err != 0) { pci_disable_msi(adapter->pdev); goto msi_test_failed; } else { } __asm__ volatile ("sfence": : : "memory"); e1000_irq_enable(adapter); __ew32___7(hw, 200UL, 8U); __er32(hw, 8UL); msleep(100U); e1000_irq_disable(adapter); __asm__ volatile ("lfence": : : "memory"); if ((int )adapter->flags < 0) { adapter->int_mode = 0; netdev_info((struct net_device const *)adapter->netdev, "MSI interrupt test failed, using legacy interrupt.\n"); } else { descriptor.modname = "e1000e"; descriptor.function = "e1000_test_msi_interrupt"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared"; descriptor.format = "MSI interrupt test succeeded!\n"; descriptor.lineno = 4237U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "MSI interrupt test succeeded!\n"); } else { } } free_irq((adapter->pdev)->irq, (void *)netdev); pci_disable_msi(adapter->pdev); msi_test_failed: e1000e_set_interrupt_capability(adapter); tmp___0 = e1000_request_irq(adapter); return (tmp___0); } } static int e1000_test_msi(struct e1000_adapter *adapter ) { int err ; u16 pci_cmd ; { if ((adapter->flags & 134217728U) == 0U) { return (0); } else { } pci_read_config_word((struct pci_dev const *)adapter->pdev, 4, & pci_cmd); if (((int )pci_cmd & 256) != 0) { pci_write_config_word((struct pci_dev const *)adapter->pdev, 4, (int )pci_cmd & 65279); } else { } err = e1000_test_msi_interrupt(adapter); if (((int )pci_cmd & 256) != 0) { pci_read_config_word((struct pci_dev const *)adapter->pdev, 4, & pci_cmd); pci_cmd = (u16 )((unsigned int )pci_cmd | 256U); pci_write_config_word((struct pci_dev const *)adapter->pdev, 4, (int )pci_cmd); } else { } return (err); } } static int e1000_open(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct pci_dev *pdev ; int err ; int tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; pdev = adapter->pdev; tmp___0 = constant_test_bit(0U, (unsigned long const volatile *)(& adapter->state)); if (tmp___0 != 0) { return (-16); } else { } pm_runtime_get_sync(& pdev->dev); netif_carrier_off(netdev); err = e1000e_setup_tx_resources(adapter->tx_ring); if (err != 0) { goto err_setup_tx; } else { } err = e1000e_setup_rx_resources(adapter->rx_ring); if (err != 0) { goto err_setup_rx; } else { } if ((int )adapter->flags & 1) { e1000e_get_hw_control(adapter); e1000e_reset(adapter); } else { } e1000e_power_up_phy(adapter); adapter->mng_vlan_id = 65535U; if (((int )adapter->hw.mng_cookie.status & 2) != 0) { e1000_update_mng_vlan(adapter); } else { } pm_qos_add_request(& (adapter->netdev)->pm_qos_req, 1, -1); e1000_configure(adapter); err = e1000_request_irq(adapter); if (err != 0) { goto err_req_irq; } else { } if (adapter->int_mode != 0) { err = e1000_test_msi(adapter); if (err != 0) { netdev_err((struct net_device const *)adapter->netdev, "Interrupt allocation failed\n"); goto err_req_irq; } else { } } else { } clear_bit(3, (unsigned long volatile *)(& adapter->state)); napi_enable(& adapter->napi); e1000_irq_enable(adapter); adapter->tx_hang_recheck = 0; netif_start_queue(netdev); adapter->idle_check = 1; hw->mac.get_link_status = 1; pm_runtime_put(& pdev->dev); if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { __ew32___7(hw, 200UL, 16777220U); } else { __ew32___7(hw, 200UL, 4U); } return (0); err_req_irq: e1000e_release_hw_control(adapter); e1000_power_down_phy(adapter); e1000e_free_rx_resources(adapter->rx_ring); err_setup_rx: e1000e_free_tx_resources(adapter->tx_ring); err_setup_tx: e1000e_reset(adapter); pm_runtime_put_sync(& pdev->dev); return (err); } } static int e1000_close(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct pci_dev *pdev ; int count ; int tmp___0 ; int tmp___1 ; int __ret_warn_on ; int tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; pdev = adapter->pdev; count = 25; goto ldv_49003; ldv_49002: usleep_range(10000UL, 20000UL); ldv_49003: tmp___0 = constant_test_bit(1U, (unsigned long const volatile *)(& adapter->state)); if (tmp___0 != 0) { tmp___1 = count; count = count - 1; if (tmp___1 != 0) { goto ldv_49002; } else { goto ldv_49004; } } else { } ldv_49004: tmp___2 = constant_test_bit(1U, (unsigned long const volatile *)(& adapter->state)); __ret_warn_on = tmp___2 != 0; tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___3 != 0L) { warn_slowpath_null("/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared", 4413); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); pm_runtime_get_sync(& pdev->dev); tmp___4 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___4 == 0) { e1000e_down(adapter); e1000_free_irq(adapter); } else { } napi_disable(& adapter->napi); e1000_power_down_phy(adapter); e1000e_free_tx_resources(adapter->tx_ring); e1000e_free_rx_resources(adapter->rx_ring); if (((int )adapter->hw.mng_cookie.status & 2) != 0) { e1000_vlan_rx_kill_vid(netdev, 129, (int )adapter->mng_vlan_id); } else { } if ((int )adapter->flags & 1) { tmp___5 = constant_test_bit(0U, (unsigned long const volatile *)(& adapter->state)); if (tmp___5 == 0) { e1000e_release_hw_control(adapter); } else { } } else { } pm_qos_remove_request(& (adapter->netdev)->pm_qos_req); pm_runtime_put_sync(& pdev->dev); return (0); } } static int e1000_set_mac(struct net_device *netdev , void *p ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_hw *hw ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } __len = (size_t )netdev->addr_len; __ret = memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), __len); __len___0 = (size_t )netdev->addr_len; __ret___0 = memcpy((void *)(& adapter->hw.mac.addr), (void const *)(& addr->sa_data), __len___0); (*(hw->mac.ops.rar_set))(& adapter->hw, (u8 *)(& adapter->hw.mac.addr), 0U); if ((adapter->flags & 2097152U) != 0U) { e1000e_set_laa_state_82571(& adapter->hw, 1); (*(hw->mac.ops.rar_set))(& adapter->hw, (u8 *)(& adapter->hw.mac.addr), (u32 )((int )adapter->hw.mac.rar_entry_count + -1)); } else { } return (0); } } static void e1000e_update_phy_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; int tmp ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffd068UL; tmp = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp != 0) { return; } else { } e1000_get_phy_info(& adapter->hw); return; } } static void e1000_update_phy_info(unsigned long data ) { struct e1000_adapter *adapter ; int tmp ; { adapter = (struct e1000_adapter *)data; tmp = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp != 0) { return; } else { } schedule_work(& adapter->update_phy_task); return; } } static void e1000e_update_phy_stats(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; s32 ret_val ; u16 phy_data ; { hw = & adapter->hw; ret_val = (*(hw->phy.ops.acquire))(hw); if (ret_val != 0) { return; } else { } hw->phy.addr = 1U; ret_val = e1000e_read_phy_reg_mdic(hw, 31U, & phy_data); if (ret_val != 0) { goto release; } else { } if ((unsigned int )phy_data != 24896U) { ret_val = (*(hw->phy.ops.set_page))(hw, 24896); if (ret_val != 0) { goto release; } else { } } else { } (*(hw->phy.ops.read_reg_page))(hw, 24912U, & phy_data); ret_val = (*(hw->phy.ops.read_reg_page))(hw, 24913U, & phy_data); if (ret_val == 0) { adapter->stats.scc = adapter->stats.scc + (u64 )phy_data; } else { } (*(hw->phy.ops.read_reg_page))(hw, 24914U, & phy_data); ret_val = (*(hw->phy.ops.read_reg_page))(hw, 24915U, & phy_data); if (ret_val == 0) { adapter->stats.ecol = adapter->stats.ecol + (u64 )phy_data; } else { } (*(hw->phy.ops.read_reg_page))(hw, 24916U, & phy_data); ret_val = (*(hw->phy.ops.read_reg_page))(hw, 24917U, & phy_data); if (ret_val == 0) { adapter->stats.mcc = adapter->stats.mcc + (u64 )phy_data; } else { } (*(hw->phy.ops.read_reg_page))(hw, 24919U, & phy_data); ret_val = (*(hw->phy.ops.read_reg_page))(hw, 24920U, & phy_data); if (ret_val == 0) { adapter->stats.latecol = adapter->stats.latecol + (u64 )phy_data; } else { } (*(hw->phy.ops.read_reg_page))(hw, 24921U, & phy_data); ret_val = (*(hw->phy.ops.read_reg_page))(hw, 24922U, & phy_data); if (ret_val == 0) { hw->mac.collision_delta = (u32 )phy_data; } else { } (*(hw->phy.ops.read_reg_page))(hw, 24923U, & phy_data); ret_val = (*(hw->phy.ops.read_reg_page))(hw, 24924U, & phy_data); if (ret_val == 0) { adapter->stats.dc = adapter->stats.dc + (u64 )phy_data; } else { } (*(hw->phy.ops.read_reg_page))(hw, 24925U, & phy_data); ret_val = (*(hw->phy.ops.read_reg_page))(hw, 24926U, & phy_data); if (ret_val == 0) { adapter->stats.tncrs = adapter->stats.tncrs + (u64 )phy_data; } else { } release: (*(hw->phy.ops.release))(hw); return; } } static void e1000e_update_stats(struct e1000_adapter *adapter ) { struct net_device *netdev ; struct e1000_hw *hw ; struct pci_dev *pdev ; int tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; u32 tmp___10 ; u32 tmp___11 ; u32 tmp___12 ; u32 tmp___13 ; u32 tmp___14 ; u32 tmp___15 ; u32 tmp___16 ; u32 tmp___17 ; u32 tmp___18 ; u32 tmp___19 ; u32 tmp___20 ; u32 tmp___21 ; u32 tmp___22 ; u32 tmp___23 ; u32 tmp___24 ; u32 tmp___25 ; u32 tmp___26 ; u32 tmp___27 ; u32 tmp___28 ; u32 tmp___29 ; u32 tmp___30 ; u32 pbeccsts ; u32 tmp___31 ; { netdev = adapter->netdev; hw = & adapter->hw; pdev = adapter->pdev; if ((unsigned int )adapter->link_speed == 0U) { return; } else { } tmp = pci_channel_offline(pdev); if (tmp != 0) { return; } else { } tmp___0 = __er32(hw, 16384UL); adapter->stats.crcerrs = adapter->stats.crcerrs + (u64 )tmp___0; tmp___1 = __er32(hw, 16500UL); adapter->stats.gprc = adapter->stats.gprc + (u64 )tmp___1; tmp___2 = __er32(hw, 16520UL); adapter->stats.gorc = adapter->stats.gorc + (u64 )tmp___2; __er32(hw, 16524UL); tmp___3 = __er32(hw, 16504UL); adapter->stats.bprc = adapter->stats.bprc + (u64 )tmp___3; tmp___4 = __er32(hw, 16508UL); adapter->stats.mprc = adapter->stats.mprc + (u64 )tmp___4; tmp___5 = __er32(hw, 16556UL); adapter->stats.roc = adapter->stats.roc + (u64 )tmp___5; tmp___6 = __er32(hw, 16400UL); adapter->stats.mpc = adapter->stats.mpc + (u64 )tmp___6; if ((unsigned int )adapter->link_duplex == 1U) { if ((adapter->flags2 & 16U) != 0U) { e1000e_update_phy_stats(adapter); } else { tmp___7 = __er32(hw, 16404UL); adapter->stats.scc = adapter->stats.scc + (u64 )tmp___7; tmp___8 = __er32(hw, 16408UL); adapter->stats.ecol = adapter->stats.ecol + (u64 )tmp___8; tmp___9 = __er32(hw, 16412UL); adapter->stats.mcc = adapter->stats.mcc + (u64 )tmp___9; tmp___10 = __er32(hw, 16416UL); adapter->stats.latecol = adapter->stats.latecol + (u64 )tmp___10; tmp___11 = __er32(hw, 16432UL); adapter->stats.dc = adapter->stats.dc + (u64 )tmp___11; hw->mac.collision_delta = __er32(hw, 16424UL); if ((unsigned int )hw->mac.type != 3U && (unsigned int )hw->mac.type != 4U) { tmp___12 = __er32(hw, 16436UL); adapter->stats.tncrs = adapter->stats.tncrs + (u64 )tmp___12; } else { } } adapter->stats.colc = adapter->stats.colc + (u64 )hw->mac.collision_delta; } else { } tmp___13 = __er32(hw, 16456UL); adapter->stats.xonrxc = adapter->stats.xonrxc + (u64 )tmp___13; tmp___14 = __er32(hw, 16460UL); adapter->stats.xontxc = adapter->stats.xontxc + (u64 )tmp___14; tmp___15 = __er32(hw, 16464UL); adapter->stats.xoffrxc = adapter->stats.xoffrxc + (u64 )tmp___15; tmp___16 = __er32(hw, 16468UL); adapter->stats.xofftxc = adapter->stats.xofftxc + (u64 )tmp___16; tmp___17 = __er32(hw, 16512UL); adapter->stats.gptc = adapter->stats.gptc + (u64 )tmp___17; tmp___18 = __er32(hw, 16528UL); adapter->stats.gotc = adapter->stats.gotc + (u64 )tmp___18; __er32(hw, 16532UL); tmp___19 = __er32(hw, 16544UL); adapter->stats.rnbc = adapter->stats.rnbc + (u64 )tmp___19; tmp___20 = __er32(hw, 16548UL); adapter->stats.ruc = adapter->stats.ruc + (u64 )tmp___20; tmp___21 = __er32(hw, 16624UL); adapter->stats.mptc = adapter->stats.mptc + (u64 )tmp___21; tmp___22 = __er32(hw, 16628UL); adapter->stats.bptc = adapter->stats.bptc + (u64 )tmp___22; hw->mac.tx_packet_delta = __er32(hw, 16596UL); adapter->stats.tpt = adapter->stats.tpt + (u64 )hw->mac.tx_packet_delta; tmp___23 = __er32(hw, 16388UL); adapter->stats.algnerrc = adapter->stats.algnerrc + (u64 )tmp___23; tmp___24 = __er32(hw, 16396UL); adapter->stats.rxerrc = adapter->stats.rxerrc + (u64 )tmp___24; tmp___25 = __er32(hw, 16444UL); adapter->stats.cexterr = adapter->stats.cexterr + (u64 )tmp___25; tmp___26 = __er32(hw, 16632UL); adapter->stats.tsctc = adapter->stats.tsctc + (u64 )tmp___26; tmp___27 = __er32(hw, 16636UL); adapter->stats.tsctfc = adapter->stats.tsctfc + (u64 )tmp___27; netdev->stats.multicast = (unsigned long )adapter->stats.mprc; netdev->stats.collisions = (unsigned long )adapter->stats.colc; netdev->stats.rx_errors = (unsigned long )(((((adapter->stats.rxerrc + adapter->stats.crcerrs) + adapter->stats.algnerrc) + adapter->stats.ruc) + adapter->stats.roc) + adapter->stats.cexterr); netdev->stats.rx_length_errors = (unsigned long )(adapter->stats.ruc + adapter->stats.roc); netdev->stats.rx_crc_errors = (unsigned long )adapter->stats.crcerrs; netdev->stats.rx_frame_errors = (unsigned long )adapter->stats.algnerrc; netdev->stats.rx_missed_errors = (unsigned long )adapter->stats.mpc; netdev->stats.tx_errors = (unsigned long )(adapter->stats.ecol + adapter->stats.latecol); netdev->stats.tx_aborted_errors = (unsigned long )adapter->stats.ecol; netdev->stats.tx_window_errors = (unsigned long )adapter->stats.latecol; netdev->stats.tx_carrier_errors = (unsigned long )adapter->stats.tncrs; tmp___28 = __er32(hw, 16572UL); adapter->stats.mgptc = adapter->stats.mgptc + (u64 )tmp___28; tmp___29 = __er32(hw, 16564UL); adapter->stats.mgprc = adapter->stats.mgprc + (u64 )tmp___29; tmp___30 = __er32(hw, 16568UL); adapter->stats.mgpdc = adapter->stats.mgpdc + (u64 )tmp___30; if ((unsigned int )hw->mac.type == 11U) { tmp___31 = __er32(hw, 4108UL); pbeccsts = tmp___31; adapter->corr_errors = adapter->corr_errors + (pbeccsts & 255U); adapter->uncorr_errors = adapter->uncorr_errors + ((pbeccsts & 65280U) >> 8); } else { } return; } } static void e1000_phy_read_status(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct e1000_phy_regs *phy ; int ret_val ; s32 tmp ; s32 tmp___0 ; s32 tmp___1 ; s32 tmp___2 ; s32 tmp___3 ; s32 tmp___4 ; s32 tmp___5 ; u32 tmp___6 ; { hw = & adapter->hw; phy = & adapter->phy_regs; tmp___6 = __er32(hw, 8UL); if ((tmp___6 & 2U) != 0U && (unsigned int )adapter->hw.phy.media_type == 1U) { pm_runtime_get_sync(& (adapter->pdev)->dev); ret_val = e1e_rphy(hw, 0U, & phy->bmcr); tmp = e1e_rphy(hw, 1U, & phy->bmsr); ret_val = tmp | ret_val; tmp___0 = e1e_rphy(hw, 4U, & phy->advertise); ret_val = tmp___0 | ret_val; tmp___1 = e1e_rphy(hw, 5U, & phy->lpa); ret_val = tmp___1 | ret_val; tmp___2 = e1e_rphy(hw, 6U, & phy->expansion); ret_val = tmp___2 | ret_val; tmp___3 = e1e_rphy(hw, 9U, & phy->ctrl1000); ret_val = tmp___3 | ret_val; tmp___4 = e1e_rphy(hw, 10U, & phy->stat1000); ret_val = tmp___4 | ret_val; tmp___5 = e1e_rphy(hw, 15U, & phy->estatus); ret_val = tmp___5 | ret_val; if (ret_val != 0) { netdev_warn((struct net_device const *)adapter->netdev, "Error reading PHY register\n"); } else { } pm_runtime_put_sync(& (adapter->pdev)->dev); } else { phy->bmcr = 4416U; phy->bmsr = 30985U; phy->advertise = 3553U; phy->lpa = 0U; phy->expansion = 4U; phy->ctrl1000 = 512U; phy->stat1000 = 0U; phy->estatus = 12288U; } return; } } static void e1000_print_link_info(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 ctrl ; u32 tmp ; { hw = & adapter->hw; tmp = __er32(hw, 0UL); ctrl = tmp; printk("\016e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", (char *)(& (adapter->netdev)->name), (int )adapter->link_speed, (unsigned int )adapter->link_duplex == 2U ? (char *)"Full" : (char *)"Half", (ctrl & 268435456U) == 0U || (ctrl & 134217728U) == 0U ? ((ctrl & 134217728U) == 0U ? ((ctrl & 268435456U) != 0U ? (char *)"Tx" : (char *)"None") : (char *)"Rx") : (char *)"Rx/Tx"); return; } } static bool e1000e_has_link(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; bool link_active ; s32 ret_val ; u32 tmp ; u32 tmp___0 ; { hw = & adapter->hw; link_active = 0; ret_val = 0; switch ((unsigned int )hw->phy.media_type) { case 1U: ; if ((int )hw->mac.get_link_status) { ret_val = (*(hw->mac.ops.check_for_link))(hw); link_active = (bool )(! ((int )hw->mac.get_link_status != 0)); } else { link_active = 1; } goto ldv_49062; case 2U: ret_val = (*(hw->mac.ops.check_for_link))(hw); tmp = __er32(hw, 8UL); link_active = (tmp & 2U) != 0U; goto ldv_49062; case 3U: ret_val = (*(hw->mac.ops.check_for_link))(hw); link_active = adapter->hw.mac.serdes_has_link; goto ldv_49062; default: ; case 0U: ; goto ldv_49062; } ldv_49062: ; if (ret_val == 2 && (unsigned int )hw->phy.type == 6U) { tmp___0 = __er32(hw, 0UL); if ((tmp___0 & 64U) != 0U) { netdev_info((struct net_device const *)adapter->netdev, "Gigabit has been disabled, downgrading speed\n"); } else { } } else { } return (link_active); } } static void e1000e_enable_receives(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 rctl ; u32 tmp ; { if ((adapter->flags & 16777216U) != 0U && (adapter->flags & 1073741824U) != 0U) { hw = & adapter->hw; tmp = __er32(hw, 256UL); rctl = tmp; __ew32___7(hw, 256UL, rctl | 2U); adapter->flags = adapter->flags & 3221225471U; } else { } return; } } static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; bool tmp ; { hw = & adapter->hw; tmp = e1000_check_phy_82574(hw); if ((int )tmp) { adapter->phy_hang_count = adapter->phy_hang_count + 1; } else { adapter->phy_hang_count = 0; } if (adapter->phy_hang_count > 1) { adapter->phy_hang_count = 0; schedule_work(& adapter->reset_task); } else { } return; } } static void e1000_watchdog(unsigned long data ) { struct e1000_adapter *adapter ; { adapter = (struct e1000_adapter *)data; schedule_work(& adapter->watchdog_task); return; } } static void e1000_watchdog_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct net_device *netdev ; struct e1000_mac_info *mac ; struct e1000_phy_info *phy ; struct e1000_ring *tx_ring ; struct e1000_hw *hw ; u32 link ; u32 tctl ; int tmp ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool txb2b ; u16 autoneg_exp ; u32 tarc0 ; unsigned long tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; unsigned long tmp___7 ; int tmp___8 ; int tmp___9 ; bool tmp___10 ; u32 goc ; u32 dif ; u32 itr ; bool tmp___11 ; u32 tmp___12 ; unsigned long tmp___13 ; int tmp___14 ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffffe30UL; netdev = adapter->netdev; mac = & adapter->hw.mac; phy = & adapter->hw.phy; tx_ring = adapter->tx_ring; hw = & adapter->hw; tmp = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp != 0) { return; } else { } tmp___0 = e1000e_has_link(adapter); link = (u32 )tmp___0; tmp___1 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___1 && link != 0U) { pm_runtime_resume(netdev->dev.parent); e1000e_enable_receives(adapter); goto link_up; } else { } tmp___2 = e1000e_enable_tx_pkt_filtering(hw); if ((int )tmp___2 && (int )adapter->mng_vlan_id != (int )adapter->hw.mng_cookie.vlan_id) { e1000_update_mng_vlan(adapter); } else { } if (link != 0U) { tmp___5 = netif_carrier_ok((struct net_device const *)netdev); if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { txb2b = 1; pm_runtime_resume(netdev->dev.parent); e1000_phy_read_status(adapter); (*(mac->ops.get_link_up_info))(& adapter->hw, & adapter->link_speed, & adapter->link_duplex); e1000_print_link_info(adapter); e1000e_check_downshift(hw); if ((int )phy->speed_downgraded) { netdev_warn((struct net_device const *)netdev, "Link Speed was downgraded by SmartSpeed\n"); } else { } if (((((unsigned int )hw->phy.type == 6U || (unsigned int )hw->phy.type == 8U) && (int )hw->mac.autoneg) && ((unsigned int )adapter->link_speed == 10U || (unsigned int )adapter->link_speed == 100U)) && (unsigned int )adapter->link_duplex == 1U) { e1e_rphy(hw, 6U, & autoneg_exp); if (((int )autoneg_exp & 1) == 0) { netdev_info((struct net_device const *)adapter->netdev, "Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); } else { } } else { } adapter->tx_timeout_factor = 1U; switch ((int )adapter->link_speed) { case 10: txb2b = 0; adapter->tx_timeout_factor = 16U; goto ldv_49097; case 100: txb2b = 0; adapter->tx_timeout_factor = 10U; goto ldv_49097; } ldv_49097: ; if ((adapter->flags & 4194304U) != 0U && ! txb2b) { tarc0 = __er32(hw, 14400UL); tarc0 = tarc0 & 4292870143U; __ew32___7(hw, 14400UL, tarc0); } else { } if ((adapter->flags & 536870912U) == 0U) { switch ((int )adapter->link_speed) { case 10: ; case 100: netdev_info((struct net_device const *)adapter->netdev, "10/100 speed: disabling TSO\n"); netdev->features = netdev->features & 0xfffffffffffeffffULL; netdev->features = netdev->features & 0xffffffffffefffffULL; goto ldv_49102; case 1000: netdev->features = netdev->features | 65536ULL; netdev->features = netdev->features | 1048576ULL; goto ldv_49102; default: ; goto ldv_49102; } ldv_49102: ; } else { } tctl = __er32(hw, 1024UL); tctl = tctl | 2U; __ew32___7(hw, 1024UL, tctl); if ((unsigned long )phy->ops.cfg_on_link_up != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { (*(phy->ops.cfg_on_link_up))(hw); } else { } netif_carrier_on(netdev); tmp___4 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___4 == 0) { tmp___3 = round_jiffies((unsigned long )jiffies + 500UL); mod_timer(& adapter->phy_info_timer, tmp___3); } else { } } else { } } else { tmp___10 = netif_carrier_ok((struct net_device const *)netdev); if ((int )tmp___10) { adapter->link_speed = 0U; adapter->link_duplex = 0U; printk("\016e1000e: %s NIC Link is Down\n", (char *)(& (adapter->netdev)->name)); netif_carrier_off(netdev); tmp___8 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___8 == 0) { tmp___7 = round_jiffies((unsigned long )jiffies + 500UL); mod_timer(& adapter->phy_info_timer, tmp___7); } else { } if ((adapter->flags & 16777216U) != 0U) { adapter->flags = adapter->flags | 1073741824U; } else { tmp___9 = e1000_desc_unused(tx_ring); if ((unsigned int )(tmp___9 + 1) < tx_ring->count) { adapter->flags = adapter->flags | 1073741824U; } else { pm_schedule_suspend(netdev->dev.parent, 100U); } } } else { } } link_up: spin_lock(& adapter->stats64_lock); e1000e_update_stats(adapter); mac->tx_packet_delta = (u32 )adapter->stats.tpt - (u32 )adapter->tpt_old; adapter->tpt_old = adapter->stats.tpt; mac->collision_delta = (u32 )adapter->stats.colc - (u32 )adapter->colc_old; adapter->colc_old = adapter->stats.colc; adapter->gorc = (u32 )adapter->stats.gorc - (u32 )adapter->gorc_old; adapter->gorc_old = adapter->stats.gorc; adapter->gotc = (u32 )adapter->stats.gotc - (u32 )adapter->gotc_old; adapter->gotc_old = adapter->stats.gotc; spin_unlock(& adapter->stats64_lock); if ((adapter->flags & 1073741824U) != 0U) { schedule_work(& adapter->reset_task); return; } else { } e1000e_update_adaptive(& adapter->hw); if (adapter->itr_setting == 4U) { goc = (adapter->gotc + adapter->gorc) / 10000U; dif = adapter->gotc > adapter->gorc ? (adapter->gotc - adapter->gorc) / 10000U : (adapter->gorc - adapter->gotc) / 10000U; itr = goc != 0U ? (dif * 6000U) / goc + 2000U : 8000U; e1000e_write_itr(adapter, itr); } else { } if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { __ew32___7(hw, 200UL, (adapter->rx_ring)->ims_val); } else { __ew32___7(hw, 200UL, 16U); } e1000e_flush_descriptors(adapter); adapter->detect_tx_hung = 1; tmp___11 = e1000e_get_laa_state_82571(hw); if ((int )tmp___11) { (*(hw->mac.ops.rar_set))(hw, (u8 *)(& adapter->hw.mac.addr), 0U); } else { } if ((adapter->flags2 & 512U) != 0U) { e1000e_check_82574_phy_workaround(adapter); } else { } if (adapter->hwtstamp_config.rx_filter != 0) { if ((adapter->flags2 & 8192U) != 0U) { tmp___12 = __er32(hw, 46624UL); if ((int )tmp___12 & 1) { __er32(hw, 46632UL); adapter->rx_hwtstamp_cleared = adapter->rx_hwtstamp_cleared + 1U; } else { adapter->flags2 = adapter->flags2 | 8192U; } } else { adapter->flags2 = adapter->flags2 | 8192U; } } else { } tmp___14 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___14 == 0) { tmp___13 = round_jiffies((unsigned long )jiffies + 500UL); mod_timer(& adapter->watchdog_timer, tmp___13); } else { } return; } } static int e1000_tso(struct e1000_ring *tx_ring , struct sk_buff *skb ) { struct e1000_context_desc *context_desc ; struct e1000_buffer *buffer_info ; unsigned int i ; u32 cmd_length ; u16 ipcse ; u16 mss ; u8 ipcss ; u8 ipcso ; u8 tucss ; u8 tucso ; u8 hdr_len ; bool tmp ; int tmp___0 ; int err ; int tmp___1 ; int tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned char *tmp___5 ; struct iphdr *iph ; struct iphdr *tmp___6 ; struct tcphdr *tmp___7 ; __sum16 tmp___8 ; int tmp___9 ; struct ipv6hdr *tmp___10 ; struct tcphdr *tmp___11 ; struct ipv6hdr *tmp___12 ; struct ipv6hdr *tmp___13 ; __sum16 tmp___14 ; bool tmp___15 ; int tmp___16 ; struct iphdr *tmp___17 ; int tmp___18 ; struct tcphdr *tmp___19 ; { cmd_length = 0U; ipcse = 0U; tmp = skb_is_gso((struct sk_buff const *)skb); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } tmp___2 = skb_header_cloned((struct sk_buff const *)skb); if (tmp___2 != 0) { tmp___1 = pskb_expand_head(skb, 0, 0, 32U); err = tmp___1; if (err != 0) { return (err); } else { } } else { } tmp___3 = skb_transport_offset((struct sk_buff const *)skb); tmp___4 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp___3) + (int )((u8 )tmp___4); tmp___5 = skb_end_pointer((struct sk_buff const *)skb); mss = ((struct skb_shared_info *)tmp___5)->gso_size; if ((unsigned int )skb->protocol == 8U) { tmp___6 = ip_hdr((struct sk_buff const *)skb); iph = tmp___6; iph->tot_len = 0U; iph->check = 0U; tmp___7 = tcp_hdr((struct sk_buff const *)skb); tmp___8 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tmp___7->check = ~ ((int )tmp___8); cmd_length = 33554432U; tmp___9 = skb_transport_offset((struct sk_buff const *)skb); ipcse = (unsigned int )((u16 )tmp___9) + 65535U; } else { tmp___15 = skb_is_gso_v6((struct sk_buff const *)skb); if ((int )tmp___15) { tmp___10 = ipv6_hdr((struct sk_buff const *)skb); tmp___10->payload_len = 0U; tmp___11 = tcp_hdr((struct sk_buff const *)skb); tmp___12 = ipv6_hdr((struct sk_buff const *)skb); tmp___13 = ipv6_hdr((struct sk_buff const *)skb); tmp___14 = csum_ipv6_magic((struct in6_addr const *)(& tmp___13->saddr), (struct in6_addr const *)(& tmp___12->daddr), 0U, 6, 0U); tmp___11->check = ~ ((int )tmp___14); ipcse = 0U; } else { } } tmp___16 = skb_network_offset((struct sk_buff const *)skb); ipcss = (u8 )tmp___16; tmp___17 = ip_hdr((struct sk_buff const *)skb); ipcso = (int )((u8 )((long )(& tmp___17->check))) - (int )((u8 )((long )skb->data)); tmp___18 = skb_transport_offset((struct sk_buff const *)skb); tucss = (u8 )tmp___18; tmp___19 = tcp_hdr((struct sk_buff const *)skb); tucso = (int )((u8 )((long )(& tmp___19->check))) - (int )((u8 )((long )skb->data)); cmd_length = ((skb->len - (unsigned int )hdr_len) | cmd_length) | 620756992U; i = (unsigned int )tx_ring->next_to_use; context_desc = (struct e1000_context_desc *)tx_ring->desc + (unsigned long )i; buffer_info = tx_ring->buffer_info + (unsigned long )i; context_desc->lower_setup.ip_fields.ipcss = ipcss; context_desc->lower_setup.ip_fields.ipcso = ipcso; context_desc->lower_setup.ip_fields.ipcse = ipcse; context_desc->upper_setup.tcp_fields.tucss = tucss; context_desc->upper_setup.tcp_fields.tucso = tucso; context_desc->upper_setup.tcp_fields.tucse = 0U; context_desc->tcp_seg_setup.fields.mss = mss; context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; context_desc->cmd_and_length = cmd_length; buffer_info->ldv_41273.ldv_41268.time_stamp = jiffies; buffer_info->ldv_41273.ldv_41268.next_to_watch = (u16 )i; i = i + 1U; if (tx_ring->count == i) { i = 0U; } else { } tx_ring->next_to_use = (u16 )i; return (1); } } static bool e1000_tx_csum(struct e1000_ring *tx_ring , struct sk_buff *skb ) { struct e1000_adapter *adapter ; struct e1000_context_desc *context_desc ; struct e1000_buffer *buffer_info ; unsigned int i ; u8 css ; u32 cmd_len ; __be16 protocol ; struct vlan_ethhdr *tmp ; struct iphdr *tmp___0 ; struct ipv6hdr *tmp___1 ; __u16 tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; { adapter = tx_ring->adapter; cmd_len = 536870912U; if ((unsigned int )*((unsigned char *)skb + 124UL) != 12U) { return (0); } else { } if ((unsigned int )skb->protocol == 129U) { tmp = vlan_eth_hdr((struct sk_buff const *)skb); protocol = tmp->h_vlan_encapsulated_proto; } else { protocol = skb->protocol; } switch ((int )protocol) { case 8: tmp___0 = ip_hdr((struct sk_buff const *)skb); if ((unsigned int )tmp___0->protocol == 6U) { cmd_len = cmd_len | 16777216U; } else { } goto ldv_49137; case 56710: tmp___1 = ipv6_hdr((struct sk_buff const *)skb); if ((unsigned int )tmp___1->nexthdr == 6U) { cmd_len = cmd_len | 16777216U; } else { } goto ldv_49137; default: tmp___3 = net_ratelimit(); tmp___4 = ldv__builtin_expect(tmp___3 != 0, 0L); if (tmp___4 != 0L) { tmp___2 = __fswab16((int )protocol); netdev_warn((struct net_device const *)adapter->netdev, "checksum_partial proto=%x!\n", (int )tmp___2); } else { } goto ldv_49137; } ldv_49137: tmp___5 = skb_checksum_start_offset((struct sk_buff const *)skb); css = (u8 )tmp___5; i = (unsigned int )tx_ring->next_to_use; buffer_info = tx_ring->buffer_info + (unsigned long )i; context_desc = (struct e1000_context_desc *)tx_ring->desc + (unsigned long )i; context_desc->lower_setup.ip_config = 0U; context_desc->upper_setup.tcp_fields.tucss = css; context_desc->upper_setup.tcp_fields.tucso = (int )((u8 )skb->ldv_27712.ldv_27711.csum_offset) + (int )css; context_desc->upper_setup.tcp_fields.tucse = 0U; context_desc->tcp_seg_setup.data = 0U; context_desc->cmd_and_length = cmd_len; buffer_info->ldv_41273.ldv_41268.time_stamp = jiffies; buffer_info->ldv_41273.ldv_41268.next_to_watch = (u16 )i; i = i + 1U; if (tx_ring->count == i) { i = 0U; } else { } tx_ring->next_to_use = (u16 )i; return (1); } } static int e1000_tx_map(struct e1000_ring *tx_ring , struct sk_buff *skb , unsigned int first , unsigned int max_per_txd , unsigned int nr_frags ) { struct e1000_adapter *adapter ; struct pci_dev *pdev ; struct e1000_buffer *buffer_info ; unsigned int len ; unsigned int tmp ; unsigned int offset ; unsigned int size ; unsigned int count ; unsigned int i ; unsigned int f ; unsigned int bytecount ; unsigned int segs ; unsigned int _min1 ; unsigned int _min2 ; int tmp___0 ; struct skb_frag_struct const *frag ; unsigned char *tmp___1 ; unsigned int _min1___0 ; unsigned int _min2___0 ; int tmp___2 ; unsigned char *tmp___4 ; unsigned char *tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; { adapter = tx_ring->adapter; pdev = adapter->pdev; tmp = skb_headlen((struct sk_buff const *)skb); len = tmp; offset = 0U; count = 0U; i = (unsigned int )tx_ring->next_to_use; goto ldv_49163; ldv_49162: buffer_info = tx_ring->buffer_info + (unsigned long )i; _min1 = len; _min2 = max_per_txd; size = _min1 < _min2 ? _min1 : _min2; buffer_info->ldv_41273.ldv_41268.length = (u16 )size; buffer_info->ldv_41273.ldv_41268.time_stamp = jiffies; buffer_info->ldv_41273.ldv_41268.next_to_watch = (u16 )i; buffer_info->dma = dma_map_single_attrs___0(& pdev->dev, (void *)skb->data + (unsigned long )offset, (size_t )size, 1, 0); buffer_info->ldv_41273.ldv_41268.mapped_as_page = 0U; tmp___0 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___0 != 0) { goto dma_error; } else { } len = len - size; offset = offset + size; count = count + 1U; if (len != 0U) { i = i + 1U; if (tx_ring->count == i) { i = 0U; } else { } } else { } ldv_49163: ; if (len != 0U) { goto ldv_49162; } else { } f = 0U; goto ldv_49173; ldv_49172: tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct const *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )f; len = skb_frag_size(frag); offset = 0U; goto ldv_49170; ldv_49169: i = i + 1U; if (tx_ring->count == i) { i = 0U; } else { } buffer_info = tx_ring->buffer_info + (unsigned long )i; _min1___0 = len; _min2___0 = max_per_txd; size = _min1___0 < _min2___0 ? _min1___0 : _min2___0; buffer_info->ldv_41273.ldv_41268.length = (u16 )size; buffer_info->ldv_41273.ldv_41268.time_stamp = jiffies; buffer_info->ldv_41273.ldv_41268.next_to_watch = (u16 )i; buffer_info->dma = skb_frag_dma_map(& pdev->dev, frag, (size_t )offset, (size_t )size, 1); buffer_info->ldv_41273.ldv_41268.mapped_as_page = 1U; tmp___2 = dma_mapping_error(& pdev->dev, buffer_info->dma); if (tmp___2 != 0) { goto dma_error; } else { } len = len - size; offset = offset + size; count = count + 1U; ldv_49170: ; if (len != 0U) { goto ldv_49169; } else { } f = f + 1U; ldv_49173: ; if (f < nr_frags) { goto ldv_49172; } else { } tmp___5 = skb_end_pointer((struct sk_buff const *)skb); if ((int )((struct skb_shared_info *)tmp___5)->gso_segs != 0) { tmp___4 = skb_end_pointer((struct sk_buff const *)skb); segs = (unsigned int )((int )((struct skb_shared_info *)tmp___4)->gso_segs); } else { segs = 1U; } tmp___6 = skb_headlen((struct sk_buff const *)skb); bytecount = (segs - 1U) * tmp___6 + skb->len; (tx_ring->buffer_info + (unsigned long )i)->skb = skb; (tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.segs = segs; (tx_ring->buffer_info + (unsigned long )i)->ldv_41273.ldv_41268.bytecount = bytecount; (tx_ring->buffer_info + (unsigned long )first)->ldv_41273.ldv_41268.next_to_watch = (u16 )i; return ((int )count); dma_error: dev_err((struct device const *)(& pdev->dev), "Tx DMA map failed\n"); buffer_info->dma = 0ULL; if (count != 0U) { count = count - 1U; } else { } goto ldv_49176; ldv_49175: ; if (i == 0U) { i = tx_ring->count + i; } else { } i = i - 1U; buffer_info = tx_ring->buffer_info + (unsigned long )i; e1000_put_txbuf(tx_ring, buffer_info); ldv_49176: tmp___7 = count; count = count - 1U; if (tmp___7 != 0U) { goto ldv_49175; } else { } return (0); } } static void e1000_tx_queue(struct e1000_ring *tx_ring , int tx_flags , int count ) { struct e1000_adapter *adapter ; struct e1000_tx_desc *tx_desc ; struct e1000_buffer *buffer_info ; u32 txd_upper ; u32 txd_lower ; unsigned int i ; long tmp ; long tmp___0 ; long tmp___1 ; { adapter = tx_ring->adapter; tx_desc = 0; txd_upper = 0U; txd_lower = 33554432U; if ((tx_flags & 4) != 0) { txd_lower = txd_lower | 605028352U; txd_upper = txd_upper | 512U; if ((tx_flags & 8) != 0) { txd_upper = txd_upper | 256U; } else { } } else { } if (tx_flags & 1) { txd_lower = txd_lower | 537919488U; txd_upper = txd_upper | 512U; } else { } if ((tx_flags & 2) != 0) { txd_lower = txd_lower | 1073741824U; txd_upper = ((u32 )tx_flags & 4294901760U) | txd_upper; } else { } tmp = ldv__builtin_expect((tx_flags & 16) != 0, 0L); if (tmp != 0L) { txd_lower = txd_lower & 4261412863U; } else { } tmp___0 = ldv__builtin_expect((tx_flags & 32) != 0, 0L); if (tmp___0 != 0L) { txd_lower = txd_lower | 537919488U; txd_upper = txd_upper | 16U; } else { } i = (unsigned int )tx_ring->next_to_use; ldv_49189: buffer_info = tx_ring->buffer_info + (unsigned long )i; tx_desc = (struct e1000_tx_desc *)tx_ring->desc + (unsigned long )i; tx_desc->buffer_addr = buffer_info->dma; tx_desc->lower.data = (u32 )buffer_info->ldv_41273.ldv_41268.length | txd_lower; tx_desc->upper.data = txd_upper; i = i + 1U; if (tx_ring->count == i) { i = 0U; } else { } count = count - 1; if (count > 0) { goto ldv_49189; } else { } tx_desc->lower.data = tx_desc->lower.data | adapter->txd_cmd; tmp___1 = ldv__builtin_expect((tx_flags & 16) != 0, 0L); if (tmp___1 != 0L) { tx_desc->lower.data = tx_desc->lower.data & 4261412863U; } else { } __asm__ volatile ("sfence": : : "memory"); tx_ring->next_to_use = (u16 )i; if ((adapter->flags2 & 2048U) != 0U) { e1000e_update_tdt_wa(tx_ring, i); } else { writel(i, (void volatile *)tx_ring->tail); } __asm__ volatile ("": : : "memory"); return; } } static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter , struct sk_buff *skb ) { struct e1000_hw *hw ; u16 length ; u16 offset ; struct iphdr const *ip ; struct udphdr *udp ; __u16 tmp ; s32 tmp___0 ; { hw = & adapter->hw; if (((int )skb->vlan_tci & 4096) != 0 && (((int )skb->vlan_tci & -4097) != (int )adapter->hw.mng_cookie.vlan_id || ((int )adapter->hw.mng_cookie.status & 2) == 0)) { return (0); } else { } if (skb->len <= 282U) { return (0); } else { } if ((unsigned int )((struct ethhdr *)skb->data)->h_proto != 8U) { return (0); } else { } ip = (struct iphdr const *)skb->data + 14U; if ((unsigned int )((unsigned char )ip->protocol) != 17U) { return (0); } else { } udp = (struct udphdr *)ip + (unsigned long )((int )ip->ihl << 2); tmp = __fswab16((int )udp->dest); if ((unsigned int )tmp != 67U) { return (0); } else { } offset = (int )((u16 )((long )((u8 *)udp + 8UL))) - (int )((u16 )((long )skb->data)); length = (int )((u16 )skb->len) - (int )offset; tmp___0 = e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8UL, (int )length); return (tmp___0); return (0); } } static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring , int size ) { struct e1000_adapter *adapter ; int tmp ; { adapter = tx_ring->adapter; netif_stop_queue(adapter->netdev); __asm__ volatile ("mfence": : : "memory"); tmp = e1000_desc_unused(tx_ring); if (tmp < size) { return (-16); } else { } netif_start_queue(adapter->netdev); adapter->restart_queue = adapter->restart_queue + 1U; return (0); } } static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring , int size ) { long tmp ; int tmp___0 ; int tmp___1 ; { tmp = ldv__builtin_expect((unsigned int )size > tx_ring->count, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared"), "i" (5465), "i" (12UL)); ldv_49209: ; goto ldv_49209; } else { } tmp___0 = e1000_desc_unused(tx_ring); if (tmp___0 >= size) { return (0); } else { } tmp___1 = __e1000_maybe_stop_tx(tx_ring, size); return (tmp___1); } } static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; struct e1000_ring *tx_ring ; unsigned int first ; unsigned int tx_flags ; unsigned int len ; unsigned int tmp___0 ; unsigned int nr_frags ; unsigned int mss ; int count ; int tso ; unsigned int f ; int tmp___1 ; int tmp___2 ; long tmp___3 ; unsigned char *tmp___4 ; u8 hdr_len ; int tmp___5 ; unsigned int tmp___6 ; unsigned int pull_size ; unsigned int __min1 ; unsigned int __min2 ; unsigned char *tmp___7 ; unsigned char *tmp___8 ; unsigned char *tmp___9 ; unsigned int tmp___10 ; int tmp___11 ; bool tmp___12 ; long tmp___13 ; unsigned char *tmp___14 ; unsigned char *tmp___15 ; unsigned char *tmp___16 ; long tmp___17 ; long tmp___18 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tx_ring = adapter->tx_ring; tx_flags = 0U; tmp___0 = skb_headlen((struct sk_buff const *)skb); len = tmp___0; count = 0; tmp___1 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp___1 != 0) { dev_kfree_skb_any(skb); return (0); } else { } if (skb->len == 0U) { dev_kfree_skb_any(skb); return (0); } else { } tmp___3 = ldv__builtin_expect(skb->len <= 16U, 0L); if (tmp___3 != 0L) { tmp___2 = skb_pad(skb, (int )(17U - skb->len)); if (tmp___2 != 0) { return (0); } else { } skb->len = 17U; skb_set_tail_pointer(skb, 17); } else { } tmp___4 = skb_end_pointer((struct sk_buff const *)skb); mss = (unsigned int )((struct skb_shared_info *)tmp___4)->gso_size; if (mss != 0U) { tmp___5 = skb_transport_offset((struct sk_buff const *)skb); tmp___6 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((u8 )tmp___5) + (int )((u8 )tmp___6); if (skb->data_len != 0U && (unsigned int )hdr_len == len) { __min1 = 4U; __min2 = skb->data_len; pull_size = __min1 < __min2 ? __min1 : __min2; tmp___7 = __pskb_pull_tail(skb, (int )pull_size); if ((unsigned long )tmp___7 == (unsigned long )((unsigned char *)0)) { netdev_err((struct net_device const *)adapter->netdev, "__pskb_pull_tail failed.\n"); dev_kfree_skb_any(skb); return (0); } else { } len = skb_headlen((struct sk_buff const *)skb); } else { } } else { } if (mss != 0U || (unsigned int )*((unsigned char *)skb + 124UL) == 12U) { count = count + 1; } else { } count = count + 1; count = (int )(((adapter->tx_fifo_limit + len) - 1U) / adapter->tx_fifo_limit + (unsigned int )count); tmp___8 = skb_end_pointer((struct sk_buff const *)skb); nr_frags = (unsigned int )((struct skb_shared_info *)tmp___8)->nr_frags; f = 0U; goto ldv_49230; ldv_49229: tmp___9 = skb_end_pointer((struct sk_buff const *)skb); tmp___10 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___9)->frags) + (unsigned long )f); count = (int )(((tmp___10 + adapter->tx_fifo_limit) - 1U) / adapter->tx_fifo_limit + (unsigned int )count); f = f + 1U; ldv_49230: ; if (f < nr_frags) { goto ldv_49229; } else { } if ((int )adapter->hw.mac.tx_pkt_filtering) { e1000_transfer_dhcp_info(adapter, skb); } else { } tmp___11 = e1000_maybe_stop_tx(tx_ring, count + 2); if (tmp___11 != 0) { return (16); } else { } if (((int )skb->vlan_tci & 4096) != 0) { tx_flags = tx_flags | 2U; tx_flags = (unsigned int )(((int )skb->vlan_tci & -4097) << 16) | tx_flags; } else { } first = (unsigned int )tx_ring->next_to_use; tso = e1000_tso(tx_ring, skb); if (tso < 0) { dev_kfree_skb_any(skb); return (0); } else { } if (tso != 0) { tx_flags = tx_flags | 4U; } else { tmp___12 = e1000_tx_csum(tx_ring, skb); if ((int )tmp___12) { tx_flags = tx_flags | 1U; } else { } } if ((unsigned int )skb->protocol == 8U) { tx_flags = tx_flags | 8U; } else { } tmp___13 = ldv__builtin_expect((int )((signed char )*((unsigned char *)skb + 178UL)) < 0, 0L); if (tmp___13 != 0L) { tx_flags = tx_flags | 16U; } else { } count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, nr_frags); if (count != 0) { tmp___16 = skb_end_pointer((struct sk_buff const *)skb); tmp___17 = ldv__builtin_expect((long )((struct skb_shared_info *)tmp___16)->tx_flags & 1L, 0L); if (tmp___17 != 0L) { tmp___18 = ldv__builtin_expect((unsigned long )adapter->tx_hwtstamp_skb == (unsigned long )((struct sk_buff *)0), 0L); if (tmp___18 != 0L) { tmp___14 = skb_end_pointer((struct sk_buff const *)skb); tmp___15 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___14)->tx_flags = (__u8 )((unsigned int )((struct skb_shared_info *)tmp___15)->tx_flags | 4U); tx_flags = tx_flags | 32U; adapter->tx_hwtstamp_skb = skb_get(skb); schedule_work(& adapter->tx_hwtstamp_work); } else { skb_tx_timestamp(skb); } } else { skb_tx_timestamp(skb); } netdev_sent_queue(netdev, skb->len); e1000_tx_queue(tx_ring, (int )tx_flags, count); e1000_maybe_stop_tx(tx_ring, (int )((unsigned int )(((unsigned long )adapter->tx_fifo_limit + 4095UL) / (unsigned long )adapter->tx_fifo_limit) * 17U + 2U)); } else { dev_kfree_skb_any(skb); (tx_ring->buffer_info + (unsigned long )first)->ldv_41273.ldv_41268.time_stamp = 0UL; tx_ring->next_to_use = (u16 )first; } return (0); } } static void e1000_tx_timeout(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; adapter->tx_timeout_count = adapter->tx_timeout_count + 1U; schedule_work(& adapter->reset_task); return; } } static void e1000_reset_task(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; int tmp ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xfffffffffffffe80UL; tmp = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); if (tmp != 0) { return; } else { } if ((adapter->flags & 1073741824U) == 0U) { e1000e_dump(adapter); netdev_err((struct net_device const *)adapter->netdev, "Reset adapter unexpectedly\n"); } else { } e1000e_reinit_locked(adapter); return; } } struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev , struct rtnl_link_stats64 *stats ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; memset((void *)stats, 0, 184UL); spin_lock(& adapter->stats64_lock); e1000e_update_stats(adapter); stats->rx_bytes = adapter->stats.gorc; stats->rx_packets = adapter->stats.gprc; stats->tx_bytes = adapter->stats.gotc; stats->tx_packets = adapter->stats.gptc; stats->multicast = adapter->stats.mprc; stats->collisions = adapter->stats.colc; stats->rx_errors = ((((adapter->stats.rxerrc + adapter->stats.crcerrs) + adapter->stats.algnerrc) + adapter->stats.ruc) + adapter->stats.roc) + adapter->stats.cexterr; stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; stats->rx_crc_errors = adapter->stats.crcerrs; stats->rx_frame_errors = adapter->stats.algnerrc; stats->rx_missed_errors = adapter->stats.mpc; stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; stats->tx_aborted_errors = adapter->stats.ecol; stats->tx_window_errors = adapter->stats.latecol; stats->tx_carrier_errors = adapter->stats.tncrs; spin_unlock(& adapter->stats64_lock); return (stats); } } static int e1000_change_mtu(struct net_device *netdev , int new_mtu ) { struct e1000_adapter *adapter ; void *tmp ; int max_frame ; int tmp___0 ; bool tmp___1 ; bool tmp___2 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; max_frame = new_mtu + 18; if (max_frame > 1518 && (adapter->flags & 128U) == 0U) { netdev_err((struct net_device const *)adapter->netdev, "Jumbo Frames not supported.\n"); return (-22); } else { } if (new_mtu <= 67 || (u32 )max_frame > adapter->max_hw_frame_size) { netdev_err((struct net_device const *)adapter->netdev, "Unsupported MTU setting\n"); return (-22); } else { } if (((unsigned int )adapter->hw.mac.type > 9U && (adapter->flags2 & 1U) == 0U) && new_mtu > 1500) { netdev_err((struct net_device const *)adapter->netdev, "Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); return (-22); } else { } goto ldv_49254; ldv_49253: usleep_range(1000UL, 2000UL); ldv_49254: tmp___0 = test_and_set_bit(1, (unsigned long volatile *)(& adapter->state)); if (tmp___0 != 0) { goto ldv_49253; } else { } adapter->max_frame_size = (u32 )max_frame; netdev_info((struct net_device const *)adapter->netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = (unsigned int )new_mtu; tmp___1 = netif_running((struct net_device const *)netdev); if ((int )tmp___1) { e1000e_down(adapter); } else { } if (max_frame <= 2048) { adapter->rx_buffer_len = 2048U; } else { adapter->rx_buffer_len = 4096U; } if (max_frame == 1518 || max_frame == 1522) { adapter->rx_buffer_len = 1522U; } else { } tmp___2 = netif_running((struct net_device const *)netdev); if ((int )tmp___2) { e1000e_up(adapter); } else { e1000e_reset(adapter); } clear_bit(1, (unsigned long volatile *)(& adapter->state)); return (0); } } static int e1000_mii_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { struct e1000_adapter *adapter ; void *tmp ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = if_mii(ifr); data = tmp___0; if ((unsigned int )adapter->hw.phy.media_type != 1U) { return (-95); } else { } switch (cmd) { case 35143: data->phy_id = (__u16 )adapter->hw.phy.addr; goto ldv_49264; case 35144: e1000_phy_read_status(adapter); switch ((int )data->reg_num & 31) { case 0: data->val_out = adapter->phy_regs.bmcr; goto ldv_49267; case 1: data->val_out = adapter->phy_regs.bmsr; goto ldv_49267; case 2: data->val_out = (__u16 )(adapter->hw.phy.id >> 16); goto ldv_49267; case 3: data->val_out = (__u16 )adapter->hw.phy.id; goto ldv_49267; case 4: data->val_out = adapter->phy_regs.advertise; goto ldv_49267; case 5: data->val_out = adapter->phy_regs.lpa; goto ldv_49267; case 6: data->val_out = adapter->phy_regs.expansion; goto ldv_49267; case 9: data->val_out = adapter->phy_regs.ctrl1000; goto ldv_49267; case 10: data->val_out = adapter->phy_regs.stat1000; goto ldv_49267; case 15: data->val_out = adapter->phy_regs.estatus; goto ldv_49267; default: ; return (-5); } ldv_49267: ; goto ldv_49264; case 35145: ; default: ; return (-95); } ldv_49264: ; return (0); } } static int e1000e_hwtstamp_ioctl(struct net_device *netdev , struct ifreq *ifr ) { struct e1000_adapter *adapter ; void *tmp ; struct hwtstamp_config config ; int ret_val ; unsigned long tmp___0 ; int tmp___1 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; tmp___0 = copy_from_user((void *)(& config), (void const *)ifr->ifr_ifru.ifru_data, 12UL); if (tmp___0 != 0UL) { return (-14); } else { } adapter->hwtstamp_config = config; ret_val = e1000e_config_hwtstamp(adapter); if (ret_val != 0) { return (ret_val); } else { } config = adapter->hwtstamp_config; switch (config.rx_filter) { case 7: ; case 10: ; case 13: ; case 8: ; case 11: ; case 14: config.rx_filter = 2; goto ldv_49293; default: ; goto ldv_49293; } ldv_49293: tmp___1 = copy_to_user(ifr->ifr_ifru.ifru_data, (void const *)(& config), 12U); return (tmp___1 != 0 ? -14 : 0); } } static int e1000_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { int tmp ; int tmp___0 ; { switch (cmd) { case 35143: ; case 35144: ; case 35145: tmp = e1000_mii_ioctl(netdev, ifr, cmd); return (tmp); case 35248: tmp___0 = e1000e_hwtstamp_ioctl(netdev, ifr); return (tmp___0); default: ; return (-95); } } } static int e1000_init_phy_wakeup(struct e1000_adapter *adapter , u32 wufc ) { struct e1000_hw *hw ; u32 i ; u32 mac_reg ; u16 phy_reg ; u16 wuc_enable ; int retval ; { hw = & adapter->hw; e1000_copy_rx_addrs_to_phy_ich8lan(hw); retval = (*(hw->phy.ops.acquire))(hw); if (retval != 0) { netdev_err((struct net_device const *)adapter->netdev, "Could not acquire PHY\n"); return (retval); } else { } retval = e1000_enable_phy_wakeup_reg_access_bm(hw, & wuc_enable); if (retval != 0) { goto release; } else { } i = 0U; goto ldv_49317; ldv_49316: mac_reg = readl((void const volatile *)(hw->hw_addr + ((unsigned long )(i << 2) + 20992UL))); (*(hw->phy.ops.write_reg_page))(hw, (((i << 1) & 31U) | ((((i << 1) + 128U) & 4294967264U) << 16)) | 25600U, (int )((unsigned short )mac_reg)); (*(hw->phy.ops.write_reg_page))(hw, ((((i << 1) & 31U) | ((((i << 1) + 128U) & 4294967264U) << 16)) | 25600U) + 1U, (int )((unsigned short )(mac_reg >> 16))); i = i + 1U; ldv_49317: ; if ((u32 )adapter->hw.mac.mta_reg_count > i) { goto ldv_49316; } else { } (*(hw->phy.ops.read_reg_page))(& adapter->hw, 25600U, & phy_reg); mac_reg = __er32(hw, 256UL); if ((mac_reg & 8U) != 0U) { phy_reg = (u16 )((unsigned int )phy_reg | 1U); } else { } if ((mac_reg & 16U) != 0U) { phy_reg = (u16 )((unsigned int )phy_reg | 2U); } else { } phy_reg = (unsigned int )phy_reg & 65511U; if ((mac_reg & 12288U) != 0U) { phy_reg = ((int )((u16 )((mac_reg & 12288U) >> 12)) << 3U) | (int )phy_reg; } else { } if ((mac_reg & 32768U) != 0U) { phy_reg = (u16 )((unsigned int )phy_reg | 32U); } else { } if ((mac_reg & 8388608U) != 0U) { phy_reg = (u16 )((unsigned int )phy_reg | 64U); } else { } mac_reg = __er32(hw, 0UL); if ((mac_reg & 134217728U) != 0U) { phy_reg = (u16 )((unsigned int )phy_reg | 128U); } else { } (*(hw->phy.ops.write_reg_page))(& adapter->hw, 25600U, (int )phy_reg); __ew32___7(hw, 22536UL, wufc); __ew32___7(hw, 22528UL, 258U); (*(hw->phy.ops.write_reg_page))(& adapter->hw, 25602U, (int )((u16 )wufc)); (*(hw->phy.ops.write_reg_page))(& adapter->hw, 25601U, 2); wuc_enable = (u16 )((unsigned int )wuc_enable | 20U); retval = e1000_disable_phy_wakeup_reg_access_bm(hw, & wuc_enable); if (retval != 0) { netdev_err((struct net_device const *)adapter->netdev, "Could not set PHY Host Wakeup bit\n"); } else { } release: (*(hw->phy.ops.release))(hw); return (retval); } } static int __e1000_shutdown(struct pci_dev *pdev , bool runtime ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; u32 ctrl ; u32 ctrl_ext ; u32 rctl ; u32 status ; u32 wufc ; int retval ; int count ; int tmp___1 ; int tmp___2 ; int __ret_warn_on ; int tmp___3 ; long tmp___4 ; bool tmp___5 ; struct pci_dev *us_dev ; u16 devctl ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; wufc = (int )runtime ? 1U : adapter->wol; retval = 0; netif_device_detach(netdev); tmp___5 = netif_running((struct net_device const *)netdev); if ((int )tmp___5) { count = 25; goto ldv_49334; ldv_49333: usleep_range(10000UL, 20000UL); ldv_49334: tmp___1 = constant_test_bit(1U, (unsigned long const volatile *)(& adapter->state)); if (tmp___1 != 0) { tmp___2 = count; count = count - 1; if (tmp___2 != 0) { goto ldv_49333; } else { goto ldv_49335; } } else { } ldv_49335: tmp___3 = constant_test_bit(1U, (unsigned long const volatile *)(& adapter->state)); __ret_warn_on = tmp___3 != 0; tmp___4 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___4 != 0L) { warn_slowpath_null("/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/netdev.c.prepared", 5973); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); e1000e_down(adapter); e1000_free_irq(adapter); } else { } e1000e_reset_interrupt_capability(adapter); status = __er32(hw, 8UL); if ((status & 2U) != 0U) { wufc = wufc & 4294967294U; } else { } if (wufc != 0U) { e1000_setup_rctl(adapter); e1000e_set_rx_mode(netdev); if ((wufc & 8U) != 0U) { rctl = __er32(hw, 256UL); rctl = rctl | 16U; __ew32___7(hw, 256UL, rctl); } else { } ctrl = __er32(hw, 0UL); ctrl = ctrl | 1048576U; if ((adapter->flags2 & 2U) == 0U) { ctrl = ctrl | 2097152U; } else { } __ew32___7(hw, 0UL, ctrl); if ((unsigned int )adapter->hw.phy.media_type == 2U || (unsigned int )adapter->hw.phy.media_type == 3U) { ctrl_ext = __er32(hw, 24UL); ctrl_ext = ctrl_ext | 128U; __ew32___7(hw, 24UL, ctrl_ext); } else { } if ((adapter->flags & 512U) != 0U) { e1000_suspend_workarounds_ich8lan(& adapter->hw); } else { } e1000e_disable_pcie_master(& adapter->hw); if ((adapter->flags2 & 2U) != 0U) { retval = e1000_init_phy_wakeup(adapter, wufc); if (retval != 0) { return (retval); } else { } } else { __ew32___7(hw, 22536UL, wufc); __ew32___7(hw, 22528UL, 2U); } } else { __ew32___7(hw, 22528UL, 0U); __ew32___7(hw, 22536UL, 0U); } if ((unsigned int )adapter->hw.phy.type == 6U) { e1000e_igp3_phy_powerdown_workaround_ich8lan(& adapter->hw); } else { } e1000e_release_hw_control(adapter); if ((adapter->flags & 8192U) != 0U) { us_dev = (pdev->bus)->self; pcie_capability_read_word(us_dev, 8, & devctl); pcie_capability_write_word(us_dev, 8, (int )devctl & 65534); pci_save_state(pdev); pci_prepare_to_sleep(pdev); pcie_capability_write_word(us_dev, 8, (int )devctl); } else { } return (0); } } static void __e1000e_disable_aspm(struct pci_dev *pdev , u16 state ) { { pci_disable_link_state_locked(pdev, (int )state); return; } } static void e1000e_disable_aspm(struct pci_dev *pdev , u16 state ) { { _dev_info((struct device const *)(& pdev->dev), "Disabling ASPM %s %s\n", (int )state & 1 ? (char *)"L0s" : (char *)"", ((int )state & 2) != 0 ? (char *)"L1" : (char *)""); __e1000e_disable_aspm(pdev, (int )state); return; } } static bool e1000e_pm_ready(struct e1000_adapter *adapter ) { { return ((unsigned long )(adapter->tx_ring)->buffer_info != (unsigned long )((struct e1000_buffer *)0)); } } static int __e1000_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; u16 aspm_disable_flag ; u32 err ; int tmp___1 ; bool tmp___2 ; u16 phy_data ; u32 wus ; u32 tmp___3 ; bool tmp___4 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; aspm_disable_flag = 0U; if ((adapter->flags2 & 128U) != 0U) { aspm_disable_flag = 1U; } else { } if ((adapter->flags2 & 8U) != 0U) { aspm_disable_flag = (u16 )((unsigned int )aspm_disable_flag | 2U); } else { } if ((unsigned int )aspm_disable_flag != 0U) { e1000e_disable_aspm(pdev, (int )aspm_disable_flag); } else { } pci_set_master(pdev); e1000e_set_interrupt_capability(adapter); tmp___2 = netif_running((struct net_device const *)netdev); if ((int )tmp___2) { tmp___1 = e1000_request_irq(adapter); err = (u32 )tmp___1; if (err != 0U) { return ((int )err); } else { } } else { } if ((unsigned int )hw->mac.type > 9U) { e1000_resume_workarounds_pchlan(& adapter->hw); } else { } e1000e_power_up_phy(adapter); if ((adapter->flags2 & 2U) != 0U) { e1e_rphy(& adapter->hw, 25603U, & phy_data); if ((unsigned int )phy_data != 0U) { netdev_info((struct net_device const *)adapter->netdev, "PHY Wakeup cause - %s\n", ((int )phy_data & 4) == 0 ? (((int )phy_data & 8) == 0 ? (((int )phy_data & 16) == 0 ? (((int )phy_data & 2) == 0 ? ((int )phy_data & 1 ? (char *)"Link Status Change" : (char *)"other") : (char *)"Magic Packet") : (char *)"Broadcast Packet") : (char *)"Multicast Packet") : (char *)"Unicast Packet"); } else { } e1e_wphy(& adapter->hw, 25603U, 65535); } else { tmp___3 = __er32(hw, 22544UL); wus = tmp___3; if (wus != 0U) { netdev_info((struct net_device const *)adapter->netdev, "MAC Wakeup cause - %s\n", (wus & 4U) == 0U ? ((wus & 8U) == 0U ? ((wus & 16U) == 0U ? ((wus & 2U) == 0U ? ((int )wus & 1 ? (char *)"Link Status Change" : (char *)"other") : (char *)"Magic Packet") : (char *)"Broadcast Packet") : (char *)"Multicast Packet") : (char *)"Unicast Packet"); } else { } __ew32___7(hw, 22544UL, 4294967295U); } e1000e_reset(adapter); e1000_init_manageability_pt(adapter); tmp___4 = netif_running((struct net_device const *)netdev); if ((int )tmp___4) { e1000e_up(adapter); } else { } netif_device_attach(netdev); if ((adapter->flags & 1U) == 0U) { e1000e_get_hw_control(adapter); } else { } return (0); } } static int e1000_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; int tmp ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = __e1000_shutdown(pdev, 0); return (tmp); } } static int e1000_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; tmp___1 = e1000e_pm_ready(adapter); if ((int )tmp___1) { adapter->idle_check = 1; } else { } tmp___2 = __e1000_resume(pdev); return (tmp___2); } } static int e1000_runtime_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; tmp___1 = e1000e_pm_ready(adapter); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } tmp___3 = __e1000_shutdown(pdev, 1); return (tmp___3); } } static int e1000_idle(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; tmp___1 = e1000e_pm_ready(adapter); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } if ((int )adapter->idle_check) { adapter->idle_check = 0; tmp___3 = e1000e_has_link(adapter); if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { pm_schedule_suspend(dev, 1000U); } else { } } else { } return (-16); } } static int e1000_runtime_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; tmp___1 = e1000e_pm_ready(adapter); if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } adapter->idle_check = (unsigned int )*((unsigned char *)dev + 808UL) == 0U; tmp___3 = __e1000_resume(pdev); return (tmp___3); } } static void e1000_shutdown(struct pci_dev *pdev ) { { __e1000_shutdown(pdev, 0); return; } } static irqreturn_t e1000_intr_msix(int irq , void *data ) { struct net_device *netdev ; struct e1000_adapter *adapter ; void *tmp ; int vector ; int msix_irq ; { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; if ((unsigned long )adapter->msix_entries != (unsigned long )((struct msix_entry *)0)) { vector = 0; msix_irq = (int )(adapter->msix_entries + (unsigned long )vector)->vector; disable_irq((unsigned int )msix_irq); e1000_intr_msix_rx(msix_irq, (void *)netdev); enable_irq((unsigned int )msix_irq); vector = vector + 1; msix_irq = (int )(adapter->msix_entries + (unsigned long )vector)->vector; disable_irq((unsigned int )msix_irq); e1000_intr_msix_tx(msix_irq, (void *)netdev); enable_irq((unsigned int )msix_irq); vector = vector + 1; msix_irq = (int )(adapter->msix_entries + (unsigned long )vector)->vector; disable_irq((unsigned int )msix_irq); e1000_msix_other(msix_irq, (void *)netdev); enable_irq((unsigned int )msix_irq); } else { } return (1); } } static void e1000_netpoll(struct net_device *netdev ) { struct e1000_adapter *adapter ; void *tmp ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; switch (adapter->int_mode) { case 2: e1000_intr_msix((int )(adapter->pdev)->irq, (void *)netdev); goto ldv_49415; case 1: disable_irq((adapter->pdev)->irq); e1000_intr_msi((int )(adapter->pdev)->irq, (void *)netdev); enable_irq((adapter->pdev)->irq); goto ldv_49415; default: disable_irq((adapter->pdev)->irq); e1000_intr((int )(adapter->pdev)->irq, (void *)netdev); enable_irq((adapter->pdev)->irq); goto ldv_49415; } ldv_49415: ; return; } } static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; netif_device_detach(netdev); if (state == 3U) { return (4U); } else { } tmp___1 = netif_running((struct net_device const *)netdev); if ((int )tmp___1) { e1000e_down(adapter); } else { } pci_disable_device(pdev); return (3U); } } static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; struct e1000_hw *hw ; u16 aspm_disable_flag ; int err ; pci_ers_result_t result ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; hw = & adapter->hw; aspm_disable_flag = 0U; if ((adapter->flags2 & 128U) != 0U) { aspm_disable_flag = 1U; } else { } if ((adapter->flags2 & 8U) != 0U) { aspm_disable_flag = (u16 )((unsigned int )aspm_disable_flag | 2U); } else { } if ((unsigned int )aspm_disable_flag != 0U) { e1000e_disable_aspm(pdev, (int )aspm_disable_flag); } else { } err = pci_enable_device_mem(pdev); if (err != 0) { dev_err((struct device const *)(& pdev->dev), "Cannot re-enable PCI device after reset.\n"); result = 4U; } else { pdev->state_saved = 1U; pci_restore_state(pdev); pci_set_master(pdev); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); e1000e_reset(adapter); __ew32___7(hw, 22544UL, 4294967295U); result = 5U; } pci_cleanup_aer_uncorrect_error_status(pdev); return (result); } } static void e1000_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; int tmp___1 ; bool tmp___2 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; e1000_init_manageability_pt(adapter); tmp___2 = netif_running((struct net_device const *)netdev); if ((int )tmp___2) { tmp___1 = e1000e_up(adapter); if (tmp___1 != 0) { dev_err((struct device const *)(& pdev->dev), "can\'t bring device back up after reset\n"); return; } else { } } else { } netif_device_attach(netdev); if ((adapter->flags & 1U) == 0U) { e1000e_get_hw_control(adapter); } else { } return; } } static void e1000_print_device_info(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; struct net_device *netdev ; u32 ret_val ; u8 pba_str[11U] ; s32 tmp ; { hw = & adapter->hw; netdev = adapter->netdev; netdev_info((struct net_device const *)adapter->netdev, "(PCI Express:2.5GT/s:%s) %pM\n", (unsigned int )hw->bus.width == 4U ? (char *)"Width x4" : (char *)"Width x1", netdev->dev_addr); netdev_info((struct net_device const *)adapter->netdev, "Intel(R) PRO/%s Network Connection\n", (unsigned int )hw->phy.type == 7U ? (char *)"10/100" : (char *)"1000"); tmp = e1000_read_pba_string_generic(hw, (u8 *)(& pba_str), 11U); ret_val = (u32 )tmp; if (ret_val != 0U) { strlcpy((char *)(& pba_str), "Unknown", 11UL); } else { } netdev_info((struct net_device const *)adapter->netdev, "MAC: %d, PHY: %d, PBA No: %s\n", (unsigned int )hw->mac.type, (unsigned int )hw->phy.type, (u8 *)(& pba_str)); return; } } static void e1000_eeprom_checks(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; int ret_val ; u16 buf ; { hw = & adapter->hw; buf = 0U; if ((unsigned int )hw->mac.type != 2U) { return; } else { } ret_val = e1000_read_nvm(hw, 15, 1, & buf); if (ret_val == 0 && ((int )buf & 1) == 0) { dev_warn((struct device const *)(& (adapter->pdev)->dev), "Warning: detected DSPD enabled in EEPROM\n"); } else { } return; } } static int e1000_set_features(struct net_device *netdev , netdev_features_t features ) { struct e1000_adapter *adapter ; void *tmp ; netdev_features_t changed ; bool tmp___0 ; { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; changed = netdev->features ^ features; if ((changed & 1114112ULL) != 0ULL) { adapter->flags = adapter->flags | 536870912U; } else { } if ((changed & 13690208640ULL) == 0ULL) { return (0); } else { } if ((changed & 4294967296ULL) != 0ULL) { if ((features & 4294967296ULL) != 0ULL) { adapter->flags2 = adapter->flags2 & 4294967294U; } else if ((adapter->flags2 & 4096U) != 0U) { adapter->flags2 = adapter->flags2 | 1U; } else { adapter->flags2 = adapter->flags2 & 4294967294U; } } else { } netdev->features = features; tmp___0 = netif_running((struct net_device const *)netdev); if ((int )tmp___0) { e1000e_reinit_locked(adapter); } else { e1000e_reset(adapter); } return (0); } } static struct net_device_ops const e1000e_netdev_ops = {0, 0, & e1000_open, & e1000_close, & e1000_xmit_frame, 0, 0, & e1000e_set_rx_mode, & e1000_set_mac, & eth_validate_addr, & e1000_ioctl, 0, & e1000_change_mtu, 0, & e1000_tx_timeout, & e1000e_get_stats64, 0, & e1000_vlan_rx_add_vid, & e1000_vlan_rx_kill_vid, & e1000_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & e1000_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int e1000_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct e1000_adapter *adapter ; struct e1000_hw *hw ; struct e1000_info const *ei ; resource_size_t mmio_start ; resource_size_t mmio_len ; resource_size_t flash_start ; resource_size_t flash_len ; int cards_found ; u16 aspm_disable_flag ; int bars ; int i ; int err ; int pci_using_dac ; u16 eeprom_data ; u16 eeprom_apme_mask ; void *tmp ; char const *tmp___0 ; int tmp___1 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; size_t __len___1 ; void *__ret___1 ; s32 tmp___2 ; bool tmp___3 ; s32 tmp___4 ; s32 tmp___5 ; size_t __len___2 ; void *__ret___2 ; bool tmp___6 ; int tmp___7 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_3 ; struct lock_class_key __key___5 ; atomic_long_t __constr_expr_4 ; u32 tmp___8 ; bool tmp___9 ; bool tmp___10 ; s32 tmp___11 ; int tmp___12 ; { ei = e1000_info_tbl[ent->driver_data]; aspm_disable_flag = 0U; eeprom_data = 0U; eeprom_apme_mask = 1024U; if (((unsigned int )ei->flags2 & 128U) != 0U) { aspm_disable_flag = 1U; } else { } if (((unsigned int )ei->flags2 & 8U) != 0U) { aspm_disable_flag = (u16 )((unsigned int )aspm_disable_flag | 2U); } else { } if ((unsigned int )aspm_disable_flag != 0U) { e1000e_disable_aspm(pdev, (int )aspm_disable_flag); } else { } err = pci_enable_device_mem(pdev); if (err != 0) { return (err); } else { } pci_using_dac = 0; err = dma_set_mask(& pdev->dev, 0xffffffffffffffffULL); if (err == 0) { err = dma_set_coherent_mask(& pdev->dev, 0xffffffffffffffffULL); if (err == 0) { pci_using_dac = 1; } else { } } else { err = dma_set_mask(& pdev->dev, 4294967295ULL); if (err != 0) { err = dma_set_coherent_mask(& pdev->dev, 4294967295ULL); if (err != 0) { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration, aborting\n"); goto err_dma; } else { } } else { } } bars = pci_select_bars(pdev, 512UL); err = pci_request_selected_regions_exclusive(pdev, bars, (char const *)(& e1000e_driver_name)); if (err != 0) { goto err_pci_reg; } else { } pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); err = pci_save_state(pdev); if (err != 0) { goto err_alloc_etherdev; } else { } err = -12; netdev = alloc_etherdev_mqs(12928, 1U, 1U); if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { goto err_alloc_etherdev; } else { } netdev->dev.parent = & pdev->dev; netdev->irq = pdev->irq; pci_set_drvdata(pdev, (void *)netdev); tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp; hw = & adapter->hw; adapter->netdev = netdev; adapter->pdev = pdev; adapter->ei = ei; adapter->pba = ei->pba; adapter->flags = ei->flags; adapter->flags2 = ei->flags2; adapter->hw.adapter = adapter; adapter->hw.mac.type = ei->mac; adapter->max_hw_frame_size = ei->max_hw_frame_size; adapter->msg_enable = netif_msg_init(debug, 7); mmio_start = pdev->resource[0].start; mmio_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (pdev->resource[0].end - pdev->resource[0].start) + 1ULL : 0ULL; err = -5; adapter->hw.hw_addr = ioremap(mmio_start, (unsigned long )mmio_len); if ((unsigned long )adapter->hw.hw_addr == (unsigned long )((void *)0)) { goto err_ioremap; } else { } if ((adapter->flags & 2U) != 0U && (pdev->resource[1].flags & 512UL) != 0UL) { flash_start = pdev->resource[1].start; flash_len = pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (pdev->resource[1].end - pdev->resource[1].start) + 1ULL : 0ULL; adapter->hw.flash_address = ioremap(flash_start, (unsigned long )flash_len); if ((unsigned long )adapter->hw.flash_address == (unsigned long )((void *)0)) { goto err_flashmap; } else { } } else { } if ((adapter->flags2 & 32U) != 0U) { adapter->eee_advert = 6U; } else { } netdev->netdev_ops = & e1000e_netdev_ops; e1000e_set_ethtool_ops(netdev); netdev->watchdog_timeo = 1250; netif_napi_add(netdev, & adapter->napi, & e1000e_poll, 64); tmp___0 = pci_name((struct pci_dev const *)pdev); strlcpy((char *)(& netdev->name), tmp___0, 16UL); netdev->mem_start = (unsigned long )mmio_start; netdev->mem_end = (unsigned long )(mmio_start + mmio_len); tmp___1 = cards_found; cards_found = cards_found + 1; adapter->bd_number = (u32 )tmp___1; e1000e_check_options(adapter); err = e1000_sw_init(adapter); if (err != 0) { goto err_sw_init; } else { } __len = 176UL; if (__len > 63UL) { __ret = memcpy((void *)(& hw->mac.ops), (void const *)ei->mac_ops, __len); } else { __ret = memcpy((void *)(& hw->mac.ops), (void const *)ei->mac_ops, __len); } __len___0 = 64UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& hw->nvm.ops), (void const *)ei->nvm_ops, __len___0); } else { __ret___0 = memcpy((void *)(& hw->nvm.ops), (void const *)ei->nvm_ops, __len___0); } __len___1 = 176UL; if (__len___1 > 63UL) { __ret___1 = memcpy((void *)(& hw->phy.ops), (void const *)ei->phy_ops, __len___1); } else { __ret___1 = memcpy((void *)(& hw->phy.ops), (void const *)ei->phy_ops, __len___1); } err = (*(ei->get_variants))(adapter); if (err != 0) { goto err_hw_init; } else { } if ((adapter->flags & 512U) != 0U && (adapter->flags & 256U) != 0U) { e1000e_write_protect_nvm_ich8lan(& adapter->hw); } else { } (*(hw->mac.ops.get_bus_info))(& adapter->hw); adapter->hw.phy.autoneg_wait_to_complete = 0; if ((unsigned int )adapter->hw.phy.media_type == 1U) { adapter->hw.phy.mdix = 0U; adapter->hw.phy.disable_polarity_correction = 0; adapter->hw.phy.ms_type = 0; } else { } if ((unsigned long )hw->phy.ops.check_reset_block != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { tmp___2 = (*(hw->phy.ops.check_reset_block))(hw); if (tmp___2 != 0) { _dev_info((struct device const *)(& pdev->dev), "PHY reset is blocked due to SOL/IDER session.\n"); } else { } } else { } netdev->features = 806420873ULL; netdev->hw_features = netdev->features; netdev->hw_features = netdev->hw_features | 4294967296ULL; netdev->priv_flags = netdev->priv_flags | 524288U; netdev->hw_features = netdev->hw_features | 8589934592ULL; if ((adapter->flags & 4U) != 0U) { netdev->features = netdev->features | 512ULL; } else { } netdev->vlan_features = netdev->vlan_features | 1114121ULL; netdev->priv_flags = netdev->priv_flags | 131072U; if (pci_using_dac != 0) { netdev->features = netdev->features | 32ULL; netdev->vlan_features = netdev->vlan_features | 32ULL; } else { } tmp___3 = e1000e_enable_mng_pass_thru(& adapter->hw); if ((int )tmp___3) { adapter->flags = adapter->flags | 1048576U; } else { } (*(adapter->hw.mac.ops.reset_hw))(& adapter->hw); i = 0; ldv_49496: tmp___4 = e1000_validate_nvm_checksum(& adapter->hw); if (tmp___4 >= 0) { goto ldv_49494; } else { } if (i == 2) { dev_err((struct device const *)(& pdev->dev), "The NVM Checksum Is Not Valid\n"); err = -5; goto err_eeprom; } else { } i = i + 1; goto ldv_49496; ldv_49494: e1000_eeprom_checks(adapter); tmp___5 = e1000e_read_mac_addr(& adapter->hw); if (tmp___5 != 0) { dev_err((struct device const *)(& pdev->dev), "NVM Read Error while reading MAC address\n"); } else { } __len___2 = (size_t )netdev->addr_len; __ret___2 = memcpy((void *)netdev->dev_addr, (void const *)(& adapter->hw.mac.addr), __len___2); tmp___6 = is_valid_ether_addr((u8 const *)netdev->dev_addr); if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { dev_err((struct device const *)(& pdev->dev), "Invalid MAC Address: %pM\n", netdev->dev_addr); err = -5; goto err_eeprom; } else { } init_timer_key(& adapter->watchdog_timer, 0U, "(&adapter->watchdog_timer)", & __key); adapter->watchdog_timer.function = & e1000_watchdog; adapter->watchdog_timer.data = (unsigned long )adapter; init_timer_key(& adapter->phy_info_timer, 0U, "(&adapter->phy_info_timer)", & __key___0); adapter->phy_info_timer.function = & e1000_update_phy_info; adapter->phy_info_timer.data = (unsigned long )adapter; __init_work(& adapter->reset_task, 0); __constr_expr_0.counter = 137438953408L; adapter->reset_task.data = __constr_expr_0; lockdep_init_map(& adapter->reset_task.lockdep_map, "(&adapter->reset_task)", & __key___1, 0); INIT_LIST_HEAD(& adapter->reset_task.entry); adapter->reset_task.func = & e1000_reset_task; __init_work(& adapter->watchdog_task, 0); __constr_expr_1.counter = 137438953408L; adapter->watchdog_task.data = __constr_expr_1; lockdep_init_map(& adapter->watchdog_task.lockdep_map, "(&adapter->watchdog_task)", & __key___2, 0); INIT_LIST_HEAD(& adapter->watchdog_task.entry); adapter->watchdog_task.func = & e1000_watchdog_task; __init_work(& adapter->downshift_task, 0); __constr_expr_2.counter = 137438953408L; adapter->downshift_task.data = __constr_expr_2; lockdep_init_map(& adapter->downshift_task.lockdep_map, "(&adapter->downshift_task)", & __key___3, 0); INIT_LIST_HEAD(& adapter->downshift_task.entry); adapter->downshift_task.func = & e1000e_downshift_workaround; __init_work(& adapter->update_phy_task, 0); __constr_expr_3.counter = 137438953408L; adapter->update_phy_task.data = __constr_expr_3; lockdep_init_map(& adapter->update_phy_task.lockdep_map, "(&adapter->update_phy_task)", & __key___4, 0); INIT_LIST_HEAD(& adapter->update_phy_task.entry); adapter->update_phy_task.func = & e1000e_update_phy_task; __init_work(& adapter->print_hang_task, 0); __constr_expr_4.counter = 137438953408L; adapter->print_hang_task.data = __constr_expr_4; lockdep_init_map(& adapter->print_hang_task.lockdep_map, "(&adapter->print_hang_task)", & __key___5, 0); INIT_LIST_HEAD(& adapter->print_hang_task.entry); adapter->print_hang_task.func = & e1000_print_hw_hang; adapter->hw.mac.autoneg = 1; adapter->fc_autoneg = 1; adapter->hw.fc.requested_mode = 255; adapter->hw.fc.current_mode = 255; adapter->hw.phy.autoneg_advertised = 47U; (adapter->rx_ring)->count = 256U; (adapter->tx_ring)->count = 256U; if ((adapter->flags & 32768U) != 0U) { tmp___8 = __er32(hw, 22528UL); eeprom_data = (u16 )tmp___8; eeprom_apme_mask = 1U; if ((unsigned int )hw->mac.type > 8U && ((int )eeprom_data & 256) != 0) { adapter->flags2 = adapter->flags2 | 2U; } else { } } else if ((adapter->flags & 65536U) != 0U) { if ((adapter->flags & 131072U) != 0U && (unsigned int )adapter->hw.bus.func == 1U) { e1000_read_nvm(& adapter->hw, 20, 1, & eeprom_data); } else { e1000_read_nvm(& adapter->hw, 36, 1, & eeprom_data); } } else { } if ((unsigned int )((int )eeprom_data & (int )eeprom_apme_mask) != 0U) { adapter->eeprom_wol = adapter->eeprom_wol | 2U; } else { } if ((adapter->flags & 8U) == 0U) { adapter->eeprom_wol = 0U; } else { } adapter->wol = adapter->eeprom_wol; if (adapter->wol != 0U || (adapter->flags & 1048576U) != 0U) { device_wakeup_enable(& pdev->dev); } else { tmp___9 = (*(hw->mac.ops.check_mng_mode))(hw); if ((int )tmp___9) { device_wakeup_enable(& pdev->dev); } else { } } e1000_read_nvm(& adapter->hw, 5, 1, & adapter->eeprom_vers); e1000e_reset(adapter); if ((adapter->flags & 1U) == 0U) { e1000e_get_hw_control(adapter); } else { } strlcpy((char *)(& netdev->name), "eth%d", 16UL); err = register_netdev(netdev); if (err != 0) { goto err_register; } else { } netif_carrier_off(netdev); e1000e_ptp_init(adapter); e1000_print_device_info(adapter); tmp___10 = pci_dev_run_wake(pdev); if ((int )tmp___10) { pm_runtime_put_noidle(& pdev->dev); } else { } return (0); err_register: ; if ((adapter->flags & 1U) == 0U) { e1000e_release_hw_control(adapter); } else { } err_eeprom: ; if ((unsigned long )hw->phy.ops.check_reset_block != (unsigned long )((s32 (*)(struct e1000_hw * ))0)) { tmp___11 = (*(hw->phy.ops.check_reset_block))(hw); if (tmp___11 == 0) { e1000_phy_hw_reset(& adapter->hw); } else { } } else { } err_hw_init: kfree((void const *)adapter->tx_ring); kfree((void const *)adapter->rx_ring); err_sw_init: ; if ((unsigned long )adapter->hw.flash_address != (unsigned long )((void *)0)) { iounmap((void volatile *)adapter->hw.flash_address); } else { } e1000e_reset_interrupt_capability(adapter); err_flashmap: iounmap((void volatile *)adapter->hw.hw_addr); err_ioremap: free_netdev(netdev); err_alloc_etherdev: tmp___12 = pci_select_bars(pdev, 512UL); pci_release_selected_regions(pdev, tmp___12); err_pci_reg: ; err_dma: pci_disable_device(pdev); return (err); } } static void e1000_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct e1000_adapter *adapter ; void *tmp___0 ; bool down___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct e1000_adapter *)tmp___0; tmp___1 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->state)); down___0 = tmp___1 != 0; e1000e_ptp_remove(adapter); if (! down___0) { set_bit(3U, (unsigned long volatile *)(& adapter->state)); } else { } del_timer_sync(& adapter->watchdog_timer); del_timer_sync(& adapter->phy_info_timer); cancel_work_sync(& adapter->reset_task); cancel_work_sync(& adapter->watchdog_task); cancel_work_sync(& adapter->downshift_task); cancel_work_sync(& adapter->update_phy_task); cancel_work_sync(& adapter->print_hang_task); if ((adapter->flags & 16384U) != 0U) { cancel_work_sync(& adapter->tx_hwtstamp_work); if ((unsigned long )adapter->tx_hwtstamp_skb != (unsigned long )((struct sk_buff *)0)) { dev_kfree_skb_any(adapter->tx_hwtstamp_skb); adapter->tx_hwtstamp_skb = 0; } else { } } else { } if ((netdev->flags & 1U) == 0U) { e1000_power_down_phy(adapter); } else { } if (! down___0) { clear_bit(3, (unsigned long volatile *)(& adapter->state)); } else { } unregister_netdev(netdev); tmp___2 = pci_dev_run_wake(pdev); if ((int )tmp___2) { pm_runtime_get_noresume(& pdev->dev); } else { } e1000e_release_hw_control(adapter); e1000e_reset_interrupt_capability(adapter); kfree((void const *)adapter->tx_ring); kfree((void const *)adapter->rx_ring); iounmap((void volatile *)adapter->hw.hw_addr); if ((unsigned long )adapter->hw.flash_address != (unsigned long )((void *)0)) { iounmap((void volatile *)adapter->hw.flash_address); } else { } tmp___3 = pci_select_bars(pdev, 512UL); pci_release_selected_regions(pdev, tmp___3); free_netdev(netdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); return; } } static struct pci_error_handlers const e1000_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& e1000_io_error_detected), 0, 0, & e1000_io_slot_reset, & e1000_io_resume}; static struct pci_device_id const e1000_pci_tbl[57U] = { {32902U, 4190U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4191U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4260U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4284U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4261U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4192U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4313U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4314U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4309U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 4281U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {32902U, 4221U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {32902U, 4222U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {32902U, 4223U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {32902U, 4235U, 4294967295U, 4294967295U, 0U, 0U, 2UL}, {32902U, 4236U, 4294967295U, 4294967295U, 0U, 0U, 2UL}, {32902U, 4250U, 4294967295U, 4294967295U, 0U, 0U, 2UL}, {32902U, 4307U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {32902U, 4342U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {32902U, 5388U, 4294967295U, 4294967295U, 0U, 0U, 4UL}, {32902U, 4246U, 4294967295U, 4294967295U, 0U, 0U, 5UL}, {32902U, 4282U, 4294967295U, 4294967295U, 0U, 0U, 5UL}, {32902U, 4248U, 4294967295U, 4294967295U, 0U, 0U, 5UL}, {32902U, 4283U, 4294967295U, 4294967295U, 0U, 0U, 5UL}, {32902U, 4172U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 4293U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 4292U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 4170U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 4171U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 4173U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 4169U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 5377U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {32902U, 4288U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4290U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4291U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4285U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 10572U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4325U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4287U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4341U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4299U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4300U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4301U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4302U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {32902U, 4318U, 4294967295U, 4294967295U, 0U, 0U, 8UL}, {32902U, 4319U, 4294967295U, 4294967295U, 0U, 0U, 8UL}, {32902U, 5413U, 4294967295U, 4294967295U, 0U, 0U, 8UL}, {32902U, 4330U, 4294967295U, 4294967295U, 0U, 0U, 9UL}, {32902U, 4331U, 4294967295U, 4294967295U, 0U, 0U, 9UL}, {32902U, 4335U, 4294967295U, 4294967295U, 0U, 0U, 9UL}, {32902U, 4336U, 4294967295U, 4294967295U, 0U, 0U, 9UL}, {32902U, 5378U, 4294967295U, 4294967295U, 0U, 0U, 10UL}, {32902U, 5379U, 4294967295U, 4294967295U, 0U, 0U, 10UL}, {32902U, 5434U, 4294967295U, 4294967295U, 0U, 0U, 11UL}, {32902U, 5435U, 4294967295U, 4294967295U, 0U, 0U, 11UL}, {32902U, 5466U, 4294967295U, 4294967295U, 0U, 0U, 11UL}, {32902U, 5465U, 4294967295U, 4294967295U, 0U, 0U, 11UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static struct dev_pm_ops const e1000_pm_ops = {0, 0, & e1000_suspend, & e1000_resume, & e1000_suspend, & e1000_resume, & e1000_suspend, & e1000_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & e1000_runtime_suspend, & e1000_runtime_resume, & e1000_idle}; static struct pci_driver e1000_driver = {{0, 0}, (char const *)(& e1000e_driver_name), (struct pci_device_id const *)(& e1000_pci_tbl), & e1000_probe, & e1000_remove, 0, 0, 0, 0, & e1000_shutdown, 0, & e1000_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & e1000_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int e1000_init_module(void) { int ret ; { printk("\016e1000e: Intel(R) PRO/1000 Network Driver - %s\n", (char const *)(& e1000e_driver_version)); printk("\016e1000e: Copyright(c) 1999 - 2013 Intel Corporation.\n"); ret = __pci_register_driver(& e1000_driver, & __this_module, "e1000e"); return (ret); } } static void e1000_exit_module(void) { { pci_unregister_driver(& e1000_driver); return; } } extern void ldv_check_return_value(int ) ; extern void ldv_check_return_value_probe(int ) ; void ldv_main9_sequence_infinite_withcheck_stateful(void) { struct net_device *var_group1 ; int res_e1000_open_81 ; int res_e1000_close_82 ; struct sk_buff *var_group2 ; struct rtnl_link_stats64 *var_group3 ; void *var_e1000_set_mac_83_p1 ; int var_e1000_change_mtu_106_p1 ; struct ifreq *var_group4 ; int var_e1000_ioctl_109_p2 ; __be16 var_e1000_vlan_rx_add_vid_50_p1 ; u16 var_e1000_vlan_rx_add_vid_50_p2 ; __be16 var_e1000_vlan_rx_kill_vid_51_p1 ; u16 var_e1000_vlan_rx_kill_vid_51_p2 ; netdev_features_t var_e1000_set_features_130_p1 ; struct pci_dev *var_group5 ; pci_channel_state_t var_e1000_io_error_detected_125_p1 ; struct pci_device_id const *var_e1000_probe_131_p1 ; int res_e1000_probe_131 ; int var_e1000_intr_25_p0 ; void *var_e1000_intr_25_p1 ; int var_e1000_intr_msi_24_p0 ; void *var_e1000_intr_msi_24_p1 ; int var_e1000_intr_msi_test_78_p0 ; void *var_e1000_intr_msi_test_78_p1 ; int var_e1000_intr_msix_123_p0 ; void *var_e1000_intr_msix_123_p1 ; int var_e1000_intr_msix_rx_28_p0 ; void *var_e1000_intr_msix_rx_28_p1 ; int var_e1000_intr_msix_tx_27_p0 ; void *var_e1000_intr_msix_tx_27_p1 ; int var_e1000_msix_other_26_p0 ; void *var_e1000_msix_other_26_p1 ; unsigned long var_e1000_watchdog_93_p0 ; unsigned long var_e1000_update_phy_info_85_p0 ; int ldv_s_e1000e_netdev_ops_net_device_ops ; int ldv_s_e1000_driver_pci_driver ; int tmp ; int tmp___0 ; int tmp___1 ; { ldv_s_e1000e_netdev_ops_net_device_ops = 0; ldv_s_e1000_driver_pci_driver = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); ldv_handler_precall(); tmp = e1000_init_module(); if (tmp != 0) { goto ldv_final; } else { } goto ldv_49630; ldv_49629: tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_s_e1000e_netdev_ops_net_device_ops == 0) { ldv_handler_precall(); res_e1000_open_81 = e1000_open(var_group1); ldv_check_return_value(res_e1000_open_81); if (res_e1000_open_81 < 0) { goto ldv_module_exit; } else { } ldv_s_e1000e_netdev_ops_net_device_ops = ldv_s_e1000e_netdev_ops_net_device_ops + 1; } else { } goto ldv_49600; case 1: ; if (ldv_s_e1000e_netdev_ops_net_device_ops == 1) { ldv_handler_precall(); res_e1000_close_82 = e1000_close(var_group1); ldv_check_return_value(res_e1000_close_82); if (res_e1000_close_82 != 0) { goto ldv_module_exit; } else { } ldv_s_e1000e_netdev_ops_net_device_ops = 0; } else { } goto ldv_49600; case 2: ldv_handler_precall(); e1000_xmit_frame(var_group2, var_group1); goto ldv_49600; case 3: ldv_handler_precall(); e1000e_get_stats64(var_group1, var_group3); goto ldv_49600; case 4: ldv_handler_precall(); e1000e_set_rx_mode(var_group1); goto ldv_49600; case 5: ldv_handler_precall(); e1000_set_mac(var_group1, var_e1000_set_mac_83_p1); goto ldv_49600; case 6: ldv_handler_precall(); e1000_change_mtu(var_group1, var_e1000_change_mtu_106_p1); goto ldv_49600; case 7: ldv_handler_precall(); e1000_ioctl(var_group1, var_group4, var_e1000_ioctl_109_p2); goto ldv_49600; case 8: ldv_handler_precall(); e1000_tx_timeout(var_group1); goto ldv_49600; case 9: ldv_handler_precall(); e1000_vlan_rx_add_vid(var_group1, (int )var_e1000_vlan_rx_add_vid_50_p1, (int )var_e1000_vlan_rx_add_vid_50_p2); goto ldv_49600; case 10: ldv_handler_precall(); e1000_vlan_rx_kill_vid(var_group1, (int )var_e1000_vlan_rx_kill_vid_51_p1, (int )var_e1000_vlan_rx_kill_vid_51_p2); goto ldv_49600; case 11: ldv_handler_precall(); e1000_netpoll(var_group1); goto ldv_49600; case 12: ldv_handler_precall(); e1000_set_features(var_group1, var_e1000_set_features_130_p1); goto ldv_49600; case 13: ldv_handler_precall(); e1000_io_error_detected(var_group5, var_e1000_io_error_detected_125_p1); goto ldv_49600; case 14: ldv_handler_precall(); e1000_io_slot_reset(var_group5); goto ldv_49600; case 15: ldv_handler_precall(); e1000_io_resume(var_group5); goto ldv_49600; case 16: ; if (ldv_s_e1000_driver_pci_driver == 0) { res_e1000_probe_131 = e1000_probe(var_group5, var_e1000_probe_131_p1); ldv_check_return_value(res_e1000_probe_131); ldv_check_return_value_probe(res_e1000_probe_131); if (res_e1000_probe_131 != 0) { goto ldv_module_exit; } else { } ldv_s_e1000_driver_pci_driver = ldv_s_e1000_driver_pci_driver + 1; } else { } goto ldv_49600; case 17: ; if (ldv_s_e1000_driver_pci_driver == 1) { ldv_handler_precall(); e1000_remove(var_group5); ldv_s_e1000_driver_pci_driver = 0; } else { } goto ldv_49600; case 18: ldv_handler_precall(); e1000_shutdown(var_group5); goto ldv_49600; case 19: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_intr(var_e1000_intr_25_p0, var_e1000_intr_25_p1); LDV_IN_INTERRUPT = 1; goto ldv_49600; case 20: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_intr_msi(var_e1000_intr_msi_24_p0, var_e1000_intr_msi_24_p1); LDV_IN_INTERRUPT = 1; goto ldv_49600; case 21: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_intr_msi_test(var_e1000_intr_msi_test_78_p0, var_e1000_intr_msi_test_78_p1); LDV_IN_INTERRUPT = 1; goto ldv_49600; case 22: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_intr_msix(var_e1000_intr_msix_123_p0, var_e1000_intr_msix_123_p1); LDV_IN_INTERRUPT = 1; goto ldv_49600; case 23: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_intr_msix_rx(var_e1000_intr_msix_rx_28_p0, var_e1000_intr_msix_rx_28_p1); LDV_IN_INTERRUPT = 1; goto ldv_49600; case 24: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_intr_msix_tx(var_e1000_intr_msix_tx_27_p0, var_e1000_intr_msix_tx_27_p1); LDV_IN_INTERRUPT = 1; goto ldv_49600; case 25: LDV_IN_INTERRUPT = 2; ldv_handler_precall(); e1000_msix_other(var_e1000_msix_other_26_p0, var_e1000_msix_other_26_p1); LDV_IN_INTERRUPT = 1; goto ldv_49600; case 26: ldv_handler_precall(); e1000_watchdog(var_e1000_watchdog_93_p0); goto ldv_49600; case 27: ldv_handler_precall(); e1000_update_phy_info(var_e1000_update_phy_info_85_p0); goto ldv_49600; default: ; goto ldv_49600; } ldv_49600: ; ldv_49630: tmp___1 = __VERIFIER_nondet_int(); if ((tmp___1 != 0 || ldv_s_e1000e_netdev_ops_net_device_ops != 0) || ldv_s_e1000_driver_pci_driver != 0) { goto ldv_49629; } else { } ldv_module_exit: ldv_handler_precall(); e1000_exit_module(); ldv_final: ldv_check_final_state(); return; } } void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_103(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_104(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_105(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static u64 div_u64_rem(u64 dividend , u32 divisor , u32 *remainder ) { { *remainder = (u32 )(dividend % (u64 )divisor); return (dividend / (u64 )divisor); } } __inline static u64 div_u64(u64 dividend , u32 divisor ) { u32 remainder ; u64 tmp ; { tmp = div_u64_rem(dividend, divisor, & remainder); return (tmp); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); return (tmp); } } int ldv_mutex_trylock_114(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_111(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_113(struct mutex *ldv_func_arg1 ) ; __inline static s64 timespec_to_ns(struct timespec const *ts ) { { return ((long long )ts->tv_sec * 1000000000LL + (long long )ts->tv_nsec); } } extern void delayed_work_timer_fn(unsigned long ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work_on(4096, wq, dwork, delay); return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { tmp = queue_delayed_work(system_wq, dwork, delay); return (tmp); } } extern u64 timecounter_read(struct timecounter * ) ; extern struct ptp_clock *ptp_clock_register(struct ptp_clock_info * , struct device * ) ; extern int ptp_clock_unregister(struct ptp_clock * ) ; static int e1000e_phc_adjfreq(struct ptp_clock_info *ptp , s32 delta ) { struct e1000_adapter *adapter ; struct ptp_clock_info const *__mptr ; struct e1000_hw *hw ; bool neg_adj ; u64 adjustment ; u32 timinca ; u32 incvalue ; s32 ret_val ; { __mptr = (struct ptp_clock_info const *)ptp; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffcdf8UL; hw = & adapter->hw; neg_adj = 0; if (ptp->max_adj < delta || delta < -999999999) { return (-22); } else { } if (delta < 0) { neg_adj = 1; delta = - delta; } else { } ret_val = e1000e_get_base_timinca(adapter, & timinca); if (ret_val != 0) { return (ret_val); } else { } incvalue = timinca & 16777215U; adjustment = (u64 )incvalue; adjustment = (u64 )delta * adjustment; adjustment = div_u64(adjustment, 1000000000U); incvalue = (int )neg_adj ? incvalue - (u32 )adjustment : (u32 )adjustment + incvalue; timinca = timinca & 4278190080U; timinca = timinca | incvalue; __ew32___1(hw, 46600UL, timinca); return (0); } } static int e1000e_phc_adjtime(struct ptp_clock_info *ptp , s64 delta ) { struct e1000_adapter *adapter ; struct ptp_clock_info const *__mptr ; unsigned long flags ; s64 now ; raw_spinlock_t *tmp ; u64 tmp___0 ; { __mptr = (struct ptp_clock_info const *)ptp; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffcdf8UL; tmp = spinlock_check(& adapter->systim_lock); flags = _raw_spin_lock_irqsave(tmp); tmp___0 = timecounter_read(& adapter->tc); now = (s64 )tmp___0; now = now + delta; timecounter_init(& adapter->tc, (struct cyclecounter const *)(& adapter->cc), (u64 )now); spin_unlock_irqrestore(& adapter->systim_lock, flags); return (0); } } static int e1000e_phc_gettime(struct ptp_clock_info *ptp , struct timespec *ts ) { struct e1000_adapter *adapter ; struct ptp_clock_info const *__mptr ; unsigned long flags ; u32 remainder ; u64 ns ; raw_spinlock_t *tmp ; u64 tmp___0 ; { __mptr = (struct ptp_clock_info const *)ptp; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffcdf8UL; tmp = spinlock_check(& adapter->systim_lock); flags = _raw_spin_lock_irqsave(tmp); ns = timecounter_read(& adapter->tc); spin_unlock_irqrestore(& adapter->systim_lock, flags); tmp___0 = div_u64_rem(ns, 1000000000U, & remainder); ts->tv_sec = (__kernel_time_t )tmp___0; ts->tv_nsec = (long )remainder; return (0); } } static int e1000e_phc_settime(struct ptp_clock_info *ptp , struct timespec const *ts ) { struct e1000_adapter *adapter ; struct ptp_clock_info const *__mptr ; unsigned long flags ; u64 ns ; s64 tmp ; raw_spinlock_t *tmp___0 ; { __mptr = (struct ptp_clock_info const *)ptp; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffcdf8UL; tmp = timespec_to_ns(ts); ns = (u64 )tmp; tmp___0 = spinlock_check(& adapter->systim_lock); flags = _raw_spin_lock_irqsave(tmp___0); timecounter_init(& adapter->tc, (struct cyclecounter const *)(& adapter->cc), ns); spin_unlock_irqrestore(& adapter->systim_lock, flags); return (0); } } static int e1000e_phc_enable(struct ptp_clock_info *ptp , struct ptp_clock_request *request , int on ) { { return (-95); } } static void e1000e_systim_overflow_work(struct work_struct *work ) { struct e1000_adapter *adapter ; struct work_struct const *__mptr ; struct e1000_hw *hw ; struct timespec ts ; struct _ddebug descriptor ; long tmp ; { __mptr = (struct work_struct const *)work; adapter = (struct e1000_adapter *)__mptr + 0xffffffffffffcfb0UL; hw = & adapter->hw; (*(adapter->ptp_clock_info.gettime))(& adapter->ptp_clock_info, & ts); descriptor.modname = "e1000e"; descriptor.function = "e1000e_systim_overflow_work"; descriptor.filename = "/work/ldvuser/exper_fp/work/current--X--drivers--X--defaultlinux-3.10-rc1.tar--X--32_7a--X--cpachecker/linux-3.10-rc1.tar/csd_deg_dscv/8677/dscv_tempdir/dscv/ri/32_7a/drivers/net/ethernet/intel/e1000e/ptp.c.prepared"; descriptor.format = "SYSTIM overflow check at %ld.%09lu\n"; descriptor.lineno = 223U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)(hw->adapter)->netdev, "SYSTIM overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec); } else { } schedule_delayed_work(& adapter->systim_overflow_work, 3600000UL); return; } } static struct ptp_clock_info const e1000e_ptp_clock_info = {& __this_module, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0, 0, 0, 0, 0, & e1000e_phc_adjfreq, & e1000e_phc_adjtime, & e1000e_phc_gettime, & e1000e_phc_settime, & e1000e_phc_enable}; void e1000e_ptp_init(struct e1000_adapter *adapter ) { struct e1000_hw *hw ; u32 tmp ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; long tmp___0 ; { hw = & adapter->hw; adapter->ptp_clock = 0; if ((adapter->flags & 16384U) == 0U) { return; } else { } adapter->ptp_clock_info = e1000e_ptp_clock_info; snprintf((char *)(& adapter->ptp_clock_info.name), 16UL, "%pm", (unsigned char *)(& (adapter->netdev)->perm_addr)); switch ((unsigned int )hw->mac.type) { case 10U: ; case 11U: ; if ((unsigned int )hw->mac.type != 11U) { adapter->ptp_clock_info.max_adj = 23999999; goto ldv_41609; } else { tmp = __er32(hw, 46624UL); if ((tmp & 32U) != 0U) { adapter->ptp_clock_info.max_adj = 23999999; goto ldv_41609; } else { } } case 3U: ; case 4U: adapter->ptp_clock_info.max_adj = 599999999; goto ldv_41609; default: ; goto ldv_41609; } ldv_41609: __init_work(& adapter->systim_overflow_work.work, 0); __constr_expr_0.counter = 137438953408L; adapter->systim_overflow_work.work.data = __constr_expr_0; lockdep_init_map(& adapter->systim_overflow_work.work.lockdep_map, "(&(&adapter->systim_overflow_work)->work)", & __key, 0); INIT_LIST_HEAD(& adapter->systim_overflow_work.work.entry); adapter->systim_overflow_work.work.func = & e1000e_systim_overflow_work; init_timer_key(& adapter->systim_overflow_work.timer, 2U, "(&(&adapter->systim_overflow_work)->timer)", & __key___0); adapter->systim_overflow_work.timer.function = & delayed_work_timer_fn; adapter->systim_overflow_work.timer.data = (unsigned long )(& adapter->systim_overflow_work); schedule_delayed_work(& adapter->systim_overflow_work, 3600000UL); adapter->ptp_clock = ptp_clock_register(& adapter->ptp_clock_info, & (adapter->pdev)->dev); tmp___0 = IS_ERR((void const *)adapter->ptp_clock); if (tmp___0 != 0L) { adapter->ptp_clock = 0; netdev_err((struct net_device const *)adapter->netdev, "ptp_clock_register failed\n"); } else { netdev_info((struct net_device const *)adapter->netdev, "registered PHC clock\n"); } return; } } void e1000e_ptp_remove(struct e1000_adapter *adapter ) { { if ((adapter->flags & 16384U) == 0U) { return; } else { } cancel_delayed_work_sync(& adapter->systim_overflow_work); if ((unsigned long )adapter->ptp_clock != (unsigned long )((struct ptp_clock *)0)) { ptp_clock_unregister(adapter->ptp_clock); adapter->ptp_clock = 0; netdev_info((struct net_device const *)adapter->netdev, "removed PHC\n"); } else { } return; } } void ldv_main10_sequence_infinite_withcheck_stateful(void) { struct ptp_clock_info *var_group1 ; s32 var_e1000e_phc_adjfreq_0_p1 ; s64 var_e1000e_phc_adjtime_1_p1 ; struct timespec *var_group2 ; struct timespec const *var_e1000e_phc_settime_3_p1 ; struct ptp_clock_info *var_group3 ; struct ptp_clock_request *var_group4 ; int var_e1000e_phc_enable_4_p2 ; int tmp ; int tmp___0 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_41651; ldv_41650: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); e1000e_phc_adjfreq(var_group1, var_e1000e_phc_adjfreq_0_p1); goto ldv_41644; case 1: ldv_handler_precall(); e1000e_phc_adjtime(var_group1, var_e1000e_phc_adjtime_1_p1); goto ldv_41644; case 2: ldv_handler_precall(); e1000e_phc_gettime(var_group1, var_group2); goto ldv_41644; case 3: ldv_handler_precall(); e1000e_phc_settime(var_group1, var_e1000e_phc_settime_3_p1); goto ldv_41644; case 4: ldv_handler_precall(); e1000e_phc_enable(var_group3, var_group4, var_e1000e_phc_enable_4_p2); goto ldv_41644; default: ; goto ldv_41644; } ldv_41644: ; ldv_41651: tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { goto ldv_41650; } else { } ldv_check_final_state(); return; } } void ldv_mutex_lock_111(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_113(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_114(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_115(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static void ldv_error(void) __attribute__((__no_instrument_function__)) ; __inline static void ldv_error(void) { { ERROR: {reach_error();abort();} } } extern int __VERIFIER_nondet_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } static int ldv_mutex_lock ; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 1) { } else { ldv_error(); } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 2) { } else { ldv_error(); } ldv_mutex_lock = 1; return; } } static int ldv_mutex_mutex_of_device ; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 2) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 1; return; } } static int ldv_mutex_nvm_mutex ; int ldv_mutex_lock_interruptible_nvm_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_nvm_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_nvm_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_nvm_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_nvm_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_nvm_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_nvm_mutex(struct mutex *lock ) { { if (ldv_mutex_nvm_mutex == 1) { } else { ldv_error(); } ldv_mutex_nvm_mutex = 2; return; } } int ldv_mutex_trylock_nvm_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_nvm_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_nvm_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_nvm_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_nvm_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_nvm_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_nvm_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_nvm_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_nvm_mutex(struct mutex *lock ) { { if (ldv_mutex_nvm_mutex == 2) { } else { ldv_error(); } ldv_mutex_nvm_mutex = 1; return; } } static int ldv_mutex_swflag_mutex ; int ldv_mutex_lock_interruptible_swflag_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_swflag_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_swflag_mutex = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_swflag_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_swflag_mutex == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_swflag_mutex = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_swflag_mutex(struct mutex *lock ) { { if (ldv_mutex_swflag_mutex == 1) { } else { ldv_error(); } ldv_mutex_swflag_mutex = 2; return; } } int ldv_mutex_trylock_swflag_mutex(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_swflag_mutex == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_swflag_mutex = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_swflag_mutex(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_swflag_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_swflag_mutex = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_swflag_mutex(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_swflag_mutex == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_swflag_mutex(struct mutex *lock ) { { if (ldv_mutex_swflag_mutex == 2) { } else { ldv_error(); } ldv_mutex_swflag_mutex = 1; return; } } void ldv_initialize(void) { { ldv_mutex_lock = 1; ldv_mutex_mutex_of_device = 1; ldv_mutex_nvm_mutex = 1; ldv_mutex_swflag_mutex = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex_lock == 1) { } else { ldv_error(); } if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } if (ldv_mutex_nvm_mutex == 1) { } else { ldv_error(); } if (ldv_mutex_swflag_mutex == 1) { } else { ldv_error(); } return; } } #include "model/linux-3.8-rc1-32_7a-drivers--net--ethernet--intel--e1000e--e1000e.ko-ldv_main1_true-unreach-call.env.c" #include "model/common.env.c"