/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ #include "pthread.h" struct device; struct spi_master; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef unsigned int size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct mutex; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct vm_area_struct; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct proc_dir_entry; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct clk; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_140 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_141 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_139 { struct __anonstruct____missing_field_name_140 __annonCompField35 ; struct __anonstruct____missing_field_name_141 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_139 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_142 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_144 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_148 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_147 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_148 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_146 { union __anonunion____missing_field_name_147 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_145 { unsigned long counters ; struct __anonstruct____missing_field_name_146 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_143 { union __anonunion____missing_field_name_144 __annonCompField39 ; union __anonunion____missing_field_name_145 __annonCompField43 ; }; struct __anonstruct____missing_field_name_150 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_149 { struct list_head lru ; struct __anonstruct____missing_field_name_150 __annonCompField45 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_151 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_142 __annonCompField38 ; struct __anonstruct____missing_field_name_143 __annonCompField44 ; union __anonunion____missing_field_name_149 __annonCompField46 ; union __anonunion____missing_field_name_151 __annonCompField47 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_153 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_152 { struct __anonstruct_linear_153 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_152 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct user_struct; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; enum dma_status { DMA_COMPLETE = 0, DMA_IN_PROGRESS = 1, DMA_PAUSED = 2, DMA_ERROR = 3 } ; enum dma_transfer_direction { DMA_MEM_TO_MEM = 0, DMA_MEM_TO_DEV = 1, DMA_DEV_TO_MEM = 2, DMA_DEV_TO_DEV = 3, DMA_TRANS_NONE = 4 } ; struct data_chunk { size_t size ; size_t icg ; }; struct dma_interleaved_template { dma_addr_t src_start ; dma_addr_t dst_start ; enum dma_transfer_direction dir ; bool src_inc ; bool dst_inc ; bool src_sgl ; bool dst_sgl ; size_t numf ; size_t frame_size ; struct data_chunk sgl[0U] ; }; enum dma_ctrl_flags { DMA_PREP_INTERRUPT = 1, DMA_CTRL_ACK = 2, DMA_PREP_PQ_DISABLE_P = 4, DMA_PREP_PQ_DISABLE_Q = 8, DMA_PREP_CONTINUE = 16, DMA_PREP_FENCE = 32 } ; enum dma_ctrl_cmd { DMA_TERMINATE_ALL = 0, DMA_PAUSE = 1, DMA_RESUME = 2, DMA_SLAVE_CONFIG = 3, FSLDMA_EXTERNAL_START = 4 } ; enum sum_check_flags { SUM_CHECK_P_RESULT = 1, SUM_CHECK_Q_RESULT = 2 } ; struct __anonstruct_dma_cap_mask_t_154 { unsigned long bits[1U] ; }; typedef struct __anonstruct_dma_cap_mask_t_154 dma_cap_mask_t; struct dma_chan_percpu { unsigned long memcpy_count ; unsigned long bytes_transferred ; }; struct dma_device; struct dma_chan_dev; struct dma_chan { struct dma_device *device ; dma_cookie_t cookie ; dma_cookie_t completed_cookie ; int chan_id ; struct dma_chan_dev *dev ; struct list_head device_node ; struct dma_chan_percpu *local ; int client_count ; int table_count ; void *private ; }; struct dma_chan_dev { struct dma_chan *chan ; struct device device ; int dev_id ; atomic_t *idr_ref ; }; enum dma_slave_buswidth { DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, DMA_SLAVE_BUSWIDTH_1_BYTE = 1, DMA_SLAVE_BUSWIDTH_2_BYTES = 2, DMA_SLAVE_BUSWIDTH_4_BYTES = 4, DMA_SLAVE_BUSWIDTH_8_BYTES = 8 } ; struct dma_slave_config { enum dma_transfer_direction direction ; dma_addr_t src_addr ; dma_addr_t dst_addr ; enum dma_slave_buswidth src_addr_width ; enum dma_slave_buswidth dst_addr_width ; u32 src_maxburst ; u32 dst_maxburst ; bool device_fc ; unsigned int slave_id ; }; enum dma_residue_granularity { DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, DMA_RESIDUE_GRANULARITY_SEGMENT = 1, DMA_RESIDUE_GRANULARITY_BURST = 2 } ; struct dma_slave_caps { u32 src_addr_widths ; u32 dstn_addr_widths ; u32 directions ; bool cmd_pause ; bool cmd_terminate ; enum dma_residue_granularity residue_granularity ; }; struct dmaengine_unmap_data { u8 to_cnt ; u8 from_cnt ; u8 bidi_cnt ; struct device *dev ; struct kref kref ; size_t len ; dma_addr_t addr[0U] ; }; struct dma_async_tx_descriptor { dma_cookie_t cookie ; enum dma_ctrl_flags flags ; dma_addr_t phys ; struct dma_chan *chan ; dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor * ) ; void (*callback)(void * ) ; void *callback_param ; struct dmaengine_unmap_data *unmap ; }; struct dma_tx_state { dma_cookie_t last ; dma_cookie_t used ; u32 residue ; }; struct dma_device { unsigned int chancnt ; unsigned int privatecnt ; struct list_head channels ; struct list_head global_node ; dma_cap_mask_t cap_mask ; unsigned short max_xor ; unsigned short max_pq ; u8 copy_align ; u8 xor_align ; u8 pq_align ; u8 fill_align ; int dev_id ; struct device *dev ; int (*device_alloc_chan_resources)(struct dma_chan * ) ; void (*device_free_chan_resources)(struct dma_chan * ) ; struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(struct dma_chan * , dma_addr_t , dma_addr_t , size_t , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_xor)(struct dma_chan * , dma_addr_t , dma_addr_t * , unsigned int , size_t , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(struct dma_chan * , dma_addr_t * , unsigned int , size_t , enum sum_check_flags * , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_pq)(struct dma_chan * , dma_addr_t * , dma_addr_t * , unsigned int , unsigned char const * , size_t , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(struct dma_chan * , dma_addr_t * , dma_addr_t * , unsigned int , unsigned char const * , size_t , enum sum_check_flags * , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(struct dma_chan * , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_dma_sg)(struct dma_chan * , struct scatterlist * , unsigned int , struct scatterlist * , unsigned int , unsigned long ) ; struct dma_async_tx_descriptor *(*device_prep_slave_sg)(struct dma_chan * , struct scatterlist * , unsigned int , enum dma_transfer_direction , unsigned long , void * ) ; struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(struct dma_chan * , dma_addr_t , size_t , size_t , enum dma_transfer_direction , unsigned long , void * ) ; struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(struct dma_chan * , struct dma_interleaved_template * , unsigned long ) ; int (*device_control)(struct dma_chan * , enum dma_ctrl_cmd , unsigned long ) ; enum dma_status (*device_tx_status)(struct dma_chan * , dma_cookie_t , struct dma_tx_state * ) ; void (*device_issue_pending)(struct dma_chan * ) ; int (*device_slave_caps)(struct dma_chan * , struct dma_slave_caps * ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_156 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_156 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_158 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_159 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_160 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_161 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_162 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_163 { long _band ; int _fd ; }; struct __anonstruct__sigsys_164 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_157 { int _pad[28U] ; struct __anonstruct__kill_158 _kill ; struct __anonstruct__timer_159 _timer ; struct __anonstruct__rt_160 _rt ; struct __anonstruct__sigchld_161 _sigchld ; struct __anonstruct__sigfault_162 _sigfault ; struct __anonstruct__sigpoll_163 _sigpoll ; struct __anonstruct__sigsys_164 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_157 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_169 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_170 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_172 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_171 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_172 __annonCompField52 ; }; union __anonunion_type_data_173 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_175 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_174 { union __anonunion_payload_175 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_169 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_170 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_171 __annonCompField53 ; union __anonunion_type_data_173 type_data ; union __anonunion____missing_field_name_174 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_181 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_181 __annonCompField56 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct reset_control; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_183 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_184 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_182 { struct __anonstruct____missing_field_name_183 __annonCompField57 ; struct __anonstruct____missing_field_name_184 __annonCompField58 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_182 __annonCompField59 ; }; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct tegra_slink_chip_data { bool cs_hold_time ; }; struct tegra_slink_data { struct device *dev ; struct spi_master *master ; struct tegra_slink_chip_data const *chip_data ; spinlock_t lock ; struct clk *clk ; struct reset_control *rst ; void *base ; phys_addr_t phys ; unsigned int irq ; u32 spi_max_frequency ; u32 cur_speed ; struct spi_device *cur_spi ; unsigned int cur_pos ; unsigned int cur_len ; unsigned int words_per_32bit ; unsigned int bytes_per_word ; unsigned int curr_dma_words ; unsigned int cur_direction ; unsigned int cur_rx_pos ; unsigned int cur_tx_pos ; unsigned int dma_buf_size ; unsigned int max_buf_size ; bool is_curr_dma_xfer ; struct completion rx_dma_complete ; struct completion tx_dma_complete ; u32 tx_status ; u32 rx_status ; u32 status_reg ; bool is_packed ; u32 packed_size ; u32 command_reg ; u32 command2_reg ; u32 dma_control_reg ; u32 def_command_reg ; u32 def_command2_reg ; struct completion xfer_completion ; struct spi_transfer *curr_xfer ; struct dma_chan *rx_dma_chan ; u32 *rx_dma_buf ; dma_addr_t rx_dma_phys ; struct dma_async_tx_descriptor *rx_dma_desc ; struct dma_chan *tx_dma_chan ; u32 *tx_dma_buf ; dma_addr_t tx_dma_phys ; struct dma_async_tx_descriptor *tx_dma_desc ; }; struct ldv_struct_free_irq_7 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_scenario_2 { int arg0 ; irqreturn_t (*arg1)(int , void * ) ; irqreturn_t (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_platform_instance_3 { struct platform_driver *arg0 ; int signal_pending ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) ; long ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret = 0 ; unsigned long __edi = 0 ; unsigned long __esi = 0 ; unsigned long __edx = 0 ; unsigned long __ecx = 0 ; unsigned long __eax = 0 ; long tmp ; { { tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/alpha/git/klever2/klever/native-scheduler-work-dir/scheduler/jobs/d5cd53f56669d61faa91054857893dbd/klever-core-work-dir/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static long PTR_ERR(void const *ptr ) ; __inline static long IS_ERR(void const *ptr ) ; __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_44(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_46(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_48(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_lock_of_tegra_slink_data(void) ; void ldv_spin_unlock_lock_of_tegra_slink_data(void) ; void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } int ldv_undef_int(void) ; int ldv_undef_int_negative(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); } return; } } __inline static void reinit_completion(struct completion *x ) { { x->done = 0U; return; } } extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; extern long wait_for_completion_interruptible_timeout(struct completion * , unsigned long ) ; extern void complete(struct completion * ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *devm_ioremap_resource(struct device * , struct resource * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_30(struct device const *dev ) ; static void *ldv_dev_get_drvdata_42(struct device const *dev ) ; static void *ldv_dev_get_drvdata_55(struct device const *dev ) ; static void *ldv_dev_get_drvdata_56(struct device const *dev ) ; static void *ldv_dev_get_drvdata_57(struct device const *dev ) ; static void *ldv_dev_get_drvdata_58(struct device const *dev ) ; static int ldv_dev_set_drvdata_31(struct device *dev , void *data ) ; extern void put_device(struct device * ) ; extern int dev_err(struct device const * , char const * , ...) ; extern struct resource *platform_get_resource(struct platform_device * , unsigned int , unsigned int ) ; extern int platform_get_irq(struct platform_device * , unsigned int ) ; static int ldv___platform_driver_register_59(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) ; static void ldv_platform_driver_unregister_60(struct platform_driver *ldv_func_arg1 ) ; __inline static void *platform_get_drvdata(struct platform_device const *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_30(& pdev->dev); } return (tmp); } } __inline static void platform_set_drvdata(struct platform_device *pdev , void *data ) { { { ldv_dev_set_drvdata_31(& pdev->dev, data); } return; } } static int ldv_request_threaded_irq_52(unsigned int ldv_func_arg1 , irqreturn_t (*ldv_func_arg2)(int , void * ) , irqreturn_t (*ldv_func_arg3)(int , void * ) , unsigned long ldv_func_arg4 , char const *ldv_func_arg5 , void *ldv_func_arg6 ) ; static void ldv_free_irq_53(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_54(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_assert(char const *desc , int expr ) ; extern int clk_prepare(struct clk * ) ; extern void clk_unprepare(struct clk * ) ; extern struct clk *devm_clk_get(struct device * , char const * ) ; extern int clk_enable(struct clk * ) ; extern void clk_disable(struct clk * ) ; extern int clk_set_rate(struct clk * , unsigned long ) ; __inline static int clk_prepare_enable(struct clk *clk ) { int ret ; { { ret = clk_prepare(clk); } if (ret != 0) { return (ret); } else { } { ret = clk_enable(clk); } if (ret != 0) { { clk_unprepare(clk); } } else { } return (ret); } } __inline static void clk_disable_unprepare(struct clk *clk ) { { { clk_disable(clk); clk_unprepare(clk); } return; } } extern void __const_udelay(unsigned long ) ; extern void sg_init_table(struct scatterlist * , unsigned int ) ; __inline static int dmaengine_device_control(struct dma_chan *chan , enum dma_ctrl_cmd cmd , unsigned long arg ) { int tmp ; { if ((unsigned long )(chan->device)->device_control != (unsigned long )((int (*)(struct dma_chan * , enum dma_ctrl_cmd , unsigned long ))0)) { { tmp = (*((chan->device)->device_control))(chan, cmd, arg); } return (tmp); } else { } return (-38); } } __inline static int dmaengine_slave_config(struct dma_chan *chan , struct dma_slave_config *config ) { int tmp ; { { tmp = dmaengine_device_control(chan, 3, (unsigned long )config); } return (tmp); } } __inline static struct dma_async_tx_descriptor *dmaengine_prep_slave_single(struct dma_chan *chan , dma_addr_t buf , size_t len , enum dma_transfer_direction dir , unsigned long flags ) { struct scatterlist sg ; struct dma_async_tx_descriptor *tmp ; { { sg_init_table(& sg, 1U); sg.dma_address = buf; sg.dma_length = (unsigned int )len; tmp = (*((chan->device)->device_prep_slave_sg))(chan, & sg, 1U, dir, flags, (void *)0); } return (tmp); } } __inline static int dmaengine_terminate_all(struct dma_chan *chan ) { int tmp ; { { tmp = dmaengine_device_control(chan, 0, 0UL); } return (tmp); } } __inline static dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc ) { dma_cookie_t tmp ; { { tmp = (*(desc->tx_submit))(desc); } return (tmp); } } __inline static void dma_async_issue_pending(struct dma_chan *chan ) { { { (*((chan->device)->device_issue_pending))(chan); } return; } } extern struct dma_chan *dma_request_slave_channel_reason(struct device * , char const * ) ; extern void dma_release_channel(struct dma_chan * ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/alpha/git/klever2/klever/native-scheduler-work-dir/scheduler/jobs/d5cd53f56669d61faa91054857893dbd/klever-core-work-dir/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } extern int __pm_runtime_idle(struct device * , int ) ; extern int __pm_runtime_resume(struct device * , int ) ; extern void pm_runtime_enable(struct device * ) ; extern void __pm_runtime_disable(struct device * , bool ) ; __inline static bool pm_runtime_status_suspended(struct device *dev ) { { return ((unsigned int )dev->power.runtime_status == 2U); } } __inline static bool pm_runtime_enabled(struct device *dev ) { { return ((unsigned int )*((unsigned char *)dev + 1040UL) == 0U); } } __inline static int pm_runtime_get_sync(struct device *dev ) { int tmp ; { { tmp = __pm_runtime_resume(dev, 4); } return (tmp); } } __inline static int pm_runtime_put(struct device *dev ) { int tmp ; { { tmp = __pm_runtime_idle(dev, 5); } return (tmp); } } __inline static void pm_runtime_disable(struct device *dev ) { { { __pm_runtime_disable(dev, 1); } return; } } __inline static int of_property_read_u32_array(struct device_node const *np , char const *propname , u32 *out_values , size_t sz ) { { return (-38); } } __inline static int of_property_read_u32(struct device_node const *np , char const *propname , u32 *out_value ) { int tmp ; { { tmp = of_property_read_u32_array(np, propname, out_value, 1UL); } return (tmp); } } void *ldv_malloc(size_t size ) ; __inline static struct of_device_id const *__of_match_device(struct of_device_id const *matches , struct device const *dev ) { { return ldv_malloc(sizeof(struct of_device_id)); } } extern int reset_control_assert(struct reset_control * ) ; extern int reset_control_deassert(struct reset_control * ) ; extern struct reset_control *devm_reset_control_get(struct device * , char const * ) ; __inline static void *spi_master_get_devdata(struct spi_master *master ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_42((struct device const *)(& master->dev)); } return (tmp); } } __inline static void spi_master_put(struct spi_master *master ) { { if ((unsigned long )master != (unsigned long )((struct spi_master *)0)) { { put_device(& master->dev); } } else { } return; } } extern int spi_master_suspend(struct spi_master * ) ; extern int spi_master_resume(struct spi_master * ) ; static struct spi_master *ldv_spi_alloc_master_51(struct device *host , unsigned int size ) ; extern int devm_spi_register_master(struct device * , struct spi_master * ) ; static int tegra_slink_runtime_suspend(struct device *dev ) ; static int tegra_slink_runtime_resume(struct device *dev ) ; __inline static u32 tegra_slink_readl(struct tegra_slink_data *tspi , unsigned long reg ) { unsigned int tmp ; { { tmp = readl((void const volatile *)(tspi->base + reg)); } return (tmp); } } __inline static void tegra_slink_writel(struct tegra_slink_data *tspi , u32 val , unsigned long reg ) { { { writel(val, (void volatile *)(tspi->base + reg)); } if (reg != 256UL) { { readl((void const volatile *)(tspi->base + 16U)); } } else { } return; } } static void tegra_slink_clear_status(struct tegra_slink_data *tspi ) { u32 val_write ; { { tegra_slink_readl(tspi, 8UL); val_write = 1124859904U; tegra_slink_writel(tspi, val_write, 8UL); } return; } } static u32 tegra_slink_get_packed_size(struct tegra_slink_data *tspi , struct spi_transfer *t ) { { { if (tspi->bytes_per_word == 0U) { goto case_0; } else { } if (tspi->bytes_per_word == 1U) { goto case_1; } else { } if (tspi->bytes_per_word == 2U) { goto case_2; } else { } if (tspi->bytes_per_word == 4U) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (0U); case_1: /* CIL Label */ ; return (2097152U); case_2: /* CIL Label */ ; return (4194304U); case_4: /* CIL Label */ ; return (6291456U); switch_default: /* CIL Label */ ; return (0U); switch_break: /* CIL Label */ ; } } } static unsigned int tegra_slink_calculate_curr_xfer_param(struct spi_device *spi , struct tegra_slink_data *tspi , struct spi_transfer *t ) { unsigned int remain_len ; unsigned int max_word ; unsigned int bits_per_word ; unsigned int max_len ; unsigned int total_fifo_words ; unsigned int _min1 ; unsigned int _min2 ; unsigned int _min1___0 ; unsigned int _min2___0 ; { remain_len = t->len - tspi->cur_pos; bits_per_word = (unsigned int )t->bits_per_word; tspi->bytes_per_word = (bits_per_word + 7U) / 8U; if (bits_per_word == 8U || bits_per_word == 16U) { tspi->is_packed = 1; tspi->words_per_32bit = 32U / bits_per_word; } else { tspi->is_packed = 0; tspi->words_per_32bit = 1U; } { tspi->packed_size = tegra_slink_get_packed_size(tspi, t); } if ((int )tspi->is_packed) { _min1 = remain_len; _min2 = tspi->max_buf_size; max_len = _min1 < _min2 ? _min1 : _min2; tspi->curr_dma_words = max_len / tspi->bytes_per_word; total_fifo_words = max_len / 4U; } else { max_word = (remain_len - 1U) / tspi->bytes_per_word + 1U; _min1___0 = max_word; _min2___0 = tspi->max_buf_size / 4U; max_word = _min1___0 < _min2___0 ? _min1___0 : _min2___0; tspi->curr_dma_words = max_word; total_fifo_words = max_word; } return (total_fifo_words); } } static unsigned int tegra_slink_fill_tx_fifo_from_client_txbuf(struct tegra_slink_data *tspi , struct spi_transfer *t ) { unsigned int nbytes ; unsigned int tx_empty_count ; u32 fifo_status ; unsigned int max_n_32bit ; unsigned int i ; unsigned int count ; unsigned int written_words ; unsigned int fifo_words_left ; u8 *tx_buf ; unsigned int _min1 ; unsigned int _min2 ; u32 x ; u8 *tmp ; unsigned int _min1___0 ; unsigned int _min2___0 ; u32 x___0 ; u8 *tmp___0 ; { { tx_buf = (u8 *)(t->tx_buf + (unsigned long )tspi->cur_tx_pos); fifo_status = tegra_slink_readl(tspi, 28UL); tx_empty_count = fifo_status & 63U; } if ((int )tspi->is_packed) { fifo_words_left = tx_empty_count * tspi->words_per_32bit; _min1 = fifo_words_left; _min2 = tspi->curr_dma_words; written_words = _min1 < _min2 ? _min1 : _min2; nbytes = written_words * tspi->bytes_per_word; max_n_32bit = (nbytes + 3U) / 4U; count = 0U; goto ldv_27919; ldv_27918: x = 0U; i = 0U; goto ldv_27916; ldv_27915: tmp = tx_buf; tx_buf = tx_buf + 1; x = x | ((unsigned int )*tmp << (int )(i * 8U)); i = i + 1U; nbytes = nbytes - 1U; ldv_27916: ; if (i <= 3U && nbytes != 0U) { goto ldv_27915; } else { } { tegra_slink_writel(tspi, x, 256UL); count = count + 1U; } ldv_27919: ; if (count < max_n_32bit) { goto ldv_27918; } else { } } else { _min1___0 = tspi->curr_dma_words; _min2___0 = tx_empty_count; max_n_32bit = _min1___0 < _min2___0 ? _min1___0 : _min2___0; written_words = max_n_32bit; nbytes = written_words * tspi->bytes_per_word; count = 0U; goto ldv_27929; ldv_27928: x___0 = 0U; i = 0U; goto ldv_27926; ldv_27925: tmp___0 = tx_buf; tx_buf = tx_buf + 1; x___0 = x___0 | ((unsigned int )*tmp___0 << (int )(i * 8U)); i = i + 1U; nbytes = nbytes - 1U; ldv_27926: ; if (nbytes != 0U && i < tspi->bytes_per_word) { goto ldv_27925; } else { } { tegra_slink_writel(tspi, x___0, 256UL); count = count + 1U; } ldv_27929: ; if (count < max_n_32bit) { goto ldv_27928; } else { } } tspi->cur_tx_pos = tspi->cur_tx_pos + written_words * tspi->bytes_per_word; return (written_words); } } static unsigned int tegra_slink_read_rx_fifo_to_client_rxbuf(struct tegra_slink_data *tspi , struct spi_transfer *t ) { unsigned int rx_full_count ; u32 fifo_status ; unsigned int i ; unsigned int count ; unsigned int read_words ; unsigned int len ; u8 *rx_buf ; u32 x ; u32 tmp ; u8 *tmp___0 ; u32 x___0 ; u32 tmp___1 ; u8 *tmp___2 ; { { read_words = 0U; rx_buf = (u8 *)(t->rx_buf + (unsigned long )tspi->cur_rx_pos); fifo_status = tegra_slink_readl(tspi, 28UL); rx_full_count = (fifo_status & 4128768U) >> 16; } if ((int )tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; count = 0U; goto ldv_27947; ldv_27946: { tmp = tegra_slink_readl(tspi, 384UL); x = tmp; i = 0U; } goto ldv_27944; ldv_27943: tmp___0 = rx_buf; rx_buf = rx_buf + 1; *tmp___0 = (u8 )(x >> (int )(i * 8U)); i = i + 1U; len = len - 1U; ldv_27944: ; if (len != 0U && i <= 3U) { goto ldv_27943; } else { } count = count + 1U; ldv_27947: ; if (count < rx_full_count) { goto ldv_27946; } else { } tspi->cur_rx_pos = tspi->cur_rx_pos + tspi->curr_dma_words * tspi->bytes_per_word; read_words = read_words + tspi->curr_dma_words; } else { count = 0U; goto ldv_27954; ldv_27953: { tmp___1 = tegra_slink_readl(tspi, 384UL); x___0 = tmp___1; i = 0U; } goto ldv_27951; ldv_27950: tmp___2 = rx_buf; rx_buf = rx_buf + 1; *tmp___2 = (u8 )(x___0 >> (int )(i * 8U)); i = i + 1U; ldv_27951: ; if (i < tspi->bytes_per_word) { goto ldv_27950; } else { } count = count + 1U; ldv_27954: ; if (count < rx_full_count) { goto ldv_27953; } else { } tspi->cur_rx_pos = tspi->cur_rx_pos + rx_full_count * tspi->bytes_per_word; read_words = read_words + rx_full_count; } return (read_words); } } static void tegra_slink_copy_client_txbuf_to_spi_txbuf(struct tegra_slink_data *tspi , struct spi_transfer *t ) { unsigned int len ; unsigned int i ; unsigned int count ; u8 *tx_buf ; unsigned int consume ; u32 x ; u8 *tmp ; { { dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, (size_t )tspi->dma_buf_size, 1); } if ((int )tspi->is_packed) { { len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy((void *)tspi->tx_dma_buf, t->tx_buf + (unsigned long )tspi->cur_pos, (size_t )len); } } else { tx_buf = (u8 *)(t->tx_buf + (unsigned long )tspi->cur_tx_pos); consume = tspi->curr_dma_words * tspi->bytes_per_word; count = 0U; goto ldv_27970; ldv_27969: x = 0U; i = 0U; goto ldv_27967; ldv_27966: tmp = tx_buf; tx_buf = tx_buf + 1; x = x | ((unsigned int )*tmp << (int )(i * 8U)); i = i + 1U; consume = consume - 1U; ldv_27967: ; if (consume != 0U && i < tspi->bytes_per_word) { goto ldv_27966; } else { } *(tspi->tx_dma_buf + (unsigned long )count) = x; count = count + 1U; ldv_27970: ; if (count < tspi->curr_dma_words) { goto ldv_27969; } else { } } { tspi->cur_tx_pos = tspi->cur_tx_pos + tspi->curr_dma_words * tspi->bytes_per_word; dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, (size_t )tspi->dma_buf_size, 1); } return; } } static void tegra_slink_copy_spi_rxbuf_to_client_rxbuf(struct tegra_slink_data *tspi , struct spi_transfer *t ) { unsigned int len ; unsigned int i ; unsigned int count ; unsigned char *rx_buf ; u32 rx_mask ; u32 x ; unsigned char *tmp ; { { dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, (size_t )tspi->dma_buf_size, 2); } if ((int )tspi->is_packed) { { len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(t->rx_buf + (unsigned long )tspi->cur_rx_pos, (void const *)tspi->rx_dma_buf, (size_t )len); } } else { rx_buf = (unsigned char *)(t->rx_buf + (unsigned long )tspi->cur_rx_pos); rx_mask = (1U << (int )t->bits_per_word) - 1U; count = 0U; goto ldv_27986; ldv_27985: x = *(tspi->rx_dma_buf + (unsigned long )count) & rx_mask; i = 0U; goto ldv_27983; ldv_27982: tmp = rx_buf; rx_buf = rx_buf + 1; *tmp = (unsigned char )(x >> (int )(i * 8U)); i = i + 1U; ldv_27983: ; if (i < tspi->bytes_per_word) { goto ldv_27982; } else { } count = count + 1U; ldv_27986: ; if (count < tspi->curr_dma_words) { goto ldv_27985; } else { } } { tspi->cur_rx_pos = tspi->cur_rx_pos + tspi->curr_dma_words * tspi->bytes_per_word; dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, (size_t )tspi->dma_buf_size, 2); } return; } } static void tegra_slink_dma_complete(void *args ) { struct completion *dma_complete ; { { dma_complete = (struct completion *)args; complete(dma_complete); } return; } } static int tegra_slink_start_tx_dma(struct tegra_slink_data *tspi , int len ) { { { reinit_completion(& tspi->tx_dma_complete); tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, tspi->tx_dma_phys, (size_t )len, 1, 3UL); } if ((unsigned long )tspi->tx_dma_desc == (unsigned long )((struct dma_async_tx_descriptor *)0)) { { dev_err((struct device const *)tspi->dev, "Not able to get desc for Tx\n"); } return (-5); } else { } { (tspi->tx_dma_desc)->callback = & tegra_slink_dma_complete; (tspi->tx_dma_desc)->callback_param = (void *)(& tspi->tx_dma_complete); dmaengine_submit(tspi->tx_dma_desc); dma_async_issue_pending(tspi->tx_dma_chan); } return (0); } } static int tegra_slink_start_rx_dma(struct tegra_slink_data *tspi , int len ) { { { reinit_completion(& tspi->rx_dma_complete); tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, tspi->rx_dma_phys, (size_t )len, 2, 3UL); } if ((unsigned long )tspi->rx_dma_desc == (unsigned long )((struct dma_async_tx_descriptor *)0)) { { dev_err((struct device const *)tspi->dev, "Not able to get desc for Rx\n"); } return (-5); } else { } { (tspi->rx_dma_desc)->callback = & tegra_slink_dma_complete; (tspi->rx_dma_desc)->callback_param = (void *)(& tspi->rx_dma_complete); dmaengine_submit(tspi->rx_dma_desc); dma_async_issue_pending(tspi->rx_dma_chan); } return (0); } } static int tegra_slink_start_dma_based_transfer(struct tegra_slink_data *tspi , struct spi_transfer *t ) { u32 val ; unsigned int len ; int ret ; u32 status ; { { ret = 0; status = tegra_slink_readl(tspi, 8UL); } if ((status & 10485760U) != 10485760U) { { dev_err((struct device const *)tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n", status); } return (-5); } else { } val = (tspi->curr_dma_words - 1U) & 65535U; val = val | tspi->packed_size; if ((int )tspi->is_packed) { len = ((tspi->curr_dma_words * tspi->bytes_per_word + 3U) / 4U) * 4U; } else { len = tspi->curr_dma_words * 4U; } if ((len & 15U) != 0U) { } else if ((len & 16U) != 0U) { val = val | 327680U; } else { val = val | 655360U; } if ((int )tspi->cur_direction & 1) { val = val | 67108864U; } else { } if ((tspi->cur_direction & 2U) != 0U) { val = val | 134217728U; } else { } { tegra_slink_writel(tspi, val, 24UL); tspi->dma_control_reg = val; } if ((int )tspi->cur_direction & 1) { { tegra_slink_copy_client_txbuf_to_spi_txbuf(tspi, t); __asm__ volatile ("sfence": : : "memory"); ret = tegra_slink_start_tx_dma(tspi, (int )len); } if (ret < 0) { { dev_err((struct device const *)tspi->dev, "Starting tx dma failed, err %d\n", ret); } return (ret); } else { } { status = tegra_slink_readl(tspi, 8UL); } goto ldv_28009; ldv_28008: { status = tegra_slink_readl(tspi, 8UL); } ldv_28009: ; if ((status & 1048576U) == 0U) { goto ldv_28008; } else { } } else { } if ((tspi->cur_direction & 2U) != 0U) { { dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, (size_t )tspi->dma_buf_size, 2); ret = tegra_slink_start_rx_dma(tspi, (int )len); } if (ret < 0) { { dev_err((struct device const *)tspi->dev, "Starting rx dma failed, err %d\n", ret); } if ((int )tspi->cur_direction & 1) { { dmaengine_terminate_all(tspi->tx_dma_chan); } } else { } return (ret); } else { } } else { } tspi->is_curr_dma_xfer = 1; if ((int )tspi->is_packed) { { val = val | 1048576U; tegra_slink_writel(tspi, val, 24UL); __const_udelay(4295UL); } } else { } { tspi->dma_control_reg = val; val = val | 2147483648U; tegra_slink_writel(tspi, val, 24UL); } return (ret); } } static int tegra_slink_start_cpu_based_transfer(struct tegra_slink_data *tspi , struct spi_transfer *t ) { u32 val ; unsigned int cur_words ; { val = tspi->packed_size; if ((int )tspi->cur_direction & 1) { val = val | 67108864U; } else { } if ((tspi->cur_direction & 2U) != 0U) { val = val | 134217728U; } else { } { tegra_slink_writel(tspi, val, 24UL); tspi->dma_control_reg = val; } if ((int )tspi->cur_direction & 1) { { cur_words = tegra_slink_fill_tx_fifo_from_client_txbuf(tspi, t); } } else { cur_words = tspi->curr_dma_words; } { val = val | ((cur_words - 1U) & 65535U); tegra_slink_writel(tspi, val, 24UL); tspi->dma_control_reg = val; tspi->is_curr_dma_xfer = 0; } if ((int )tspi->is_packed) { { val = val | 1048576U; tegra_slink_writel(tspi, val, 24UL); __const_udelay(4295UL); __asm__ volatile ("sfence": : : "memory"); } } else { } { tspi->dma_control_reg = val; val = val | 2147483648U; tegra_slink_writel(tspi, val, 24UL); } return (0); } } static int tegra_slink_init_dma_param(struct tegra_slink_data *tspi , bool dma_to_memory ) { struct dma_chan *dma_chan ; u32 *dma_buf ; dma_addr_t dma_phys ; int ret ; struct dma_slave_config dma_sconfig ; long tmp ; long tmp___0 ; void *tmp___1 ; { { dma_chan = dma_request_slave_channel_reason(tspi->dev, (int )dma_to_memory ? "rx" : "tx"); tmp___0 = IS_ERR((void const *)dma_chan); } if (tmp___0 != 0L) { { tmp = PTR_ERR((void const *)dma_chan); ret = (int )tmp; } if (ret != -517) { { dev_err((struct device const *)tspi->dev, "Dma channel is not available: %d\n", ret); } } else { } return (ret); } else { } { tmp___1 = dma_alloc_attrs(tspi->dev, (size_t )tspi->dma_buf_size, & dma_phys, 208U, (struct dma_attrs *)0); dma_buf = (u32 *)tmp___1; } if ((unsigned long )dma_buf == (unsigned long )((u32 *)0U)) { { dev_err((struct device const *)tspi->dev, " Not able to allocate the dma buffer\n"); dma_release_channel(dma_chan); } return (-12); } else { } if ((int )dma_to_memory) { dma_sconfig.src_addr = tspi->phys + 384ULL; dma_sconfig.src_addr_width = 4; dma_sconfig.src_maxburst = 0U; } else { dma_sconfig.dst_addr = tspi->phys + 256ULL; dma_sconfig.dst_addr_width = 4; dma_sconfig.dst_maxburst = 0U; } { ret = dmaengine_slave_config(dma_chan, & dma_sconfig); } if (ret != 0) { goto scrub; } else { } if ((int )dma_to_memory) { tspi->rx_dma_chan = dma_chan; tspi->rx_dma_buf = dma_buf; tspi->rx_dma_phys = dma_phys; } else { tspi->tx_dma_chan = dma_chan; tspi->tx_dma_buf = dma_buf; tspi->tx_dma_phys = dma_phys; } return (0); scrub: { dma_free_attrs(tspi->dev, (size_t )tspi->dma_buf_size, (void *)dma_buf, dma_phys, (struct dma_attrs *)0); dma_release_channel(dma_chan); } return (ret); } } static void tegra_slink_deinit_dma_param(struct tegra_slink_data *tspi , bool dma_to_memory ) { u32 *dma_buf ; dma_addr_t dma_phys ; struct dma_chan *dma_chan ; { if ((int )dma_to_memory) { dma_buf = tspi->rx_dma_buf; dma_chan = tspi->rx_dma_chan; dma_phys = tspi->rx_dma_phys; tspi->rx_dma_chan = (struct dma_chan *)0; tspi->rx_dma_buf = (u32 *)0U; } else { dma_buf = tspi->tx_dma_buf; dma_chan = tspi->tx_dma_chan; dma_phys = tspi->tx_dma_phys; tspi->tx_dma_buf = (u32 *)0U; tspi->tx_dma_chan = (struct dma_chan *)0; } if ((unsigned long )dma_chan == (unsigned long )((struct dma_chan *)0)) { return; } else { } { dma_free_attrs(tspi->dev, (size_t )tspi->dma_buf_size, (void *)dma_buf, dma_phys, (struct dma_attrs *)0); dma_release_channel(dma_chan); } return; } } static int tegra_slink_start_transfer_one(struct spi_device *spi , struct spi_transfer *t ) { struct tegra_slink_data *tspi ; void *tmp ; u32 speed ; u8 bits_per_word ; unsigned int total_fifo_words ; int ret ; u32 command ; u32 command2 ; { { tmp = spi_master_get_devdata(spi->master); tspi = (struct tegra_slink_data *)tmp; bits_per_word = t->bits_per_word; speed = t->speed_hz; } if (speed != tspi->cur_speed) { { clk_set_rate(tspi->clk, (unsigned long )(speed * 4U)); tspi->cur_speed = speed; } } else { } { tspi->cur_spi = spi; tspi->cur_pos = 0U; tspi->cur_rx_pos = 0U; tspi->cur_tx_pos = 0U; tspi->curr_xfer = t; total_fifo_words = tegra_slink_calculate_curr_xfer_param(spi, tspi, t); command = tspi->command_reg; command = command & 4294967264U; command = command | ((u32 )((int )bits_per_word + -1) & 31U); command2 = tspi->command2_reg; command2 = command2 & 1073741823U; tegra_slink_writel(tspi, command, 0UL); tspi->command_reg = command; tspi->cur_direction = 0U; } if ((unsigned long )t->rx_buf != (unsigned long )((void *)0)) { command2 = command2 | 2147483648U; tspi->cur_direction = tspi->cur_direction | 2U; } else { } if ((unsigned long )t->tx_buf != (unsigned long )((void const *)0)) { command2 = command2 | 1073741824U; tspi->cur_direction = tspi->cur_direction | 1U; } else { } { tegra_slink_writel(tspi, command2, 4UL); tspi->command2_reg = command2; } if (total_fifo_words > 32U) { { ret = tegra_slink_start_dma_based_transfer(tspi, t); } } else { { ret = tegra_slink_start_cpu_based_transfer(tspi, t); } } return (ret); } } static int tegra_slink_setup(struct spi_device *spi ) { u32 cs_pol_bit[4U] ; struct tegra_slink_data *tspi ; void *tmp ; u32 val ; unsigned long flags = 0 ; int ret ; struct _ddebug descriptor ; long tmp___0 ; long tmp___1 ; { { cs_pol_bit[0] = 8192U; cs_pol_bit[1] = 1048576U; cs_pol_bit[2] = 4194304U; cs_pol_bit[3] = 8388608U; tmp = spi_master_get_devdata(spi->master); tspi = (struct tegra_slink_data *)tmp; descriptor.modname = "spi_tegra20_slink"; descriptor.function = "tegra_slink_setup"; descriptor.filename = "drivers/spi/spi-tegra20-slink.c"; descriptor.format = "setup %d bpw, %scpol, %scpha, %dHz\n"; descriptor.lineno = 762U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& spi->dev), "setup %d bpw, %scpol, %scpha, %dHz\n", (int )spi->bits_per_word, ((int )spi->mode & 2) != 0 ? (char *)"" : (char *)"~", (int )spi->mode & 1 ? (char *)"" : (char *)"~", spi->max_speed_hz); } } else { } { tmp___1 = ldv__builtin_expect((unsigned int )spi->chip_select > 3U, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/spi/spi-tegra20-slink.c"), "i" (764), "i" (12UL)); __builtin_unreachable(); } } else { } { spi->max_speed_hz = spi->max_speed_hz != 0U ? spi->max_speed_hz != 0U : tspi->spi_max_frequency; ret = pm_runtime_get_sync(tspi->dev); } if (ret < 0) { { dev_err((struct device const *)tspi->dev, "pm runtime failed, e = %d\n", ret); } return (ret); } else { } { ldv___ldv_spin_lock_44(& tspi->lock); val = tspi->def_command_reg; } if (((int )spi->mode & 4) != 0) { val = val | cs_pol_bit[(int )spi->chip_select]; } else { val = val & ~ cs_pol_bit[(int )spi->chip_select]; } { tspi->def_command_reg = val; tegra_slink_writel(tspi, tspi->def_command_reg, 0UL); ldv_spin_unlock_irqrestore_45(& tspi->lock, flags); pm_runtime_put(tspi->dev); } return (0); } } static int tegra_slink_prepare_message(struct spi_master *master , struct spi_message *msg ) { struct tegra_slink_data *tspi ; void *tmp ; struct spi_device *spi ; { { tmp = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp; spi = msg->spi; tegra_slink_clear_status(tspi); tspi->command_reg = tspi->def_command_reg; tspi->command_reg = tspi->command_reg | 6144U; tspi->command2_reg = tspi->def_command2_reg; tspi->command2_reg = tspi->command2_reg | (u32 )(((int )spi->chip_select & 3) << 18); tspi->command_reg = tspi->command_reg & 4242538495U; } if ((int )spi->mode & 1) { tspi->command_reg = tspi->command_reg | 2097152U; } else { } if (((int )spi->mode & 2) != 0) { tspi->command_reg = tspi->command_reg | 16777216U; } else { tspi->command_reg = tspi->command_reg; } return (0); } } static int tegra_slink_transfer_one(struct spi_master *master , struct spi_device *spi , struct spi_transfer *xfer ) { struct tegra_slink_data *tspi ; void *tmp ; int ret ; unsigned long tmp___0 ; unsigned long tmp___1 ; int __ret_warn_on ; long tmp___2 ; long tmp___3 ; { { tmp = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp; reinit_completion(& tspi->xfer_completion); ret = tegra_slink_start_transfer_one(spi, xfer); } if (ret < 0) { { dev_err((struct device const *)tspi->dev, "spi can not start transfer, err %d\n", ret); } return (ret); } else { } { tmp___0 = msecs_to_jiffies(1000U); tmp___1 = wait_for_completion_timeout(& tspi->xfer_completion, tmp___0); ret = (int )tmp___1; __ret_warn_on = ret == 0; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/spi/spi-tegra20-slink.c", 831); } } else { } { tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___3 != 0L) { { dev_err((struct device const *)tspi->dev, "spi trasfer timeout, err %d\n", ret); } return (-5); } else { } if (tspi->tx_status != 0U) { return ((int )tspi->tx_status); } else { } if (tspi->rx_status != 0U) { return ((int )tspi->rx_status); } else { } return (0); } } static int tegra_slink_unprepare_message(struct spi_master *master , struct spi_message *msg ) { struct tegra_slink_data *tspi ; void *tmp ; { { tmp = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp; tegra_slink_writel(tspi, tspi->def_command_reg, 0UL); tegra_slink_writel(tspi, tspi->def_command2_reg, 4UL); } return (0); } } static irqreturn_t handle_cpu_based_xfer(struct tegra_slink_data *tspi ) { struct spi_transfer *t ; unsigned long flags = 0 ; struct reset_control *tmp; { { t = tspi->curr_xfer; ldv___ldv_spin_lock_46(& tspi->lock); } if (*((unsigned long *)tspi + 49UL) != 0UL || (int )tspi->status_reg < 0) { { dev_err((struct device const *)tspi->dev, "CpuXfer ERROR bit set 0x%x\n", tspi->status_reg); dev_err((struct device const *)tspi->dev, "CpuXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg, tspi->command2_reg, tspi->dma_control_reg); tmp = tspi->rst; ldv_assert("", tmp == tspi->rst); reset_control_assert(tspi->rst); __const_udelay(8590UL); reset_control_deassert(tspi->rst); complete(& tspi->xfer_completion); } goto exit; } else { } if ((tspi->cur_direction & 2U) != 0U) { { tegra_slink_read_rx_fifo_to_client_rxbuf(tspi, t); } } else { } if ((int )tspi->cur_direction & 1) { tspi->cur_pos = tspi->cur_tx_pos; } else { tspi->cur_pos = tspi->cur_rx_pos; } if (tspi->cur_pos == t->len) { { complete(& tspi->xfer_completion); } goto exit; } else { } { tegra_slink_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); tegra_slink_start_cpu_based_transfer(tspi, t); } exit: { ldv_spin_unlock_irqrestore_45(& tspi->lock, flags); } return (1); } } static irqreturn_t handle_dma_based_xfer(struct tegra_slink_data *tspi ) { struct spi_transfer *t ; long wait_status ; int err ; unsigned int total_fifo_words ; unsigned long flags = 0 ; unsigned long tmp ; unsigned long tmp___0 ; { t = tspi->curr_xfer; err = 0; if ((int )tspi->cur_direction & 1) { if (tspi->tx_status != 0U) { { dmaengine_terminate_all(tspi->tx_dma_chan); err = err + 1; } } else { { tmp = msecs_to_jiffies(1000U); wait_status = wait_for_completion_interruptible_timeout(& tspi->tx_dma_complete, tmp); } if (wait_status <= 0L) { { dmaengine_terminate_all(tspi->tx_dma_chan); dev_err((struct device const *)tspi->dev, "TxDma Xfer failed\n"); err = err + 1; } } else { } } } else { } if ((tspi->cur_direction & 2U) != 0U) { if (tspi->rx_status != 0U) { { dmaengine_terminate_all(tspi->rx_dma_chan); err = err + 2; } } else { { tmp___0 = msecs_to_jiffies(1000U); wait_status = wait_for_completion_interruptible_timeout(& tspi->rx_dma_complete, tmp___0); } if (wait_status <= 0L) { { dmaengine_terminate_all(tspi->rx_dma_chan); dev_err((struct device const *)tspi->dev, "RxDma Xfer failed\n"); err = err + 2; } } else { } } } else { } { ldv___ldv_spin_lock_48(& tspi->lock); } if (err != 0) { { dev_err((struct device const *)tspi->dev, "DmaXfer: ERROR bit set 0x%x\n", tspi->status_reg); dev_err((struct device const *)tspi->dev, "DmaXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg, tspi->command2_reg, tspi->dma_control_reg); reset_control_assert(tspi->rst); __const_udelay(8590UL); reset_control_assert(tspi->rst); complete(& tspi->xfer_completion); ldv_spin_unlock_irqrestore_45(& tspi->lock, flags); } return (1); } else { } if ((tspi->cur_direction & 2U) != 0U) { { tegra_slink_copy_spi_rxbuf_to_client_rxbuf(tspi, t); } } else { } if ((int )tspi->cur_direction & 1) { tspi->cur_pos = tspi->cur_tx_pos; } else { tspi->cur_pos = tspi->cur_rx_pos; } if (tspi->cur_pos == t->len) { { complete(& tspi->xfer_completion); } goto exit; } else { } { total_fifo_words = tegra_slink_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); } if (total_fifo_words > 32U) { { err = tegra_slink_start_dma_based_transfer(tspi, t); } } else { { err = tegra_slink_start_cpu_based_transfer(tspi, t); } } exit: { ldv_spin_unlock_irqrestore_45(& tspi->lock, flags); } return (1); } } static irqreturn_t tegra_slink_isr_thread(int irq , void *context_data ) { struct tegra_slink_data *tspi ; irqreturn_t tmp ; irqreturn_t tmp___0 ; { tspi = (struct tegra_slink_data *)context_data; if (! tspi->is_curr_dma_xfer) { { tmp = handle_cpu_based_xfer(tspi); } return (tmp); } else { } { tmp___0 = handle_dma_based_xfer(tspi); } return (tmp___0); } } static irqreturn_t tegra_slink_isr(int irq , void *context_data ) { struct tegra_slink_data *tspi ; { { tspi = (struct tegra_slink_data *)context_data; tspi->status_reg = tegra_slink_readl(tspi, 8UL); } if ((int )tspi->cur_direction & 1) { tspi->tx_status = tspi->status_reg & 17301504U; } else { } if ((tspi->cur_direction & 2U) != 0U) { tspi->rx_status = tspi->status_reg & 33816576U; } else { } { tegra_slink_clear_status(tspi); } return (2); } } static void tegra_slink_parse_dt(struct tegra_slink_data *tspi ) { struct device_node *np ; int tmp ; { { np = (tspi->dev)->of_node; tmp = of_property_read_u32((struct device_node const *)np, "spi-max-frequency", & tspi->spi_max_frequency); } if (tmp != 0) { tspi->spi_max_frequency = 25000000U; } else { } return; } } static struct tegra_slink_chip_data const tegra30_spi_cdata = {1}; static struct tegra_slink_chip_data const tegra20_spi_cdata = {0}; static struct of_device_id tegra_slink_of_match[3U] = { {{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {'n', 'v', 'i', 'd', 'i', 'a', ',', 't', 'e', 'g', 'r', 'a', '3', '0', '-', 's', 'l', 'i', 'n', 'k', '\000'}, (void const *)(& tegra30_spi_cdata)}, {{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {'n', 'v', 'i', 'd', 'i', 'a', ',', 't', 'e', 'g', 'r', 'a', '2', '0', '-', 's', 'l', 'i', 'n', 'k', '\000'}, (void const *)(& tegra20_spi_cdata)}}; struct of_device_id const __mod_of_device_table ; static int tegra_slink_probe(struct platform_device *pdev ) { struct spi_master *master ; struct tegra_slink_data *tspi ; struct resource *r ; int ret ; int spi_irq ; struct tegra_slink_chip_data const *cdata ; struct of_device_id const *match ; void *tmp ; struct lock_class_key __key ; long tmp___0 ; long tmp___1 ; char const *tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; bool tmp___7 ; int tmp___8 ; bool tmp___9 ; int tmp___10 ; { { cdata = (struct tegra_slink_chip_data const *)0; match = __of_match_device((struct of_device_id const *)0, (struct device const *)(& pdev->dev)); } if ((unsigned long )match == (unsigned long )((struct of_device_id const *)0)) { { dev_err((struct device const *)(& pdev->dev), "Error: No device match found\n"); } return (-19); } else { } { cdata = (struct tegra_slink_chip_data const *)match->data; master = ldv_spi_alloc_master_51(& pdev->dev, 600U); } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { { dev_err((struct device const *)(& pdev->dev), "master allocation failed\n"); } return (-12); } else { } { master->mode_bits = 7U; master->setup = & tegra_slink_setup; master->prepare_message = & tegra_slink_prepare_message; master->transfer_one = & tegra_slink_transfer_one; master->unprepare_message = & tegra_slink_unprepare_message; master->auto_runtime_pm = 1; master->num_chipselect = 4U; master->bus_num = -1; platform_set_drvdata(pdev, (void *)master); tmp = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp; tspi->master = master; tspi->dev = & pdev->dev; tspi->chip_data = cdata; spinlock_check(& tspi->lock); __raw_spin_lock_init(& tspi->lock.__annonCompField19.rlock, "&(&tspi->lock)->rlock", & __key); tegra_slink_parse_dt(tspi); r = platform_get_resource(pdev, 512U, 0U); } if ((unsigned long )r == (unsigned long )((struct resource *)0)) { { dev_err((struct device const *)(& pdev->dev), "No IO memory resource\n"); ret = -19; } goto exit_free_master; } else { } { tspi->phys = r->start; tspi->base = devm_ioremap_resource(& pdev->dev, r); tmp___1 = IS_ERR((void const *)tspi->base); } if (tmp___1 != 0L) { { tmp___0 = PTR_ERR((void const *)tspi->base); ret = (int )tmp___0; } goto exit_free_master; } else { } { spi_irq = platform_get_irq(pdev, 0U); tspi->irq = (unsigned int )spi_irq; tmp___2 = dev_name((struct device const *)(& pdev->dev)); ret = ldv_request_threaded_irq_52(tspi->irq, & tegra_slink_isr, & tegra_slink_isr_thread, 8192UL, tmp___2, (void *)tspi); } if (ret < 0) { { dev_err((struct device const *)(& pdev->dev), "Failed to register ISR for IRQ %d\n", tspi->irq); } goto exit_free_master; } else { } { tspi->clk = devm_clk_get(& pdev->dev, (char const *)0); tmp___4 = IS_ERR((void const *)tspi->clk); } if (tmp___4 != 0L) { { dev_err((struct device const *)(& pdev->dev), "can not get clock\n"); tmp___3 = PTR_ERR((void const *)tspi->clk); ret = (int )tmp___3; } goto exit_free_irq; } else { } { tspi->rst = devm_reset_control_get(& pdev->dev, "spi"); tmp___6 = IS_ERR((void const *)tspi->rst); } if (tmp___6 != 0L) { { dev_err((struct device const *)(& pdev->dev), "can not get reset\n"); tmp___5 = PTR_ERR((void const *)tspi->rst); ret = (int )tmp___5; } goto exit_free_irq; } else { } { tspi->max_buf_size = 128U; tspi->dma_buf_size = 16384U; ret = tegra_slink_init_dma_param(tspi, 1); } if (ret < 0) { goto exit_free_irq; } else { } { ret = tegra_slink_init_dma_param(tspi, 0); } if (ret < 0) { goto exit_rx_dma_free; } else { } { tspi->max_buf_size = tspi->dma_buf_size; init_completion(& tspi->tx_dma_complete); init_completion(& tspi->rx_dma_complete); init_completion(& tspi->xfer_completion); pm_runtime_enable(& pdev->dev); tmp___7 = pm_runtime_enabled(& pdev->dev); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { { ret = tegra_slink_runtime_resume(& pdev->dev); } if (ret != 0) { goto exit_pm_disable; } else { } } else { } { ret = pm_runtime_get_sync(& pdev->dev); } if (ret < 0) { { dev_err((struct device const *)(& pdev->dev), "pm runtime get failed, e = %d\n", ret); } goto exit_pm_disable; } else { } { tspi->def_command_reg = 268435456U; tspi->def_command2_reg = 131072U; tegra_slink_writel(tspi, tspi->def_command_reg, 0UL); tegra_slink_writel(tspi, tspi->def_command2_reg, 4UL); pm_runtime_put(& pdev->dev); master->dev.of_node = pdev->dev.of_node; ret = devm_spi_register_master(& pdev->dev, master); } if (ret < 0) { { dev_err((struct device const *)(& pdev->dev), "can not register to master err %d\n", ret); } goto exit_pm_disable; } else { } return (ret); exit_pm_disable: { pm_runtime_disable(& pdev->dev); tmp___9 = pm_runtime_status_suspended(& pdev->dev); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { { tegra_slink_runtime_suspend(& pdev->dev); } } else { } { tegra_slink_deinit_dma_param(tspi, 0); } exit_rx_dma_free: { tegra_slink_deinit_dma_param(tspi, 1); } exit_free_irq: { ldv_free_irq_53((unsigned int )spi_irq, (void *)tspi); } exit_free_master: { spi_master_put(master); } return (ret); } } static int tegra_slink_remove(struct platform_device *pdev ) { struct spi_master *master ; void *tmp ; struct tegra_slink_data *tspi ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = platform_get_drvdata((struct platform_device const *)pdev); master = (struct spi_master *)tmp; tmp___0 = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp___0; ldv_free_irq_54(tspi->irq, (void *)tspi); } if ((unsigned long )tspi->tx_dma_chan != (unsigned long )((struct dma_chan *)0)) { { tegra_slink_deinit_dma_param(tspi, 0); } } else { } if ((unsigned long )tspi->rx_dma_chan != (unsigned long )((struct dma_chan *)0)) { { tegra_slink_deinit_dma_param(tspi, 1); } } else { } { pm_runtime_disable(& pdev->dev); tmp___1 = pm_runtime_status_suspended(& pdev->dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { tegra_slink_runtime_suspend(& pdev->dev); } } else { } return (0); } } static int tegra_slink_suspend(struct device *dev ) { struct spi_master *master ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_55((struct device const *)dev); master = (struct spi_master *)tmp; tmp___0 = spi_master_suspend(master); } return (tmp___0); } } static int tegra_slink_resume(struct device *dev ) { struct spi_master *master ; void *tmp ; struct tegra_slink_data *tspi ; void *tmp___0 ; int ret ; int tmp___1 ; { { tmp = ldv_dev_get_drvdata_56((struct device const *)dev); master = (struct spi_master *)tmp; tmp___0 = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp___0; ret = pm_runtime_get_sync(dev); } if (ret < 0) { { dev_err((struct device const *)dev, "pm runtime failed, e = %d\n", ret); } return (ret); } else { } { tegra_slink_writel(tspi, tspi->command_reg, 0UL); tegra_slink_writel(tspi, tspi->command2_reg, 4UL); pm_runtime_put(dev); tmp___1 = spi_master_resume(master); } return (tmp___1); } } static int tegra_slink_runtime_suspend(struct device *dev ) { struct spi_master *master ; void *tmp ; struct tegra_slink_data *tspi ; void *tmp___0 ; { { tmp = ldv_dev_get_drvdata_57((struct device const *)dev); master = (struct spi_master *)tmp; tmp___0 = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp___0; tegra_slink_readl(tspi, 16UL); clk_disable_unprepare(tspi->clk); } return (0); } } static int tegra_slink_runtime_resume(struct device *dev ) { struct spi_master *master ; void *tmp ; struct tegra_slink_data *tspi ; void *tmp___0 ; int ret ; { { tmp = ldv_dev_get_drvdata_58((struct device const *)dev); master = (struct spi_master *)tmp; tmp___0 = spi_master_get_devdata(master); tspi = (struct tegra_slink_data *)tmp___0; ret = clk_prepare_enable(tspi->clk); } if (ret < 0) { { dev_err((struct device const *)tspi->dev, "clk_prepare failed: %d\n", ret); } return (ret); } else { } return (0); } } static struct dev_pm_ops const slink_pm_ops = {0, 0, & tegra_slink_suspend, & tegra_slink_resume, & tegra_slink_suspend, & tegra_slink_resume, & tegra_slink_suspend, & tegra_slink_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & tegra_slink_runtime_suspend, & tegra_slink_runtime_resume, (int (*)(struct device * ))0}; static struct platform_driver tegra_slink_driver = {& tegra_slink_probe, & tegra_slink_remove, 0, 0, 0, {"spi-tegra-slink", 0, & __this_module, 0, (_Bool)0, (struct of_device_id const *)(& tegra_slink_of_match), 0, 0, 0, 0, 0, 0, 0, & slink_pm_ops, 0}, 0, (_Bool)0}; static int tegra_slink_driver_init(void) { int tmp ; { { tmp = ldv___platform_driver_register_59(& tegra_slink_driver, & __this_module); } return (tmp); } } static void tegra_slink_driver_exit(void) { { { ldv_platform_driver_unregister_60(& tegra_slink_driver); } return; } } void ldv_dispatch_deregister_8_1(struct platform_driver *arg0 ) ; void ldv_dispatch_insmod_deregister_10_2(void) ; void ldv_dispatch_insmod_register_10_3(void) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_9_3(int arg0 , irqreturn_t (*arg1)(int , void * ) , irqreturn_t (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_3_5(void) ; void ldv_dispatch_pm_register_3_6(void) ; void ldv_dispatch_register_6_3(struct platform_driver *arg0 ) ; int ldv_emg___platform_driver_register(struct platform_driver *arg0 , struct module *arg1 ) ; void ldv_emg_free_irq(int arg0 , void *arg1 ) ; void ldv_emg_platform_driver_unregister(struct platform_driver *arg0 ) ; int ldv_emg_request_threaded_irq(unsigned int arg0 , irqreturn_t (*arg1)(int , void * ) , irqreturn_t (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void *ldv_insmod_5(void *arg0 ) ; void ldv_insmod_tegra_slink_driver_exit_5_2(void (*arg0)(void) ) ; int ldv_insmod_tegra_slink_driver_init_5_6(int (*arg0)(void) ) ; void *ldv_interrupt_scenario_2(void *arg0 ) ; enum irqreturn ldv_interrupt_scenario_handler_2_5(irqreturn_t (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_scenario_thread_2_3(irqreturn_t (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void *ldv_main_10(void *arg0 ) ; void *ldv_platform_instance_3(void *arg0 ) ; int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void *ldv_pm_ops_scenario_4(void *arg0 ) ; void ldv_pm_ops_scenario_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_scenario_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_scenario_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_scenario_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_scenario_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_scenario_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_scenario_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_scenario_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; int main(void) ; pthread_t ldv_thread_2 ; pthread_t ldv_thread_3 ; pthread_t ldv_thread_4 ; pthread_t ldv_thread_5 ; void ldv_dispatch_deregister_8_1(struct platform_driver *arg0 ) { int ret ; { { ret = pthread_join(ldv_thread_3, (void **)0); assume_abort_if_not(ret == 0); } return; } } void ldv_dispatch_insmod_deregister_10_2(void) { int ret ; { { ret = pthread_join(ldv_thread_5, (void **)0); assume_abort_if_not(ret == 0); } return; } } void ldv_dispatch_insmod_register_10_3(void) { int ret ; struct ldv_struct_platform_instance_3 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_platform_instance_3 *)tmp; ret = pthread_create(& ldv_thread_5, (pthread_attr_t const *)0, & ldv_insmod_5, (void *)cf_arg_5); assume_abort_if_not(ret == 0); } return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { int ret ; { { ret = pthread_join(ldv_thread_2, (void **)0); assume_abort_if_not(ret == 0); } return; } } void ldv_dispatch_irq_register_9_3(int arg0 , irqreturn_t (*arg1)(int , void * ) , irqreturn_t (*arg2)(int , void * ) , void *arg3 ) { int ret ; struct ldv_struct_interrupt_scenario_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_scenario_2 *)tmp; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ret = pthread_create(& ldv_thread_2, (pthread_attr_t const *)0, & ldv_interrupt_scenario_2, (void *)cf_arg_2); assume_abort_if_not(ret == 0); } return; } } void ldv_dispatch_pm_deregister_3_5(void) { int ret ; { { ret = pthread_join(ldv_thread_4, (void **)0); assume_abort_if_not(ret == 0); } return; } } void ldv_dispatch_pm_register_3_6(void) { int ret ; struct ldv_struct_platform_instance_3 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_platform_instance_3 *)tmp; ret = pthread_create(& ldv_thread_4, (pthread_attr_t const *)0, & ldv_pm_ops_scenario_4, (void *)cf_arg_4); assume_abort_if_not(ret == 0); } return; } } void ldv_dispatch_register_6_3(struct platform_driver *arg0 ) { int ret ; struct ldv_struct_platform_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_platform_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ret = pthread_create(& ldv_thread_3, (pthread_attr_t const *)0, & ldv_platform_instance_3, (void *)cf_arg_3); assume_abort_if_not(ret == 0); } return; } } int ldv_emg___platform_driver_register(struct platform_driver *arg0 , struct module *arg1 ) { struct platform_driver *ldv_6_platform_driver_platform_driver ; int tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_6_platform_driver_platform_driver = arg0; ldv_dispatch_register_6_3(ldv_6_platform_driver_platform_driver); } return (0); } else { { tmp___0 = ldv_undef_int_negative(); } return (tmp___0); } } } void ldv_emg_free_irq(int arg0 , void *arg1 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg0; ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_emg_platform_driver_unregister(struct platform_driver *arg0 ) { struct platform_driver *ldv_8_platform_driver_platform_driver ; { { ldv_8_platform_driver_platform_driver = arg0; ldv_dispatch_deregister_8_1(ldv_8_platform_driver_platform_driver); } return; return; } } int ldv_emg_request_threaded_irq(unsigned int arg0 , irqreturn_t (*arg1)(int , void * ) , irqreturn_t (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { irqreturn_t (*ldv_9_callback_handler)(int , void * ) ; void *ldv_9_data_data ; int ldv_9_line_line ; irqreturn_t (*ldv_9_thread_thread)(int , void * ) ; int tmp___1 ; int tmp___2 ; { { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_9_line_line = (int )arg0; ldv_9_callback_handler = arg1; ldv_9_thread_thread = arg2; ldv_9_data_data = arg5; ldv_dispatch_irq_register_9_3(ldv_9_line_line, ldv_9_callback_handler, ldv_9_thread_thread, ldv_9_data_data); } return (0); } else { { tmp___1 = ldv_undef_int_negative(); } return (tmp___1); } } } void *ldv_insmod_5(void *arg0 ) { int ldv_5_ret_default ; void (*ldv_5_tegra_slink_driver_exit_default)(void) ; int (*ldv_5_tegra_slink_driver_init_default)(void) ; int tmp___1 ; { { ldv_5_tegra_slink_driver_exit_default = 0; ldv_5_tegra_slink_driver_init_default = 0; ldv_free(arg0); ldv_5_ret_default = ldv_insmod_tegra_slink_driver_init_5_6(ldv_5_tegra_slink_driver_init_default); ldv_5_ret_default = ldv_post_init(ldv_5_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { assume_abort_if_not(ldv_5_ret_default != 0); } return ((void *)0); } else { { assume_abort_if_not(ldv_5_ret_default == 0); ldv_insmod_tegra_slink_driver_exit_5_2(ldv_5_tegra_slink_driver_exit_default); } return ((void *)0); } return ((void *)0); } } void ldv_insmod_tegra_slink_driver_exit_5_2(void (*arg0)(void) ) { { { tegra_slink_driver_exit(); } return; } } int ldv_insmod_tegra_slink_driver_init_5_6(int (*arg0)(void) ) { int tmp ; { { tmp = tegra_slink_driver_init(); } return (tmp); } } void *ldv_interrupt_scenario_2(void *arg0 ) { irqreturn_t (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line = ldv_undef_int() ; enum irqreturn ldv_2_ret_val_default ; irqreturn_t (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_scenario_2 *data ; int tmp___1 ; { { data = (struct ldv_struct_interrupt_scenario_2 *)arg0; ldv_2_callback_handler = 0; ldv_2_data_data = 0; ldv_2_thread_thread = 0; } if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_scenario_2 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_scenario_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { assume_abort_if_not((unsigned int )ldv_2_ret_val_default == 2U); ldv_interrupt_scenario_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { { assume_abort_if_not((unsigned int )ldv_2_ret_val_default != 2U); } } return ((void *)0); return ((void *)0); } } enum irqreturn ldv_interrupt_scenario_handler_2_5(irqreturn_t (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = tegra_slink_isr(arg1, arg2); } return (tmp); } } void ldv_interrupt_scenario_thread_2_3(irqreturn_t (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { tegra_slink_isr_thread(arg1, arg2); } return; } } void *ldv_main_10(void *arg0 ) { { { ldv_initialize(); ldv_dispatch_insmod_register_10_3(); ldv_dispatch_insmod_deregister_10_2(); ldv_check_final_state(); assume_abort_if_not(0); } return ((void *)0); return ((void *)0); } } void *ldv_platform_instance_3(void *arg0 ) { struct platform_driver *ldv_3_container_platform_driver ; int ldv_3_probed_default ; struct platform_device *ldv_3_resource_platform_device ; struct ldv_struct_platform_instance_3 *data ; void *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { data = (struct ldv_struct_platform_instance_3 *)arg0; ldv_3_container_platform_driver = 0; ldv_3_probed_default = ldv_undef_int(); } if ((unsigned long )data != (unsigned long )((struct ldv_struct_platform_instance_3 *)0)) { { ldv_3_container_platform_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp___1 = ldv_xmalloc(1432UL); ldv_3_resource_platform_device = (struct platform_device *)tmp___1; } goto ldv_main_3; return ((void *)0); ldv_main_3: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_pre_probe(); ldv_3_probed_default = ldv_platform_instance_probe_3_14(ldv_3_container_platform_driver->probe, ldv_3_resource_platform_device); ldv_3_probed_default = ldv_post_probe(ldv_3_probed_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { assume_abort_if_not(ldv_3_probed_default == 0); } goto ldv_call_3; } else { { assume_abort_if_not(ldv_3_probed_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_platform_device); } return ((void *)0); } return ((void *)0); ldv_call_3: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_3; case_2: /* CIL Label */ { ldv_dispatch_pm_register_3_6(); ldv_dispatch_pm_deregister_3_5(); } goto ldv_call_3; case_3: /* CIL Label */ { ldv_platform_instance_release_3_3(ldv_3_container_platform_driver->remove, ldv_3_resource_platform_device); ldv_3_probed_default = 1; } goto ldv_main_3; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return ((void *)0); } } int ldv_platform_instance_probe_3_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = tegra_slink_probe(arg1); } return (tmp); } } void ldv_platform_instance_release_3_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { tegra_slink_remove(arg1); } return; } } void *ldv_pm_ops_scenario_4(void *arg0 ) { struct device *ldv_4_device_device ; struct dev_pm_ops *ldv_4_pm_ops_dev_pm_ops ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { ldv_4_device_device = ldv_malloc(sizeof(struct device)); ldv_4_pm_ops_dev_pm_ops = ldv_malloc(sizeof(struct dev_pm_ops)); ldv_free(arg0); } goto ldv_do_4; return ((void *)0); ldv_do_4: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; goto ldv_do_4; case_2: /* CIL Label */ { ldv_pm_ops_scenario_runtime_suspend_4_25(ldv_4_pm_ops_dev_pm_ops->runtime_suspend, ldv_4_device_device); ldv_pm_ops_scenario_runtime_resume_4_24(ldv_4_pm_ops_dev_pm_ops->runtime_resume, ldv_4_device_device); } goto ldv_do_4; case_3: /* CIL Label */ { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1___0; } else { } if (tmp___2 == 2) { goto case_2___0; } else { } if (tmp___2 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_scenario_suspend_4_21(ldv_4_pm_ops_dev_pm_ops->suspend, ldv_4_device_device); tmp___3 = ldv_undef_int(); ldv_pm_ops_scenario_resume_4_16(ldv_4_pm_ops_dev_pm_ops->resume, ldv_4_device_device); } goto ldv_28455; case_2___0: /* CIL Label */ { ldv_pm_ops_scenario_freeze_4_15(ldv_4_pm_ops_dev_pm_ops->freeze, ldv_4_device_device); tmp___4 = ldv_undef_int(); ldv_pm_ops_scenario_thaw_4_10(ldv_4_pm_ops_dev_pm_ops->thaw, ldv_4_device_device); } goto ldv_28455; case_3___0: /* CIL Label */ { ldv_pm_ops_scenario_poweroff_4_9(ldv_4_pm_ops_dev_pm_ops->poweroff, ldv_4_device_device); tmp___5 = ldv_undef_int(); ldv_pm_ops_scenario_restore_4_4(ldv_4_pm_ops_dev_pm_ops->restore, ldv_4_device_device); } goto ldv_28455; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break___0: /* CIL Label */ ; } ldv_28455: ; goto ldv_do_4; case_4: /* CIL Label */ ; return ((void *)0); switch_default___0: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return ((void *)0); } } void ldv_pm_ops_scenario_freeze_4_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_suspend(arg1); } return; } } void ldv_pm_ops_scenario_poweroff_4_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_suspend(arg1); } return; } } void ldv_pm_ops_scenario_restore_4_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_resume(arg1); } return; } } void ldv_pm_ops_scenario_resume_4_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_resume(arg1); } return; } } void ldv_pm_ops_scenario_runtime_resume_4_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_runtime_resume(arg1); } return; } } void ldv_pm_ops_scenario_runtime_suspend_4_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_runtime_suspend(arg1); } return; } } void ldv_pm_ops_scenario_suspend_4_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_suspend(arg1); } return; } } void ldv_pm_ops_scenario_thaw_4_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { tegra_slink_resume(arg1); } return; } } int main(void) { { { ldv_main_10((void *)0); } return (0); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } static void *ldv_dev_get_drvdata_30(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_31(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static void *ldv_dev_get_drvdata_42(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void ldv___ldv_spin_lock_44(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_tegra_slink_data(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_tegra_slink_data(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_46(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_tegra_slink_data(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_48(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_tegra_slink_data(); __ldv_spin_lock(ldv_func_arg1); } return; } } static struct spi_master *ldv_spi_alloc_master_51(struct device *host , unsigned int size ) { struct spi_master *tmp ; { { tmp = ldv_spi_alloc_master(host, size); } return (tmp); } } static int ldv_request_threaded_irq_52(unsigned int ldv_func_arg1 , irqreturn_t (*ldv_func_arg2)(int , void * ) , irqreturn_t (*ldv_func_arg3)(int , void * ) , unsigned long ldv_func_arg4 , char const *ldv_func_arg5 , void *ldv_func_arg6 ) { int tmp ; { { tmp = ldv_emg_request_threaded_irq(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4, (char *)ldv_func_arg5, ldv_func_arg6); } return (tmp); } } static void ldv_free_irq_53(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { ldv_emg_free_irq((int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_54(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { ldv_emg_free_irq((int )ldv_func_arg1, ldv_func_arg2); } return; } } static void *ldv_dev_get_drvdata_55(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_56(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_57(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv___platform_driver_register_59(struct platform_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) { int tmp ; { { tmp = ldv_emg___platform_driver_register(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static void ldv_platform_driver_unregister_60(struct platform_driver *ldv_func_arg1 ) { { { ldv_emg_platform_driver_unregister(ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)(master + 1U)); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } int ldv_filter_err_code(int ret_val ) ; static int ldv_filter_positive_int(int val ) { { { assume_abort_if_not(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret <= 0); } return (ret); } } extern void abort(void); #include void reach_error() { assert(0); } extern int pthread_mutex_lock(pthread_mutex_t * ) ; extern int pthread_mutex_trylock(pthread_mutex_t * ) ; pthread_mutex_t pmutex_lock ; void ldv_mutex_lock_lock(struct mutex *lock ) { { { pthread_mutex_lock(& pmutex_lock); } return; } } int ldv_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { pthread_mutex_lock(& pmutex_lock); } return (0); } else { return (-4); } } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { tmp = pthread_mutex_trylock(& pmutex_lock); } return (tmp); } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { pthread_mutex_lock(& pmutex_lock); } return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { { pthread_mutex_unlock(& pmutex_lock); } return; } } pthread_mutex_t pmutex_mutex_of_device ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { { pthread_mutex_lock(& pmutex_mutex_of_device); } return; } } int ldv_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { pthread_mutex_lock(& pmutex_mutex_of_device); } return (0); } else { return (-4); } } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { tmp = pthread_mutex_trylock(& pmutex_mutex_of_device); } return (tmp); } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { pthread_mutex_lock(& pmutex_mutex_of_device); } return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { pthread_mutex_unlock(& pmutex_mutex_of_device); } return; } } void ldv_initialize(void) { { return; } } void ldv_check_final_state(void) { { return; } } void ldv_assert(char const *desc , int expr ) { { if (expr == 0) { { {reach_error();} } } else { } return; } } extern int pthread_mutex_unlock(pthread_mutex_t * ) ; pthread_mutex_t smutex_alloc_lock_of_task_struct ; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { pthread_mutex_lock(& smutex_alloc_lock_of_task_struct); } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { pthread_mutex_unlock(& smutex_alloc_lock_of_task_struct); } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = pthread_mutex_trylock(& smutex_alloc_lock_of_task_struct); } return (tmp); } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { { ldv_spin_lock_alloc_lock_of_task_struct(); } return (1); } else { } return (0); } } pthread_mutex_t smutex_lock ; void ldv_spin_lock_lock(void) { { { pthread_mutex_lock(& smutex_lock); } return; } } void ldv_spin_unlock_lock(void) { { { pthread_mutex_unlock(& smutex_lock); } return; } } int ldv_spin_trylock_lock(void) { int tmp ; { { tmp = pthread_mutex_trylock(& smutex_lock); } return (tmp); } } void ldv_spin_unlock_wait_lock(void) { { return; } } int ldv_spin_is_locked_lock(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { { ldv_spin_lock_lock(); } return (1); } else { } return (0); } } pthread_mutex_t smutex_lock_of_NOT_ARG_SIGN ; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { pthread_mutex_lock(& smutex_lock_of_NOT_ARG_SIGN); } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { pthread_mutex_unlock(& smutex_lock_of_NOT_ARG_SIGN); } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = pthread_mutex_trylock(& smutex_lock_of_NOT_ARG_SIGN); } return (tmp); } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); } return (1); } else { } return (0); } } pthread_mutex_t smutex_lock_of_tegra_slink_data ; void ldv_spin_lock_lock_of_tegra_slink_data(void) { { { pthread_mutex_lock(& smutex_lock_of_tegra_slink_data); } return; } } void ldv_spin_unlock_lock_of_tegra_slink_data(void) { { { pthread_mutex_unlock(& smutex_lock_of_tegra_slink_data); } return; } } int ldv_spin_trylock_lock_of_tegra_slink_data(void) { int tmp ; { { tmp = pthread_mutex_trylock(& smutex_lock_of_tegra_slink_data); } return (tmp); } } void ldv_spin_unlock_wait_lock_of_tegra_slink_data(void) { { return; } } int ldv_spin_is_locked_lock_of_tegra_slink_data(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_spin_can_lock_lock_of_tegra_slink_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_tegra_slink_data(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_tegra_slink_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_tegra_slink_data(void) { int atomic_value_after_dec ; { { atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { { ldv_spin_lock_lock_of_tegra_slink_data(); } return (1); } else { } return (0); } } pthread_mutex_t smutex_node_size_lock_of_pglist_data ; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { pthread_mutex_lock(& smutex_node_size_lock_of_pglist_data); } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { pthread_mutex_unlock(& smutex_node_size_lock_of_pglist_data); } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = pthread_mutex_trylock(& smutex_node_size_lock_of_pglist_data); } return (tmp); } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { { ldv_spin_lock_node_size_lock_of_pglist_data(); } return (1); } else { } return (0); } } pthread_mutex_t smutex_ptl ; void ldv_spin_lock_ptl(void) { { { pthread_mutex_lock(& smutex_ptl); } return; } } void ldv_spin_unlock_ptl(void) { { { pthread_mutex_unlock(& smutex_ptl); } return; } } int ldv_spin_trylock_ptl(void) { int tmp ; { { tmp = pthread_mutex_trylock(& smutex_ptl); } return (tmp); } } void ldv_spin_unlock_wait_ptl(void) { { return; } } int ldv_spin_is_locked_ptl(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { { ldv_spin_lock_ptl(); } return (1); } else { } return (0); } } pthread_mutex_t smutex_siglock_of_sighand_struct ; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { pthread_mutex_lock(& smutex_siglock_of_sighand_struct); } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { pthread_mutex_unlock(& smutex_siglock_of_sighand_struct); } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = pthread_mutex_trylock(& smutex_siglock_of_sighand_struct); } return (tmp); } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { { ldv_spin_lock_siglock_of_sighand_struct(); } return (1); } else { } return (0); } } #include "model/common.env.c" #include "model/linux-3.14--drivers--spi--spi-tegra20-slink.ko_false-unreach-call.env.c"