/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22417 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22417 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28863 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28864 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28863 reg_state : 8 ; bool dismantle ; enum ldv_28864 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_247 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_247 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_248 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_248 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_253 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_253 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_254 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_254 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_256 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_255 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_256 __annonCompField79 ; }; union __anonunion____missing_field_name_257 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_259 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_258 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_259 __annonCompField82 ; }; union __anonunion____missing_field_name_260 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_255 __annonCompField80 ; union __anonunion____missing_field_name_257 __annonCompField81 ; union __anonunion____missing_field_name_258 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_260 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_261 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_262 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_262 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_263 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_263 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct cas_hp_inst { char const *note ; u16 mask ; u16 val ; u8 op ; u8 soff ; u8 snext ; u8 foff ; u8 fnext ; u8 outop ; u16 outarg ; u8 outenab ; u8 outshift ; u16 outmask ; }; typedef struct cas_hp_inst cas_hp_inst_t; struct cas_tx_desc { __le64 control ; __le64 buffer ; }; struct cas_rx_desc { __le64 index ; __le64 buffer ; }; struct cas_rx_comp { __le64 word1 ; __le64 word2 ; __le64 word3 ; __le64 word4 ; }; enum link_state { link_down = 0, link_aneg = 1, link_force_try = 2, link_force_ret = 3, link_force_ok = 4, link_up = 5 } ; struct cas_page { struct list_head list ; struct page *buffer ; dma_addr_t dma_addr ; int used ; }; typedef struct cas_page cas_page_t; struct cas_init_block { struct cas_rx_comp rxcs[1U][2048U] ; struct cas_rx_desc rxds[2U][512U] ; struct cas_tx_desc txds[4U][512U] ; __le64 tx_compwb ; }; struct cas_tiny_count { int nbufs ; int used ; }; struct cas { spinlock_t lock ; spinlock_t tx_lock[4U] ; spinlock_t stat_lock[5U] ; spinlock_t rx_inuse_lock ; spinlock_t rx_spare_lock ; void *regs ; int tx_new[4U] ; int tx_old[4U] ; int rx_old[2U] ; int rx_cur[1U] ; int rx_new[1U] ; int rx_last[2U] ; struct napi_struct napi ; int hw_running ; int opened ; struct mutex pm_mutex ; struct cas_init_block *init_block ; struct cas_tx_desc *init_txds[4U] ; struct cas_rx_desc *init_rxds[2U] ; struct cas_rx_comp *init_rxcs[4U] ; struct sk_buff *tx_skbs[4U][512U] ; struct sk_buff_head rx_flows[64U] ; cas_page_t *rx_pages[2U][512U] ; struct list_head rx_spare_list ; struct list_head rx_inuse_list ; int rx_spares_needed ; struct cas_tiny_count tx_tiny_use[4U][512U] ; u8 *tx_tiny_bufs[4U] ; u32 msg_enable ; struct net_device_stats net_stats[5U] ; u32 pci_cfg[16U] ; u8 pci_revision ; int phy_type ; int phy_addr ; u32 phy_id ; u32 cas_flags ; int packet_min ; int tx_fifo_size ; int rx_fifo_size ; int rx_pause_off ; int rx_pause_on ; int crc_size ; int pci_irq_INTC ; int min_frame_size ; int page_size ; int page_order ; int mtu_stride ; u32 mac_rx_cfg ; int link_cntl ; int link_fcntl ; enum link_state lstate ; struct timer_list link_timer ; int timer_ticks ; struct work_struct reset_task ; atomic_t reset_task_pending ; atomic_t reset_task_pending_mtu ; atomic_t reset_task_pending_spare ; atomic_t reset_task_pending_all ; int link_transition ; int link_transition_jiffies_valid ; unsigned long link_transition_jiffies ; u8 orig_cacheline_size ; int casreg_len ; u64 pause_entered ; u16 pause_last_time_recvd ; dma_addr_t block_dvma ; dma_addr_t tx_tiny_dvma[4U] ; struct pci_dev *pdev ; struct net_device *dev ; u16 fw_load_addr ; u32 fw_size ; u8 *fw_data ; }; struct __anonstruct_ethtool_cassini_statnames_270 { char const name[32U] ; }; struct __anonstruct_ethtool_register_table_271 { int const offsets ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef struct net_device *ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void ldv_check_alloc_nonatomic(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice(struct list_head const *list , struct list_head *head ) { int tmp ; { { tmp = list_empty(list); } if (tmp == 0) { { __list_splice(list, head, head->next); } } else { } return; } } __inline static void list_splice_init(struct list_head *list , struct list_head *head ) { int tmp ; { { tmp = list_empty((struct list_head const *)list); } if (tmp == 0) { { __list_splice((struct list_head const *)list, head, head->next); INIT_LIST_HEAD(list); } } else { } return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int printk(char const * , ...) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern int __bitmap_weight(unsigned long const * , int ) ; __inline static int bitmap_weight(unsigned long const *src , int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_sub(int i , atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; subl %1,%0": "+m" (v->counter): "ir" (i)); return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_157(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_159(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_167(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_169(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_171(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_174(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_177(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_179(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_182(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_184(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_190(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_192(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_194(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_196(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_198(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_200(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_207(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_209(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_NOT_ARG_SIGN(void) ; void ldv_spin_unlock_NOT_ARG_SIGN(void) ; void ldv_spin_lock_lock_of_cas(void) ; void ldv_spin_unlock_lock_of_cas(void) ; void ldv_spin_lock_rx_inuse_lock_of_cas(void) ; void ldv_spin_unlock_rx_inuse_lock_of_cas(void) ; void ldv_spin_lock_rx_spare_lock_of_cas(void) ; void ldv_spin_unlock_rx_spare_lock_of_cas(void) ; void ldv_spin_lock_stat_lock_of_cas(void) ; void ldv_spin_unlock_stat_lock_of_cas(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6742; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6742; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6742; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6742; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6742: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6754; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6754; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6754; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6754; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6754: ; return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_107(spinlock_t *lock ) ; __inline static void ldv_spin_lock_132(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_132(spinlock_t *lock ) ; __inline static void ldv_spin_lock_132(spinlock_t *lock ) ; __inline static void ldv_spin_lock_132(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_105(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_132(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_132(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_108(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_133(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_133(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_133(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_133(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_133(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_133(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_160(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_160(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_160(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; __inline static int timer_pending(struct timer_list const *timer ) { { return ((unsigned long )timer->entry.next != (unsigned long )((struct list_head */* const */)0)); } } extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_129(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_130(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_146(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_172(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_166(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern void dump_page(struct page * , char * ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; static void *ldv_vmalloc_131(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern void __free_pages(struct page * , unsigned int ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head(struct page *page ) { struct page *head ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { head = page->__annonCompField46.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)page); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { return (head); } else { } } else { } return (page); } } __inline static int page_count(struct page *page ) { struct page *tmp ; int tmp___0 ; { { tmp = compound_head(page); tmp___0 = atomic_read((atomic_t const *)(& tmp->__annonCompField43.__annonCompField42.__annonCompField41._count)); } return (tmp___0); } } extern bool __get_page_tail(struct page * ) ; __inline static void get_page(struct page *page ) { bool tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp = __get_page_tail(page); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { return; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& page->__annonCompField43.__annonCompField42.__annonCompField41._count)); tmp___4 = ldv__builtin_expect(tmp___3 <= 0, 0L); } if (tmp___4 != 0L) { { dump_page(page, (char *)0); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/mm.h"), "i" (488), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_inc(& page->__annonCompField43.__annonCompField42.__annonCompField41._count); } return; } } __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern void schedule(void) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void get_random_bytes(void * , int ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } extern __wsum csum_partial(void const * , int , __wsum ) ; __inline static __wsum csum_unfold(__sum16 n ) { { return ((__wsum )n); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static struct sk_buff *skb_peek(struct sk_buff_head const *list_ ) { struct sk_buff *skb ; { skb = list_->next; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)list_)) { skb = (struct sk_buff *)0; } else { } return (skb); } } __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField19.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->next = next; newsk->prev = prev; tmp = newsk; prev->next = tmp; next->prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { { __skb_insert(newsk, next->prev, next, list); } return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { { __skb_queue_before(list, (struct sk_buff *)list, newsk); } return; } } __inline static void __skb_unlink(struct sk_buff *skb , struct sk_buff_head *list ) { struct sk_buff *next ; struct sk_buff *prev ; struct sk_buff *tmp ; { list->qlen = list->qlen - 1U; next = skb->next; prev = skb->prev; tmp = (struct sk_buff *)0; skb->prev = tmp; skb->next = tmp; next->prev = prev; prev->next = next; return; } } __inline static struct sk_buff *__skb_dequeue(struct sk_buff_head *list ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = skb_peek((struct sk_buff_head const *)list); skb = tmp; } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { __skb_unlink(skb, list); } } else { } return (skb); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } void *ldv_malloc(size_t size ) ; static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_57(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static void __skb_frag_ref(skb_frag_t *frag ) { struct page *tmp ; { { tmp = skb_frag_page((skb_frag_t const *)frag); get_page(tmp); } return; } } __inline static void __skb_frag_set_page(skb_frag_t *frag , struct page *page ) { { frag->page.p = page; return; } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int skb_padto(struct sk_buff *skb , unsigned int len ) { unsigned int size ; long tmp ; int tmp___0 ; { { size = skb->len; tmp = ldv__builtin_expect(size >= len, 1L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = skb_pad(skb, (int )(len - size)); } return (tmp___0); } } __inline static void skb_copy_from_linear_data_offset(struct sk_buff const *skb , int const offset , void *to , unsigned int const len ) { { { memcpy(to, (void const *)skb->data + (unsigned long )offset, (size_t )len); } return; } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_204(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_206(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; __inline static bool netif_device_present(struct net_device *dev ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_203(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_205(struct net_device *ldv_func_arg1 ) ; extern int netdev_printk(char const * , struct net_device const * , char const * , ...) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_byte(struct pci_bus * , unsigned int , int , u8 ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_byte(struct pci_dev const *dev , int where , u8 val ) { int tmp ; { { tmp = pci_bus_write_config_byte(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_try_set_mwi(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_211(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_212(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, page, offset, size, (enum dma_data_direction )direction); } return (tmp); } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_176(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_181(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; __inline static void pagefault_disable(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void pagefault_enable(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } __inline static void *kmap_atomic(struct page *page ) { void *tmp ; { { pagefault_disable(); tmp = lowmem_page_address((struct page const *)page); } return (tmp); } } __inline static void __kunmap_atomic(void *addr ) { { { pagefault_enable(); } return; } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_mac_addr(struct net_device * , void * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_202(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; static cas_hp_inst_t cas_prog_workaroundtab[21U] = { {"packet arrival?", 65535U, 0U, 3U, 6U, 1U, 0U, 0U, 0U, 1023U, 1U, 0U, 0U}, {"VLAN?", 65535U, 33024U, 0U, 1U, 2U, 0U, 3U, 13U, 74U, 3U, 0U, 65535U}, {"CFI?", 4096U, 4096U, 0U, 0U, 18U, 1U, 3U, 0U, 0U, 0U, 0U, 0U}, {"8023?", 65535U, 1536U, 1U, 1U, 4U, 0U, 6U, 0U, 0U, 0U, 0U, 0U}, {"LLC?", 65535U, 43690U, 0U, 1U, 5U, 0U, 18U, 0U, 0U, 0U, 0U, 0U}, {"LLCc?", 65280U, 768U, 0U, 2U, 6U, 0U, 18U, 0U, 0U, 0U, 0U, 0U}, {"IPV4?", 65535U, 2048U, 0U, 1U, 7U, 0U, 10U, 11U, 1710U, 3U, 0U, 65535U}, {"IPV4 cont?", 65280U, 17664U, 0U, 3U, 8U, 0U, 18U, 7U, 10U, 1U, 0U, 0U}, {"IPV4 frag?", 16383U, 0U, 0U, 1U, 9U, 0U, 18U, 14U, 62U, 1U, 0U, 65535U}, {"TCP44?", 255U, 6U, 0U, 7U, 14U, 0U, 18U, 1U, 386U, 3U, 0U, 65535U}, {"IPV6?", 65535U, 34525U, 0U, 1U, 11U, 0U, 18U, 7U, 21U, 1U, 0U, 0U}, {"IPV6 len", 61440U, 24576U, 0U, 0U, 12U, 0U, 18U, 12U, 296U, 1U, 0U, 65535U}, {"IPV6 cont?", 0U, 0U, 0U, 3U, 13U, 0U, 18U, 1U, 1156U, 1U, 0U, 65535U}, {"TCP64?", 65280U, 1536U, 0U, 18U, 14U, 0U, 18U, 14U, 63U, 1U, 0U, 65535U}, {"TCP seq", 0U, 0U, 0U, 0U, 15U, 4U, 15U, 2U, 129U, 3U, 0U, 65535U}, {"TCP control flags", 0U, 0U, 0U, 0U, 16U, 0U, 16U, 15U, 69U, 3U, 0U, 47U}, {"TCP length", 0U, 0U, 0U, 0U, 17U, 0U, 17U, 5U, 517U, 3U, 11U, 61440U}, {"TCP length cont", 0U, 0U, 0U, 0U, 0U, 0U, 0U, 8U, 255U, 3U, 0U, 65535U}, {"Cleanup", 0U, 0U, 0U, 0U, 19U, 0U, 19U, 11U, 1710U, 3U, 0U, 65535U}, {"Cleanup 2", 0U, 0U, 0U, 0U, 0U, 0U, 0U, 13U, 1U, 3U, 0U, 1U}, {(char const *)0, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned short)0}}; static char version[30U] = { 'c', 'a', 's', 's', 'i', 'n', 'i', '.', 'c', ':', 'v', '1', '.', '6', ' ', '(', '2', '1', ' ', 'M', 'a', 'y', ' ', '2', '0', '0', '8', ')', '\n', '\000'}; static int cassini_debug = -1; static int link_mode ; static int linkdown_timeout = 5; static int link_transition_timeout ; static u16 link_modes[6U] = { 4096U, 0U, 8192U, 256U, 8448U, 320U}; static struct pci_device_id const cas_pci_tbl[3U] = { {4238U, 43962U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4107U, 53U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static void cas_set_link_modes(struct cas *cp ) ; __inline static void cas_lock_tx(struct cas *cp ) { int i ; { i = 0; goto ldv_48981; ldv_48980: { ldv_spin_lock_101((spinlock_t *)(& cp->tx_lock) + (unsigned long )i); i = i + 1; } ldv_48981: ; if (i <= 3) { goto ldv_48980; } else { } return; } } __inline static void cas_unlock_tx(struct cas *cp ) { int i ; { i = 4; goto ldv_48991; ldv_48990: { ldv_spin_unlock_103((spinlock_t *)(& cp->tx_lock) + ((unsigned long )i + 0xffffffffffffffffUL)); i = i - 1; } ldv_48991: ; if (i > 0) { goto ldv_48990; } else { } return; } } static void cas_disable_irq(struct cas *cp , int const ring ) { { if ((int )ring == 0) { { writel(4294967295U, (void volatile *)cp->regs + 16U); } return; } else { } if ((cp->cas_flags & 2U) != 0U) { { goto switch_default; switch_default: /* CIL Label */ { writel(31U, (void volatile *)cp->regs + (unsigned long )(((int )ring + -1) * 16 + 4152)); } goto ldv_49001; switch_break: /* CIL Label */ ; } ldv_49001: ; } else { } return; } } __inline static void cas_mask_intr(struct cas *cp ) { int i ; { i = 0; goto ldv_49007; ldv_49006: { cas_disable_irq(cp, i); i = i + 1; } ldv_49007: ; if (i <= 0) { goto ldv_49006; } else { } return; } } static void cas_enable_irq(struct cas *cp , int const ring ) { { if ((int )ring == 0) { { writel(4U, (void volatile *)cp->regs + 16U); } return; } else { } if ((cp->cas_flags & 2U) != 0U) { { goto switch_default; switch_default: /* CIL Label */ ; goto ldv_49014; switch_break: /* CIL Label */ ; } ldv_49014: ; } else { } return; } } __inline static void cas_unmask_intr(struct cas *cp ) { int i ; { i = 0; goto ldv_49020; ldv_49019: { cas_enable_irq(cp, i); i = i + 1; } ldv_49020: ; if (i <= 0) { goto ldv_49019; } else { } return; } } __inline static void cas_entropy_gather(struct cas *cp ) { { return; } } static u16 cas_phy_read(struct cas *cp , int reg ) { u32 cmd ; int limit ; int tmp ; { { limit = 1000; cmd = 1610612736U; cmd = cmd | ((u32 )(cp->phy_addr << 23) & 260046848U); cmd = cmd | ((u32 )(reg << 18) & 8126464U); cmd = cmd | 131072U; writel(cmd, (void volatile *)cp->regs + 25100U); } goto ldv_49035; ldv_49034: { __const_udelay(42950UL); cmd = readl((void const volatile *)cp->regs + 25100U); } if ((cmd & 65536U) != 0U) { return ((u16 )cmd); } else { } ldv_49035: tmp = limit; limit = limit - 1; if (tmp > 0) { goto ldv_49034; } else { } return (65535U); } } static int cas_phy_write(struct cas *cp , int reg , u16 val ) { int limit ; u32 cmd ; int tmp ; { { limit = 1000; cmd = 1342177280U; cmd = cmd | ((u32 )(cp->phy_addr << 23) & 260046848U); cmd = cmd | ((u32 )(reg << 18) & 8126464U); cmd = cmd | 131072U; cmd = cmd | (u32 )val; writel(cmd, (void volatile *)cp->regs + 25100U); } goto ldv_49045; ldv_49044: { __const_udelay(42950UL); cmd = readl((void const volatile *)cp->regs + 25100U); } if ((cmd & 65536U) != 0U) { return (0); } else { } ldv_49045: tmp = limit; limit = limit - 1; if (tmp > 0) { goto ldv_49044; } else { } return (-1); } } static void cas_phy_powerup(struct cas *cp ) { u16 ctl ; u16 tmp ; { { tmp = cas_phy_read(cp, 0); ctl = tmp; } if (((int )ctl & 2048) == 0) { return; } else { } { ctl = (unsigned int )ctl & 63487U; cas_phy_write(cp, 0, (int )ctl); } return; } } static void cas_phy_powerdown(struct cas *cp ) { u16 ctl ; u16 tmp ; { { tmp = cas_phy_read(cp, 0); ctl = tmp; } if (((int )ctl & 2048) != 0) { return; } else { } { ctl = (u16 )((unsigned int )ctl | 2048U); cas_phy_write(cp, 0, (int )ctl); } return; } } static int cas_page_free(struct cas *cp , cas_page_t *page ) { { { pci_unmap_page(cp->pdev, page->dma_addr, (size_t )cp->page_size, 2); __free_pages(page->buffer, (unsigned int )cp->page_order); kfree((void const *)page); } return (0); } } static cas_page_t *cas_page_alloc(struct cas *cp , gfp_t const flags ) { cas_page_t *page ; void *tmp ; { { tmp = kmalloc(40UL, flags); page = (cas_page_t *)tmp; } if ((unsigned long )page == (unsigned long )((cas_page_t *)0)) { return ((cas_page_t *)0); } else { } { INIT_LIST_HEAD(& page->list); page->buffer = alloc_pages(flags, (unsigned int )cp->page_order); } if ((unsigned long )page->buffer == (unsigned long )((struct page *)0)) { goto page_err; } else { } { page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0UL, (size_t )cp->page_size, 2); } return (page); page_err: { kfree((void const *)page); } return ((cas_page_t *)0); } } static void cas_spare_init(struct cas *cp ) { { { ldv_spin_lock_105(& cp->rx_inuse_lock); INIT_LIST_HEAD(& cp->rx_inuse_list); ldv_spin_unlock_106(& cp->rx_inuse_lock); ldv_spin_lock_107(& cp->rx_spare_lock); INIT_LIST_HEAD(& cp->rx_spare_list); cp->rx_spares_needed = 256; ldv_spin_unlock_108(& cp->rx_spare_lock); } return; } } static void cas_spare_free(struct cas *cp ) { struct list_head list ; struct list_head *elem ; struct list_head *tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { INIT_LIST_HEAD(& list); ldv_spin_lock_107(& cp->rx_spare_lock); list_splice_init(& cp->rx_spare_list, & list); ldv_spin_unlock_108(& cp->rx_spare_lock); elem = list.next; tmp = elem->next; } goto ldv_49077; ldv_49076: { __mptr = (struct list_head const *)elem; cas_page_free(cp, (cas_page_t *)__mptr); elem = tmp; tmp = elem->next; } ldv_49077: ; if ((unsigned long )elem != (unsigned long )(& list)) { goto ldv_49076; } else { } { INIT_LIST_HEAD(& list); ldv_spin_lock_105(& cp->rx_inuse_lock); list_splice_init(& cp->rx_inuse_list, & list); ldv_spin_unlock_106(& cp->rx_inuse_lock); elem = list.next; tmp = elem->next; } goto ldv_49082; ldv_49081: { __mptr___0 = (struct list_head const *)elem; cas_page_free(cp, (cas_page_t *)__mptr___0); elem = tmp; tmp = elem->next; } ldv_49082: ; if ((unsigned long )elem != (unsigned long )(& list)) { goto ldv_49081; } else { } return; } } static void cas_spare_recover(struct cas *cp , gfp_t const flags ) { struct list_head list ; struct list_head *elem ; struct list_head *tmp ; int needed ; int i ; cas_page_t *page ; struct list_head const *__mptr ; int tmp___0 ; int tmp___1 ; cas_page_t *spare ; cas_page_t *tmp___2 ; { { INIT_LIST_HEAD(& list); ldv_spin_lock_105(& cp->rx_inuse_lock); list_splice_init(& cp->rx_inuse_list, & list); ldv_spin_unlock_106(& cp->rx_inuse_lock); elem = list.next; tmp = elem->next; } goto ldv_49098; ldv_49097: { __mptr = (struct list_head const *)elem; page = (cas_page_t *)__mptr; tmp___0 = page_count(page->buffer); } if (tmp___0 > 1) { goto ldv_49096; } else { } { list_del(elem); ldv_spin_lock_107(& cp->rx_spare_lock); } if (cp->rx_spares_needed > 0) { { list_add(elem, & cp->rx_spare_list); cp->rx_spares_needed = cp->rx_spares_needed - 1; ldv_spin_unlock_108(& cp->rx_spare_lock); } } else { { ldv_spin_unlock_108(& cp->rx_spare_lock); cas_page_free(cp, page); } } ldv_49096: elem = tmp; tmp = elem->next; ldv_49098: ; if ((unsigned long )elem != (unsigned long )(& list)) { goto ldv_49097; } else { } { tmp___1 = list_empty((struct list_head const *)(& list)); } if (tmp___1 == 0) { { ldv_spin_lock_105(& cp->rx_inuse_lock); list_splice((struct list_head const *)(& list), & cp->rx_inuse_list); ldv_spin_unlock_106(& cp->rx_inuse_lock); } } else { } { ldv_spin_lock_107(& cp->rx_spare_lock); needed = cp->rx_spares_needed; ldv_spin_unlock_108(& cp->rx_spare_lock); } if (needed == 0) { return; } else { } { INIT_LIST_HEAD(& list); i = 0; } goto ldv_49103; ldv_49102: { tmp___2 = cas_page_alloc(cp, flags); spare = tmp___2; } if ((unsigned long )spare == (unsigned long )((cas_page_t *)0)) { goto ldv_49101; } else { } { list_add(& spare->list, & list); i = i + 1; } ldv_49103: ; if (i < needed) { goto ldv_49102; } else { } ldv_49101: { ldv_spin_lock_107(& cp->rx_spare_lock); list_splice((struct list_head const *)(& list), & cp->rx_spare_list); cp->rx_spares_needed = cp->rx_spares_needed - i; ldv_spin_unlock_108(& cp->rx_spare_lock); } return; } } static cas_page_t *cas_page_dequeue(struct cas *cp ) { struct list_head *entry ; int recover ; int tmp ; int tmp___0 ; struct list_head const *__mptr ; { { ldv_spin_lock_107(& cp->rx_spare_lock); tmp___0 = list_empty((struct list_head const *)(& cp->rx_spare_list)); } if (tmp___0 != 0) { { ldv_spin_unlock_108(& cp->rx_spare_lock); cas_spare_recover(cp, 32U); ldv_spin_lock_107(& cp->rx_spare_lock); tmp = list_empty((struct list_head const *)(& cp->rx_spare_list)); } if (tmp != 0) { if ((cp->msg_enable & 64U) != 0U) { { netdev_err((struct net_device const *)cp->dev, "no spare buffers available\n"); } } else { } { ldv_spin_unlock_108(& cp->rx_spare_lock); } return ((cas_page_t *)0); } else { } } else { } { entry = cp->rx_spare_list.next; list_del(entry); cp->rx_spares_needed = cp->rx_spares_needed + 1; recover = cp->rx_spares_needed; ldv_spin_unlock_108(& cp->rx_spare_lock); } if ((recover & 63) == 0) { { atomic_inc(& cp->reset_task_pending); atomic_inc(& cp->reset_task_pending_spare); schedule_work(& cp->reset_task); } } else { } __mptr = (struct list_head const *)entry; return ((cas_page_t *)__mptr); } } static void cas_mif_poll(struct cas *cp , int const enable ) { u32 cfg ; { { cfg = readl((void const volatile *)cp->regs + 25104U); cfg = cfg & 768U; } if ((cp->phy_type & 4) != 0) { cfg = cfg | 1U; } else { } if ((int )enable != 0) { cfg = cfg | 2U; cfg = cfg | 8U; cfg = cfg | ((u32 )(cp->phy_addr << 10) & 31744U); } else { } { writel((int )enable != 0 ? 4294967259U : 65535U, (void volatile *)cp->regs + 25108U); writel(cfg, (void volatile *)cp->regs + 25104U); } return; } } static void cas_begin_auto_negotiation(struct cas *cp , struct ethtool_cmd *ep ) { u16 ctl ; int lcntl ; int changed ; int oldstate ; int link_was_not_down ; u32 speed ; __u32 tmp ; u32 val ; unsigned int tmp___0 ; { changed = 0; oldstate = (int )cp->lstate; link_was_not_down = oldstate != 0; if ((unsigned long )ep == (unsigned long )((struct ethtool_cmd *)0)) { goto start_aneg; } else { } lcntl = cp->link_cntl; if ((unsigned int )ep->autoneg == 1U) { cp->link_cntl = 4096; } else { { tmp = ethtool_cmd_speed((struct ethtool_cmd const *)ep); speed = tmp; cp->link_cntl = 0; } if (speed == 100U) { cp->link_cntl = cp->link_cntl | 8192; } else if (speed == 1000U) { cp->link_cntl = cp->link_cntl | 64; } else { } if ((unsigned int )ep->duplex == 1U) { cp->link_cntl = cp->link_cntl | 256; } else { } } changed = lcntl != cp->link_cntl; start_aneg: ; if ((unsigned int )cp->lstate == 5U) { { netdev_info((struct net_device const *)cp->dev, "PCS link down\n"); } } else if (changed != 0) { { netdev_info((struct net_device const *)cp->dev, "link configuration changed\n"); } } else { } cp->lstate = 0; cp->link_transition = 5; if (cp->hw_running == 0) { return; } else { } if (oldstate == 5) { { netif_carrier_off(cp->dev); } } else { } if (changed != 0 && link_was_not_down != 0) { { atomic_inc(& cp->reset_task_pending); atomic_inc(& cp->reset_task_pending_all); schedule_work(& cp->reset_task); cp->timer_ticks = 0; ldv_mod_timer_129(& cp->link_timer, (unsigned long )jiffies + 550UL); } return; } else { } if (cp->phy_type & 1) { { tmp___0 = readl((void const volatile *)cp->regs + 36864U); val = tmp___0; } if ((cp->link_cntl & 4096) != 0) { val = val | 4608U; cp->lstate = 1; } else { if ((cp->link_cntl & 256) != 0) { val = val | 256U; } else { } val = val & 4294963199U; cp->lstate = 4; } { cp->link_transition = 4; writel(val, (void volatile *)cp->regs + 36864U); } } else { { cas_mif_poll(cp, 0); ctl = cas_phy_read(cp, 0); ctl = (unsigned int )ctl & 52927U; ctl = (u16 )((int )((short )ctl) | (int )((short )cp->link_cntl)); } if (((int )ctl & 4096) != 0) { ctl = (u16 )((unsigned int )ctl | 512U); cp->lstate = 1; } else { cp->lstate = 4; } { cp->link_transition = 4; cas_phy_write(cp, 0, (int )ctl); cas_mif_poll(cp, 1); } } { cp->timer_ticks = 0; ldv_mod_timer_130(& cp->link_timer, (unsigned long )jiffies + 550UL); } return; } } static int cas_reset_mii_phy(struct cas *cp ) { int limit ; u16 val ; { { limit = 1000; cas_phy_write(cp, 0, 32768); __const_udelay(429500UL); } goto ldv_49135; ldv_49134: { val = cas_phy_read(cp, 0); } if ((int )((short )val) >= 0) { goto ldv_49133; } else { } { __const_udelay(42950UL); } ldv_49135: limit = limit - 1; if (limit != 0) { goto ldv_49134; } else { } ldv_49133: ; return (limit <= 0); } } static void cas_saturn_firmware_init(struct cas *cp ) { struct firmware const *fw ; char fw_name[16U] ; int err ; void *tmp ; { fw_name[0] = 's'; fw_name[1] = 'u'; fw_name[2] = 'n'; fw_name[3] = '/'; fw_name[4] = 'c'; fw_name[5] = 'a'; fw_name[6] = 's'; fw_name[7] = 's'; fw_name[8] = 'i'; fw_name[9] = 'n'; fw_name[10] = 'i'; fw_name[11] = '.'; fw_name[12] = 'b'; fw_name[13] = 'i'; fw_name[14] = 'n'; fw_name[15] = '\000'; if (cp->phy_id != 536894584U) { return; } else { } { err = request_firmware(& fw, (char const *)(& fw_name), & (cp->pdev)->dev); } if (err != 0) { { printk("\vcassini: Failed to load firmware \"%s\"\n", (char const *)(& fw_name)); } return; } else { } if ((unsigned long )fw->size <= 1UL) { { printk("\vcassini: bogus length %zu in \"%s\"\n", fw->size, (char const *)(& fw_name)); } goto out; } else { } { cp->fw_load_addr = (u16 )((int )((short )((int )*(fw->data + 1UL) << 8)) | (int )((short )*(fw->data))); cp->fw_size = (u32 )fw->size - 2U; tmp = ldv_vmalloc_131((unsigned long )cp->fw_size); cp->fw_data = (u8 *)tmp; } if ((unsigned long )cp->fw_data == (unsigned long )((u8 *)0U)) { goto out; } else { } { memcpy((void *)cp->fw_data, (void const *)fw->data + 2U, (size_t )cp->fw_size); } out: { release_firmware(fw); } return; } } static void cas_saturn_firmware_load(struct cas *cp ) { int i ; { if ((unsigned long )cp->fw_data == (unsigned long )((u8 *)0U)) { return; } else { } { cas_phy_powerdown(cp); cas_phy_write(cp, 22, 0); cas_phy_write(cp, 30, 36857); cas_phy_write(cp, 29, 189); cas_phy_write(cp, 30, 36858); cas_phy_write(cp, 29, 130); cas_phy_write(cp, 30, 36859); cas_phy_write(cp, 29, 0); cas_phy_write(cp, 30, 36860); cas_phy_write(cp, 29, 57); cas_phy_write(cp, 22, 1); cas_phy_write(cp, 30, (int )cp->fw_load_addr); i = 0; } goto ldv_49148; ldv_49147: { cas_phy_write(cp, 29, (int )*(cp->fw_data + (unsigned long )i)); i = i + 1; } ldv_49148: ; if ((u32 )i < cp->fw_size) { goto ldv_49147; } else { } { cas_phy_write(cp, 30, 36856); cas_phy_write(cp, 29, 1); } return; } } static void cas_phy_init(struct cas *cp ) { u16 val ; u16 tmp ; u32 val___0 ; int limit ; unsigned int tmp___0 ; unsigned int tmp___1 ; { if ((cp->phy_type & 6) != 0) { { writel(0U, (void volatile *)cp->regs + 36944U); cas_mif_poll(cp, 0); cas_reset_mii_phy(cp); } if (cp->phy_id == 4420641U) { { cas_phy_write(cp, 31, 32768); cas_phy_write(cp, 0, 241); cas_phy_write(cp, 31, 0); } } else if ((cp->phy_id & 4294967292U) == 2121808U) { { cas_phy_write(cp, 24, 3104); cas_phy_write(cp, 23, 18); cas_phy_write(cp, 21, 6148); cas_phy_write(cp, 23, 19); cas_phy_write(cp, 21, 4612); cas_phy_write(cp, 23, 32774); cas_phy_write(cp, 21, 306); cas_phy_write(cp, 23, 32774); cas_phy_write(cp, 21, 562); cas_phy_write(cp, 23, 8223); cas_phy_write(cp, 21, 2592); } } else if (cp->phy_id == 2121841U) { { val = cas_phy_read(cp, 20); val = cas_phy_read(cp, 20); } if (((int )val & 128) != 0) { { cas_phy_write(cp, 20, (int )val & 65407); } } else { } } else if ((cp->cas_flags & 8U) != 0U) { { writel((cp->phy_type & 2) != 0 ? 512U : 0U, (void volatile *)cp->regs + 4204U); } if (cp->phy_id == 536894584U) { { cas_saturn_firmware_load(cp); } } else { } { cas_phy_powerup(cp); } } else { } { val = cas_phy_read(cp, 0); val = (unsigned int )val & 61439U; cas_phy_write(cp, 0, (int )val); __const_udelay(42950UL); tmp = cas_phy_read(cp, 4); cas_phy_write(cp, 4, (int )((unsigned int )tmp | 3552U)); } if ((int )cp->cas_flags & 1) { { val = cas_phy_read(cp, 9); val = (unsigned int )val & 65279U; val = (u16 )((unsigned int )val | 512U); cas_phy_write(cp, 9, (int )val); } } else { } } else { { writel(2U, (void volatile *)cp->regs + 36944U); } if ((cp->cas_flags & 8U) != 0U) { { writel(0U, (void volatile *)cp->regs + 4204U); } } else { } { val___0 = readl((void const volatile *)cp->regs + 36864U); val___0 = val___0 | 32768U; writel(val___0, (void volatile *)cp->regs + 36864U); limit = 5000; } goto ldv_49158; ldv_49157: { __const_udelay(42950UL); tmp___0 = readl((void const volatile *)cp->regs + 36864U); } if ((tmp___0 & 32768U) == 0U) { goto ldv_49156; } else { } ldv_49158: limit = limit - 1; if (limit > 0) { goto ldv_49157; } else { } ldv_49156: ; if (limit <= 0) { { tmp___1 = readl((void const volatile *)cp->regs + 36884U); netdev_warn((struct net_device const *)cp->dev, "PCS reset bit would not clear [%08x]\n", tmp___1); } } else { } { writel(0U, (void volatile *)cp->regs + 36880U); val___0 = readl((void const volatile *)cp->regs + 36872U); val___0 = val___0 & 4294967231U; val___0 = val___0 | 416U; writel(val___0, (void volatile *)cp->regs + 36872U); writel(1U, (void volatile *)cp->regs + 36880U); writel(2U, (void volatile *)cp->regs + 36948U); } } return; } } static int cas_pcs_link_check(struct cas *cp ) { u32 stat ; u32 state_machine ; int retval ; { { retval = 0; stat = readl((void const volatile *)cp->regs + 36868U); } if ((stat & 4U) == 0U) { { stat = readl((void const volatile *)cp->regs + 36868U); } } else { } if ((stat & 48U) == 48U) { if ((cp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)cp->dev, "PCS RemoteFault\n"); } } else { } } else { } { state_machine = readl((void const volatile *)cp->regs + 36884U); } if ((state_machine & 122880U) != 90112U) { stat = stat & 4294967291U; } else if ((state_machine & 1792U) != 0U) { stat = stat | 4U; } else { } if ((stat & 4U) != 0U) { if ((unsigned int )cp->lstate != 5U) { if (cp->opened != 0) { { cp->lstate = 5; cp->link_transition = 3; cas_set_link_modes(cp); netif_carrier_on(cp->dev); } } else { } } else { } } else if ((unsigned int )cp->lstate == 5U) { cp->lstate = 0; if ((link_transition_timeout != 0 && cp->link_transition != 6) && cp->link_transition_jiffies_valid == 0) { retval = 1; cp->link_transition = 6; cp->link_transition_jiffies = jiffies; cp->link_transition_jiffies_valid = 1; } else { cp->link_transition = 1; } { netif_carrier_off(cp->dev); } if (cp->opened != 0) { if ((cp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)cp->dev, "PCS link down\n"); } } else { } } else { } if ((cp->cas_flags & 2U) == 0U) { { stat = readl((void const volatile *)cp->regs + 36956U); } if (stat == 3U) { return (1); } else { } } else { } } else if ((unsigned int )cp->lstate == 0U) { if ((link_transition_timeout != 0 && cp->link_transition != 6) && cp->link_transition_jiffies_valid == 0) { retval = 1; cp->link_transition = 6; cp->link_transition_jiffies = jiffies; cp->link_transition_jiffies_valid = 1; } else { cp->link_transition = 2; } } else { } return (retval); } } static int cas_pcs_interrupt(struct net_device *dev , struct cas *cp , u32 status ) { u32 stat ; unsigned int tmp ; int tmp___0 ; { { tmp = readl((void const volatile *)cp->regs + 36888U); stat = tmp; } if ((stat & 4U) == 0U) { return (0); } else { } { tmp___0 = cas_pcs_link_check(cp); } return (tmp___0); } } static int cas_txmac_interrupt(struct net_device *dev , struct cas *cp , u32 status ) { u32 txmac_stat ; unsigned int tmp ; { { tmp = readl((void const volatile *)cp->regs + 24592U); txmac_stat = tmp; } if (txmac_stat == 0U) { return (0); } else { } if ((cp->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); } } else { } if ((txmac_stat & 4294967295U) == 128U) { return (0); } else { } { ldv_spin_lock_132((spinlock_t *)(& cp->stat_lock)); } if ((txmac_stat & 2U) != 0U) { { netdev_err((struct net_device const *)dev, "TX MAC xmit underrun\n"); cp->net_stats[0].tx_fifo_errors = cp->net_stats[0].tx_fifo_errors + 1UL; } } else { } if ((txmac_stat & 4U) != 0U) { { netdev_err((struct net_device const *)dev, "TX MAC max packet size error\n"); cp->net_stats[0].tx_errors = cp->net_stats[0].tx_errors + 1UL; } } else { } if ((txmac_stat & 8U) != 0U) { cp->net_stats[0].collisions = cp->net_stats[0].collisions + 65536UL; } else { } if ((txmac_stat & 16U) != 0U) { cp->net_stats[0].tx_aborted_errors = cp->net_stats[0].tx_aborted_errors + 65536UL; cp->net_stats[0].collisions = cp->net_stats[0].collisions + 65536UL; } else { } if ((txmac_stat & 32U) != 0U) { cp->net_stats[0].tx_aborted_errors = cp->net_stats[0].tx_aborted_errors + 65536UL; cp->net_stats[0].collisions = cp->net_stats[0].collisions + 65536UL; } else { } { ldv_spin_unlock_133((spinlock_t *)(& cp->stat_lock)); } return (0); } } static void cas_load_firmware(struct cas *cp , cas_hp_inst_t *firmware ) { cas_hp_inst_t *inst ; u32 val ; int i ; { i = 0; goto ldv_49185; ldv_49184: { writel((unsigned int )i, (void volatile *)cp->regs + 16708U); val = (u32 )inst->val; val = val | (u32 )((int )inst->mask << 16); writel(val, (void volatile *)cp->regs + 16720U); val = (u32 )((int )inst->outarg >> 10) & 3U; val = val | ((u32 )((int )inst->outop << 2) & 60U); val = val | ((u32 )((int )inst->fnext << 6) & 1984U); val = val | ((u32 )((int )inst->foff << 11) & 260096U); val = val | ((u32 )((int )inst->snext << 18) & 8126464U); val = val | ((u32 )((int )inst->soff << 23) & 1065353216U); val = val | (u32 )((int )inst->op << 30); writel(val, (void volatile *)cp->regs + 16716U); val = (u32 )inst->outmask; val = val | ((u32 )((int )inst->outshift << 16) & 983040U); val = val | ((u32 )((int )inst->outenab << 20) & 3145728U); val = val | (u32 )((int )inst->outarg << 22); writel(val, (void volatile *)cp->regs + 16712U); firmware = firmware + 1; i = i + 1; } ldv_49185: inst = firmware; if ((unsigned long )inst != (unsigned long )((cas_hp_inst_t *)0) && (unsigned long )inst->note != (unsigned long )((char const *)0)) { goto ldv_49184; } else { } return; } } static void cas_init_rx_dma(struct cas *cp ) { u64 desc_dma ; u32 val ; int i ; int size ; unsigned int tmp___0 ; unsigned int tmp___1 ; { desc_dma = cp->block_dvma; val = 2048U; val = val | 8U; val = val | 128U; if ((cp->cas_flags & 2U) != 0U) { val = val | 262144U; } else { } { writel(val, (void volatile *)cp->regs + 16384U); val = (u32 )((long )cp->init_rxds[0]) - (u32 )((long )cp->init_block); writel((unsigned int )((desc_dma + (u64 )val) >> 32), (void volatile *)cp->regs + 16428U); writel((unsigned int )desc_dma + val, (void volatile *)cp->regs + 16424U); writel(508U, (void volatile *)cp->regs + 16420U); } if ((cp->cas_flags & 2U) != 0U) { { val = (u32 )((long )cp->init_rxds[1]) - (u32 )((long )cp->init_block); writel((unsigned int )((desc_dma + (u64 )val) >> 32), (void volatile *)cp->regs + 16900U); writel((unsigned int )desc_dma + val, (void volatile *)cp->regs + 16896U); writel(508U, (void volatile *)cp->regs + 16928U); } } else { } { val = (u32 )((long )cp->init_rxcs[0]) - (u32 )((long )cp->init_block); writel((unsigned int )((desc_dma + (u64 )val) >> 32), (void volatile *)cp->regs + 16436U); writel((unsigned int )desc_dma + val, (void volatile *)cp->regs + 16432U); } if ((cp->cas_flags & 2U) != 0U) { i = 1; goto ldv_49195; ldv_49194: { val = (u32 )((long )cp->init_rxcs[i]) - (u32 )((long )cp->init_block); writel((unsigned int )((desc_dma + (u64 )val) >> 32), (void volatile *)cp->regs + (unsigned long )((i + -1) * 8 + 16908)); writel((unsigned int )desc_dma + val, (void volatile *)cp->regs + (unsigned long )((i + 2112) * 8)); i = i + 1; } ldv_49195: ; if (i <= 3) { goto ldv_49194; } else { } } else { } { readl((void const volatile *)cp->regs + 28U); writel(48U, (void volatile *)cp->regs + 20U); } if ((cp->cas_flags & 2U) != 0U) { i = 1; goto ldv_49198; ldv_49197: { readl((void const volatile *)cp->regs + (unsigned long )((i + -1) * 16 + 4164)); i = i + 1; } ldv_49198: ; if (i <= 0) { goto ldv_49197; } else { } i = 2; goto ldv_49201; ldv_49200: { writel(1U, (void volatile *)cp->regs + (unsigned long )((i + 259) * 16)); i = i + 1; } ldv_49201: ; if (i <= 0) { goto ldv_49200; } else { } } else { } { val = (u32 )(cp->rx_pause_off / 64) & 511U; val = val | ((u32 )(cp->rx_pause_on / 64 << 12) & 2093056U); writel(val, (void volatile *)cp->regs + 16416U); i = 0; } goto ldv_49204; ldv_49203: { writel((unsigned int )i, (void volatile *)cp->regs + 16680U); writel(0U, (void volatile *)cp->regs + 16684U); writel(0U, (void volatile *)cp->regs + 16688U); writel(0U, (void volatile *)cp->regs + 16692U); i = i + 1; } ldv_49204: ; if (i <= 63) { goto ldv_49203; } else { } { writel(0U, (void volatile *)cp->regs + 16532U); writel(0U, (void volatile *)cp->regs + 16644U); val = 61440U; val = val | 5U; writel(val, (void volatile *)cp->regs + 16452U); val = 8388608U; writel(val, (void volatile *)cp->regs + 16456U); } if ((cp->cas_flags & 2U) != 0U) { { val = 256U; writel(val, (void volatile *)cp->regs + 16960U); } } else { } { writel(0U, (void volatile *)cp->regs + 16460U); val = 0U; } if (cp->page_size == 4096) { val = 1U; } else if (cp->page_size == 8192) { val = 2U; } else if (cp->page_size == 16384) { val = 3U; } else { } size = (int )((cp->dev)->mtu + 64U); if (size > cp->page_size) { size = cp->page_size; } else { } if (size <= 1024) { i = 0; } else if (size <= 2048) { i = 1; } else if (size <= 4096) { i = 2; } else { i = 3; } { cp->mtu_stride = 1 << (i + 10); val = val & 3U; val = val | ((u32 )(i << 27) & 402653184U); val = val | ((u32 )((cp->page_size >> (i + 10)) << 11) & 30720U); val = val | 1073741824U; writel(val, (void volatile *)cp->regs + 16388U); tmp___1 = cpumask_weight(cpu_online_mask); } if (tmp___1 <= 63U) { { tmp___0 = cpumask_weight(cpu_online_mask); val = (tmp___0 << 2) & 255U; } } else { val = 0U; } { val = val | 257U; val = val | 783360U; writel(val, (void volatile *)cp->regs + 16704U); } return; } } __inline static void cas_rxc_init(struct cas_rx_comp *rxc ) { { { memset((void *)rxc, 0, 32UL); rxc->word4 = 8796093022208ULL; } return; } } __inline static cas_page_t *cas_page_spare(struct cas *cp , int const index ) { cas_page_t *page ; cas_page_t *new ; int tmp ; { { page = cp->rx_pages[1][index]; tmp = page_count(page->buffer); } if (tmp == 1) { return (page); } else { } { new = cas_page_dequeue(cp); } if ((unsigned long )new != (unsigned long )((cas_page_t *)0)) { { ldv_spin_lock_105(& cp->rx_inuse_lock); list_add(& page->list, & cp->rx_inuse_list); ldv_spin_unlock_106(& cp->rx_inuse_lock); } } else { } return (new); } } static cas_page_t *cas_page_swap(struct cas *cp , int const ring , int const index ) { cas_page_t **page0 ; cas_page_t **page1 ; cas_page_t *new ; cas_page_t *tmp ; int tmp___0 ; { { page0 = (cas_page_t **)(& cp->rx_pages); page1 = (cas_page_t **)(& cp->rx_pages) + 1U; tmp___0 = page_count((*(page0 + (unsigned long )index))->buffer); } if (tmp___0 > 1) { { tmp = cas_page_spare(cp, index); new = tmp; } if ((unsigned long )new != (unsigned long )((cas_page_t *)0)) { *(page1 + (unsigned long )index) = *(page0 + (unsigned long )index); *(page0 + (unsigned long )index) = new; } else { } } else { } return (*(page0 + (unsigned long )index)); } } static void cas_clean_rxds(struct cas *cp ) { struct cas_rx_desc *rxd ; int i ; int size ; struct sk_buff *skb ; cas_page_t *page ; cas_page_t *tmp ; { rxd = cp->init_rxds[0]; i = 0; goto ldv_49234; ldv_49233: ; goto ldv_49231; ldv_49230: { netif_rx(skb); } ldv_49231: { skb = __skb_dequeue((struct sk_buff_head *)(& cp->rx_flows) + (unsigned long )i); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_49230; } else { } i = i + 1; ldv_49234: ; if (i <= 63) { goto ldv_49233; } else { } size = 512; i = 0; goto ldv_49238; ldv_49237: { tmp = cas_page_swap(cp, 0, i); page = tmp; (rxd + (unsigned long )i)->buffer = page->dma_addr; (rxd + (unsigned long )i)->index = (unsigned long long )i & 4095ULL; i = i + 1; } ldv_49238: ; if (i < size) { goto ldv_49237; } else { } cp->rx_old[0] = 508; cp->rx_last[0] = 0; cp->cas_flags = cp->cas_flags & 4294967279U; return; } } static void cas_clean_rxcs(struct cas *cp ) { int i ; int j ; struct cas_rx_comp *rxc ; { { memset((void *)(& cp->rx_cur), 0, 4UL); memset((void *)(& cp->rx_new), 0, 4UL); i = 0; } goto ldv_49250; ldv_49249: rxc = cp->init_rxcs[i]; j = 0; goto ldv_49247; ldv_49246: { cas_rxc_init(rxc + (unsigned long )j); j = j + 1; } ldv_49247: ; if (j <= 2047) { goto ldv_49246; } else { } i = i + 1; ldv_49250: ; if (i <= 0) { goto ldv_49249; } else { } return; } } static int cas_rxmac_interrupt(struct net_device *dev , struct cas *cp , u32 status ) { u32 stat ; unsigned int tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = readl((void const volatile *)cp->regs + 24596U); stat = tmp; } if (stat == 0U) { return (0); } else { } if ((cp->msg_enable & 512U) != 0U) { { descriptor.modname = "cassini"; descriptor.function = "cas_rxmac_interrupt"; descriptor.filename = "drivers/net/ethernet/sun/cassini.c"; descriptor.format = "rxmac interrupt, stat: 0x%x\n"; descriptor.lineno = 1525U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); } } else { } } else { } { ldv_spin_lock_132((spinlock_t *)(& cp->stat_lock)); } if ((stat & 8U) != 0U) { cp->net_stats[0].rx_frame_errors = cp->net_stats[0].rx_frame_errors + 65536UL; } else { } if ((stat & 16U) != 0U) { cp->net_stats[0].rx_crc_errors = cp->net_stats[0].rx_crc_errors + 65536UL; } else { } if ((stat & 32U) != 0U) { cp->net_stats[0].rx_length_errors = cp->net_stats[0].rx_length_errors + 65536UL; } else { } if ((stat & 2U) != 0U) { cp->net_stats[0].rx_over_errors = cp->net_stats[0].rx_over_errors + 1UL; cp->net_stats[0].rx_fifo_errors = cp->net_stats[0].rx_fifo_errors + 1UL; } else { } { ldv_spin_unlock_133((spinlock_t *)(& cp->stat_lock)); } return (0); } } static int cas_mac_interrupt(struct net_device *dev , struct cas *cp , u32 status ) { u32 stat ; unsigned int tmp ; { { tmp = readl((void const volatile *)cp->regs + 24600U); stat = tmp; } if (stat == 0U) { return (0); } else { } if ((cp->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "mac interrupt, stat: 0x%x\n", stat); } } else { } if ((stat & 2U) != 0U) { cp->pause_entered = cp->pause_entered + 1ULL; } else { } if ((int )stat & 1) { cp->pause_last_time_recvd = (u16 )(stat >> 16); } else { } return (0); } } __inline static int cas_mdio_link_not_up(struct cas *cp ) { u16 val ; { { if ((unsigned int )cp->lstate == 3U) { goto case_3; } else { } if ((unsigned int )cp->lstate == 1U) { goto case_1; } else { } if ((unsigned int )cp->lstate == 2U) { goto case_2; } else { } goto switch_default; case_3: /* CIL Label */ ; if ((cp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)cp->dev, "Autoneg failed again, keeping forced mode\n"); } } else { } { cas_phy_write(cp, 0, (int )((u16 )cp->link_fcntl)); cp->timer_ticks = 5; cp->lstate = 4; cp->link_transition = 4; } goto ldv_49271; case_1: /* CIL Label */ { val = cas_phy_read(cp, 0); val = (unsigned int )val & 60927U; val = (u16 )((unsigned int )val | 256U); val = (u16 )((int )((short )val) | ((int )cp->cas_flags & 1 ? 64 : 8192)); cas_phy_write(cp, 0, (int )val); cp->timer_ticks = 5; cp->lstate = 2; cp->link_transition = 4; } goto ldv_49271; case_2: /* CIL Label */ { val = cas_phy_read(cp, 0); cp->timer_ticks = 5; } if (((int )val & 64) != 0) { { val = (unsigned int )val & 65471U; val = (u16 )((unsigned int )val | 8448U); cas_phy_write(cp, 0, (int )val); } goto ldv_49271; } else { } if (((int )val & 8192) != 0) { if (((int )val & 256) != 0) { val = (unsigned int )val & 65279U; } else { val = (unsigned int )val & 57343U; } { cas_phy_write(cp, 0, (int )val); } goto ldv_49271; } else { } switch_default: /* CIL Label */ ; goto ldv_49271; switch_break: /* CIL Label */ ; } ldv_49271: ; return (0); } } static int cas_mii_link_check(struct cas *cp , u16 const bmsr ) { int restart ; u16 tmp ; { if (((int )bmsr & 4) != 0) { if ((unsigned int )cp->lstate == 2U && (cp->link_cntl & 4096) != 0) { { cp->lstate = 3; cp->link_transition = 4; cas_mif_poll(cp, 0); tmp = cas_phy_read(cp, 0); cp->link_fcntl = (int )tmp; cp->timer_ticks = 5; } if (cp->opened != 0) { if ((cp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)cp->dev, "Got link after fallback, retrying autoneg once...\n"); } } else { } } else { } { cas_phy_write(cp, 0, (int )((u16 )((int )((short )cp->link_fcntl) | 4608))); cas_mif_poll(cp, 1); } } else if ((unsigned int )cp->lstate != 5U) { cp->lstate = 5; cp->link_transition = 3; if (cp->opened != 0) { { cas_set_link_modes(cp); netif_carrier_on(cp->dev); } } else { } } else { } return (0); } else { } restart = 0; if ((unsigned int )cp->lstate == 5U) { { cp->lstate = 0; cp->link_transition = 5; netif_carrier_off(cp->dev); } if (cp->opened != 0) { if ((cp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)cp->dev, "Link down\n"); } } else { } } else { } restart = 1; } else { cp->timer_ticks = cp->timer_ticks + 1; if (cp->timer_ticks > 10) { { cas_mdio_link_not_up(cp); } } else { } } return (restart); } } static int cas_mif_interrupt(struct net_device *dev , struct cas *cp , u32 status ) { u32 stat ; unsigned int tmp ; u16 bmsr ; int tmp___0 ; { { tmp = readl((void const volatile *)cp->regs + 25112U); stat = tmp; } if ((stat & 65535U) == 0U) { return (0); } else { } { bmsr = (u16 )(stat >> 16); tmp___0 = cas_mii_link_check(cp, (int )bmsr); } return (tmp___0); } } static int cas_pci_interrupt(struct net_device *dev , struct cas *cp , u32 status ) { u32 stat ; unsigned int tmp ; unsigned int tmp___0 ; u16 cfg ; { { tmp = readl((void const volatile *)cp->regs + 4096U); stat = tmp; } if (stat == 0U) { return (0); } else { } { tmp___0 = readl((void const volatile *)cp->regs + 4108U); netdev_err((struct net_device const *)dev, "PCI error [%04x:%04x]", stat, tmp___0); } if ((int )stat & 1 && (cp->cas_flags & 2U) == 0U) { { printk(" "); } } else { } if ((stat & 2U) != 0U) { { printk(" "); } } else { } if ((stat & 4U) != 0U) { { printk(" "); } } else { } if ((stat & 8U) != 0U) { { printk(" "); } } else { } if ((stat & 16U) != 0U) { { printk(" "); } } else { } { printk("\n"); } if ((stat & 4U) != 0U) { { pci_read_config_word((struct pci_dev const *)cp->pdev, 6, & cfg); netdev_err((struct net_device const *)dev, "Read PCI cfg space status [%04x]\n", (int )cfg); } if (((int )cfg & 256) != 0) { { netdev_err((struct net_device const *)dev, "PCI parity error detected\n"); } } else { } if (((int )cfg & 2048) != 0) { { netdev_err((struct net_device const *)dev, "PCI target abort\n"); } } else { } if (((int )cfg & 4096) != 0) { { netdev_err((struct net_device const *)dev, "PCI master acks target abort\n"); } } else { } if (((int )cfg & 8192) != 0) { { netdev_err((struct net_device const *)dev, "PCI master abort\n"); } } else { } if (((int )cfg & 16384) != 0) { { netdev_err((struct net_device const *)dev, "PCI system error SERR#\n"); } } else { } if ((int )((short )cfg) < 0) { { netdev_err((struct net_device const *)dev, "PCI parity error\n"); } } else { } { cfg = (unsigned int )cfg & 63744U; pci_write_config_word((struct pci_dev const *)cp->pdev, 6, (int )cfg); } } else { } return (1); } } static int cas_abnormal_irq(struct net_device *dev , struct cas *cp , u32 status ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { if ((status & 64U) != 0U) { if ((cp->msg_enable & 64U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "corrupt rx tag framing\n"); } } else { } { ldv_spin_lock_132((spinlock_t *)(& cp->stat_lock)); cp->net_stats[0].rx_errors = cp->net_stats[0].rx_errors + 1UL; ldv_spin_unlock_133((spinlock_t *)(& cp->stat_lock)); } goto do_reset; } else { } if ((status & 1024U) != 0U) { if ((cp->msg_enable & 64U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "length mismatch for rx frame\n"); } } else { } { ldv_spin_lock_132((spinlock_t *)(& cp->stat_lock)); cp->net_stats[0].rx_errors = cp->net_stats[0].rx_errors + 1UL; ldv_spin_unlock_133((spinlock_t *)(& cp->stat_lock)); } goto do_reset; } else { } if ((status & 8192U) != 0U) { { tmp = cas_pcs_interrupt(dev, cp, status); } if (tmp != 0) { goto do_reset; } else { } } else { } if ((status & 16384U) != 0U) { { tmp___0 = cas_txmac_interrupt(dev, cp, status); } if (tmp___0 != 0) { goto do_reset; } else { } } else { } if ((status & 32768U) != 0U) { { tmp___1 = cas_rxmac_interrupt(dev, cp, status); } if (tmp___1 != 0) { goto do_reset; } else { } } else { } if ((status & 65536U) != 0U) { { tmp___2 = cas_mac_interrupt(dev, cp, status); } if (tmp___2 != 0) { goto do_reset; } else { } } else { } if ((status & 131072U) != 0U) { { tmp___3 = cas_mif_interrupt(dev, cp, status); } if (tmp___3 != 0) { goto do_reset; } else { } } else { } if ((status & 262144U) != 0U) { { tmp___4 = cas_pci_interrupt(dev, cp, status); } if (tmp___4 != 0) { goto do_reset; } else { } } else { } return (0); do_reset: { atomic_inc(& cp->reset_task_pending); atomic_inc(& cp->reset_task_pending_all); netdev_err((struct net_device const *)dev, "reset called in cas_abnormal_irq [0x%x]\n", status); schedule_work(& cp->reset_task); } return (1); } } __inline static int cas_calc_tabort(struct cas *cp , unsigned long const addr , int const len ) { unsigned long off ; { off = (unsigned long )addr + (unsigned long )len; if ((cp->cas_flags & 4U) == 0U) { return (0); } else { } if (((off + 4095UL) & 0xfffffffffffff000UL) - off > 32UL) { return (0); } else { } return (32); } } __inline static void cas_tx_ringN(struct cas *cp , int ring , int limit ) { struct cas_tx_desc *txds ; struct sk_buff **skbs ; struct net_device *dev ; int entry ; int count ; struct sk_buff *skb ; dma_addr_t daddr ; u32 dlen ; int frag ; unsigned char *tmp ; struct cas_tx_desc *txd ; unsigned char *tmp___0 ; bool tmp___1 ; { { dev = cp->dev; ldv_spin_lock_101((spinlock_t *)(& cp->tx_lock) + (unsigned long )ring); txds = cp->init_txds[ring]; skbs = (struct sk_buff **)(& cp->tx_skbs) + (unsigned long )ring; entry = cp->tx_old[ring]; count = entry <= limit ? limit - entry : (512 - entry) + limit; } goto ldv_49320; ldv_49326: skb = *(skbs + (unsigned long )entry); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { entry = (entry + 1) & 511; goto ldv_49320; } else { } { tmp = skb_end_pointer((struct sk_buff const *)skb); count = count + ~ ((int )((struct skb_shared_info *)tmp)->nr_frags + cp->tx_tiny_use[ring][entry].nbufs); } if (count < 0) { goto ldv_49321; } else { } if ((cp->msg_enable & 1024U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "tx[%d] done, slot %d\n", ring, entry); } } else { } *(skbs + (unsigned long )entry) = (struct sk_buff *)0; cp->tx_tiny_use[ring][entry].nbufs = 0; frag = 0; goto ldv_49324; ldv_49323: { txd = txds + (unsigned long )entry; daddr = txd->buffer; dlen = (u32 )txd->control & 16383U; pci_unmap_page(cp->pdev, daddr, (size_t )dlen, 1); entry = (entry + 1) & 511; } if (cp->tx_tiny_use[ring][entry].used != 0) { cp->tx_tiny_use[ring][entry].used = 0; entry = (entry + 1) & 511; } else { } frag = frag + 1; ldv_49324: { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (frag <= (int )((struct skb_shared_info *)tmp___0)->nr_frags) { goto ldv_49323; } else { } { ldv_spin_lock_101((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); cp->net_stats[ring].tx_packets = cp->net_stats[ring].tx_packets + 1UL; cp->net_stats[ring].tx_bytes = cp->net_stats[ring].tx_bytes + (unsigned long )skb->len; ldv_spin_unlock_103((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); dev_kfree_skb_irq(skb); } ldv_49320: ; if (entry != limit) { goto ldv_49326; } else { } ldv_49321: { cp->tx_old[ring] = entry; tmp___1 = netif_queue_stopped((struct net_device const *)dev); } if ((int )tmp___1 && (unsigned long )(cp->tx_old[ring] <= cp->tx_new[ring] ? (cp->tx_old[ring] + 511) - cp->tx_new[ring] : (cp->tx_old[ring] - cp->tx_new[ring]) + -1) > ((cp->cas_flags & 4U) != 0U ? 36UL : 18UL)) { { netif_wake_queue(dev); } } else { } { ldv_spin_unlock_103((spinlock_t *)(& cp->tx_lock) + (unsigned long )ring); } return; } } static void cas_tx(struct net_device *dev , struct cas *cp , u32 status ) { int limit ; int ring ; u64 compwb ; { compwb = (cp->init_block)->tx_compwb; if ((cp->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "tx interrupt, status: 0x%x, %llx\n", status, compwb); } } else { } ring = 0; goto ldv_49336; ldv_49335: limit = (int )((((unsigned int )compwb << 8U) & 65535U) | (unsigned int )((compwb & 65280ULL) >> 8)); compwb = compwb >> 16; if (cp->tx_old[ring] != limit) { { cas_tx_ringN(cp, ring, limit); } } else { } ring = ring + 1; ldv_49336: ; if (ring <= 3) { goto ldv_49335; } else { } return; } } extern void __compiletime_assert_1997(void) ; extern void __compiletime_assert_2032(void) ; extern void __compiletime_assert_2106(void) ; extern void __compiletime_assert_2125(void) ; extern void __compiletime_assert_2142(void) ; static int cas_rx_process_pkt(struct cas *cp , struct cas_rx_comp *rxc , int entry , u64 const *words , struct sk_buff **skbref ) { int dlen ; int hlen ; int len ; int i ; int alloclen ; int off ; int swivel ; struct cas_page *page ; struct sk_buff *skb ; void *addr ; void *crcaddr ; __sum16 csum ; char *p ; int _max1 ; int _max2 ; bool __cond ; skb_frag_t *frag ; unsigned char *tmp ; int _min1 ; int _min2 ; bool __cond___0 ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; int _min1___0 ; int _min2___0 ; bool __cond___1 ; bool __cond___2 ; __u16 tmp___2 ; __wsum tmp___3 ; __wsum tmp___4 ; bool __cond___3 ; { swivel = 2; hlen = (int )(((unsigned long long )*(words + 1UL) & 17557826306048ULL) >> 35); dlen = (int )(((unsigned long long )*words & 134209536ULL) >> 13); len = hlen + dlen; if ((int )*(words + 2UL) & 1) { alloclen = len; } else { _max1 = hlen; _max2 = 64; alloclen = _max1 > _max2 ? _max1 : _max2; } { skb = netdev_alloc_skb(cp->dev, (unsigned int )((alloclen + swivel) + cp->crc_size)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-1); } else { } { *skbref = skb; skb_reserve(skb, swivel); p = (char *)skb->data; crcaddr = (void *)0; addr = crcaddr; } if (hlen != 0) { i = (int )((unsigned long long )*(words + 1UL) >> 50); page = cp->rx_pages[((unsigned long long )i & 4096ULL) >> 12][(unsigned long long )i & 4095ULL]; off = (int )((unsigned int )(((unsigned long long )*(words + 1UL) & 1108307720798208ULL) >> 44) * 256U + (unsigned int )swivel); i = hlen; if (dlen == 0) { i = i + cp->crc_size; } else { } { pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + (dma_addr_t )off, (size_t )i, 2); addr = kmap_atomic(page->buffer); memcpy((void *)p, (void const *)addr + (unsigned long )off, (size_t )i); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + (dma_addr_t )off, (size_t )i, 2); __cond = 0; } if ((int )__cond) { { __compiletime_assert_1997(); } } else { } { __kunmap_atomic(addr); p = p + (unsigned long )hlen; swivel = 0; } } else { } if (alloclen < hlen + dlen) { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags); i = (int )(((unsigned long long )*words & 36026597995708416ULL) >> 41); page = cp->rx_pages[((unsigned long long )i & 4096ULL) >> 12][(unsigned long long )i & 4095ULL]; off = (int )((unsigned int )(((unsigned long long )*words & 2198889037824ULL) >> 27) + (unsigned int )swivel); _min1 = cp->page_size - off; _min2 = dlen; hlen = _min1 < _min2 ? _min1 : _min2; } if (hlen < 0) { if ((cp->msg_enable & 64U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "rx page overflow: %d\n", hlen); } } else { } { dev_kfree_skb_irq(skb); } return (-1); } else { } i = hlen; if (i == dlen) { i = i + cp->crc_size; } else { } { pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + (dma_addr_t )off, (size_t )i, 2); swivel = 0; } if ((unsigned long )p == (unsigned long )((char *)skb->data)) { { addr = kmap_atomic(page->buffer); memcpy((void *)p, (void const *)addr + (unsigned long )off, 64UL); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + (dma_addr_t )off, (size_t )i, 2); __cond___0 = 0; } if ((int )__cond___0) { { __compiletime_assert_2032(); } } else { } { __kunmap_atomic(addr); off = off + 64; swivel = 64; } } else { } { skb_put(skb, (unsigned int )alloclen); tmp___0 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___0)->nr_frags = (unsigned char )((int )((struct skb_shared_info *)tmp___0)->nr_frags + 1); skb->data_len = skb->data_len + (unsigned int )(hlen - swivel); skb->truesize = skb->truesize + (unsigned int )(hlen - swivel); skb->len = skb->len + (unsigned int )(hlen - swivel); __skb_frag_set_page(frag, page->buffer); __skb_frag_ref(frag); frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )(hlen - swivel)); } if (((unsigned long long )*words & 288230376151711744ULL) != 0ULL) { dlen = dlen - hlen; if (dlen > 0) { { hlen = dlen; off = 0; i = (int )(((unsigned long long )*(words + 1UL) & 34357641216ULL) >> 21); page = cp->rx_pages[((unsigned long long )i & 4096ULL) >> 12][(unsigned long long )i & 4095ULL]; pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, (size_t )(hlen + cp->crc_size), 2); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, (size_t )(hlen + cp->crc_size), 2); tmp___1 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___1)->nr_frags = (unsigned char )((int )((struct skb_shared_info *)tmp___1)->nr_frags + 1); skb->data_len = skb->data_len + (unsigned int )hlen; skb->len = skb->len + (unsigned int )hlen; frag = frag + 1; __skb_frag_set_page(frag, page->buffer); __skb_frag_ref(frag); frag->page_offset = 0U; skb_frag_size_set(frag, (unsigned int )hlen); } } else { } } else { } if (cp->crc_size != 0) { { addr = kmap_atomic(page->buffer); crcaddr = addr + ((unsigned long )off + (unsigned long )hlen); } } else { } } else { if (dlen == 0) { goto end_copy_pkt; } else { } i = (int )(((unsigned long long )*words & 36026597995708416ULL) >> 41); page = cp->rx_pages[((unsigned long long )i & 4096ULL) >> 12][(unsigned long long )i & 4095ULL]; off = (int )((unsigned int )(((unsigned long long )*words & 2198889037824ULL) >> 27) + (unsigned int )swivel); _min1___0 = cp->page_size - off; _min2___0 = dlen; hlen = _min1___0 < _min2___0 ? _min1___0 : _min2___0; if (hlen < 0) { if ((cp->msg_enable & 64U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "rx page overflow: %d\n", hlen); } } else { } { dev_kfree_skb_irq(skb); } return (-1); } else { } i = hlen; if (i == dlen) { i = i + cp->crc_size; } else { } { pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + (dma_addr_t )off, (size_t )i, 2); addr = kmap_atomic(page->buffer); memcpy((void *)p, (void const *)addr + (unsigned long )off, (size_t )i); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + (dma_addr_t )off, (size_t )i, 2); __cond___1 = 0; } if ((int )__cond___1) { { __compiletime_assert_2106(); } } else { } { __kunmap_atomic(addr); } if (((unsigned long long )*words & 288230376151711744ULL) != 0ULL) { dlen = dlen - hlen; if (dlen > 0) { { p = p + (unsigned long )hlen; i = (int )(((unsigned long long )*(words + 1UL) & 34357641216ULL) >> 21); page = cp->rx_pages[((unsigned long long )i & 4096ULL) >> 12][(unsigned long long )i & 4095ULL]; pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, (size_t )(dlen + cp->crc_size), 2); addr = kmap_atomic(page->buffer); memcpy((void *)p, (void const *)addr, (size_t )(dlen + cp->crc_size)); pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, (size_t )(dlen + cp->crc_size), 2); __cond___2 = 0; } if ((int )__cond___2) { { __compiletime_assert_2125(); } } else { } { __kunmap_atomic(addr); } } else { } } else { } end_copy_pkt: ; if (cp->crc_size != 0) { addr = (void *)0; crcaddr = (void *)skb->data + (unsigned long )alloclen; } else { } { skb_put(skb, (unsigned int )alloclen); } } { tmp___2 = __fswab16((int )((__u16 )*(words + 3UL))); csum = tmp___2; } if (cp->crc_size != 0) { { tmp___3 = csum_unfold((int )csum); tmp___4 = csum_partial((void const *)crcaddr, cp->crc_size, tmp___3); csum = csum_fold(tmp___4); } if ((unsigned long )addr != (unsigned long )((void *)0)) { __cond___3 = 0; if ((int )__cond___3) { { __compiletime_assert_2142(); } } else { } { __kunmap_atomic(addr); } } else { } } else { } { skb->protocol = eth_type_trans(skb, cp->dev); } if ((unsigned int )skb->protocol == 8U) { { skb->__annonCompField68.csum = csum_unfold(~ ((int )csum)); skb->ip_summed = 2U; } } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } return (len); } } __inline static void cas_rx_flow_pkt(struct cas *cp , u64 const *words , struct sk_buff *skb ) { int flowid ; struct sk_buff_head *flow ; { { flowid = (int )(((unsigned long long )*(words + 2UL) & 33030144ULL) >> 19) & 63; flow = (struct sk_buff_head *)(& cp->rx_flows) + (unsigned long )flowid; __skb_queue_tail(flow, skb); } if (((unsigned long long )*words & 576460752303423488ULL) != 0ULL) { goto ldv_49397; ldv_49396: { netif_rx(skb); } ldv_49397: { skb = __skb_dequeue(flow); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_49396; } else { } } else { } return; } } static void cas_post_page(struct cas *cp , int const ring , int const index ) { cas_page_t *new ; int entry ; { { entry = cp->rx_old[ring]; new = cas_page_swap(cp, ring, index); (cp->init_rxds[ring] + (unsigned long )entry)->buffer = new->dma_addr; (cp->init_rxds[ring] + (unsigned long )entry)->index = ((unsigned long long )index & 4095ULL) | ((unsigned long long )(ring << 12) & 4096ULL); entry = (entry + 1) & 511; cp->rx_old[ring] = entry; } if (((unsigned int )entry & 3U) != 0U) { return; } else { } if ((int )ring == 0) { { writel((unsigned int )entry, (void volatile *)cp->regs + 16420U); } } else if ((cp->cas_flags & 2U) != 0U) { { writel((unsigned int )entry, (void volatile *)cp->regs + 16928U); } } else { } return; } } static int cas_post_rxds_ringN(struct cas *cp , int ring , int num ) { unsigned int entry ; unsigned int last ; unsigned int count ; unsigned int released ; int cluster ; cas_page_t **page ; cas_page_t *new ; cas_page_t *tmp ; int tmp___0 ; int tmp___1 ; { page = (cas_page_t **)(& cp->rx_pages) + (unsigned long )ring; entry = (unsigned int )cp->rx_old[ring]; if ((cp->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "rxd[%d] interrupt, done: %d\n", ring, entry); } } else { } cluster = -1; count = entry & 3U; last = num != 0 ? ((entry + (unsigned int )num) - 4U) & 511U : (entry - 4U) & 511U; released = 0U; goto ldv_49419; ldv_49418: { tmp___1 = page_count((*(page + (unsigned long )entry))->buffer); } if (tmp___1 > 1) { { tmp = cas_page_dequeue(cp); new = tmp; } if ((unsigned long )new == (unsigned long )((cas_page_t *)0)) { { cp->cas_flags = cp->cas_flags | ((u32 )(1 << (ring + 4)) & 240U); tmp___0 = timer_pending((struct timer_list const *)(& cp->link_timer)); } if (tmp___0 == 0) { { ldv_mod_timer_146(& cp->link_timer, (unsigned long )jiffies + 1UL); } } else { } cp->rx_old[ring] = (int )entry; cp->rx_last[ring] = num != 0 ? (int )((unsigned int )num - released) : 0; return (-12); } else { } { ldv_spin_lock_105(& cp->rx_inuse_lock); list_add(& (*(page + (unsigned long )entry))->list, & cp->rx_inuse_list); ldv_spin_unlock_106(& cp->rx_inuse_lock); (cp->init_rxds[ring] + (unsigned long )entry)->buffer = new->dma_addr; *(page + (unsigned long )entry) = new; } } else { } count = count + 1U; if (count == 4U) { cluster = (int )entry; count = 0U; } else { } released = released + 1U; entry = (entry + 1U) & 511U; ldv_49419: ; if (entry != last) { goto ldv_49418; } else { } cp->rx_old[ring] = (int )entry; if (cluster < 0) { return (0); } else { } if (ring == 0) { { writel((unsigned int )cluster, (void volatile *)cp->regs + 16420U); } } else if ((cp->cas_flags & 2U) != 0U) { { writel((unsigned int )cluster, (void volatile *)cp->regs + 16928U); } } else { } return (0); } } static int cas_rx_ringN(struct cas *cp , int ring , int budget ) { struct cas_rx_comp *rxcs ; int entry ; int drops ; int npackets ; unsigned int tmp ; struct cas_rx_comp *rxc ; struct sk_buff *skb ; int type ; int len ; u64 words[4U] ; int i ; int dring ; { rxcs = cp->init_rxcs[ring]; npackets = 0; if ((cp->msg_enable & 512U) != 0U) { { tmp = readl((void const volatile *)cp->regs + 16444U); netdev_printk("\017", (struct net_device const *)cp->dev, "rx[%d] interrupt, done: %d/%d\n", ring, tmp, cp->rx_new[ring]); } } else { } entry = cp->rx_new[ring]; drops = 0; ldv_49440: rxc = rxcs + (unsigned long )entry; skb = skb; words[0] = rxc->word1; words[1] = rxc->word2; words[2] = rxc->word3; words[3] = rxc->word4; type = (int )(words[0] >> 62); if (type == 0) { goto ldv_49437; } else { } if ((words[3] & 8796093022208ULL) != 0ULL) { goto ldv_49437; } else { } if ((words[3] & 0xc000000000000000ULL) != 0ULL) { { ldv_spin_lock_101((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); cp->net_stats[ring].rx_errors = cp->net_stats[ring].rx_errors + 1UL; } if ((long )words[3] < 0L) { cp->net_stats[ring].rx_length_errors = cp->net_stats[ring].rx_length_errors + 1UL; } else { } if ((words[3] & 4611686018427387904ULL) != 0ULL) { cp->net_stats[ring].rx_crc_errors = cp->net_stats[ring].rx_crc_errors + 1UL; } else { } { ldv_spin_unlock_103((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); } drop_it: { ldv_spin_lock_101((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); cp->net_stats[ring].rx_dropped = cp->net_stats[ring].rx_dropped + 1UL; ldv_spin_unlock_103((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); } goto next; } else { } { len = cas_rx_process_pkt(cp, rxc, entry, (u64 const *)(& words), & skb); } if (len < 0) { drops = drops + 1; goto drop_it; } else { } if (type == 2) { { netif_rx(skb); } } else { { cas_rx_flow_pkt(cp, (u64 const *)(& words), skb); } } { ldv_spin_lock_101((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); cp->net_stats[ring].rx_packets = cp->net_stats[ring].rx_packets + 1UL; cp->net_stats[ring].rx_bytes = cp->net_stats[ring].rx_bytes + (unsigned long )len; ldv_spin_unlock_103((spinlock_t *)(& cp->stat_lock) + (unsigned long )ring); } next: npackets = npackets + 1; if ((words[0] & 2305843009213693952ULL) != 0ULL) { { i = (int )(words[1] >> 50); dring = (int )(((unsigned long long )i & 4096ULL) >> 12); i = i & 4095; cas_post_page(cp, dring, i); } } else { } if ((words[0] & 1152921504606846976ULL) != 0ULL) { { i = (int )((words[0] & 36026597995708416ULL) >> 41); dring = (int )(((unsigned long long )i & 4096ULL) >> 12); i = i & 4095; cas_post_page(cp, dring, i); } } else { } if ((words[0] & 144115188075855872ULL) != 0ULL) { { i = (int )((words[1] & 34357641216ULL) >> 21); dring = (int )(((unsigned long long )i & 4096ULL) >> 12); i = i & 4095; cas_post_page(cp, dring, i); } } else { } entry = (int )(((unsigned int )entry + (unsigned int )((words[0] & 108086391056891904ULL) >> 55)) + 1U) & 2047; goto ldv_49440; ldv_49437: cp->rx_new[ring] = entry; if (drops != 0) { { netdev_info((struct net_device const *)cp->dev, "Memory squeeze, deferring packet\n"); } } else { } return (npackets); } } static void cas_post_rxcs_ringN(struct net_device *dev , struct cas *cp , int ring ) { struct cas_rx_comp *rxc ; int last ; int entry ; unsigned int tmp ; { rxc = cp->init_rxcs[ring]; last = cp->rx_cur[ring]; entry = cp->rx_new[ring]; if ((cp->msg_enable & 512U) != 0U) { { tmp = readl((void const volatile *)cp->regs + 16444U); netdev_printk("\017", (struct net_device const *)dev, "rxc[%d] interrupt, done: %d/%d\n", ring, tmp, entry); } } else { } goto ldv_49450; ldv_49449: { cas_rxc_init(rxc + (unsigned long )last); last = (last + 1) & 2047; } ldv_49450: ; if (last != entry) { goto ldv_49449; } else { } cp->rx_cur[ring] = last; if (ring == 0) { { writel((unsigned int )last, (void volatile *)cp->regs + 16448U); } } else if ((cp->cas_flags & 2U) != 0U) { { writel((unsigned int )last, (void volatile *)cp->regs + (unsigned long )((ring + -1) * 8 + 16940)); } } else { } return; } } __inline static void cas_handle_irq(struct net_device *dev , struct cas *cp , u32 const status ) { { if (((unsigned int )status & 517192U) != 0U) { { cas_abnormal_irq(dev, cp, status); } } else { } if (((unsigned int )status & 32U) != 0U) { { cas_post_rxds_ringN(cp, 0, 0); ldv_spin_lock_132((spinlock_t *)(& cp->stat_lock)); cp->net_stats[0].rx_dropped = cp->net_stats[0].rx_dropped + 1UL; ldv_spin_unlock_133((spinlock_t *)(& cp->stat_lock)); } } else if (((unsigned int )status & 256U) != 0U) { { cas_post_rxds_ringN(cp, 0, 256); } } else { } if (((unsigned int )status & 640U) != 0U) { { cas_post_rxcs_ringN(dev, cp, 0); } } else { } return; } } static irqreturn_t cas_interrupt(int irq , void *dev_id ) { struct net_device *dev ; struct cas *cp ; void *tmp ; unsigned long flags ; u32 status ; unsigned int tmp___0 ; { { dev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; tmp___0 = readl((void const volatile *)cp->regs + 12U); status = tmp___0; } if (status == 0U) { return (0); } else { } { ldv___ldv_spin_lock_157(& cp->lock); } if ((status & 3U) != 0U) { { cas_tx(dev, cp, status); status = status & 4294967292U; } } else { } if ((status & 16U) != 0U) { { cas_rx_ringN(cp, 0, 0); status = status & 4294967279U; } } else { } if (status != 0U) { { cas_handle_irq(dev, cp, status); } } else { } { ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } return (1); } } static void cas_netpoll(struct net_device *dev ) { struct cas *cp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; cas_disable_irq(cp, 0); cas_interrupt((int )(cp->pdev)->irq, (void *)dev); cas_enable_irq(cp, 0); } return; } } static void cas_tx_timeout(struct net_device *dev ) { struct cas *cp ; void *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; netdev_err((struct net_device const *)dev, "transmit timed out, resetting\n"); } if (cp->hw_running == 0) { { netdev_err((struct net_device const *)dev, "hrm.. hw not running!\n"); } return; } else { } { tmp___0 = readl((void const volatile *)cp->regs + 25116U); netdev_err((struct net_device const *)dev, "MIF_STATE[%08x]\n", tmp___0); tmp___1 = readl((void const volatile *)cp->regs + 25040U); netdev_err((struct net_device const *)dev, "MAC_STATE[%08x]\n", tmp___1); tmp___2 = readl((void const volatile *)cp->regs + 8236U); tmp___3 = readl((void const volatile *)cp->regs + 8232U); tmp___4 = readl((void const volatile *)cp->regs + 8220U); tmp___5 = readl((void const volatile *)cp->regs + 8212U); tmp___6 = readl((void const volatile *)cp->regs + 8228U); tmp___7 = readl((void const volatile *)cp->regs + 24624U); tmp___8 = readl((void const volatile *)cp->regs + 24592U); tmp___9 = readl((void const volatile *)cp->regs + 8196U); netdev_err((struct net_device const *)dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", tmp___9, tmp___8, tmp___7, tmp___6, tmp___5, tmp___4, tmp___3, tmp___2); tmp___10 = readl((void const volatile *)cp->regs + 24628U); tmp___11 = readl((void const volatile *)cp->regs + 24596U); tmp___12 = readl((void const volatile *)cp->regs + 16384U); netdev_err((struct net_device const *)dev, "RX_STATE[%08x:%08x:%08x]\n", tmp___12, tmp___11, tmp___10); tmp___13 = readl((void const volatile *)cp->regs + 16792U); tmp___14 = readl((void const volatile *)cp->regs + 16788U); tmp___15 = readl((void const volatile *)cp->regs + 16784U); tmp___16 = readl((void const volatile *)cp->regs + 16780U); netdev_err((struct net_device const *)dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", tmp___16, tmp___15, tmp___14, tmp___13); atomic_inc(& cp->reset_task_pending); atomic_inc(& cp->reset_task_pending_all); schedule_work(& cp->reset_task); } return; } } __inline static int cas_intme(int ring , int entry ) { { if ((entry & 255) == 0) { return (1); } else { } return (0); } } static void cas_write_txd(struct cas *cp , int ring , int entry , dma_addr_t mapping , int len , u64 ctrl , int last ) { struct cas_tx_desc *txd ; int tmp ; { { txd = cp->init_txds[ring] + (unsigned long )entry; ctrl = ctrl | ((unsigned long long )len & 16383ULL); tmp = cas_intme(ring, entry); } if (tmp != 0) { ctrl = ctrl | 4294967296ULL; } else { } if (last != 0) { ctrl = ctrl | 1073741824ULL; } else { } txd->control = ctrl; txd->buffer = mapping; return; } } __inline static void *tx_tiny_buf(struct cas *cp , int const ring , int const entry ) { { return ((void *)cp->tx_tiny_bufs[ring] + (unsigned long )((int )entry * 256)); } } __inline static dma_addr_t tx_tiny_map(struct cas *cp , int const ring , int const entry , int const tentry ) { { cp->tx_tiny_use[ring][tentry].nbufs = cp->tx_tiny_use[ring][tentry].nbufs + 1; cp->tx_tiny_use[ring][entry].used = 1; return (cp->tx_tiny_dvma[ring] + (dma_addr_t )((int )entry * 256)); } } extern void __compiletime_assert_2843(void) ; __inline static int cas_xmit_tx_ringN(struct cas *cp , int ring , struct sk_buff *skb ) { struct net_device *dev ; int entry ; int nr_frags ; int frag ; int tabort ; int tentry ; dma_addr_t mapping ; unsigned long flags ; u64 ctrl ; u32 len ; unsigned char *tmp ; u64 csum_start_off ; int tmp___0 ; u64 csum_stuff_off ; unsigned char *tmp___1 ; unsigned long tmp___2 ; void *tmp___3 ; long tmp___4 ; skb_frag_t const *fragp ; unsigned char *tmp___5 ; void *addr ; struct page *tmp___6 ; void *tmp___7 ; bool __cond ; long tmp___8 ; { { dev = cp->dev; ldv___ldv_spin_lock_159((spinlock_t *)(& cp->tx_lock) + (unsigned long )ring); tmp = skb_end_pointer((struct sk_buff const *)skb); } if ((cp->tx_old[ring] <= cp->tx_new[ring] ? (cp->tx_old[ring] + 511) - cp->tx_new[ring] : (cp->tx_old[ring] - cp->tx_new[ring]) + -1) <= ((cp->cas_flags & 4U) != 0U ? 2 : 1) * ((int )((struct skb_shared_info *)tmp)->nr_frags + 1)) { { netif_stop_queue(dev); ldv_spin_unlock_irqrestore_160((spinlock_t *)(& cp->tx_lock) + (unsigned long )ring, flags); netdev_err((struct net_device const *)dev, "BUG! Tx Ring full when queue awake!\n"); } return (1); } else { } ctrl = 0ULL; if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { { tmp___0 = skb_checksum_start_offset((struct sk_buff const *)skb); csum_start_off = (u64 const )tmp___0; csum_stuff_off = csum_start_off + (unsigned long long )skb->__annonCompField68.__annonCompField67.csum_offset; ctrl = (((csum_start_off << 15) & 2064384ULL) | ((csum_stuff_off << 21) & 534773760ULL)) | 536870912ULL; } } else { } { entry = cp->tx_new[ring]; cp->tx_skbs[ring][entry] = skb; tmp___1 = skb_end_pointer((struct sk_buff const *)skb); nr_frags = (int )((struct skb_shared_info *)tmp___1)->nr_frags; len = skb_headlen((struct sk_buff const *)skb); tmp___2 = __phys_addr((unsigned long )skb->data); mapping = pci_map_page(cp->pdev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )skb->data & 4095UL, (size_t )len, 1); tentry = entry; tabort = cas_calc_tabort(cp, (unsigned long )skb->data, (int const )len); tmp___4 = ldv__builtin_expect(tabort != 0, 0L); } if (tmp___4 != 0L) { { cas_write_txd(cp, ring, entry, mapping, (int )(len - (u32 )tabort), ctrl | 2147483648ULL, 0); entry = (entry + 1) & 511; tmp___3 = tx_tiny_buf(cp, ring, entry); skb_copy_from_linear_data_offset((struct sk_buff const *)skb, (int const )(len - (u32 )tabort), tmp___3, (unsigned int const )tabort); mapping = tx_tiny_map(cp, ring, entry, tentry); cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, nr_frags == 0); } } else { { cas_write_txd(cp, ring, entry, mapping, (int )len, ctrl | 2147483648ULL, nr_frags == 0); } } entry = (entry + 1) & 511; frag = 0; goto ldv_49522; ldv_49521: { tmp___5 = skb_end_pointer((struct sk_buff const *)skb); fragp = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___5)->frags) + (unsigned long )frag; len = skb_frag_size(fragp); mapping = skb_frag_dma_map(& (cp->pdev)->dev, fragp, 0UL, (size_t )len, 1); tabort = cas_calc_tabort(cp, (unsigned long const )fragp->page_offset, (int const )len); tmp___8 = ldv__builtin_expect(tabort != 0, 0L); } if (tmp___8 != 0L) { { cas_write_txd(cp, ring, entry, mapping, (int )(len - (u32 )tabort), ctrl, 0); entry = (entry + 1) & 511; tmp___6 = skb_frag_page(fragp); addr = kmap_atomic(tmp___6); tmp___7 = tx_tiny_buf(cp, ring, entry); memcpy(tmp___7, (void const *)(addr + (((unsigned long )fragp->page_offset + (unsigned long )len) - (unsigned long )tabort)), (size_t )tabort); __cond = 0; } if ((int )__cond) { { __compiletime_assert_2843(); } } else { } { __kunmap_atomic(addr); mapping = tx_tiny_map(cp, ring, entry, tentry); len = (u32 )tabort; } } else { } { cas_write_txd(cp, ring, entry, mapping, (int )len, ctrl, frag + 1 == nr_frags); entry = (entry + 1) & 511; frag = frag + 1; } ldv_49522: ; if (frag < nr_frags) { goto ldv_49521; } else { } cp->tx_new[ring] = entry; if ((unsigned long )(cp->tx_old[ring] <= cp->tx_new[ring] ? (cp->tx_old[ring] + 511) - cp->tx_new[ring] : (cp->tx_old[ring] - cp->tx_new[ring]) + -1) <= ((cp->cas_flags & 4U) != 0U ? 36UL : 18UL)) { { netif_stop_queue(dev); } } else { } if ((cp->msg_enable & 256U) != 0U) { { netdev_printk("\017", (struct net_device const *)dev, "tx[%d] queued, slot %d, skblen %d, avail %d\n", ring, entry, skb->len, cp->tx_old[ring] <= cp->tx_new[ring] ? (cp->tx_old[ring] + 511) - cp->tx_new[ring] : (cp->tx_old[ring] - cp->tx_new[ring]) + -1); } } else { } { writel((unsigned int )entry, (void volatile *)cp->regs + (unsigned long )((ring + 2062) * 4)); ldv_spin_unlock_irqrestore_160((spinlock_t *)(& cp->tx_lock) + (unsigned long )ring, flags); } return (0); } } static netdev_tx_t cas_start_xmit(struct sk_buff *skb , struct net_device *dev ) { struct cas *cp ; void *tmp ; int ring ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; tmp___0 = skb_padto(skb, (unsigned int )cp->min_frame_size); } if (tmp___0 != 0) { return (0); } else { } { tmp___1 = ring; ring = ring + 1; tmp___2 = cas_xmit_tx_ringN(cp, tmp___1 & 3, skb); } if (tmp___2 != 0) { return (16); } else { } return (0); } } static void cas_init_tx_dma(struct cas *cp ) { u64 desc_dma ; unsigned long off ; u32 val ; int i ; { { desc_dma = cp->block_dvma; off = 114688UL; writel((unsigned int )((desc_dma + (unsigned long long )off) >> 32), (void volatile *)cp->regs + 8284U); writel((unsigned int )desc_dma + (unsigned int )off, (void volatile *)cp->regs + 8280U); val = 1058013184U; i = 0; } goto ldv_49538; ldv_49537: { off = (unsigned long )cp->init_txds[i] - (unsigned long )cp->init_block; val = val | (u32 )((4 << (i * 4 + 2)) & (60 << i * 4)); writel((unsigned int )((desc_dma + (unsigned long long )off) >> 32), (void volatile *)cp->regs + (unsigned long )(i * 8 + 8292)); writel((unsigned int )desc_dma + (unsigned int )off, (void volatile *)cp->regs + (unsigned long )((i + 1036) * 8)); i = i + 1; } ldv_49538: ; if (i <= 3) { goto ldv_49537; } else { } { writel(val, (void volatile *)cp->regs + 8196U); writel(2048U, (void volatile *)cp->regs + 8320U); writel(2048U, (void volatile *)cp->regs + 8324U); writel(2048U, (void volatile *)cp->regs + 8328U); writel(2048U, (void volatile *)cp->regs + 8332U); } return; } } __inline static void cas_init_dma(struct cas *cp ) { { { cas_init_tx_dma(cp); cas_init_rx_dma(cp); } return; } } static void cas_process_mc_list(struct cas *cp ) { u16 hash_table[16U] ; u32 crc ; struct netdev_hw_addr *ha ; int i ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { i = 1; memset((void *)(& hash_table), 0, 32UL); __mptr = (struct list_head const *)(cp->dev)->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; } goto ldv_49555; ldv_49554: ; if (i <= 15) { { writel((unsigned int )(((int )ha->addr[4] << 8) | (int )ha->addr[5]), (void volatile *)cp->regs + (unsigned long )(i * 12 + 24704)); writel((unsigned int )(((int )ha->addr[2] << 8) | (int )ha->addr[3]), (void volatile *)cp->regs + (unsigned long )(i * 12 + 24708)); writel((unsigned int )(((int )ha->addr[0] << 8) | (int )ha->addr[1]), (void volatile *)cp->regs + (unsigned long )(i * 12 + 24712)); i = i + 1; } } else { { crc = crc32_le(4294967295U, (unsigned char const *)(& ha->addr), 6UL); crc = crc >> 24; hash_table[crc >> 4] = (u16 )((int )((short )hash_table[crc >> 4]) | (int )((short )(1 << ((int )(~ crc) & 15)))); } } __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_49555: ; if ((unsigned long )(& ha->list) != (unsigned long )(& (cp->dev)->mc.list)) { goto ldv_49554; } else { } i = 0; goto ldv_49558; ldv_49557: { writel((unsigned int )hash_table[i], (void volatile *)cp->regs + (unsigned long )((i + 6232) * 4)); i = i + 1; } ldv_49558: ; if (i <= 15) { goto ldv_49557; } else { } return; } } static u32 cas_setup_multicast(struct cas *cp ) { u32 rxcfg ; int i ; { rxcfg = 0U; if (((cp->dev)->flags & 256U) != 0U) { rxcfg = rxcfg | 8U; } else if (((cp->dev)->flags & 512U) != 0U) { i = 0; goto ldv_49566; ldv_49565: { writel(65535U, (void volatile *)cp->regs + (unsigned long )((i + 6232) * 4)); i = i + 1; } ldv_49566: ; if (i <= 15) { goto ldv_49565; } else { } rxcfg = rxcfg | 32U; } else { { cas_process_mc_list(cp); rxcfg = rxcfg | 32U; } } return (rxcfg); } } static void cas_clear_mac_err(struct cas *cp ) { { { writel(0U, (void volatile *)cp->regs + 24992U); writel(0U, (void volatile *)cp->regs + 24996U); writel(0U, (void volatile *)cp->regs + 25000U); writel(0U, (void volatile *)cp->regs + 25004U); writel(0U, (void volatile *)cp->regs + 25008U); writel(0U, (void volatile *)cp->regs + 25012U); writel(0U, (void volatile *)cp->regs + 25016U); writel(0U, (void volatile *)cp->regs + 25020U); writel(0U, (void volatile *)cp->regs + 25024U); writel(0U, (void volatile *)cp->regs + 25028U); writel(0U, (void volatile *)cp->regs + 25032U); } return; } } static void cas_mac_reset(struct cas *cp ) { int i ; unsigned int tmp ; int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; { { writel(1U, (void volatile *)cp->regs + 24576U); writel(1U, (void volatile *)cp->regs + 24580U); i = 5000; } goto ldv_49577; ldv_49576: { tmp = readl((void const volatile *)cp->regs + 24576U); } if (tmp == 0U) { goto ldv_49575; } else { } { __const_udelay(42950UL); } ldv_49577: tmp___0 = i; i = i - 1; if (tmp___0 > 0) { goto ldv_49576; } else { } ldv_49575: i = 5000; goto ldv_49580; ldv_49579: { tmp___1 = readl((void const volatile *)cp->regs + 24580U); } if (tmp___1 == 0U) { goto ldv_49578; } else { } { __const_udelay(42950UL); } ldv_49580: tmp___2 = i; i = i - 1; if (tmp___2 > 0) { goto ldv_49579; } else { } ldv_49578: { tmp___6 = readl((void const volatile *)cp->regs + 24576U); tmp___7 = readl((void const volatile *)cp->regs + 24580U); } if ((tmp___6 | tmp___7) != 0U) { { tmp___3 = readl((void const volatile *)cp->regs + 25040U); tmp___4 = readl((void const volatile *)cp->regs + 24580U); tmp___5 = readl((void const volatile *)cp->regs + 24576U); netdev_err((struct net_device const *)cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n", tmp___5, tmp___4, tmp___3); } } else { } return; } } static void cas_init_mac(struct cas *cp ) { unsigned char *e ; int i ; int _min1 ; int _min2 ; { { e = (cp->dev)->dev_addr; cas_mac_reset(cp); writel(16U, (void volatile *)cp->regs + 4U); } if ((cp->cas_flags & 4U) == 0U) { { writel(1U, (void volatile *)cp->regs + 8U); } } else { } { writel(7152U, (void volatile *)cp->regs + 24584U); writel(0U, (void volatile *)cp->regs + 24640U); writel(8U, (void volatile *)cp->regs + 24644U); writel(4U, (void volatile *)cp->regs + 24648U); writel(64U, (void volatile *)cp->regs + 24652U); writel(64U, (void volatile *)cp->regs + 24656U); _min1 = (cp->page_size << 1) + -80; _min2 = 9000; writel((unsigned int )((((_min1 < _min2 ? _min1 : _min2) + 22) & 32767) | 536870912), (void volatile *)cp->regs + 24660U); } if ((cp->cas_flags & 8U) != 0U && cp->crc_size != 0) { { writel(65U, (void volatile *)cp->regs + 24664U); } } else { { writel(7U, (void volatile *)cp->regs + 24664U); } } { writel(4U, (void volatile *)cp->regs + 24668U); writel(16U, (void volatile *)cp->regs + 24672U); writel(34824U, (void volatile *)cp->regs + 24676U); writel((unsigned int )((int )*(e + 5UL) | ((int )*(e + 4UL) << 8)) & 1023U, (void volatile *)cp->regs + 25036U); writel(0U, (void volatile *)cp->regs + 24908U); writel(0U, (void volatile *)cp->regs + 24912U); writel(0U, (void volatile *)cp->regs + 24916U); writel(0U, (void volatile *)cp->regs + 24920U); writel(0U, (void volatile *)cp->regs + 24924U); i = 0; } goto ldv_49590; ldv_49589: { writel(0U, (void volatile *)cp->regs + (unsigned long )((i + 6176) * 4)); i = i + 1; } ldv_49590: ; if (i <= 44) { goto ldv_49589; } else { } { writel((unsigned int )(((int )*(e + 4UL) << 8) | (int )*(e + 5UL)), (void volatile *)cp->regs + 24704U); writel((unsigned int )(((int )*(e + 2UL) << 8) | (int )*(e + 3UL)), (void volatile *)cp->regs + 24708U); writel((unsigned int )(((int )*e << 8) | (int )*(e + 1UL)), (void volatile *)cp->regs + 24712U); writel(1U, (void volatile *)cp->regs + 24872U); writel(49664U, (void volatile *)cp->regs + 24876U); writel(384U, (void volatile *)cp->regs + 24880U); cp->mac_rx_cfg = cas_setup_multicast(cp); ldv_spin_lock_101((spinlock_t *)(& cp->stat_lock) + 4UL); cas_clear_mac_err(cp); ldv_spin_unlock_103((spinlock_t *)(& cp->stat_lock) + 4UL); writel(1U, (void volatile *)cp->regs + 24608U); writel(1U, (void volatile *)cp->regs + 24612U); writel(4294967295U, (void volatile *)cp->regs + 24616U); } return; } } static void cas_init_pause_thresholds(struct cas *cp ) { int tmp ; int max_frame ; int off ; int on ; { if (cp->rx_fifo_size <= 2048) { tmp = cp->rx_fifo_size; cp->rx_pause_on = tmp; cp->rx_pause_off = tmp; } else { max_frame = (int )((cp->dev)->mtu + 86U) & -64; if (max_frame * 3 > cp->rx_fifo_size) { cp->rx_pause_off = 7104; cp->rx_pause_on = 960; } else { off = cp->rx_fifo_size + max_frame * -2; on = off - max_frame; cp->rx_pause_off = off; cp->rx_pause_on = on; } } return; } } static int cas_vpd_match(void const *p , char const *str ) { int len ; size_t tmp ; int i ; unsigned char tmp___0 ; { { tmp = strlen(str); len = (int )((unsigned int )tmp + 1U); i = 0; } goto ldv_49605; ldv_49604: { tmp___0 = readb((void const volatile *)p + (unsigned long )i); } if ((int )tmp___0 != (int )*(str + (unsigned long )i)) { return (0); } else { } i = i + 1; ldv_49605: ; if (i < len) { goto ldv_49604; } else { } return (1); } } static int cas_get_vpd_info(struct cas *cp , unsigned char *dev_addr , int const offset ) { void *p ; void *base ; void *kstart ; int i ; int len ; int found ; int phy_type ; int mac_off ; unsigned char tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; unsigned char tmp___3 ; unsigned char tmp___4 ; unsigned char tmp___5 ; unsigned char tmp___6 ; unsigned char tmp___7 ; unsigned char tmp___8 ; unsigned char tmp___9 ; unsigned char tmp___10 ; unsigned char tmp___11 ; unsigned char tmp___12 ; int klen ; unsigned char tmp___13 ; int j ; char type ; unsigned char tmp___14 ; unsigned char tmp___15 ; int tmp___16 ; unsigned char tmp___17 ; int tmp___18 ; int tmp___19 ; unsigned char tmp___20 ; int tmp___21 ; int tmp___22 ; unsigned char tmp___23 ; int tmp___24 ; { { p = cp->regs + 1048576UL; found = 0; phy_type = 2; mac_off = 0; writel(3U, (void volatile *)cp->regs + 4128U); tmp = readb((void const volatile *)p); } if ((unsigned int )tmp != 85U) { goto use_random_mac_addr; } else { { tmp___0 = readb((void const volatile *)p + 1U); } if ((unsigned int )tmp___0 != 170U) { goto use_random_mac_addr; } else { } } base = (void *)0; i = 2; goto ldv_49623; ldv_49622: { tmp___3 = readb((void const volatile *)p + (unsigned long )i); } if ((unsigned int )tmp___3 == 80U) { { tmp___4 = readb((void const volatile *)(p + ((unsigned long )i + 1UL))); } if ((unsigned int )tmp___4 == 67U) { { tmp___5 = readb((void const volatile *)(p + ((unsigned long )i + 2UL))); } if ((unsigned int )tmp___5 == 73U) { { tmp___6 = readb((void const volatile *)(p + ((unsigned long )i + 3UL))); } if ((unsigned int )tmp___6 == 82U) { { tmp___1 = readb((void const volatile *)(p + ((unsigned long )i + 8UL))); tmp___2 = readb((void const volatile *)(p + ((unsigned long )i + 9UL))); base = p + (unsigned long )((int )tmp___1 | ((int )tmp___2 << 8)); } goto ldv_49621; } else { } } else { } } else { } } else { } i = i + 1; ldv_49623: ; if (i <= 65535) { goto ldv_49622; } else { } ldv_49621: ; if ((unsigned long )base == (unsigned long )((void *)0)) { goto use_random_mac_addr; } else { { tmp___7 = readb((void const volatile *)base); } if ((unsigned int )tmp___7 != 130U) { goto use_random_mac_addr; } else { } } { tmp___8 = readb((void const volatile *)base + 1U); tmp___9 = readb((void const volatile *)base + 2U); i = ((int )tmp___8 | ((int )tmp___9 << 8)) + 3; } goto ldv_49637; ldv_49636: { tmp___10 = readb((void const volatile *)base + (unsigned long )i); } if ((unsigned int )tmp___10 != 144U) { goto use_random_mac_addr; } else { } { tmp___11 = readb((void const volatile *)(base + ((unsigned long )i + 1UL))); tmp___12 = readb((void const volatile *)(base + ((unsigned long )i + 2UL))); len = (int )tmp___11 | ((int )tmp___12 << 8); kstart = base + ((unsigned long )i + 3UL); p = kstart; } goto ldv_49634; ldv_49633: { tmp___13 = readb((void const volatile *)p + 2U); klen = (int )tmp___13; p = p + 3UL; tmp___14 = readb((void const volatile *)p); } if ((unsigned int )tmp___14 != 73U) { goto next; } else { } { tmp___15 = readb((void const volatile *)p + 3U); type = (char )tmp___15; } if ((int )((signed char )type) == 66) { if (klen == 29) { { tmp___17 = readb((void const volatile *)p + 4U); } if ((unsigned int )tmp___17 == 6U) { { tmp___18 = cas_vpd_match((void const *)p + 5U, "local-mac-address"); } if (tmp___18 != 0) { tmp___16 = mac_off; mac_off = mac_off + 1; if (tmp___16 > (int )offset) { goto next; } else { } j = 0; goto ldv_49629; ldv_49628: { *(dev_addr + (unsigned long )j) = readb((void const volatile *)(p + ((unsigned long )j + 23UL))); j = j + 1; } ldv_49629: ; if (j <= 5) { goto ldv_49628; } else { } goto found_mac; } else { } } else { } } else { } } else { } if ((int )((signed char )type) != 83) { goto next; } else { } if ((found & 2) != 0) { goto next; } else { } if (klen == 18) { { tmp___20 = readb((void const volatile *)p + 4U); } if ((unsigned int )tmp___20 == 4U) { { tmp___21 = cas_vpd_match((void const *)p + 5U, "phy-type"); } if (tmp___21 != 0) { { tmp___19 = cas_vpd_match((void const *)p + 14U, "pcs"); } if (tmp___19 != 0) { phy_type = 1; goto found_phy; } else { } } else { } } else { } } else { } if (klen == 23) { { tmp___23 = readb((void const volatile *)p + 4U); } if ((unsigned int )tmp___23 == 4U) { { tmp___24 = cas_vpd_match((void const *)p + 5U, "phy-interface"); } if (tmp___24 != 0) { { tmp___22 = cas_vpd_match((void const *)p + 19U, "pcs"); } if (tmp___22 != 0) { phy_type = 1; goto found_phy; } else { } } else { } } else { } } else { } found_mac: found = found | 1; goto next; found_phy: found = found | 2; next: p = p + (unsigned long )klen; ldv_49634: ; if ((long )p - (long )kstart < (long )len) { goto ldv_49633; } else { } i = i + (len + 3); ldv_49637: ; if (i <= 65535) { goto ldv_49636; } else { } use_random_mac_addr: ; if (found & 1) { goto done; } else { } { printk("\016cassini: MAC address not found in ROM VPD\n"); *dev_addr = 8U; *(dev_addr + 1UL) = 0U; *(dev_addr + 2UL) = 32U; get_random_bytes((void *)dev_addr + 3U, 3); } done: { writel(0U, (void volatile *)cp->regs + 4128U); } return (phy_type); } } static void cas_check_pci_invariants(struct cas *cp ) { struct pci_dev *pdev ; { pdev = cp->pdev; cp->cas_flags = 0U; if (*((unsigned int *)pdev + 15UL) == 2881097870U) { if ((unsigned int )pdev->revision > 15U) { cp->cas_flags = cp->cas_flags | 2U; } else { } if ((unsigned int )pdev->revision <= 16U) { cp->cas_flags = cp->cas_flags | 4U; } else { } if ((unsigned int )pdev->revision <= 1U) { cp->cas_flags = cp->cas_flags | 512U; } else { } } else { cp->cas_flags = cp->cas_flags | 2U; if (*((unsigned int *)pdev + 15UL) == 3477515U) { cp->cas_flags = cp->cas_flags | 8U; } else { } } return; } } static int cas_check_invariants(struct cas *cp ) { struct pci_dev *pdev ; u32 cfg ; int i ; struct page *page ; struct page *tmp ; int _min1 ; int _min2 ; unsigned int tmp___0 ; u32 phy_id ; int j ; u16 tmp___1 ; u16 tmp___2 ; unsigned int tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; { { pdev = cp->pdev; cp->page_order = 0; tmp = alloc_pages(32U, 1U); page = tmp; } if ((unsigned long )page != (unsigned long )((struct page *)0)) { { __free_pages(page, 1U); cp->page_order = 1; } } else { { _min1 = (cp->page_size << 1) + -80; _min2 = 9000; printk("MTU limited to %d bytes\n", _min1 < _min2 ? _min1 : _min2); } } { cp->page_size = (int )(4096UL << cp->page_order); tmp___0 = readl((void const volatile *)cp->regs + 8472U); cp->tx_fifo_size = (int )(tmp___0 * 64U); cp->rx_fifo_size = 16384; cp->phy_type = cas_get_vpd_info(cp, (cp->dev)->dev_addr, (int const )(pdev->devfn >> 3) & 31); } if (cp->phy_type & 1) { cp->cas_flags = cp->cas_flags | 1U; return (0); } else { } { cfg = readl((void const volatile *)cp->regs + 25104U); } if ((cfg & 512U) != 0U) { cp->phy_type = 4; } else if ((cfg & 256U) != 0U) { cp->phy_type = 2; } else { } { cas_mif_poll(cp, 0); writel(0U, (void volatile *)cp->regs + 36944U); i = 0; } goto ldv_49661; ldv_49660: j = 0; goto ldv_49658; ldv_49657: { cp->phy_addr = i; tmp___1 = cas_phy_read(cp, 2); phy_id = (u32 )((int )tmp___1 << 16); tmp___2 = cas_phy_read(cp, 3); phy_id = phy_id | (u32 )tmp___2; } if (phy_id - 1U <= 4294967293U) { cp->phy_id = phy_id; goto done; } else { } j = j + 1; ldv_49658: ; if (j <= 2) { goto ldv_49657; } else { } i = i + 1; ldv_49661: ; if (i <= 31) { goto ldv_49660; } else { } { tmp___3 = readl((void const volatile *)cp->regs + 25116U); printk("\vcassini: MII phy did not respond [%08x]\n", tmp___3); } return (-1); done: { tmp___4 = cas_phy_read(cp, 1); cfg = (u32 )tmp___4; } if ((cfg & 256U) != 0U) { { tmp___5 = cas_phy_read(cp, 15); } if ((unsigned int )tmp___5 != 0U) { cp->cas_flags = cp->cas_flags | 1U; } else { } } else { } return (0); } } __inline static void cas_start_dma(struct cas *cp ) { int i ; u32 val ; int txfailed ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; { { txfailed = 0; tmp = readl((void const volatile *)cp->regs + 8196U); val = tmp | 1U; writel(val, (void volatile *)cp->regs + 8196U); tmp___0 = readl((void const volatile *)cp->regs + 16384U); val = tmp___0 | 1U; writel(val, (void volatile *)cp->regs + 16384U); tmp___1 = readl((void const volatile *)cp->regs + 24624U); val = tmp___1 | 1U; writel(val, (void volatile *)cp->regs + 24624U); tmp___2 = readl((void const volatile *)cp->regs + 24628U); val = tmp___2 | 1U; writel(val, (void volatile *)cp->regs + 24628U); i = 5000; } goto ldv_49671; ldv_49670: { val = readl((void const volatile *)cp->regs + 24624U); } if ((int )val & 1) { goto ldv_49669; } else { } { __const_udelay(42950UL); } ldv_49671: tmp___3 = i; i = i - 1; if (tmp___3 > 0) { goto ldv_49670; } else { } ldv_49669: ; if (i < 0) { txfailed = 1; } else { } i = 5000; goto ldv_49674; ldv_49673: { val = readl((void const volatile *)cp->regs + 24628U); } if ((int )val & 1) { if (txfailed != 0) { { tmp___4 = readl((void const volatile *)cp->regs + 25040U); tmp___5 = readl((void const volatile *)cp->regs + 25116U); netdev_err((struct net_device const *)cp->dev, "enabling mac failed [tx:%08x:%08x]\n", tmp___5, tmp___4); } } else { } goto enable_rx_done; } else { } { __const_udelay(42950UL); } ldv_49674: tmp___6 = i; i = i - 1; if (tmp___6 > 0) { goto ldv_49673; } else { } { tmp___7 = readl((void const volatile *)cp->regs + 25040U); tmp___8 = readl((void const volatile *)cp->regs + 25116U); netdev_err((struct net_device const *)cp->dev, "enabling mac failed [%s:%08x:%08x]\n", txfailed != 0 ? (char *)"tx,rx" : (char *)"rx", tmp___8, tmp___7); } enable_rx_done: { cas_unmask_intr(cp); writel(508U, (void volatile *)cp->regs + 16420U); writel(0U, (void volatile *)cp->regs + 16448U); } if ((cp->cas_flags & 2U) != 0U) { { writel(508U, (void volatile *)cp->regs + 16928U); i = 1; } goto ldv_49677; ldv_49676: { writel(0U, (void volatile *)cp->regs + (unsigned long )((i + -1) * 8 + 16940)); i = i + 1; } ldv_49677: ; if (i <= 0) { goto ldv_49676; } else { } } else { } return; } } static void cas_read_pcs_link_mode(struct cas *cp , int *fd , int *spd , int *pause ) { u32 val ; unsigned int tmp ; { { tmp = readl((void const volatile *)cp->regs + 36876U); val = tmp; *fd = (val & 32U) != 0U; *pause = (val & 128U) != 0U; } if ((val & 256U) != 0U) { *pause = *pause | 16; } else { } *spd = 1000; return; } } static void cas_read_mii_link_mode(struct cas *cp , int *fd , int *spd , int *pause ) { u32 val ; u16 tmp ; u16 tmp___0 ; { { *fd = 0; *spd = 10; *pause = 0; tmp = cas_phy_read(cp, 5); val = (u32 )tmp; } if ((val & 1024U) != 0U) { *pause = 1; } else { } if ((val & 2048U) != 0U) { *pause = *pause | 16; } else { } if ((val & 320U) != 0U) { *fd = 1; } else { } if ((val & 896U) != 0U) { *spd = 100; } else { } if ((int )cp->cas_flags & 1) { { tmp___0 = cas_phy_read(cp, 10); val = (u32 )tmp___0; } if ((val & 3072U) != 0U) { *spd = 1000; } else { } if ((val & 2048U) != 0U) { *fd = 1; } else { } } else { } return; } } static void cas_set_link_modes(struct cas *cp ) { u32 val ; int full_duplex ; int speed ; int pause ; u16 tmp ; { full_duplex = 0; speed = 10; pause = 0; if ((cp->phy_type & 6) != 0) { { cas_mif_poll(cp, 0); tmp = cas_phy_read(cp, 0); val = (u32 )tmp; } if ((val & 4096U) != 0U) { { cas_read_mii_link_mode(cp, & full_duplex, & speed, & pause); } } else { if ((val & 256U) != 0U) { full_duplex = 1; } else { } if ((val & 8192U) != 0U) { speed = 100; } else if ((val & 64U) != 0U) { speed = (int )cp->cas_flags & 1 ? 1000 : 100; } else { } } { cas_mif_poll(cp, 1); } } else { { val = readl((void const volatile *)cp->regs + 36864U); cas_read_pcs_link_mode(cp, & full_duplex, & speed, & pause); } if ((val & 4096U) == 0U) { if ((val & 256U) != 0U) { full_duplex = 1; } else { } } else { } } if ((cp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)cp->dev, "Link up at %d Mbps, %s-duplex\n", speed, full_duplex != 0 ? (char *)"full" : (char *)"half"); } } else { } val = 33U; if ((cp->phy_type & 6) != 0) { val = val | 16U; if (full_duplex == 0) { val = val | 4U; } else { } } else { } if (full_duplex != 0) { val = val | 64U; } else { } if (speed == 1000) { val = val | 8U; } else { } { writel(val, (void volatile *)cp->regs + 24636U); val = 8U; } if (full_duplex != 0) { val = val | 2U; val = val | 4U; } else { } if (speed == 1000 && full_duplex == 0) { { writel(val | 512U, (void volatile *)cp->regs + 24624U); val = readl((void const volatile *)cp->regs + 24628U); val = val & 4294967291U; writel(val | 256U, (void volatile *)cp->regs + 24628U); writel(512U, (void volatile *)cp->regs + 24652U); cp->crc_size = 4; cp->min_frame_size = 255; } } else { { writel(val, (void volatile *)cp->regs + 24624U); val = readl((void const volatile *)cp->regs + 24628U); } if (full_duplex != 0) { val = val | 4U; cp->crc_size = 0; cp->min_frame_size = 60; } else { val = val & 4294967291U; cp->crc_size = 4; cp->min_frame_size = 97; } { writel(val & 4294967039U, (void volatile *)cp->regs + 24628U); writel(64U, (void volatile *)cp->regs + 24652U); } } if ((cp->msg_enable & 4U) != 0U) { if (pause & 1) { { netdev_info((struct net_device const *)cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n", cp->rx_fifo_size, cp->rx_pause_off, cp->rx_pause_on); } } else if ((pause & 16) != 0) { { netdev_info((struct net_device const *)cp->dev, "TX pause enabled\n"); } } else { { netdev_info((struct net_device const *)cp->dev, "Pause is disabled\n"); } } } else { } { val = readl((void const volatile *)cp->regs + 24632U); val = val & 4294967292U; } if (pause != 0) { val = val | 1U; if (pause & 1) { val = val | 2U; } else { } } else { } { writel(val, (void volatile *)cp->regs + 24632U); cas_start_dma(cp); } return; } } static void cas_init_hw(struct cas *cp , int restart_link ) { { if (restart_link != 0) { { cas_phy_init(cp); } } else { } { cas_init_pause_thresholds(cp); cas_init_mac(cp); cas_init_dma(cp); } if (restart_link != 0) { { cp->timer_ticks = 0; cas_begin_auto_negotiation(cp, (struct ethtool_cmd *)0); } } else if ((unsigned int )cp->lstate == 5U) { { cas_set_link_modes(cp); netif_carrier_on(cp->dev); } } else { } return; } } static void cas_hard_reset(struct cas *cp ) { { { writel(8U, (void volatile *)cp->regs + 4128U); __const_udelay(85900UL); pci_restore_state(cp->pdev); } return; } } static void cas_global_reset(struct cas *cp , int blkflag ) { int limit ; unsigned long __ms ; unsigned long tmp ; u32 val ; unsigned int tmp___0 ; int tmp___1 ; { if (blkflag != 0 && (cp->phy_type & 6) == 0) { { writel(11U, (void volatile *)cp->regs + 4112U); } } else { { writel(3U, (void volatile *)cp->regs + 4112U); } } if (1) { { __const_udelay(12885000UL); } } else { __ms = 3UL; goto ldv_49714; ldv_49713: { __const_udelay(4295000UL); } ldv_49714: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_49713; } else { } } limit = 5000; goto ldv_49719; ldv_49718: { tmp___0 = readl((void const volatile *)cp->regs + 4112U); val = tmp___0; } if ((val & 3U) == 0U) { goto done; } else { } { __const_udelay(42950UL); } ldv_49719: tmp___1 = limit; limit = limit - 1; if (tmp___1 > 0) { goto ldv_49718; } else { } { netdev_err((struct net_device const *)cp->dev, "sw reset failed\n"); } done: { writel(224U, (void volatile *)cp->regs + 4104U); writel(4294967264U, (void volatile *)cp->regs + 4100U); writel(0U, (void volatile *)cp->regs + 36944U); } return; } } static void cas_reset(struct cas *cp , int blkflag ) { u32 val ; { { cas_mask_intr(cp); cas_global_reset(cp, blkflag); cas_mac_reset(cp); cas_entropy_gather(cp); val = readl((void const volatile *)cp->regs + 8196U); val = val & 4294967294U; writel(val, (void volatile *)cp->regs + 8196U); val = readl((void const volatile *)cp->regs + 16384U); val = val & 4294967294U; writel(val, (void volatile *)cp->regs + 16384U); cas_load_firmware(cp, (cas_hp_inst_t *)(& cas_prog_workaroundtab)); ldv_spin_lock_101((spinlock_t *)(& cp->stat_lock) + 4UL); cas_clear_mac_err(cp); ldv_spin_unlock_103((spinlock_t *)(& cp->stat_lock) + 4UL); } return; } } static void cas_shutdown(struct cas *cp ) { unsigned long flags ; int tmp ; struct cas *xxxcp ; struct cas *xxxcp___0 ; { { cp->hw_running = 0; ldv_del_timer_sync_166(& cp->link_timer); } goto ldv_49731; ldv_49730: { schedule(); } ldv_49731: { tmp = atomic_read((atomic_t const *)(& cp->reset_task_pending)); } if (tmp != 0) { goto ldv_49730; } else { } { xxxcp = cp; ldv___ldv_spin_lock_167(& xxxcp->lock); cas_lock_tx(xxxcp); cas_reset(cp, 0); } if ((cp->cas_flags & 8U) != 0U) { { cas_phy_powerdown(cp); } } else { } { xxxcp___0 = cp; cas_unlock_tx(xxxcp___0); ldv_spin_unlock_irqrestore_158(& xxxcp___0->lock, flags); } return; } } static int cas_change_mtu(struct net_device *dev , int new_mtu ) { struct cas *cp ; void *tmp ; int _min1 ; int _min2 ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; } if (new_mtu <= 59) { return (-22); } else { _min1 = (cp->page_size << 1) + -80; _min2 = 9000; if (new_mtu > (_min1 < _min2 ? _min1 : _min2)) { return (-22); } else { } } { dev->mtu = (unsigned int )new_mtu; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { { tmp___2 = netif_device_present(dev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } } { atomic_inc(& cp->reset_task_pending); } if (cp->phy_type & 1) { { atomic_inc(& cp->reset_task_pending_all); } } else { { atomic_inc(& cp->reset_task_pending_mtu); } } { schedule_work(& cp->reset_task); flush_work(& cp->reset_task); } return (0); } } static void cas_clean_txd(struct cas *cp , int ring ) { struct cas_tx_desc *txd ; struct sk_buff *skb ; struct sk_buff **skbs ; u64 daddr ; u64 dlen ; int i ; int size ; int frag ; int ent ; unsigned char *tmp ; unsigned char *tmp___0 ; { txd = cp->init_txds[ring]; skbs = (struct sk_buff **)(& cp->tx_skbs) + (unsigned long )ring; size = 512; i = 0; goto ldv_49761; ldv_49760: ; if ((unsigned long )*(skbs + (unsigned long )i) == (unsigned long )((struct sk_buff *)0)) { goto ldv_49755; } else { } skb = *(skbs + (unsigned long )i); *(skbs + (unsigned long )i) = (struct sk_buff *)0; frag = 0; goto ldv_49758; ldv_49757: { ent = i & (size + -1); daddr = (txd + (unsigned long )ent)->buffer; dlen = (txd + (unsigned long )ent)->control & 16383ULL; pci_unmap_page(cp->pdev, daddr, (size_t )dlen, 1); tmp = skb_end_pointer((struct sk_buff const *)skb); } if (frag != (int )((struct skb_shared_info *)tmp)->nr_frags) { i = i + 1; ent = i & (size + -1); if (cp->tx_tiny_use[ring][ent].used != 0) { i = i + 1; } else { } } else { } frag = frag + 1; ldv_49758: { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (frag <= (int )((struct skb_shared_info *)tmp___0)->nr_frags) { goto ldv_49757; } else { } { dev_kfree_skb_any(skb); } ldv_49755: i = i + 1; ldv_49761: ; if (i < size) { goto ldv_49760; } else { } { memset((void *)(& cp->tx_tiny_use) + (unsigned long )ring, 0, (unsigned long )size * 8UL); } return; } } __inline static void cas_free_rx_desc(struct cas *cp , int ring ) { cas_page_t **page ; int i ; int size ; { page = (cas_page_t **)(& cp->rx_pages) + (unsigned long )ring; size = 512; i = 0; goto ldv_49771; ldv_49770: ; if ((unsigned long )*(page + (unsigned long )i) != (unsigned long )((cas_page_t *)0)) { { cas_page_free(cp, *(page + (unsigned long )i)); *(page + (unsigned long )i) = (cas_page_t *)0; } } else { } i = i + 1; ldv_49771: ; if (i < size) { goto ldv_49770; } else { } return; } } static void cas_free_rxds(struct cas *cp ) { int i ; { i = 0; goto ldv_49778; ldv_49777: { cas_free_rx_desc(cp, i); i = i + 1; } ldv_49778: ; if (i <= 1) { goto ldv_49777; } else { } return; } } static void cas_clean_rings(struct cas *cp ) { int i ; { { memset((void *)(& cp->tx_old), 0, 16UL); memset((void *)(& cp->tx_new), 0, 16UL); i = 0; } goto ldv_49785; ldv_49784: { cas_clean_txd(cp, i); i = i + 1; } ldv_49785: ; if (i <= 3) { goto ldv_49784; } else { } { memset((void *)cp->init_block, 0, 114696UL); cas_clean_rxds(cp); cas_clean_rxcs(cp); } return; } } __inline static int cas_alloc_rx_desc(struct cas *cp , int ring ) { cas_page_t **page ; int size ; int i ; cas_page_t *tmp ; { page = (cas_page_t **)(& cp->rx_pages) + (unsigned long )ring; i = 0; size = 512; i = 0; goto ldv_49795; ldv_49794: { tmp = cas_page_alloc(cp, 208U); *(page + (unsigned long )i) = tmp; } if ((unsigned long )tmp == (unsigned long )((cas_page_t *)0)) { return (-1); } else { } i = i + 1; ldv_49795: ; if (i < size) { goto ldv_49794; } else { } return (0); } } static int cas_alloc_rxds(struct cas *cp ) { int i ; int tmp ; { i = 0; goto ldv_49802; ldv_49801: { tmp = cas_alloc_rx_desc(cp, i); } if (tmp < 0) { { cas_free_rxds(cp); } return (-1); } else { } i = i + 1; ldv_49802: ; if (i <= 1) { goto ldv_49801; } else { } return (0); } } static void cas_reset_task(struct work_struct *work ) { struct cas *cp ; struct work_struct const *__mptr ; int pending_all ; int tmp ; int pending_spare ; int tmp___0 ; int pending_mtu ; int tmp___1 ; unsigned long flags ; struct cas *xxxcp ; struct cas *xxxcp___0 ; { { __mptr = (struct work_struct const *)work; cp = (struct cas *)__mptr + 0xffffffffffff3da0UL; tmp = atomic_read((atomic_t const *)(& cp->reset_task_pending_all)); pending_all = tmp; tmp___0 = atomic_read((atomic_t const *)(& cp->reset_task_pending_spare)); pending_spare = tmp___0; tmp___1 = atomic_read((atomic_t const *)(& cp->reset_task_pending_mtu)); pending_mtu = tmp___1; } if (((pending_all | pending_spare) | pending_mtu) == 0) { { atomic_dec(& cp->reset_task_pending); } return; } else { } if (cp->hw_running != 0) { { netif_device_detach(cp->dev); xxxcp = cp; ldv___ldv_spin_lock_169(& xxxcp->lock); cas_lock_tx(xxxcp); } if (cp->opened != 0) { { cas_spare_recover(cp, 32U); } } else { } if ((pending_all | pending_mtu) == 0) { goto done; } else { } { cas_reset(cp, pending_all <= 0); } if (cp->opened != 0) { { cas_clean_rings(cp); } } else { } { cas_init_hw(cp, pending_all > 0); } done: { xxxcp___0 = cp; cas_unlock_tx(xxxcp___0); ldv_spin_unlock_irqrestore_158(& xxxcp___0->lock, flags); netif_device_attach(cp->dev); } } else { } { atomic_sub(pending_all, & cp->reset_task_pending_all); atomic_sub(pending_spare, & cp->reset_task_pending_spare); atomic_sub(pending_mtu, & cp->reset_task_pending_mtu); atomic_dec(& cp->reset_task_pending); } return; } } static void cas_link_timer(unsigned long data ) { struct cas *cp ; int mask ; int pending ; int reset ; unsigned long flags ; int tmp ; int tmp___0 ; int tmp___1 ; int i ; int rmask ; int tmp___2 ; u16 bmsr ; u32 val ; unsigned int tmp___3 ; u32 wptr ; u32 rptr ; int tlm ; unsigned int tmp___4 ; { cp = (struct cas *)data; pending = 0; reset = 0; if ((link_transition_timeout != 0 && cp->link_transition_jiffies_valid != 0) && (unsigned long )jiffies - cp->link_transition_jiffies > (unsigned long )link_transition_timeout) { cp->link_transition_jiffies_valid = 0; } else { } if (cp->hw_running == 0) { return; } else { } { ldv___ldv_spin_lock_171(& cp->lock); cas_lock_tx(cp); cas_entropy_gather(cp); tmp = atomic_read((atomic_t const *)(& cp->reset_task_pending_all)); } if (tmp != 0) { goto done; } else { { tmp___0 = atomic_read((atomic_t const *)(& cp->reset_task_pending_spare)); } if (tmp___0 != 0) { goto done; } else { { tmp___1 = atomic_read((atomic_t const *)(& cp->reset_task_pending_mtu)); } if (tmp___1 != 0) { goto done; } else { } } } mask = (int )cp->cas_flags & 240; if (mask != 0) { i = 0; goto ldv_49830; ldv_49829: rmask = (1 << (i + 4)) & 240; if ((mask & rmask) == 0) { goto ldv_49828; } else { } { tmp___2 = cas_post_rxds_ringN(cp, i, cp->rx_last[i]); } if (tmp___2 < 0) { pending = 1; goto ldv_49828; } else { } cp->cas_flags = cp->cas_flags & (u32 )(~ rmask); ldv_49828: i = i + 1; ldv_49830: ; if (i <= 1) { goto ldv_49829; } else { } } else { } if ((cp->phy_type & 6) != 0) { { cas_mif_poll(cp, 0); bmsr = cas_phy_read(cp, 1); bmsr = cas_phy_read(cp, 1); cas_mif_poll(cp, 1); readl((void const volatile *)cp->regs + 25112U); reset = cas_mii_link_check(cp, (int )bmsr); } } else { { reset = cas_pcs_link_check(cp); } } if (reset != 0) { goto done; } else { } { tmp___4 = readl((void const volatile *)cp->regs + 24592U); } if ((tmp___4 & 1U) == 0U) { { tmp___3 = readl((void const volatile *)cp->regs + 25040U); val = tmp___3; tlm = (int )((val & 983040U) >> 16); } if ((tlm == 5 || tlm == 3) && (val & 61440U) >> 12 == 0U) { if ((cp->msg_enable & 128U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "tx err: MAC_STATE[%08x]\n", val); } } else { } reset = 1; goto done; } else { } { val = readl((void const volatile *)cp->regs + 8228U); wptr = readl((void const volatile *)cp->regs + 8212U); rptr = readl((void const volatile *)cp->regs + 8220U); } if (val == 0U && wptr != rptr) { if ((cp->msg_enable & 128U) != 0U) { { netdev_printk("\017", (struct net_device const *)cp->dev, "tx err: TX_FIFO[%08x:%08x:%08x]\n", val, wptr, rptr); } } else { } reset = 1; } else { } if (reset != 0) { { cas_hard_reset(cp); } } else { } } else { } done: ; if (reset != 0) { { atomic_inc(& cp->reset_task_pending); atomic_inc(& cp->reset_task_pending_all); schedule_work(& cp->reset_task); } } else { } if (pending == 0) { { ldv_mod_timer_172(& cp->link_timer, (unsigned long )jiffies + 550UL); } } else { } { cas_unlock_tx(cp); ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } return; } } static void cas_tx_tiny_free(struct cas *cp ) { struct pci_dev *pdev ; int i ; { pdev = cp->pdev; i = 0; goto ldv_49844; ldv_49843: ; if ((unsigned long )cp->tx_tiny_bufs[i] == (unsigned long )((u8 *)0U)) { goto ldv_49842; } else { } { pci_free_consistent(pdev, 131328UL, (void *)cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]); cp->tx_tiny_bufs[i] = (u8 *)0U; } ldv_49842: i = i + 1; ldv_49844: ; if (i <= 3) { goto ldv_49843; } else { } return; } } static int cas_tx_tiny_alloc(struct cas *cp ) { struct pci_dev *pdev ; int i ; void *tmp ; { pdev = cp->pdev; i = 0; goto ldv_49852; ldv_49851: { tmp = pci_alloc_consistent(pdev, 131328UL, (dma_addr_t *)(& cp->tx_tiny_dvma) + (unsigned long )i); cp->tx_tiny_bufs[i] = (u8 *)tmp; } if ((unsigned long )cp->tx_tiny_bufs[i] == (unsigned long )((u8 *)0U)) { { cas_tx_tiny_free(cp); } return (-1); } else { } i = i + 1; ldv_49852: ; if (i <= 3) { goto ldv_49851; } else { } return (0); } } static int cas_open(struct net_device *dev ) { struct cas *cp ; void *tmp ; int hw_was_up ; int err ; unsigned long flags ; struct cas *xxxcp ; struct cas *xxxcp___0 ; int tmp___0 ; int tmp___1 ; int tmp___2 ; struct cas *xxxcp___1 ; struct cas *xxxcp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; mutex_lock_nested(& cp->pm_mutex, 0U); hw_was_up = cp->hw_running; } if (cp->hw_running == 0) { { xxxcp = cp; ldv___ldv_spin_lock_174(& xxxcp->lock); cas_lock_tx(xxxcp); cas_reset(cp, 0); cp->hw_running = 1; xxxcp___0 = cp; cas_unlock_tx(xxxcp___0); ldv_spin_unlock_irqrestore_158(& xxxcp___0->lock, flags); } } else { } { err = -12; tmp___0 = cas_tx_tiny_alloc(cp); } if (tmp___0 < 0) { goto err_unlock; } else { } { tmp___1 = cas_alloc_rxds(cp); } if (tmp___1 < 0) { goto err_tx_tiny; } else { } { cas_spare_init(cp); cas_spare_recover(cp, 208U); tmp___2 = ldv_request_irq_176((cp->pdev)->irq, & cas_interrupt, 128UL, (char const *)(& dev->name), (void *)dev); } if (tmp___2 != 0) { { netdev_err((struct net_device const *)cp->dev, "failed to request irq !\n"); err = -11; } goto err_spare; } else { } { xxxcp___1 = cp; ldv___ldv_spin_lock_177(& xxxcp___1->lock); cas_lock_tx(xxxcp___1); cas_clean_rings(cp); cas_init_hw(cp, hw_was_up == 0); cp->opened = 1; xxxcp___2 = cp; cas_unlock_tx(xxxcp___2); ldv_spin_unlock_irqrestore_158(& xxxcp___2->lock, flags); netif_start_queue(dev); mutex_unlock(& cp->pm_mutex); } return (0); err_spare: { cas_spare_free(cp); cas_free_rxds(cp); } err_tx_tiny: { cas_tx_tiny_free(cp); } err_unlock: { mutex_unlock(& cp->pm_mutex); } return (err); } } static int cas_close(struct net_device *dev ) { unsigned long flags ; struct cas *cp ; void *tmp ; struct cas *xxxcp ; struct cas *xxxcp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; mutex_lock_nested(& cp->pm_mutex, 0U); netif_stop_queue(dev); xxxcp = cp; ldv___ldv_spin_lock_179(& xxxcp->lock); cas_lock_tx(xxxcp); cp->opened = 0; cas_reset(cp, 0); cas_phy_init(cp); cas_begin_auto_negotiation(cp, (struct ethtool_cmd *)0); cas_clean_rings(cp); xxxcp___0 = cp; cas_unlock_tx(xxxcp___0); ldv_spin_unlock_irqrestore_158(& xxxcp___0->lock, flags); ldv_free_irq_181((cp->pdev)->irq, (void *)dev); cas_spare_free(cp); cas_free_rxds(cp); cas_tx_tiny_free(cp); mutex_unlock(& cp->pm_mutex); } return (0); } } static struct __anonstruct_ethtool_cassini_statnames_270 ethtool_cassini_statnames[16U] = { {{'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'a', 'b', 'o', 'r', 't', 'e', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}}; static struct __anonstruct_ethtool_register_table_271 ethtool_register_table[18U] = { {-1}, {0}, {4}, {8}, {4104}, {16384}, {16704}, {24624}, {24628}, {24632}, {24636}, {25104}, {36880}, {4204}, {36868}, {36884}, {25000}, {25004}}; static void cas_read_regs(struct cas *cp , u8 *ptr , int len ) { u8 *p ; int i ; unsigned long flags ; u16 hval ; u32 val ; { { ldv___ldv_spin_lock_182(& cp->lock); i = 0; p = ptr; } goto ldv_49892; ldv_49891: ; if ((int )ethtool_register_table[i].offsets < 0) { { hval = cas_phy_read(cp, - ethtool_register_table[i].offsets); val = (u32 )hval; } } else { { val = readl((void const volatile *)cp->regs + (unsigned long )ethtool_register_table[i].offsets); } } { memcpy((void *)p, (void const *)(& val), 4UL); i = i + 1; p = p + 4UL; } ldv_49892: ; if (i < len) { goto ldv_49891; } else { } { ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } return; } } static struct net_device_stats *cas_get_stats(struct net_device *dev ) { struct cas *cp ; void *tmp ; struct net_device_stats *stats ; unsigned long flags ; int i ; unsigned long tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; stats = (struct net_device_stats *)(& cp->net_stats); } if (cp->hw_running == 0) { return (stats + 4UL); } else { } { ldv___ldv_spin_lock_184((spinlock_t *)(& cp->stat_lock) + 4UL); tmp___1 = readl((void const volatile *)cp->regs + 25028U); (stats + 4UL)->rx_crc_errors = (stats + 4UL)->rx_crc_errors + ((unsigned long )tmp___1 & 65535UL); tmp___2 = readl((void const volatile *)cp->regs + 25024U); (stats + 4UL)->rx_frame_errors = (stats + 4UL)->rx_frame_errors + ((unsigned long )tmp___2 & 65535UL); tmp___3 = readl((void const volatile *)cp->regs + 25020U); (stats + 4UL)->rx_length_errors = (stats + 4UL)->rx_length_errors + ((unsigned long )tmp___3 & 65535UL); tmp___4 = readl((void const volatile *)cp->regs + 25000U); tmp___5 = readl((void const volatile *)cp->regs + 25004U); tmp___0 = (unsigned long )((tmp___4 & 65535U) + (tmp___5 & 65535U)); (stats + 4UL)->tx_aborted_errors = (stats + 4UL)->tx_aborted_errors + tmp___0; tmp___6 = readl((void const volatile *)cp->regs + 24992U); (stats + 4UL)->collisions = (stats + 4UL)->collisions + (tmp___0 + ((unsigned long )tmp___6 & 65535UL)); cas_clear_mac_err(cp); ldv_spin_lock_132((spinlock_t *)(& cp->stat_lock)); (stats + 4UL)->collisions = (stats + 4UL)->collisions + stats->collisions; (stats + 4UL)->rx_over_errors = (stats + 4UL)->rx_over_errors + stats->rx_over_errors; (stats + 4UL)->rx_frame_errors = (stats + 4UL)->rx_frame_errors + stats->rx_frame_errors; (stats + 4UL)->rx_fifo_errors = (stats + 4UL)->rx_fifo_errors + stats->rx_fifo_errors; (stats + 4UL)->tx_aborted_errors = (stats + 4UL)->tx_aborted_errors + stats->tx_aborted_errors; (stats + 4UL)->tx_fifo_errors = (stats + 4UL)->tx_fifo_errors + stats->tx_fifo_errors; ldv_spin_unlock_133((spinlock_t *)(& cp->stat_lock)); i = 0; } goto ldv_49903; ldv_49902: { ldv_spin_lock_101((spinlock_t *)(& cp->stat_lock) + (unsigned long )i); (stats + 4UL)->rx_length_errors = (stats + 4UL)->rx_length_errors + (stats + (unsigned long )i)->rx_length_errors; (stats + 4UL)->rx_crc_errors = (stats + 4UL)->rx_crc_errors + (stats + (unsigned long )i)->rx_crc_errors; (stats + 4UL)->rx_packets = (stats + 4UL)->rx_packets + (stats + (unsigned long )i)->rx_packets; (stats + 4UL)->tx_packets = (stats + 4UL)->tx_packets + (stats + (unsigned long )i)->tx_packets; (stats + 4UL)->rx_bytes = (stats + 4UL)->rx_bytes + (stats + (unsigned long )i)->rx_bytes; (stats + 4UL)->tx_bytes = (stats + 4UL)->tx_bytes + (stats + (unsigned long )i)->tx_bytes; (stats + 4UL)->rx_errors = (stats + 4UL)->rx_errors + (stats + (unsigned long )i)->rx_errors; (stats + 4UL)->tx_errors = (stats + 4UL)->tx_errors + (stats + (unsigned long )i)->tx_errors; (stats + 4UL)->rx_dropped = (stats + 4UL)->rx_dropped + (stats + (unsigned long )i)->rx_dropped; (stats + 4UL)->tx_dropped = (stats + 4UL)->tx_dropped + (stats + (unsigned long )i)->tx_dropped; memset((void *)stats + (unsigned long )i, 0, 184UL); ldv_spin_unlock_103((spinlock_t *)(& cp->stat_lock) + (unsigned long )i); i = i + 1; } ldv_49903: ; if (i <= 3) { goto ldv_49902; } else { } { ldv_spin_unlock_irqrestore_160((spinlock_t *)(& cp->stat_lock) + 4UL, flags); } return (stats + 4UL); } } static void cas_set_multicast(struct net_device *dev ) { struct cas *cp ; void *tmp ; u32 rxcfg ; u32 rxcfg_new ; unsigned long flags ; int limit ; int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; limit = 5000; } if (cp->hw_running == 0) { return; } else { } { ldv___ldv_spin_lock_190(& cp->lock); rxcfg = readl((void const volatile *)cp->regs + 24628U); writel(rxcfg & 4294967294U, (void volatile *)cp->regs + 24628U); } goto ldv_49915; ldv_49914: tmp___0 = limit; limit = limit - 1; if (tmp___0 == 0) { goto ldv_49913; } else { } { __const_udelay(42950UL); } ldv_49915: { tmp___1 = readl((void const volatile *)cp->regs + 24628U); } if ((int )tmp___1 & 1) { goto ldv_49914; } else { } ldv_49913: { limit = 5000; rxcfg = rxcfg & 4294967255U; writel(rxcfg & 4294967294U, (void volatile *)cp->regs + 24628U); } goto ldv_49918; ldv_49917: tmp___2 = limit; limit = limit - 1; if (tmp___2 == 0) { goto ldv_49916; } else { } { __const_udelay(42950UL); } ldv_49918: { tmp___3 = readl((void const volatile *)cp->regs + 24628U); } if ((tmp___3 & 32U) != 0U) { goto ldv_49917; } else { } ldv_49916: { rxcfg_new = cas_setup_multicast(cp); cp->mac_rx_cfg = rxcfg_new; rxcfg = rxcfg | rxcfg_new; writel(rxcfg, (void volatile *)cp->regs + 24628U); ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } return; } } static void cas_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct cas *cp ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; strlcpy((char *)(& info->driver), "cassini", 32UL); strlcpy((char *)(& info->version), "1.6", 32UL); tmp___0 = pci_name((struct pci_dev const *)cp->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); info->regdump_len = 72U < (unsigned int )cp->casreg_len ? 72U : (unsigned int )cp->casreg_len; info->n_stats = 16U; } return; } } static int cas_get_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct cas *cp ; void *tmp ; u16 bmcr ; int full_duplex ; int speed ; int pause ; unsigned long flags ; enum link_state linkstate ; unsigned int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; linkstate = 5; cmd->advertising = 0U; cmd->supported = 64U; } if ((int )cp->cas_flags & 1) { cmd->supported = cmd->supported | 32U; cmd->advertising = cmd->advertising | 32U; } else { } { ldv___ldv_spin_lock_192(& cp->lock); bmcr = 0U; linkstate = cp->lstate; } if ((cp->phy_type & 6) != 0) { cmd->port = 2U; cmd->transceiver = (cp->cas_flags & 8U) == 0U; cmd->phy_address = (__u8 )cp->phy_addr; cmd->advertising = cmd->advertising | 655U; cmd->supported = cmd->supported | 655U; if (cp->hw_running != 0) { { cas_mif_poll(cp, 0); bmcr = cas_phy_read(cp, 0); cas_read_mii_link_mode(cp, & full_duplex, & speed, & pause); cas_mif_poll(cp, 1); } } else { } } else { cmd->port = 3U; cmd->transceiver = 0U; cmd->phy_address = 0U; cmd->supported = cmd->supported | 1024U; cmd->advertising = cmd->advertising | 1024U; if (cp->hw_running != 0) { { tmp___0 = readl((void const volatile *)cp->regs + 36864U); bmcr = (u16 )tmp___0; cas_read_pcs_link_mode(cp, & full_duplex, & speed, & pause); } } else { } } { ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } if (((int )bmcr & 4096) != 0) { { cmd->advertising = cmd->advertising | 64U; cmd->autoneg = 1U; ethtool_cmd_speed_set(cmd, speed != 10 ? (speed == 1000 ? 1000U : 100U) : 10U); cmd->duplex = full_duplex != 0; } } else { { cmd->autoneg = 0U; ethtool_cmd_speed_set(cmd, ((int )bmcr & 64) == 0 ? (((int )bmcr & 8192) != 0 ? 100U : 10U) : 1000U); cmd->duplex = ((int )bmcr & 256) != 0; } } if ((unsigned int )linkstate != 5U) { if ((cp->link_cntl & 4096) != 0) { { ethtool_cmd_speed_set(cmd, 0U); cmd->duplex = 255U; } } else { { ethtool_cmd_speed_set(cmd, 10U); } if ((cp->link_cntl & 8192) != 0) { { ethtool_cmd_speed_set(cmd, 100U); } } else if ((cp->link_cntl & 64) != 0) { { ethtool_cmd_speed_set(cmd, 1000U); } } else { } cmd->duplex = (cp->link_cntl & 256) != 0; } } else { } return (0); } } static int cas_set_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct cas *cp ; void *tmp ; unsigned long flags ; u32 speed ; __u32 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)cmd); speed = tmp___0; } if ((unsigned int )cmd->autoneg > 1U) { return (-22); } else { } if ((unsigned int )cmd->autoneg == 0U && (((speed != 1000U && speed != 100U) && speed != 10U) || (unsigned int )cmd->duplex > 1U)) { return (-22); } else { } { ldv___ldv_spin_lock_194(& cp->lock); cas_begin_auto_negotiation(cp, cmd); ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } return (0); } } static int cas_nway_reset(struct net_device *dev ) { struct cas *cp ; void *tmp ; unsigned long flags ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; } if ((cp->link_cntl & 4096) == 0) { return (-22); } else { } { ldv___ldv_spin_lock_196(& cp->lock); cas_begin_auto_negotiation(cp, (struct ethtool_cmd *)0); ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } return (0); } } static u32 cas_get_link(struct net_device *dev ) { struct cas *cp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; } return ((unsigned int )cp->lstate == 5U); } } static u32 cas_get_msglevel(struct net_device *dev ) { struct cas *cp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; } return (cp->msg_enable); } } static void cas_set_msglevel(struct net_device *dev , u32 value ) { struct cas *cp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; cp->msg_enable = value; } return; } } static int cas_get_regs_len(struct net_device *dev ) { struct cas *cp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; } return ((int )(72U < (unsigned int )cp->casreg_len ? 72U : (unsigned int )cp->casreg_len)); } } static void cas_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *p ) { struct cas *cp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; regs->version = 0U; cas_read_regs(cp, (u8 *)p, (int )(regs->len / 4U)); } return; } } static int cas_get_sset_count(struct net_device *dev , int sset ) { { { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (16); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void cas_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { { { memcpy((void *)data, (void const *)(& ethtool_cassini_statnames), 512UL); } return; } } static void cas_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *estats , u64 *data ) { struct cas *cp ; void *tmp ; struct net_device_stats *stats ; struct net_device_stats *tmp___0 ; int i ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; long tmp___17 ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; tmp___0 = cas_get_stats(cp->dev); stats = tmp___0; i = 0; tmp___1 = i; i = i + 1; *(data + (unsigned long )tmp___1) = (u64 )stats->collisions; tmp___2 = i; i = i + 1; *(data + (unsigned long )tmp___2) = (u64 )stats->rx_bytes; tmp___3 = i; i = i + 1; *(data + (unsigned long )tmp___3) = (u64 )stats->rx_crc_errors; tmp___4 = i; i = i + 1; *(data + (unsigned long )tmp___4) = (u64 )stats->rx_dropped; tmp___5 = i; i = i + 1; *(data + (unsigned long )tmp___5) = (u64 )stats->rx_errors; tmp___6 = i; i = i + 1; *(data + (unsigned long )tmp___6) = (u64 )stats->rx_fifo_errors; tmp___7 = i; i = i + 1; *(data + (unsigned long )tmp___7) = (u64 )stats->rx_frame_errors; tmp___8 = i; i = i + 1; *(data + (unsigned long )tmp___8) = (u64 )stats->rx_length_errors; tmp___9 = i; i = i + 1; *(data + (unsigned long )tmp___9) = (u64 )stats->rx_over_errors; tmp___10 = i; i = i + 1; *(data + (unsigned long )tmp___10) = (u64 )stats->rx_packets; tmp___11 = i; i = i + 1; *(data + (unsigned long )tmp___11) = (u64 )stats->tx_aborted_errors; tmp___12 = i; i = i + 1; *(data + (unsigned long )tmp___12) = (u64 )stats->tx_bytes; tmp___13 = i; i = i + 1; *(data + (unsigned long )tmp___13) = (u64 )stats->tx_dropped; tmp___14 = i; i = i + 1; *(data + (unsigned long )tmp___14) = (u64 )stats->tx_errors; tmp___15 = i; i = i + 1; *(data + (unsigned long )tmp___15) = (u64 )stats->tx_fifo_errors; tmp___16 = i; i = i + 1; *(data + (unsigned long )tmp___16) = (u64 )stats->tx_packets; tmp___17 = ldv__builtin_expect(i != 16, 0L); } if (tmp___17 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/sun/cassini.c"), "i" (4758), "i" (12UL)); __builtin_unreachable(); } } else { } return; } } static struct ethtool_ops const cas_ethtool_ops = {& cas_get_settings, & cas_set_settings, & cas_get_drvinfo, & cas_get_regs_len, & cas_get_regs, 0, 0, & cas_get_msglevel, & cas_set_msglevel, & cas_nway_reset, & cas_get_link, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & cas_get_strings, 0, & cas_get_ethtool_stats, 0, 0, 0, 0, & cas_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int cas_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { struct cas *cp ; void *tmp ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; unsigned long flags ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp; tmp___0 = if_mii(ifr); data = tmp___0; rc = -95; mutex_lock_nested(& cp->pm_mutex, 0U); } { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_default; case_35143: /* CIL Label */ data->phy_id = (__u16 )cp->phy_addr; case_35144: /* CIL Label */ { ldv___ldv_spin_lock_198(& cp->lock); cas_mif_poll(cp, 0); data->val_out = cas_phy_read(cp, (int )data->reg_num & 31); cas_mif_poll(cp, 1); ldv_spin_unlock_irqrestore_158(& cp->lock, flags); rc = 0; } goto ldv_50017; case_35145: /* CIL Label */ { ldv___ldv_spin_lock_200(& cp->lock); cas_mif_poll(cp, 0); rc = cas_phy_write(cp, (int )data->reg_num & 31, (int )data->val_in); cas_mif_poll(cp, 1); ldv_spin_unlock_irqrestore_158(& cp->lock, flags); } goto ldv_50017; switch_default: /* CIL Label */ ; goto ldv_50017; switch_break: /* CIL Label */ ; } ldv_50017: { mutex_unlock(& cp->pm_mutex); } return (rc); } } static void cas_program_bridge(struct pci_dev *cas_pdev ) { struct pci_dev *pdev ; u32 val ; { pdev = (cas_pdev->bus)->self; if ((unsigned long )pdev == (unsigned long )((struct pci_dev *)0)) { return; } else { } if (*((unsigned int *)pdev + 15UL) != 1400668294U) { return; } else { } { pci_read_config_dword((struct pci_dev const *)pdev, 64, & val); val = val & 4294705151U; pci_write_config_dword((struct pci_dev const *)pdev, 64, val); pci_write_config_word((struct pci_dev const *)pdev, 80, 6143); pci_write_config_word((struct pci_dev const *)pdev, 82, 65535); pci_write_config_byte((struct pci_dev const *)pdev, 12, 8); pci_write_config_byte((struct pci_dev const *)pdev, 13, 255); } return; } } static struct net_device_ops const cas_netdev_ops = {0, 0, & cas_open, & cas_close, & cas_start_xmit, 0, 0, & cas_set_multicast, & eth_mac_addr, & eth_validate_addr, & cas_ioctl, 0, & cas_change_mtu, 0, & cas_tx_timeout, 0, & cas_get_stats, 0, 0, & cas_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int cas_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { int cas_version_printed ; unsigned long casreg_len ; struct net_device *dev ; struct cas *cp ; int i ; int err ; int pci_using_dac ; u16 pci_cmd ; u8 orig_cacheline_size ; u8 cas_cacheline_size ; int tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; void *tmp___4 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; struct lock_class_key __key___5 ; struct lock_class_key __key___6 ; struct lock_class_key __key___7 ; atomic_long_t __constr_expr_0 ; int tmp___5 ; void *tmp___6 ; int tmp___7 ; unsigned int tmp___8 ; { cas_version_printed = 0; orig_cacheline_size = 0U; cas_cacheline_size = 0U; tmp = cas_version_printed; cas_version_printed = cas_version_printed + 1; if (tmp == 0) { { printk("\016cassini: %s", (char *)(& version)); } } else { } { err = pci_enable_device(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable PCI device, aborting\n"); } return (err); } else { } if ((pdev->resource[0].flags & 512UL) == 0UL) { { dev_err((struct device const *)(& pdev->dev), "Cannot find proper PCI device base address, aborting\n"); err = -19; } goto err_out_disable_pdev; } else { } { dev = ldv_alloc_etherdev_mqs_202(49968, 1U, 1U); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_disable_pdev; } else { } { dev->dev.parent = & pdev->dev; err = pci_request_regions(pdev, (char const *)(& dev->name)); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot obtain PCI resources, aborting\n"); } goto err_out_free_netdev; } else { } { pci_set_master(pdev); pci_read_config_word((struct pci_dev const *)pdev, 4, & pci_cmd); pci_cmd = (unsigned int )pci_cmd & 65279U; pci_cmd = (u16 )((unsigned int )pci_cmd | 64U); pci_write_config_word((struct pci_dev const *)pdev, 4, (int )pci_cmd); tmp___1 = pci_try_set_mwi(pdev); } if (tmp___1 != 0) { { tmp___0 = pci_name((struct pci_dev const *)pdev); printk("\fcassini: Could not enable MWI for %s\n", tmp___0); } } else { } { cas_program_bridge(pdev); pci_read_config_byte((struct pci_dev const *)pdev, 12, & orig_cacheline_size); } if ((unsigned int )orig_cacheline_size <= 31U) { { cas_cacheline_size = 32U; tmp___2 = pci_write_config_byte((struct pci_dev const *)pdev, 12, (int )cas_cacheline_size); } if (tmp___2 != 0) { { dev_err((struct device const *)(& pdev->dev), "Could not set PCI cache line size\n"); } goto err_write_cacheline; } else { } } else { } { tmp___3 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___3 == 0) { { pci_using_dac = 1; err = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } if (err < 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to obtain 64-bit DMA for consistent allocations\n"); } goto err_out_free_res; } else { } } else { { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration, aborting\n"); } goto err_out_free_res; } else { } pci_using_dac = 0; } { casreg_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL; tmp___4 = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp___4; cp->pdev = pdev; cp->orig_cacheline_size = (unsigned int )cas_cacheline_size != 0U ? orig_cacheline_size : 0U; cp->dev = dev; cp->msg_enable = cassini_debug >= 0 ? (u32 )cassini_debug : 255U; cp->link_transition = 0; cp->link_transition_jiffies_valid = 0; spinlock_check(& cp->lock); __raw_spin_lock_init(& cp->lock.__annonCompField19.rlock, "&(&cp->lock)->rlock", & __key); spinlock_check(& cp->rx_inuse_lock); __raw_spin_lock_init(& cp->rx_inuse_lock.__annonCompField19.rlock, "&(&cp->rx_inuse_lock)->rlock", & __key___0); spinlock_check(& cp->rx_spare_lock); __raw_spin_lock_init(& cp->rx_spare_lock.__annonCompField19.rlock, "&(&cp->rx_spare_lock)->rlock", & __key___1); i = 0; } goto ldv_50050; ldv_50049: { spinlock_check((spinlock_t *)(& cp->stat_lock) + (unsigned long )i); __raw_spin_lock_init(& ((spinlock_t *)(& cp->stat_lock) + (unsigned long )i)->__annonCompField19.rlock, "&(&cp->stat_lock[i])->rlock", & __key___2); spinlock_check((spinlock_t *)(& cp->tx_lock) + (unsigned long )i); __raw_spin_lock_init(& ((spinlock_t *)(& cp->tx_lock) + (unsigned long )i)->__annonCompField19.rlock, "&(&cp->tx_lock[i])->rlock", & __key___3); i = i + 1; } ldv_50050: ; if (i <= 3) { goto ldv_50049; } else { } { spinlock_check((spinlock_t *)(& cp->stat_lock) + 4UL); __raw_spin_lock_init(& ((spinlock_t *)(& cp->stat_lock) + 4UL)->__annonCompField19.rlock, "&(&cp->stat_lock[(1 << 2)])->rlock", & __key___4); __mutex_init(& cp->pm_mutex, "&cp->pm_mutex", & __key___5); init_timer_key(& cp->link_timer, 0U, "(&cp->link_timer)", & __key___6); cp->link_timer.function = & cas_link_timer; cp->link_timer.data = (unsigned long )cp; atomic_set(& cp->reset_task_pending, 0); atomic_set(& cp->reset_task_pending_all, 0); atomic_set(& cp->reset_task_pending_spare, 0); atomic_set(& cp->reset_task_pending_mtu, 0); __init_work(& cp->reset_task, 0); __constr_expr_0.counter = 137438953408L; cp->reset_task.data = __constr_expr_0; lockdep_init_map(& cp->reset_task.lockdep_map, "(&cp->reset_task)", & __key___7, 0); INIT_LIST_HEAD(& cp->reset_task.entry); cp->reset_task.func = & cas_reset_task; } if ((unsigned int )link_mode <= 5U) { cp->link_cntl = (int )link_modes[link_mode]; } else { cp->link_cntl = 4096; } { cp->lstate = 0; cp->link_transition = 5; netif_carrier_off(cp->dev); cp->timer_ticks = 0; cp->regs = pci_iomap(pdev, 0, casreg_len); } if ((unsigned long )cp->regs == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Cannot map device registers, aborting\n"); } goto err_out_free_res; } else { } { cp->casreg_len = (int )casreg_len; pci_save_state(pdev); cas_check_pci_invariants(cp); cas_hard_reset(cp); cas_reset(cp, 0); tmp___5 = cas_check_invariants(cp); } if (tmp___5 != 0) { goto err_out_iounmap; } else { } if ((cp->cas_flags & 8U) != 0U) { { cas_saturn_firmware_init(cp); } } else { } { tmp___6 = pci_alloc_consistent(pdev, 114696UL, & cp->block_dvma); cp->init_block = (struct cas_init_block *)tmp___6; } if ((unsigned long )cp->init_block == (unsigned long )((struct cas_init_block *)0)) { { dev_err((struct device const *)(& pdev->dev), "Cannot allocate init block, aborting\n"); } goto err_out_iounmap; } else { } i = 0; goto ldv_50059; ldv_50058: cp->init_txds[i] = (struct cas_tx_desc *)(& (cp->init_block)->txds) + (unsigned long )i; i = i + 1; ldv_50059: ; if (i <= 3) { goto ldv_50058; } else { } i = 0; goto ldv_50062; ldv_50061: cp->init_rxds[i] = (struct cas_rx_desc *)(& (cp->init_block)->rxds) + (unsigned long )i; i = i + 1; ldv_50062: ; if (i <= 1) { goto ldv_50061; } else { } i = 0; goto ldv_50065; ldv_50064: cp->init_rxcs[i] = (struct cas_rx_comp *)(& (cp->init_block)->rxcs) + (unsigned long )i; i = i + 1; ldv_50065: ; if (i <= 0) { goto ldv_50064; } else { } i = 0; goto ldv_50068; ldv_50067: { skb_queue_head_init((struct sk_buff_head *)(& cp->rx_flows) + (unsigned long )i); i = i + 1; } ldv_50068: ; if (i <= 63) { goto ldv_50067; } else { } dev->netdev_ops = & cas_netdev_ops; dev->ethtool_ops = & cas_ethtool_ops; dev->watchdog_timeo = 250; dev->irq = (int )pdev->irq; dev->dma = 0U; if ((cp->cas_flags & 512U) == 0U) { dev->features = dev->features | 9ULL; } else { } if (pci_using_dac != 0) { dev->features = dev->features | 32ULL; } else { } { tmp___7 = ldv_register_netdev_203(dev); } if (tmp___7 != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot register net device, aborting\n"); } goto err_out_free_consistent; } else { } { tmp___8 = readl((void const volatile *)cp->regs + 4104U); i = (int )tmp___8; netdev_info((struct net_device const *)dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n", (cp->cas_flags & 2U) != 0U ? (char *)"+" : (char *)"", (i & 16) != 0 ? (char *)"32" : (char *)"64", (i & 8) != 0 ? (char *)"66" : (char *)"33", cp->phy_type == 1 ? (char *)"Fi" : (char *)"Cu", pdev->irq, dev->dev_addr); pci_set_drvdata(pdev, (void *)dev); cp->hw_running = 1; cas_entropy_gather(cp); cas_phy_init(cp); cas_begin_auto_negotiation(cp, (struct ethtool_cmd *)0); } return (0); err_out_free_consistent: { pci_free_consistent(pdev, 114696UL, (void *)cp->init_block, cp->block_dvma); } err_out_iounmap: { mutex_lock_nested(& cp->pm_mutex, 0U); } if (cp->hw_running != 0) { { cas_shutdown(cp); } } else { } { mutex_unlock(& cp->pm_mutex); pci_iounmap(pdev, cp->regs); } err_out_free_res: { pci_release_regions(pdev); } err_write_cacheline: { pci_write_config_byte((struct pci_dev const *)pdev, 12, (int )orig_cacheline_size); } err_out_free_netdev: { ldv_free_netdev_204(dev); } err_out_disable_pdev: { pci_disable_device(pdev); } return (-19); } } static void cas_remove_one(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct cas *cp ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { return; } else { } { tmp___0 = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp___0; ldv_unregister_netdev_205(dev); } if ((unsigned long )cp->fw_data != (unsigned long )((u8 *)0U)) { { vfree((void const *)cp->fw_data); } } else { } { mutex_lock_nested(& cp->pm_mutex, 0U); cancel_work_sync(& cp->reset_task); } if (cp->hw_running != 0) { { cas_shutdown(cp); } } else { } { mutex_unlock(& cp->pm_mutex); } if ((unsigned int )cp->orig_cacheline_size != 0U) { { pci_write_config_byte((struct pci_dev const *)pdev, 12, (int )cp->orig_cacheline_size); } } else { } { pci_free_consistent(pdev, 114696UL, (void *)cp->init_block, cp->block_dvma); pci_iounmap(pdev, cp->regs); ldv_free_netdev_206(dev); pci_release_regions(pdev); pci_disable_device(pdev); } return; } } static int cas_suspend(struct pci_dev *pdev , pm_message_t state ) { struct net_device *dev ; void *tmp ; struct cas *cp ; void *tmp___0 ; unsigned long flags ; struct cas *xxxcp ; struct cas *xxxcp___0 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp___0; mutex_lock_nested(& cp->pm_mutex, 0U); } if (cp->opened != 0) { { netif_device_detach(dev); xxxcp = cp; ldv___ldv_spin_lock_207(& xxxcp->lock); cas_lock_tx(xxxcp); cas_reset(cp, 0); cas_clean_rings(cp); xxxcp___0 = cp; cas_unlock_tx(xxxcp___0); ldv_spin_unlock_irqrestore_158(& xxxcp___0->lock, flags); } } else { } if (cp->hw_running != 0) { { cas_shutdown(cp); } } else { } { mutex_unlock(& cp->pm_mutex); } return (0); } } static int cas_resume(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct cas *cp ; void *tmp___0 ; unsigned long flags ; struct cas *xxxcp ; struct cas *xxxcp___0 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); cp = (struct cas *)tmp___0; netdev_info((struct net_device const *)dev, "resuming\n"); mutex_lock_nested(& cp->pm_mutex, 0U); cas_hard_reset(cp); } if (cp->opened != 0) { { xxxcp = cp; ldv___ldv_spin_lock_209(& xxxcp->lock); cas_lock_tx(xxxcp); cas_reset(cp, 0); cp->hw_running = 1; cas_clean_rings(cp); cas_init_hw(cp, 1); xxxcp___0 = cp; cas_unlock_tx(xxxcp___0); ldv_spin_unlock_irqrestore_158(& xxxcp___0->lock, flags); netif_device_attach(dev); } } else { } { mutex_unlock(& cp->pm_mutex); } return (0); } } static struct pci_driver cas_driver = {{0, 0}, "cassini", (struct pci_device_id const *)(& cas_pci_tbl), & cas_init_one, & cas_remove_one, & cas_suspend, 0, 0, & cas_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int cas_init(void) { int tmp ; { if (linkdown_timeout > 0) { link_transition_timeout = linkdown_timeout * 250; } else { link_transition_timeout = 0; } { tmp = ldv___pci_register_driver_211(& cas_driver, & __this_module, "cassini"); } return (tmp); } } static void cas_cleanup(void) { { { ldv_pci_unregister_driver_212(& cas_driver); } return; } } void ldv_EMGentry_exit_cas_cleanup_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_cas_init_14_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_11_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) ; void ldv_dispatch_instance_deregister_5_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_8_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_6_1(int arg0 ) ; void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_9_4(struct net_device *arg0 ) ; void ldv_dummy_resourceless_instance_callback_1_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_24(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_27(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_29(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_31(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_32(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_33(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_34(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_35(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_3(void) ; void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_3(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_11_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_14_exit_cas_cleanup_default)(void) ; int (*ldv_14_init_cas_init_default)(void) ; int ldv_14_ret_default ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_nway_reset)(struct net_device * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_15_1_default ; unsigned int ldv_1_ldv_param_18_1_default ; unsigned char *ldv_1_ldv_param_18_2_default ; int ldv_1_ldv_param_21_1_default ; int ldv_1_ldv_param_24_2_default ; unsigned int ldv_1_ldv_param_35_1_default ; unsigned long long *ldv_1_ldv_param_7_2_default ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct timer_list *ldv_3_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_14 ; int ldv_statevar_2 ; int ldv_statevar_3 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & cas_interrupt; void (*ldv_14_exit_cas_cleanup_default)(void) = & cas_cleanup; int (*ldv_14_init_cas_init_default)(void) = & cas_init; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & cas_get_drvinfo; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & cas_get_ethtool_stats; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & cas_get_link; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) = & cas_get_msglevel; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & cas_get_regs; int (*ldv_1_callback_get_regs_len)(struct net_device * ) = & cas_get_regs_len; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & cas_get_settings; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) = & cas_get_sset_count; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & cas_get_strings; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & cas_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & cas_ioctl; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) = & cas_get_stats; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) = & cas_netpoll; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & eth_mac_addr; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & cas_set_multicast; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & cas_start_xmit; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & cas_tx_timeout; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; int (*ldv_1_callback_nway_reset)(struct net_device * ) = & cas_nway_reset; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) = & cas_set_msglevel; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & cas_set_settings; void ldv_EMGentry_exit_cas_cleanup_14_2(void (*arg0)(void) ) { { { cas_cleanup(); } return; } } int ldv_EMGentry_init_cas_init_14_7(int (*arg0)(void) ) { int tmp ; { { tmp = cas_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_13_2(ldv_13_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_4_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_4_netdev_net_device = (struct net_device *)tmp; } return (ldv_4_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { { { ldv_0_data_data = ldv_malloc(0UL); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_1_container_net_device = ldv_malloc(sizeof(struct net_device)); ldv_1_container_struct_ethtool_cmd_ptr = ldv_malloc(sizeof(struct ethtool_cmd)); ldv_1_container_struct_ethtool_drvinfo_ptr = ldv_malloc(sizeof(struct ethtool_drvinfo)); ldv_1_container_struct_ethtool_regs_ptr = ldv_malloc(sizeof(struct ethtool_regs)); ldv_1_container_struct_ethtool_stats_ptr = ldv_malloc(sizeof(struct ethtool_stats)); ldv_1_container_struct_ifreq_ptr = ldv_malloc(sizeof(struct ifreq)); ldv_1_container_struct_sk_buff_ptr = ldv_malloc(sizeof(struct sk_buff)); ldv_1_ldv_param_18_2_default = ldv_malloc(sizeof(unsigned char)); ldv_1_ldv_param_7_2_default = ldv_malloc(sizeof(unsigned long long)); ldv_2_resource_dev = ldv_malloc(sizeof(struct pci_dev)); ldv_3_container_timer_list = ldv_malloc(sizeof(struct timer_list)); } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_5_timer_list_timer_list ; { { ldv_5_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_3 == 2); ldv_dispatch_instance_deregister_5_1(ldv_5_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_11_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_instance_deregister_5_1(struct timer_list *arg0 ) { { { ldv_3_container_timer_list = arg0; ldv_switch_automaton_state_3_1(); } return; } } void ldv_dispatch_instance_register_8_2(struct timer_list *arg0 ) { { { ldv_3_container_timer_list = arg0; ldv_switch_automaton_state_3_3(); } return; } } void ldv_dispatch_irq_deregister_6_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_9_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dummy_resourceless_instance_callback_1_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { cas_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { cas_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { cas_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { cas_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { cas_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_24(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { cas_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_29(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { eth_mac_addr(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { cas_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_set_multicast(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_31(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { cas_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_32(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_33(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_34(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { cas_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { cas_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { cas_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { int tmp ; { { if (ldv_statevar_14 == 4) { goto case_4; } else { } if (ldv_statevar_14 == 6) { goto case_6; } else { } if (ldv_statevar_14 == 7) { goto case_7; } else { } goto switch_default; case_4: /* CIL Label */ { ldv_assume(ldv_14_ret_default == 0); ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_cas_cleanup_14_2(ldv_14_exit_cas_cleanup_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 7; } goto ldv_50762; case_6: /* CIL Label */ { ldv_assume(ldv_14_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 7; } goto ldv_50762; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_14_ret_default = ldv_EMGentry_init_cas_init_14_7(ldv_14_init_cas_init_default); ldv_14_ret_default = ldv_post_init(ldv_14_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_14 = 4; } else { ldv_statevar_14 = 6; } goto ldv_50762; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_50762: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_14 = 7; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 3; } ldv_50775: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_14((void *)0); } goto ldv_50769; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_50769; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_50769; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_50769; case_4: /* CIL Label */ { ldv_timer_timer_instance_3((void *)0); } goto ldv_50769; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_50769: ; goto ldv_50775; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_6_line_line ; { { ldv_6_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_6_1(ldv_6_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_7_netdev_net_device ; { { ldv_7_netdev_net_device = arg1; ldv_free((void *)ldv_7_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = cas_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_50807; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_50807; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 3); ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_50807; case_6: /* CIL Label */ ; goto ldv_50807; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_50807: ; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_8_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_8_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_3 == 3); ldv_dispatch_instance_register_8_2(ldv_8_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; void *tmp___0 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 16) { goto case_16; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } if (ldv_statevar_1 == 22) { goto case_22; } else { } if (ldv_statevar_1 == 25) { goto case_25; } else { } if (ldv_statevar_1 == 27) { goto case_27; } else { } if (ldv_statevar_1 == 28) { goto case_28; } else { } if (ldv_statevar_1 == 29) { goto case_29; } else { } if (ldv_statevar_1 == 30) { goto case_30; } else { } if (ldv_statevar_1 == 31) { goto case_31; } else { } if (ldv_statevar_1 == 32) { goto case_32; } else { } if (ldv_statevar_1 == 33) { goto case_33; } else { } if (ldv_statevar_1 == 34) { goto case_34; } else { } if (ldv_statevar_1 == 36) { goto case_36; } else { } if (ldv_statevar_1 == 38) { goto case_38; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_50822; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_50822; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_50822; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_50822; case_5: /* CIL Label */ ; goto ldv_50822; case_8: /* CIL Label */ { tmp = ldv_xmalloc(8UL); ldv_1_ldv_param_7_2_default = (unsigned long long *)tmp; ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_7_2_default); ldv_free((void *)ldv_1_ldv_param_7_2_default); ldv_statevar_1 = 2; } goto ldv_50822; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_msglevel, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_50822; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_regs_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_50822; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_15_1_default); ldv_statevar_1 = 2; } goto ldv_50822; case_19: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_1_ldv_param_18_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_18_1_default, ldv_1_ldv_param_18_2_default); ldv_free((void *)ldv_1_ldv_param_18_2_default); ldv_statevar_1 = 2; } goto ldv_50822; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_21(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_21_1_default); ldv_statevar_1 = 2; } goto ldv_50822; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_24(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_24_2_default); ldv_statevar_1 = 2; } goto ldv_50822; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_ndo_get_stats, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_28(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_29(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_50822; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_31(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_32(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_33(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_34: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 3); ldv_dummy_resourceless_instance_callback_1_34(ldv_1_callback_nway_reset, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_50822; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_35_1_default); ldv_statevar_1 = 2; } goto ldv_50822; case_38: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 3); ldv_dummy_resourceless_instance_callback_1_38(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_50822; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_50822: ; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = cas_init_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { cas_remove_one(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { cas_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = cas_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_50893; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1 || ldv_statevar_3 == 2); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_50893; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 2; goto ldv_50893; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_50893; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 3); ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); ldv_statevar_2 = 4; } goto ldv_50893; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_50893; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_50893; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 2); ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_50893; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_50893; case_10: /* CIL Label */ ldv_statevar_2 = 9; goto ldv_50893; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_50893; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_50893; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_50893; case_17: /* CIL Label */ { ldv_assume((ldv_statevar_1 == 5 || ldv_statevar_3 == 2) || ldv_statevar_3 == 3); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_50893; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_50893; case_20: /* CIL Label */ ; goto ldv_50893; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_50893: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; { { ldv_12_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_12_1(ldv_12_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_9_netdev_net_device ; int ldv_9_ret_default ; int tmp ; int tmp___0 ; { { ldv_9_ret_default = 1; ldv_9_ret_default = ldv_pre_register_netdev(); ldv_9_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_3 == 3); ldv_9_ret_default = ldv_register_netdev_open_9_6((ldv_9_netdev_net_device->netdev_ops)->ndo_open, ldv_9_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_9_4(ldv_9_netdev_net_device); } } else { { ldv_assume(ldv_9_ret_default != 0); } } } else { { ldv_assume(ldv_9_ret_default != 0); } } return (ldv_9_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = cas_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_10_callback_handler)(int , void * ) ; void *ldv_10_data_data ; int ldv_10_line_line ; enum irqreturn (*ldv_10_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_line_line = (int )arg1; ldv_10_callback_handler = arg2; ldv_10_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_10_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_10_2(ldv_10_line_line, ldv_10_callback_handler, ldv_10_thread_thread, ldv_10_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); case_4: /* CIL Label */ ; return (11); case_5: /* CIL Label */ ; return (12); case_6: /* CIL Label */ ; return (13); case_7: /* CIL Label */ ; return (14); case_8: /* CIL Label */ ; return (16); case_9: /* CIL Label */ ; return (19); case_10: /* CIL Label */ ; return (22); case_11: /* CIL Label */ ; return (25); case_12: /* CIL Label */ ; return (27); case_13: /* CIL Label */ ; return (28); case_14: /* CIL Label */ ; return (29); case_15: /* CIL Label */ ; return (30); case_16: /* CIL Label */ ; return (31); case_17: /* CIL Label */ ; return (32); case_18: /* CIL Label */ ; return (33); case_19: /* CIL Label */ ; return (34); case_20: /* CIL Label */ ; return (36); case_21: /* CIL Label */ ; return (38); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 3; return; } } void ldv_switch_automaton_state_3_3(void) { { ldv_statevar_3 = 2; return; } } void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_3(void *arg0 ) { { { if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_3_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_3_2(ldv_3_container_timer_list->function, ldv_3_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_3 = 3; } goto ldv_51000; case_3: /* CIL Label */ ; goto ldv_51000; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_51000: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; { { ldv_11_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_3 == 3); ldv_unregister_netdev_stop_11_2((ldv_11_netdev_net_device->netdev_ops)->ndo_stop, ldv_11_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_11_1(ldv_11_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_11_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { cas_close(arg1); } return; } } void *ldv_malloc(size_t size ) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct page)); } return ((struct page *)tmp); } } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_101(spinlock_t *lock ) { { { ldv_spin_lock_NOT_ARG_SIGN(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_103(spinlock_t *lock ) { { { ldv_spin_unlock_NOT_ARG_SIGN(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_105(spinlock_t *lock ) { { { ldv_spin_lock_rx_inuse_lock_of_cas(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_106(spinlock_t *lock ) { { { ldv_spin_unlock_rx_inuse_lock_of_cas(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_107(spinlock_t *lock ) { { { ldv_spin_lock_rx_spare_lock_of_cas(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_108(spinlock_t *lock ) { { { ldv_spin_unlock_rx_spare_lock_of_cas(); spin_unlock(lock); } return; } } static int ldv_mod_timer_129(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_130(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } void *ldv_malloc(size_t size ) ; static void *ldv_vmalloc_131(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc(ldv_func_arg1); } return (tmp); } } __inline static void ldv_spin_lock_132(spinlock_t *lock ) { { { ldv_spin_lock_stat_lock_of_cas(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_133(spinlock_t *lock ) { { { ldv_spin_unlock_stat_lock_of_cas(); spin_unlock(lock); } return; } } static int ldv_mod_timer_146(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_157(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_158(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_cas(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_159(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_160(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_NOT_ARG_SIGN(); spin_unlock_irqrestore(lock, flags); } return; } } static int ldv_del_timer_sync_166(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_167(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_169(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_171(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv_mod_timer_172(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_174(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static int ldv_request_irq_176(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_177(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_179(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv_free_irq_181(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_spin_lock_182(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_184(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_190(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_192(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_194(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_196(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_198(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_200(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_202(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_203(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_204(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_205(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_206(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_207(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_209(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_cas(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv___pci_register_driver_211(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_212(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin_NOT_ARG_SIGN = 1; void ldv_spin_lock_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); ldv_spin_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_NOT_ARG_SIGN == 2); ldv_spin_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_cas = 1; void ldv_spin_lock_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_cas == 1); ldv_assume(ldv_spin_lock_of_cas == 1); ldv_spin_lock_of_cas = 2; } return; } } void ldv_spin_unlock_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_cas == 2); ldv_assume(ldv_spin_lock_of_cas == 2); ldv_spin_lock_of_cas = 1; } return; } } int ldv_spin_trylock_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_cas == 1); ldv_assume(ldv_spin_lock_of_cas == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_cas = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_cas == 1); ldv_assume(ldv_spin_lock_of_cas == 1); } return; } } int ldv_spin_is_locked_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_cas == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_cas(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_cas(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_cas(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_cas(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_cas == 1); ldv_assume(ldv_spin_lock_of_cas == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_cas = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_rx_inuse_lock_of_cas = 1; void ldv_spin_lock_rx_inuse_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_rx_inuse_lock_of_cas == 1); ldv_assume(ldv_spin_rx_inuse_lock_of_cas == 1); ldv_spin_rx_inuse_lock_of_cas = 2; } return; } } void ldv_spin_unlock_rx_inuse_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_rx_inuse_lock_of_cas == 2); ldv_assume(ldv_spin_rx_inuse_lock_of_cas == 2); ldv_spin_rx_inuse_lock_of_cas = 1; } return; } } int ldv_spin_trylock_rx_inuse_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_inuse_lock_of_cas == 1); ldv_assume(ldv_spin_rx_inuse_lock_of_cas == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_rx_inuse_lock_of_cas = 2; return (1); } } } void ldv_spin_unlock_wait_rx_inuse_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_inuse_lock_of_cas == 1); ldv_assume(ldv_spin_rx_inuse_lock_of_cas == 1); } return; } } int ldv_spin_is_locked_rx_inuse_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_rx_inuse_lock_of_cas == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_rx_inuse_lock_of_cas(void) { int tmp ; { { tmp = ldv_spin_is_locked_rx_inuse_lock_of_cas(); } return (tmp == 0); } } int ldv_spin_is_contended_rx_inuse_lock_of_cas(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_rx_inuse_lock_of_cas(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_inuse_lock_of_cas == 1); ldv_assume(ldv_spin_rx_inuse_lock_of_cas == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_rx_inuse_lock_of_cas = 2; return (1); } else { } return (0); } } static int ldv_spin_rx_spare_lock_of_cas = 1; void ldv_spin_lock_rx_spare_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_rx_spare_lock_of_cas == 1); ldv_assume(ldv_spin_rx_spare_lock_of_cas == 1); ldv_spin_rx_spare_lock_of_cas = 2; } return; } } void ldv_spin_unlock_rx_spare_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_rx_spare_lock_of_cas == 2); ldv_assume(ldv_spin_rx_spare_lock_of_cas == 2); ldv_spin_rx_spare_lock_of_cas = 1; } return; } } int ldv_spin_trylock_rx_spare_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_spare_lock_of_cas == 1); ldv_assume(ldv_spin_rx_spare_lock_of_cas == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_rx_spare_lock_of_cas = 2; return (1); } } } void ldv_spin_unlock_wait_rx_spare_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_spare_lock_of_cas == 1); ldv_assume(ldv_spin_rx_spare_lock_of_cas == 1); } return; } } int ldv_spin_is_locked_rx_spare_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_rx_spare_lock_of_cas == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_rx_spare_lock_of_cas(void) { int tmp ; { { tmp = ldv_spin_is_locked_rx_spare_lock_of_cas(); } return (tmp == 0); } } int ldv_spin_is_contended_rx_spare_lock_of_cas(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_rx_spare_lock_of_cas(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_spare_lock_of_cas == 1); ldv_assume(ldv_spin_rx_spare_lock_of_cas == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_rx_spare_lock_of_cas = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_stat_lock_of_cas = 1; void ldv_spin_lock_stat_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_stat_lock_of_cas == 1); ldv_assume(ldv_spin_stat_lock_of_cas == 1); ldv_spin_stat_lock_of_cas = 2; } return; } } void ldv_spin_unlock_stat_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_stat_lock_of_cas == 2); ldv_assume(ldv_spin_stat_lock_of_cas == 2); ldv_spin_stat_lock_of_cas = 1; } return; } } int ldv_spin_trylock_stat_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stat_lock_of_cas == 1); ldv_assume(ldv_spin_stat_lock_of_cas == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_stat_lock_of_cas = 2; return (1); } } } void ldv_spin_unlock_wait_stat_lock_of_cas(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stat_lock_of_cas == 1); ldv_assume(ldv_spin_stat_lock_of_cas == 1); } return; } } int ldv_spin_is_locked_stat_lock_of_cas(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_stat_lock_of_cas == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_stat_lock_of_cas(void) { int tmp ; { { tmp = ldv_spin_is_locked_stat_lock_of_cas(); } return (tmp == 0); } } int ldv_spin_is_contended_stat_lock_of_cas(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_stat_lock_of_cas(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_stat_lock_of_cas == 1); ldv_assume(ldv_spin_stat_lock_of_cas == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_stat_lock_of_cas = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_cas == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_rx_inuse_lock_of_cas == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_rx_spare_lock_of_cas == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_stat_lock_of_cas == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_cas == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_rx_inuse_lock_of_cas == 2) { return (1); } else { } if (ldv_spin_rx_spare_lock_of_cas == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_stat_lock_of_cas == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void abort(void); #include void reach_error() { assert(0); } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { {reach_error();} } } else { } return; } } #include "model/linux-3.14__complex_emg__linux-alloc-spinlock__drivers-net-ethernet-sun-cassini_true-unreach-call.cil.env.c" #include "model/common.env.c"